1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains various simple utilities to analyze the CFG. */
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
33 #include "diagnostic-core.h"
41 /* Store the data structures necessary for depth-first search. */
42 struct depth_first_search_dsS
{
43 /* stack for backtracking during the algorithm */
46 /* number of edges in the stack. That is, positions 0, ..., sp-1
50 /* record of basic blocks already seen by depth-first search */
51 sbitmap visited_blocks
;
53 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
55 static void flow_dfs_compute_reverse_init (depth_first_search_ds
);
56 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds
,
58 static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds
,
60 static void flow_dfs_compute_reverse_finish (depth_first_search_ds
);
61 static bool flow_active_insn_p (const_rtx
);
63 /* Like active_insn_p, except keep the return value clobber around
67 flow_active_insn_p (const_rtx insn
)
69 if (active_insn_p (insn
))
72 /* A clobber of the function return value exists for buggy
73 programs that fail to return a value. Its effect is to
74 keep the return value from being live across the entire
75 function. If we allow it to be skipped, we introduce the
76 possibility for register lifetime confusion. */
77 if (GET_CODE (PATTERN (insn
)) == CLOBBER
78 && REG_P (XEXP (PATTERN (insn
), 0))
79 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))
85 /* Return true if the block has no effect and only forwards control flow to
86 its single destination. */
89 forwarder_block_p (const_basic_block bb
)
93 if (bb
== EXIT_BLOCK_PTR
|| bb
== ENTRY_BLOCK_PTR
94 || !single_succ_p (bb
))
97 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
98 if (INSN_P (insn
) && flow_active_insn_p (insn
))
101 return (!INSN_P (insn
)
102 || (JUMP_P (insn
) && simplejump_p (insn
))
103 || !flow_active_insn_p (insn
));
106 /* Return nonzero if we can reach target from src by falling through. */
109 can_fallthru (basic_block src
, basic_block target
)
111 rtx insn
= BB_END (src
);
116 if (target
== EXIT_BLOCK_PTR
)
118 if (src
->next_bb
!= target
)
120 FOR_EACH_EDGE (e
, ei
, src
->succs
)
121 if (e
->dest
== EXIT_BLOCK_PTR
122 && e
->flags
& EDGE_FALLTHRU
)
125 insn2
= BB_HEAD (target
);
126 if (insn2
&& !active_insn_p (insn2
))
127 insn2
= next_active_insn (insn2
);
129 /* ??? Later we may add code to move jump tables offline. */
130 return next_active_insn (insn
) == insn2
;
133 /* Return nonzero if we could reach target from src by falling through,
134 if the target was made adjacent. If we already have a fall-through
135 edge to the exit block, we can't do that. */
137 could_fall_through (basic_block src
, basic_block target
)
142 if (target
== EXIT_BLOCK_PTR
)
144 FOR_EACH_EDGE (e
, ei
, src
->succs
)
145 if (e
->dest
== EXIT_BLOCK_PTR
146 && e
->flags
& EDGE_FALLTHRU
)
151 /* Mark the back edges in DFS traversal.
