Remove duplicate include of header file "sys/bus.h".
[dragonfly.git] / sys / kern / kern_proc.c
blobf2f63c2c925b6f2725523b71eda792a0b258f502
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $
35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.43 2008/05/18 20:02:02 nth Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/jail.h>
45 #include <sys/filedesc.h>
46 #include <sys/tty.h>
47 #include <sys/signalvar.h>
48 #include <sys/spinlock.h>
49 #include <vm/vm.h>
50 #include <sys/lock.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_map.h>
53 #include <sys/user.h>
54 #include <vm/vm_zone.h>
55 #include <machine/smp.h>
57 #include <sys/spinlock2.h>
59 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
60 MALLOC_DEFINE(M_SESSION, "session", "session header");
61 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
62 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures");
63 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
65 int ps_showallprocs = 1;
66 static int ps_showallthreads = 1;
67 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
68 &ps_showallprocs, 0,
69 "Unprivileged processes can see proccesses with different UID/GID");
70 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
71 &ps_showallthreads, 0,
72 "Unprivileged processes can see kernel threads");
74 static void pgdelete(struct pgrp *);
75 static void orphanpg(struct pgrp *pg);
76 static pid_t proc_getnewpid_locked(int random_offset);
79 * Other process lists
81 struct pidhashhead *pidhashtbl;
82 u_long pidhash;
83 struct pgrphashhead *pgrphashtbl;
84 u_long pgrphash;
85 struct proclist allproc;
86 struct proclist zombproc;
87 struct spinlock allproc_spin;
88 vm_zone_t thread_zone;
91 * Random component to nextpid generation. We mix in a random factor to make
92 * it a little harder to predict. We sanity check the modulus value to avoid
93 * doing it in critical paths. Don't let it be too small or we pointlessly
94 * waste randomness entropy, and don't let it be impossibly large. Using a
95 * modulus that is too big causes a LOT more process table scans and slows
96 * down fork processing as the pidchecked caching is defeated.
98 static int randompid = 0;
100 static int
101 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
103 int error, pid;
105 pid = randompid;
106 error = sysctl_handle_int(oidp, &pid, 0, req);
107 if (error || !req->newptr)
108 return (error);
109 if (pid < 0 || pid > PID_MAX - 100) /* out of range */
110 pid = PID_MAX - 100;
111 else if (pid < 2) /* NOP */
112 pid = 0;
113 else if (pid < 100) /* Make it reasonable */
114 pid = 100;
115 randompid = pid;
116 return (error);
119 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
120 0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
123 * Initialize global process hashing structures.
125 void
126 procinit(void)
128 LIST_INIT(&allproc);
129 LIST_INIT(&zombproc);
130 spin_init(&allproc_spin);
131 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
132 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
133 thread_zone = zinit("THREAD", sizeof (struct thread), 0, 0, 5);
134 uihashinit();
138 * Is p an inferior of the current process?
141 inferior(struct proc *p)
143 for (; p != curproc; p = p->p_pptr)
144 if (p->p_pid == 0)
145 return (0);
146 return (1);
150 * Locate a process by number
152 struct proc *
153 pfind(pid_t pid)
155 struct proc *p;
157 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
158 if (p->p_pid == pid)
159 return (p);
161 return (NULL);
165 * Locate a process group by number
167 struct pgrp *
168 pgfind(pid_t pgid)
170 struct pgrp *pgrp;
172 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
173 if (pgrp->pg_id == pgid)
174 return (pgrp);
176 return (NULL);
180 * Move p to a new or existing process group (and session)
183 enterpgrp(struct proc *p, pid_t pgid, int mksess)
185 struct pgrp *pgrp = pgfind(pgid);
187 KASSERT(pgrp == NULL || !mksess,
188 ("enterpgrp: setsid into non-empty pgrp"));
189 KASSERT(!SESS_LEADER(p),
190 ("enterpgrp: session leader attempted setpgrp"));
192 if (pgrp == NULL) {
193 pid_t savepid = p->p_pid;
194 struct proc *np;
196 * new process group
198 KASSERT(p->p_pid == pgid,
199 ("enterpgrp: new pgrp and pid != pgid"));
200 if ((np = pfind(savepid)) == NULL || np != p)
201 return (ESRCH);
202 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP,
203 M_WAITOK);
204 if (mksess) {
205 struct session *sess;
208 * new session
210 MALLOC(sess, struct session *, sizeof(struct session),
211 M_SESSION, M_WAITOK);
212 sess->s_leader = p;
213 sess->s_sid = p->p_pid;
214 sess->s_count = 1;
215 sess->s_ttyvp = NULL;
216 sess->s_ttyp = NULL;
217 bcopy(p->p_session->s_login, sess->s_login,
218 sizeof(sess->s_login));
219 p->p_flag &= ~P_CONTROLT;
220 pgrp->pg_session = sess;
221 KASSERT(p == curproc,
222 ("enterpgrp: mksession and p != curproc"));
223 } else {
224 pgrp->pg_session = p->p_session;
225 sess_hold(pgrp->pg_session);
227 pgrp->pg_id = pgid;
228 LIST_INIT(&pgrp->pg_members);
229 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
230 pgrp->pg_jobc = 0;
231 SLIST_INIT(&pgrp->pg_sigiolst);
232 lockinit(&pgrp->pg_lock, "pgwt", 0, 0);
233 } else if (pgrp == p->p_pgrp)
234 return (0);
237 * Adjust eligibility of affected pgrps to participate in job control.