152 Return nonzero if a loop (natural or otherwise) is present.
153 Inspired by Depth_First_Search_PP described in:
155 Advanced Compiler Design and Implementation
157 Morgan Kaufmann, 1997
159 and heavily borrowed from pre_and_rev_post_order_compute. */
162 mark_dfs_back_edges (void)
164 edge_iterator
*stack
;
173 /* Allocate the preorder and postorder number arrays. */
174 pre
= XCNEWVEC (int, last_basic_block
);
175 post
= XCNEWVEC (int, last_basic_block
);
177 /* Allocate stack for back-tracking up CFG. */
178 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
181 /* Allocate bitmap to track nodes that have been visited. */
182 visited
= sbitmap_alloc (last_basic_block
);
184 /* None of the nodes in the CFG have been visited yet. */
185 sbitmap_zero (visited
);
187 /* Push the first edge on to the stack. */
188 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
196 /* Look at the edge on the top of the stack. */
198 src
= ei_edge (ei
)->src
;
199 dest
= ei_edge (ei
)->dest
;
200 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
202 /* Check if the edge destination has been visited yet. */
203 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
205 /* Mark that we have visited the destination. */
206 SET_BIT (visited
, dest
->index
);
208 pre
[dest
->index
] = prenum
++;
209 if (EDGE_COUNT (dest
->succs
) > 0)
211 /* Since the DEST node has been visited for the first
212 time, check its successors. */
213 stack
[sp
++] = ei_start (dest
->succs
);
216 post
[dest
->index
] = postnum
++;
220 if (dest
!= EXIT_BLOCK_PTR
&& src
!= ENTRY_BLOCK_PTR
221 && pre
[src
->index
] >= pre
[dest
->index
]
222 && post
[dest
->index
] == 0)
223 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
, found
= true;
225 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
226 post
[src
->index
] = postnum
++;
228 if (!ei_one_before_end_p (ei
))
229 ei_next (&stack
[sp
- 1]);
238 sbitmap_free (visited
);
243 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
246 set_edge_can_fallthru_flag (void)
255 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
257 e
->flags
&= ~EDGE_CAN_FALLTHRU
;
259 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
260 if (e
->flags
& EDGE_FALLTHRU
)
261 e
->flags
|= EDGE_CAN_FALLTHRU
;
264 /* If the BB ends with an invertible condjump all (2) edges are
265 CAN_FALLTHRU edges. */
266 if (EDGE_COUNT (bb
->succs
) != 2)
268 if (!any_condjump_p (BB_END (bb
)))
270 if (!invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0))
272 invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0);
273 EDGE_SUCC (bb
, 0)->flags
|= EDGE_CAN_FALLTHRU
;
274 EDGE_SUCC (bb
, 1)->flags
|= EDGE_CAN_FALLTHRU
;
278 /* Find unreachable blocks. An unreachable block will have 0 in
279 the reachable bit in block->flags. A nonzero value indicates the
280 block is reachable. */
283 find_unreachable_blocks (void)
287 basic_block
*tos
, *worklist
, bb
;
289 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks
);
291 /* Clear all the reachability flags. */
294 bb
->flags
&= ~BB_REACHABLE
;
296 /* Add our starting points to the worklist. Almost always there will
297 be only one. It isn't inconceivable that we might one day directly
298 support Fortran alternate entry points. */
300 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
304 /* Mark the block reachable. */
305 e
->dest
->flags
|= BB_REACHABLE
;
308 /* Iterate: find everything reachable from what we've already seen. */
310 while (tos
!= worklist
)
312 basic_block b
= *--tos
;
314 FOR_EACH_EDGE (e
, ei
, b
->succs
)
316 basic_block dest
= e
->dest
;
318 if (!(dest
->flags
& BB_REACHABLE
))
321 dest
->flags
|= BB_REACHABLE
;
329 /* Functions to access an edge list with a vector representation.
330 Enough data is kept such that given an index number, the
331 pred and succ that edge represents can be determined, or
332 given a pred and a succ, its index number can be returned.
333 This allows algorithms which consume a lot of memory to
334 represent the normally full matrix of edge (pred,succ) with a
335 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
336 wasted space in the client code due to sparse flow graphs. */
338 /* This functions initializes the edge list. Basically the entire
339 flowgraph is processed, and all edges are assigned a number,
340 and the data structure is filled in. */
343 create_edge_list (void)
345 struct edge_list
*elist
;
352 block_count
= n_basic_blocks
; /* Include the entry and exit blocks. */
356 /* Determine the number of edges in the flow graph by counting successor
357 edges on each basic block. */
358 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
360 num_edges
+= EDGE_COUNT (bb
->succs
);
363 elist
= XNEW (struct edge_list
);
364 elist
->num_blocks
= block_count
;
365 elist
->num_edges
= num_edges
;
366 elist
->index_to_edge
= XNEWVEC (edge
, num_edges
);
370 /* Follow successors of blocks, and register these edges. */
371 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
372 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
373 elist
->index_to_edge
[num_edges
++] = e
;
378 /* This function free's memory associated with an edge list. */
381 free_edge_list (struct edge_list
*elist
)
385 free (elist
->index_to_edge
);
390 /* This function provides debug output showing an edge list. */
393 print_edge_list (FILE *f
, struct edge_list
*elist
)
397 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
398 elist
->num_blocks
, elist
->num_edges
);
400 for (x
= 0; x
< elist
->num_edges
; x
++)
402 fprintf (f
, " %-4d - edge(", x
);
403 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
404 fprintf (f
, "entry,");
406 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
408 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
409 fprintf (f
, "exit)\n");
411 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
415 /* This function provides an internal consistency check of an edge list,
416 verifying that all edges are present, and that there are no
420 verify_edge_list (FILE *f
, struct edge_list
*elist
)
422 int pred
, succ
, index
;
424 basic_block bb
, p
, s
;
427 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
429 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
431 pred
= e
->src
->index
;
432 succ
= e
->dest
->index
;
433 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
434 if (index
== EDGE_INDEX_NO_EDGE
)
436 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
440 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
441 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
442 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
443 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
444 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
445 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
449 /* We've verified that all the edges are in the list, now lets make sure
450 there are no spurious edges in the list. */
452 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
453 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
457 FOR_EACH_EDGE (e
, ei
, p
->succs
)
464 FOR_EACH_EDGE (e
, ei
, s
->preds
)
471 if (EDGE_INDEX (elist
, p
, s
)
472 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
473 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
475 if (EDGE_INDEX (elist
, p
, s
)
476 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
477 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
478 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
482 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
483 If no such edge exists, return NULL. */
486 find_edge (basic_block pred
, basic_block succ
)
491 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
493 FOR_EACH_EDGE (e
, ei
, pred
->succs
)
499 FOR_EACH_EDGE (e
, ei
, succ
->preds
)
507 /* This routine will determine what, if any, edge there is between
508 a specified predecessor and successor. */
511 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
515 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
516 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
517 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
520 return (EDGE_INDEX_NO_EDGE
);
523 /* Dump the list of basic blocks in the bitmap NODES. */
526 flow_nodes_print (const char *str
, const_sbitmap nodes
, FILE *file
)
528 unsigned int node
= 0;
529 sbitmap_iterator sbi
;
534 fprintf (file
, "%s { ", str
);
535 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, sbi
)
536 fprintf (file
, "%d ", node
);
540 /* Dump the list of edges in the array EDGE_LIST. */
543 flow_edge_list_print (const char *str
, const edge
*edge_list
, int num_edges
, FILE *file
)
550 fprintf (file
, "%s { ", str
);
551 for (i
= 0; i
< num_edges
; i
++)
552 fprintf (file
, "%d->%d ", edge_list
[i
]->src
->index
,
553 edge_list
[i
]->dest
->index
);
559 /* This routine will remove any fake predecessor edges for a basic block.
560 When the edge is removed, it is also removed from whatever successor
564 remove_fake_predecessors (basic_block bb
)
569 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
571 if ((e
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
578 /* This routine will remove all fake edges from the flow graph. If
579 we remove all fake successors, it will automatically remove all
580 fake predecessors. */
583 remove_fake_edges (void)
587 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
588 remove_fake_predecessors (bb
);
591 /* This routine will remove all fake edges to the EXIT_BLOCK. */
594 remove_fake_exit_edges (void)
596 remove_fake_predecessors (EXIT_BLOCK_PTR
);
600 /* This function will add a fake edge between any block which has no
601 successors, and the exit block. Some data flow equations require these
605 add_noreturn_fake_exit_edges (void)
610 if (EDGE_COUNT (bb
->succs
) == 0)