238 * Increment eligibility counts before decrementing, otherwise we
239 * could reach 0 spuriously during the first call.
241 fixjobc(p, pgrp, 1);
242 fixjobc(p, p->p_pgrp, 0);
244 LIST_REMOVE(p, p_pglist);
245 if (LIST_EMPTY(&p->p_pgrp->pg_members))
246 pgdelete(p->p_pgrp);
247 p->p_pgrp = pgrp;
248 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
249 return (0);
253 * remove process from process group
256 leavepgrp(struct proc *p)
259 LIST_REMOVE(p, p_pglist);
260 if (LIST_EMPTY(&p->p_pgrp->pg_members))
261 pgdelete(p->p_pgrp);
262 p->p_pgrp = 0;
263 return (0);
267 * delete a process group
269 static void
270 pgdelete(struct pgrp *pgrp)
274 * Reset any sigio structures pointing to us as a result of
275 * F_SETOWN with our pgid.
277 funsetownlst(&pgrp->pg_sigiolst);
279 if (pgrp->pg_session->s_ttyp != NULL &&
280 pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
281 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
282 LIST_REMOVE(pgrp, pg_hash);
283 sess_rele(pgrp->pg_session);
284 kfree(pgrp, M_PGRP);
288 * Adjust the ref count on a session structure. When the ref count falls to
289 * zero the tty is disassociated from the session and the session structure
290 * is freed. Note that tty assocation is not itself ref-counted.
292 void
293 sess_hold(struct session *sp)
295 ++sp->s_count;
298 void
299 sess_rele(struct session *sp)
301 KKASSERT(sp->s_count > 0);
302 if (--sp->s_count == 0) {
303 if (sp->s_ttyp && sp->s_ttyp->t_session) {
304 #ifdef TTY_DO_FULL_CLOSE
305 /* FULL CLOSE, see ttyclearsession() */
306 KKASSERT(sp->s_ttyp->t_session == sp);
307 sp->s_ttyp->t_session = NULL;
308 #else
309 /* HALF CLOSE, see ttyclearsession() */
310 if (sp->s_ttyp->t_session == sp)
311 sp->s_ttyp->t_session = NULL;
312 #endif
314 kfree(sp, M_SESSION);
319 * Adjust pgrp jobc counters when specified process changes process group.
320 * We count the number of processes in each process group that "qualify"
321 * the group for terminal job control (those with a parent in a different
322 * process group of the same session). If that count reaches zero, the
323 * process group becomes orphaned. Check both the specified process'
324 * process group and that of its children.
325 * entering == 0 => p is leaving specified group.
326 * entering == 1 => p is entering specified group.
328 void
329 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
331 struct pgrp *hispgrp;
332 struct session *mysession = pgrp->pg_session;
335 * Check p's parent to see whether p qualifies its own process
336 * group; if so, adjust count for p's process group.
338 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
339 hispgrp->pg_session == mysession) {
340 if (entering)
341 pgrp->pg_jobc++;
342 else if (--pgrp->pg_jobc == 0)
343 orphanpg(pgrp);
347 * Check this process' children to see whether they qualify
348 * their process groups; if so, adjust counts for children's
349 * process groups.
351 LIST_FOREACH(p, &p->p_children, p_sibling)
352 if ((hispgrp = p->p_pgrp) != pgrp &&
353 hispgrp->pg_session == mysession &&
354 p->p_stat != SZOMB) {
355 if (entering)
356 hispgrp->pg_jobc++;
357 else if (--hispgrp->pg_jobc == 0)
358 orphanpg(hispgrp);
363 * A process group has become orphaned;
364 * if there are any stopped processes in the group,
365 * hang-up all process in that group.
367 static void
368 orphanpg(struct pgrp *pg)
370 struct proc *p;
372 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
373 if (p->p_stat == SSTOP) {
374 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
375 ksignal(p, SIGHUP);
376 ksignal(p, SIGCONT);
378 return;
384 * Add a new process to the allproc list and the PID hash. This
385 * also assigns a pid to the new process.