611 make_single_succ_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
614 /* This function adds a fake edge between any infinite loops to the
615 exit block. Some optimizations require a path from each node to
618 See also Morgan, Figure 3.10, pp. 82-83.
620 The current implementation is ugly, not attempting to minimize the
621 number of inserted fake edges. To reduce the number of fake edges
622 to insert, add fake edges from _innermost_ loops containing only
623 nodes not reachable from the exit block. */
626 connect_infinite_loops_to_exit (void)
628 basic_block unvisited_block
= EXIT_BLOCK_PTR
;
629 struct depth_first_search_dsS dfs_ds
;
631 /* Perform depth-first search in the reverse graph to find nodes
632 reachable from the exit block. */
633 flow_dfs_compute_reverse_init (&dfs_ds
);
634 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
636 /* Repeatedly add fake edges, updating the unreachable nodes. */
639 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
,
641 if (!unvisited_block
)
644 make_edge (unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
645 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
648 flow_dfs_compute_reverse_finish (&dfs_ds
);
652 /* Compute reverse top sort order. This is computing a post order
653 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
654 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
655 true, unreachable blocks are deleted. */
658 post_order_compute (int *post_order
, bool include_entry_exit
,
659 bool delete_unreachable
)
661 edge_iterator
*stack
;
663 int post_order_num
= 0;
667 if (include_entry_exit
)
668 post_order
[post_order_num
++] = EXIT_BLOCK
;
670 /* Allocate stack for back-tracking up CFG. */
671 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
674 /* Allocate bitmap to track nodes that have been visited. */
675 visited
= sbitmap_alloc (last_basic_block
);
677 /* None of the nodes in the CFG have been visited yet. */
678 sbitmap_zero (visited
);
680 /* Push the first edge on to the stack. */
681 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
689 /* Look at the edge on the top of the stack. */
691 src
= ei_edge (ei
)->src
;
692 dest
= ei_edge (ei
)->dest
;
694 /* Check if the edge destination has been visited yet. */
695 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
697 /* Mark that we have visited the destination. */
698 SET_BIT (visited
, dest
->index
);
700 if (EDGE_COUNT (dest
->succs
) > 0)
701 /* Since the DEST node has been visited for the first
702 time, check its successors. */
703 stack
[sp
++] = ei_start (dest
->succs
);
705 post_order
[post_order_num
++] = dest
->index
;
709 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
710 post_order
[post_order_num
++] = src
->index
;
712 if (!ei_one_before_end_p (ei
))
713 ei_next (&stack
[sp
- 1]);
719 if (include_entry_exit
)
721 post_order
[post_order_num
++] = ENTRY_BLOCK
;
722 count
= post_order_num
;
725 count
= post_order_num
+ 2;
727 /* Delete the unreachable blocks if some were found and we are
728 supposed to do it. */
729 if (delete_unreachable
&& (count
!= n_basic_blocks
))
733 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
735 next_bb
= b
->next_bb
;
737 if (!(TEST_BIT (visited
, b
->index
)))
738 delete_basic_block (b
);
741 tidy_fallthru_edges ();
745 sbitmap_free (visited
);
746 return post_order_num
;
750 /* Helper routine for inverted_post_order_compute.
751 BB has to belong to a region of CFG
752 unreachable by inverted traversal from the exit.
753 i.e. there's no control flow path from ENTRY to EXIT
754 that contains this BB.
755 This can happen in two cases - if there's an infinite loop
756 or if there's a block that has no successor
757 (call to a function with no return).
758 Some RTL passes deal with this condition by
759 calling connect_infinite_loops_to_exit () and/or
760 add_noreturn_fake_exit_edges ().
761 However, those methods involve modifying the CFG itself
762 which may not be desirable.
763 Hence, we deal with the infinite loop/no return cases
764 by identifying a unique basic block that can reach all blocks
765 in such a region by inverted traversal.
766 This function returns a basic block that guarantees
767 that all blocks in the region are reachable
768 by starting an inverted traversal from the returned block. */
771 dfs_find_deadend (basic_block bb
)
773 sbitmap visited
= sbitmap_alloc (last_basic_block
);
774 sbitmap_zero (visited
);
778 SET_BIT (visited
, bb
->index
);
779 if (EDGE_COUNT (bb
->succs
) == 0
780 || TEST_BIT (visited
, EDGE_SUCC (bb
, 0)->dest
->index
))
782 sbitmap_free (visited
);
786 bb
= EDGE_SUCC (bb
, 0)->dest
;
793 /* Compute the reverse top sort order of the inverted CFG
794 i.e. starting from the exit block and following the edges backward
795 (from successors to predecessors).