387 * MPALMOSTSAFE - acquires mplock for karc4random() call
389 void
390 proc_add_allproc(struct proc *p)
392 int random_offset;
394 if ((random_offset = randompid) != 0) {
395 get_mplock();
396 random_offset = karc4random() % random_offset;
397 rel_mplock();
400 spin_lock_wr(&allproc_spin);
401 p->p_pid = proc_getnewpid_locked(random_offset);
402 LIST_INSERT_HEAD(&allproc, p, p_list);
403 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash);
404 spin_unlock_wr(&allproc_spin);
408 * Calculate a new process pid. This function is integrated into
409 * proc_add_allproc() to guarentee that the new pid is not reused before
410 * the new process can be added to the allproc list.
412 * MPSAFE - must be called with allproc_spin held.
414 static
415 pid_t
416 proc_getnewpid_locked(int random_offset)
418 static pid_t nextpid;
419 static pid_t pidchecked;
420 struct proc *p;
423 * Find an unused process ID. We remember a range of unused IDs
424 * ready to use (from nextpid+1 through pidchecked-1).
426 nextpid = nextpid + 1 + random_offset;
427 retry:
429 * If the process ID prototype has wrapped around,
430 * restart somewhat above 0, as the low-numbered procs
431 * tend to include daemons that don't exit.
433 if (nextpid >= PID_MAX) {
434 nextpid = nextpid % PID_MAX;
435 if (nextpid < 100)
436 nextpid += 100;
437 pidchecked = 0;
439 if (nextpid >= pidchecked) {
440 int doingzomb = 0;
442 pidchecked = PID_MAX;
444 * Scan the active and zombie procs to check whether this pid
445 * is in use. Remember the lowest pid that's greater
446 * than nextpid, so we can avoid checking for a while.
448 p = LIST_FIRST(&allproc);
449 again:
450 for (; p != 0; p = LIST_NEXT(p, p_list)) {
451 while (p->p_pid == nextpid ||
452 p->p_pgrp->pg_id == nextpid ||
453 p->p_session->s_sid == nextpid) {
454 nextpid++;
455 if (nextpid >= pidchecked)
456 goto retry;
458 if (p->p_pid > nextpid && pidchecked > p->p_pid)
459 pidchecked = p->p_pid;
460 if (p->p_pgrp->pg_id > nextpid &&
461 pidchecked > p->p_pgrp->pg_id)
462 pidchecked = p->p_pgrp->pg_id;
463 if (p->p_session->s_sid > nextpid &&
464 pidchecked > p->p_session->s_sid)
465 pidchecked = p->p_session->s_sid;
467 if (!doingzomb) {
468 doingzomb = 1;
469 p = LIST_FIRST(&zombproc);
470 goto again;
473 return(nextpid);
477 * Called from exit1 to remove a process from the allproc
478 * list and move it to the zombie list.
480 * MPSAFE
482 void
483 proc_move_allproc_zombie(struct proc *p)
485 spin_lock_wr(&allproc_spin);
486 while (p->p_lock) {
487 spin_unlock_wr(&allproc_spin);
488 tsleep(p, 0, "reap1", hz / 10);
489 spin_lock_wr(&allproc_spin);
491 LIST_REMOVE(p, p_list);
492 LIST_INSERT_HEAD(&zombproc, p, p_list);
493 LIST_REMOVE(p, p_hash);
494 p->p_stat = SZOMB;
495 spin_unlock_wr(&allproc_spin);
499 * This routine is called from kern_wait() and will remove the process
500 * from the zombie list and the sibling list. This routine will block
501 * if someone has a lock on the proces (p_lock).
503 * MPSAFE
505 void
506 proc_remove_zombie(struct proc *p)
508 spin_lock_wr(&allproc_spin);
509 while (p->p_lock) {
510 spin_unlock_wr(&allproc_spin);
511 tsleep(p, 0, "reap1", hz / 10);
512 spin_lock_wr(&allproc_spin);
514 LIST_REMOVE(p, p_list); /* off zombproc */
515 LIST_REMOVE(p, p_sibling);
516 spin_unlock_wr(&allproc_spin);
520 * Scan all processes on the allproc list. The process is automatically
521 * held for the callback. A return value of -1 terminates the loop.
523 * MPSAFE
525 void
526 allproc_scan(int (*callback)(struct proc *, void *), void *data)
528 struct proc *p;
529 int r;
531 spin_lock_rd(&allproc_spin);
532 LIST_FOREACH(p, &allproc, p_list) {
533 PHOLD(p);
534 spin_unlock_rd(&allproc_spin);
535 r = callback(p, data);
536 spin_lock_rd(&allproc_spin);
537 PRELE(p);
538 if (r < 0)
539 break;
541 spin_unlock_rd(&allproc_spin);
545 * Scan all lwps of processes on the allproc list. The lwp is automatically
546 * held for the callback. A return value of -1 terminates the loop.