796 This ordering can be used for forward dataflow problems among others.
798 This function assumes that all blocks in the CFG are reachable
799 from the ENTRY (but not necessarily from EXIT).
801 If there's an infinite loop,
802 a simple inverted traversal starting from the blocks
803 with no successors can't visit all blocks.
804 To solve this problem, we first do inverted traversal
805 starting from the blocks with no successor.
806 And if there's any block left that's not visited by the regular
807 inverted traversal from EXIT,
808 those blocks are in such problematic region.
809 Among those, we find one block that has
810 any visited predecessor (which is an entry into such a region),
811 and start looking for a "dead end" from that block
812 and do another inverted traversal from that block. */
815 inverted_post_order_compute (int *post_order
)
818 edge_iterator
*stack
;
820 int post_order_num
= 0;
823 /* Allocate stack for back-tracking up CFG. */
824 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
827 /* Allocate bitmap to track nodes that have been visited. */
828 visited
= sbitmap_alloc (last_basic_block
);
830 /* None of the nodes in the CFG have been visited yet. */
831 sbitmap_zero (visited
);
833 /* Put all blocks that have no successor into the initial work list. */
834 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
835 if (EDGE_COUNT (bb
->succs
) == 0)
837 /* Push the initial edge on to the stack. */
838 if (EDGE_COUNT (bb
->preds
) > 0)
840 stack
[sp
++] = ei_start (bb
->preds
);
841 SET_BIT (visited
, bb
->index
);
847 bool has_unvisited_bb
= false;
849 /* The inverted traversal loop. */
855 /* Look at the edge on the top of the stack. */
857 bb
= ei_edge (ei
)->dest
;
858 pred
= ei_edge (ei
)->src
;
860 /* Check if the predecessor has been visited yet. */
861 if (! TEST_BIT (visited
, pred
->index
))
863 /* Mark that we have visited the destination. */
864 SET_BIT (visited
, pred
->index
);
866 if (EDGE_COUNT (pred
->preds
) > 0)
867 /* Since the predecessor node has been visited for the first
868 time, check its predecessors. */
869 stack
[sp
++] = ei_start (pred
->preds
);
871 post_order
[post_order_num
++] = pred
->index
;
875 if (bb
!= EXIT_BLOCK_PTR
&& ei_one_before_end_p (ei
))
876 post_order
[post_order_num
++] = bb
->index
;
878 if (!ei_one_before_end_p (ei
))
879 ei_next (&stack
[sp
- 1]);
885 /* Detect any infinite loop and activate the kludge.
886 Note that this doesn't check EXIT_BLOCK itself
887 since EXIT_BLOCK is always added after the outer do-while loop. */
888 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
889 if (!TEST_BIT (visited
, bb
->index
))
891 has_unvisited_bb
= true;
893 if (EDGE_COUNT (bb
->preds
) > 0)
897 basic_block visited_pred
= NULL
;
899 /* Find an already visited predecessor. */
900 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
902 if (TEST_BIT (visited
, e
->src
->index
))
903 visited_pred
= e
->src
;
908 basic_block be
= dfs_find_deadend (bb
);
909 gcc_assert (be
!= NULL
);
910 SET_BIT (visited
, be
->index
);
911 stack
[sp
++] = ei_start (be
->preds
);
917 if (has_unvisited_bb
&& sp
== 0)
919 /* No blocks are reachable from EXIT at all.
920 Find a dead-end from the ENTRY, and restart the iteration. */
921 basic_block be
= dfs_find_deadend (ENTRY_BLOCK_PTR
);
922 gcc_assert (be
!= NULL
);
923 SET_BIT (visited
, be
->index
);
924 stack
[sp
++] = ei_start (be
->preds
);
927 /* The only case the below while fires is
928 when there's an infinite loop. */
932 /* EXIT_BLOCK is always included. */
933 post_order
[post_order_num
++] = EXIT_BLOCK
;
936 sbitmap_free (visited
);
937 return post_order_num
;
940 /* Compute the depth first search order and store in the array
941 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
942 REV_POST_ORDER is nonzero, return the reverse completion number for each
943 node. Returns the number of nodes visited. A depth first search
944 tries to get as far away from the starting point as quickly as
947 pre_order is a really a preorder numbering of the graph.
948 rev_post_order is really a reverse postorder numbering of the graph.
952 pre_and_rev_post_order_compute (int *pre_order
, int *rev_post_order
,
953 bool include_entry_exit
)
955 edge_iterator
*stack
;
957 int pre_order_num
= 0;
958 int rev_post_order_num
= n_basic_blocks
- 1;
961 /* Allocate stack for back-tracking up CFG. */
962 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
965 if (include_entry_exit
)
968 pre_order
[pre_order_num
] = ENTRY_BLOCK
;
971 rev_post_order
[rev_post_order_num
--] = ENTRY_BLOCK
;
974 rev_post_order_num
-= NUM_FIXED_BLOCKS
;
976 /* Allocate bitmap to track nodes that have been visited. */
977 visited
= sbitmap_alloc (last_basic_block
);
979 /* None of the nodes in the CFG have been visited yet. */
980 sbitmap_zero (visited
);
982 /* Push the first edge on to the stack. */
983 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
991 /* Look at the edge on the top of the stack. */
993 src
= ei_edge (ei
)->src
;
994 dest
= ei_edge (ei
)->dest
;
996 /* Check if the edge destination has been visited yet. */
997 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
999 /* Mark that we have visited the destination. */
1000 SET_BIT (visited
, dest
->index
);
1003 pre_order
[pre_order_num
] = dest
->index
;
1007 if (EDGE_COUNT (dest
->succs
) > 0)
1008 /* Since the DEST node has been visited for the first
1009 time, check its successors. */
1010 stack
[sp
++] = ei_start (dest
->succs
);
1011 else if (rev_post_order
)
1012 /* There are no successors for the DEST node so assign
1013 its reverse completion number. */
1014 rev_post_order
[rev_post_order_num
--] = dest
->index
;
1018 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
1020 /* There are no more successors for the SRC node
1021 so assign its reverse completion number. */
1022 rev_post_order
[rev_post_order_num
--] = src
->index
;
1024 if (!ei_one_before_end_p (ei
))
1025 ei_next (&stack
[sp
- 1]);
1032 sbitmap_free (visited
);
1034 if (include_entry_exit
)
1037 pre_order
[pre_order_num
] = EXIT_BLOCK
;
1040 rev_post_order
[rev_post_order_num
--] = EXIT_BLOCK
;
1041 /* The number of nodes visited should be the number of blocks. */
1042 gcc_assert (pre_order_num
== n_basic_blocks
);
1045 /* The number of nodes visited should be the number of blocks minus
1046 the entry and exit blocks which are not visited here. */
1047 gcc_assert (pre_order_num
== n_basic_blocks
- NUM_FIXED_BLOCKS
);
1049 return pre_order_num
;
1052 /* Compute the depth first search order on the _reverse_ graph and
1053 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1054 Returns the number of nodes visited.
1056 The computation is split into three pieces:
1058 flow_dfs_compute_reverse_init () creates the necessary data
1061 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1062 structures. The block will start the search.
1064 flow_dfs_compute_reverse_execute () continues (or starts) the
1065 search using the block on the top of the stack, stopping when the
1068 flow_dfs_compute_reverse_finish () destroys the necessary data
1071 Thus, the user will probably call ..._init(), call ..._add_bb() to
1072 add a beginning basic block to the stack, call ..._execute(),
1073 possibly add another bb to the stack and again call ..._execute(),
1074 ..., and finally call _finish(). */
1076 /* Initialize the data structures used for depth-first search on the
1077 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1078 added to the basic block stack. DATA is the current depth-first
1079 search context. If INITIALIZE_STACK is nonzero, there is an
1080 element on the stack. */
1083 flow_dfs_compute_reverse_init (depth_first_search_ds data
)
1085 /* Allocate stack for back-tracking up CFG. */
1086 data
->stack
= XNEWVEC (basic_block
, n_basic_blocks
);
1089 /* Allocate bitmap to track nodes that have been visited. */
1090 data
->visited_blocks
= sbitmap_alloc (last_basic_block
);
1092 /* None of the nodes in the CFG have been visited yet. */
1093 sbitmap_zero (data
->visited_blocks
);
1098 /* Add the specified basic block to the top of the dfs data
1099 structures. When the search continues, it will start at the
1103 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data
, basic_block bb
)
1105 data
->stack
[data
->sp
++] = bb
;
1106 SET_BIT (data
->visited_blocks
, bb
->index
);
1109 /* Continue the depth-first search through the reverse graph starting with the
1110 block at the stack's top and ending when the stack is empty. Visited nodes
1111 are marked. Returns an unvisited basic block, or NULL if there is none
1115 flow_dfs_compute_reverse_execute (depth_first_search_ds data
,
1116 basic_block last_unvisited
)
1122 while (data
->sp
> 0)
1124 bb
= data
->stack
[--data
->sp
];
1126 /* Perform depth-first search on adjacent vertices. */
1127 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1128 if (!TEST_BIT (data
->visited_blocks
, e
->src
->index
))
1129 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
1132 /* Determine if there are unvisited basic blocks. */
1133 FOR_BB_BETWEEN (bb
, last_unvisited
, NULL
, prev_bb
)
1134 if (!TEST_BIT (data
->visited_blocks
, bb
->index
))
1140 /* Destroy the data structures needed for depth-first search on the
1144 flow_dfs_compute_reverse_finish (depth_first_search_ds data
)
1147 sbitmap_free (data
->visited_blocks
);
1150 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1151 if REVERSE, go against direction of edges. Returns number of blocks
1152 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1154 dfs_enumerate_from (basic_block bb
, int reverse
,
1155 bool (*predicate
) (const_basic_block
, const void *),
1156 basic_block
*rslt
, int rslt_max
, const void *data
)
1158 basic_block
*st
, lbb
;
1162 /* A bitmap to keep track of visited blocks. Allocating it each time
1163 this function is called is not possible, since dfs_enumerate_from
1164 is often used on small (almost) disjoint parts of cfg (bodies of
1165 loops), and allocating a large sbitmap would lead to quadratic
1167 static sbitmap visited
;
1168 static unsigned v_size
;
1170 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
1171 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
1172 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
1174 /* Resize the VISITED sbitmap if necessary. */
1175 size
= last_basic_block
;
1182 visited
= sbitmap_alloc (size
);
1183 sbitmap_zero (visited
);
1186 else if (v_size
< size
)
1188 /* Ensure that we increase the size of the sbitmap exponentially. */
1189 if (2 * v_size
> size
)
1192 visited
= sbitmap_resize (visited
, size
, 0);
1196 st
= XCNEWVEC (basic_block
, rslt_max
);
1197 rslt
[tv
++] = st
[sp
++] = bb
;
1206 FOR_EACH_EDGE (e
, ei
, lbb
->preds
)
1207 if (!VISITED_P (e
->src
) && predicate (e
->src
, data
))
1209 gcc_assert (tv
!= rslt_max
);
1210 rslt
[tv
++] = st
[sp
++] = e
->src
;
1211 MARK_VISITED (e
->src
);
1216 FOR_EACH_EDGE (e
, ei
, lbb
->succs
)
1217 if (!VISITED_P (e
->dest
) && predicate (e
->dest
, data
))
1219 gcc_assert (tv
!= rslt_max
);
1220 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1221 MARK_VISITED (e
->dest
);
1226 for (sp
= 0; sp
< tv
; sp
++)
1227 UNMARK_VISITED (rslt
[sp
]);
1230 #undef UNMARK_VISITED
1235 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1237 This algorithm can be found in Timothy Harvey's PhD thesis, at
1238 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1239 dominance algorithms.
1241 First, we identify each join point, j (any node with more than one
1242 incoming edge is a join point).
1244 We then examine each predecessor, p, of j and walk up the dominator tree
1247 We stop the walk when we reach j's immediate dominator - j is in the
1248 dominance frontier of each of the nodes in the walk, except for j's
1249 immediate dominator. Intuitively, all of the rest of j's dominators are
1250 shared by j's predecessors as well.
1251 Since they dominate j, they will not have j in their dominance frontiers.
1253 The number of nodes touched by this algorithm is equal to the size
1254 of the dominance frontiers, no more, no less.
1259 compute_dominance_frontiers_1 (bitmap_head
*frontiers
)
1266 if (EDGE_COUNT (b
->preds
) >= 2)
1268 FOR_EACH_EDGE (p
, ei
, b
->preds
)
1270 basic_block runner
= p
->src
;
1272 if (runner
== ENTRY_BLOCK_PTR
)
1275 domsb
= get_immediate_dominator (CDI_DOMINATORS
, b
);
1276 while (runner
!= domsb
)
1278 if (!bitmap_set_bit (&frontiers
[runner
->index
],
1281 runner
= get_immediate_dominator (CDI_DOMINATORS
,
1291 compute_dominance_frontiers (bitmap_head
*frontiers
)
1293 timevar_push (TV_DOM_FRONTIERS
);
1295 compute_dominance_frontiers_1 (frontiers
);
1297 timevar_pop (TV_DOM_FRONTIERS
);
1300 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1301 return a bitmap with all the blocks in the iterated dominance
1302 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1303 frontier information as returned by compute_dominance_frontiers.
1305 The resulting set of blocks are the potential sites where PHI nodes
1306 are needed. The caller is responsible for freeing the memory
1307 allocated for the return value. */
1310 compute_idf (bitmap def_blocks
, bitmap_head
*dfs
)
1313 unsigned bb_index
, i
;
1314 VEC(int,heap
) *work_stack
;
1315 bitmap phi_insertion_points
;
1317 work_stack
= VEC_alloc (int, heap
, n_basic_blocks
);
1318 phi_insertion_points
= BITMAP_ALLOC (NULL
);
1320 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1321 VEC_quick_push here for speed. This is safe because we know that
1322 the number of definition blocks is no greater than the number of
1323 basic blocks, which is the initial capacity of WORK_STACK. */
1324 EXECUTE_IF_SET_IN_BITMAP (def_blocks
, 0, bb_index
, bi
)
1325 VEC_quick_push (int, work_stack
, bb_index
);
1327 /* Pop a block off the worklist, add every block that appears in
1328 the original block's DF that we have not already processed to
1329 the worklist. Iterate until the worklist is empty. Blocks
1330 which are added to the worklist are potential sites for
1332 while (VEC_length (int, work_stack
) > 0)
1334 bb_index
= VEC_pop (int, work_stack
);
1336 /* Since the registration of NEW -> OLD name mappings is done
1337 separately from the call to update_ssa, when updating the SSA
1338 form, the basic blocks where new and/or old names are defined
1339 may have disappeared by CFG cleanup calls. In this case,
1340 we may pull a non-existing block from the work stack. */
1341 gcc_assert (bb_index
< (unsigned) last_basic_block
);
1343 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs
[bb_index
], phi_insertion_points
,
1346 /* Use a safe push because if there is a definition of VAR
1347 in every basic block, then WORK_STACK may eventually have
1348 more than N_BASIC_BLOCK entries. */
1349 VEC_safe_push (int, heap
, work_stack
, i
);
1350 bitmap_set_bit (phi_insertion_points
, i
);
1354 VEC_free (int, heap
, work_stack
);
1356 return phi_insertion_points
;