548 * possibly not MPSAFE, needs to access foreingn proc structures
550 void
551 alllwp_scan(int (*callback)(struct lwp *, void *), void *data)
553 struct proc *p;
554 struct lwp *lp;
555 int r = 0;
557 spin_lock_rd(&allproc_spin);
558 LIST_FOREACH(p, &allproc, p_list) {
559 PHOLD(p);
560 spin_unlock_rd(&allproc_spin);
561 FOREACH_LWP_IN_PROC(lp, p) {
562 LWPHOLD(lp);
563 r = callback(lp, data);
564 LWPRELE(lp);
566 spin_lock_rd(&allproc_spin);
567 PRELE(p);
568 if (r < 0)
569 break;
571 spin_unlock_rd(&allproc_spin);
575 * Scan all processes on the zombproc list. The process is automatically
576 * held for the callback. A return value of -1 terminates the loop.
578 * MPSAFE
580 void
581 zombproc_scan(int (*callback)(struct proc *, void *), void *data)
583 struct proc *p;
584 int r;
586 spin_lock_rd(&allproc_spin);
587 LIST_FOREACH(p, &zombproc, p_list) {
588 PHOLD(p);
589 spin_unlock_rd(&allproc_spin);
590 r = callback(p, data);
591 spin_lock_rd(&allproc_spin);
592 PRELE(p);
593 if (r < 0)
594 break;
596 spin_unlock_rd(&allproc_spin);
599 #include "opt_ddb.h"
600 #ifdef DDB
601 #include <ddb/ddb.h>
603 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
605 struct pgrp *pgrp;
606 struct proc *p;
607 int i;
609 for (i = 0; i <= pgrphash; i++) {
610 if (!LIST_EMPTY(&pgrphashtbl[i])) {
611 kprintf("\tindx %d\n", i);
612 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
613 kprintf(
614 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
615 (void *)pgrp, (long)pgrp->pg_id,
616 (void *)pgrp->pg_session,
617 pgrp->pg_session->s_count,
618 (void *)LIST_FIRST(&pgrp->pg_members));
619 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
620 kprintf("\t\tpid %ld addr %p pgrp %p\n",
621 (long)p->p_pid, (void *)p,
622 (void *)p->p_pgrp);
628 #endif /* DDB */
631 * Locate a process on the zombie list. Return a held process or NULL.
633 struct proc *
634 zpfind(pid_t pid)
636 struct proc *p;
638 LIST_FOREACH(p, &zombproc, p_list)
639 if (p->p_pid == pid)
640 return (p);
641 return (NULL);
644 static int
645 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
647 struct kinfo_proc ki;
648 struct lwp *lp;
649 int skp = 0, had_output = 0;
650 int error;
652 fill_kinfo_proc(p, &ki);
653 if ((flags & KERN_PROC_FLAG_LWP) == 0)
654 skp = 1;
655 FOREACH_LWP_IN_PROC(lp, p) {
656 fill_kinfo_lwp(lp, &ki.kp_lwp);
657 output:
658 had_output = 1;
659 error = SYSCTL_OUT(req, &ki, sizeof(ki));
660 if (error)
661 return error;
662 if (skp)
663 break;
665 /* We need to output at least the proc, even if there is no lwp. */
666 if (!had_output)
667 goto output;
668 #if 0
669 if (!doingzomb && pid && (pfind(pid) != p))
670 return EAGAIN;
671 if (doingzomb && zpfind(pid) != p)
672 return EAGAIN;
673 #endif
674 return (0);
677 static int
678 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req, int flags)
680 struct kinfo_proc ki;
681 int error;
683 fill_kinfo_proc_kthread(td, &ki);
684 error = SYSCTL_OUT(req, &ki, sizeof(ki));
685 if (error)
686 return error;
687 return(0);
690 static int
691 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
693 int *name = (int*) arg1;
694 int oid = oidp->oid_number;
695 u_int namelen = arg2;
696 struct proc *p, *np;
697 struct proclist *plist;
698 struct thread *td;
699 int doingzomb, flags = 0;
700 int error = 0;
701 int n;
702 int origcpu;
703 struct ucred *cr1 = curproc->p_ucred;
705 flags = oid & KERN_PROC_FLAGMASK;
706 oid &= ~KERN_PROC_FLAGMASK;
708 if ((oid == KERN_PROC_ALL && namelen != 0) ||
709 (oid != KERN_PROC_ALL && namelen != 1))
710 return (EINVAL);
712 if (oid == KERN_PROC_PID) {
713 p = pfind((pid_t)name[0]);
714 if (!p)
715 return (0);
716 if (!PRISON_CHECK(cr1, p->p_ucred))
717 return (0);
718 PHOLD(p);
719 error = sysctl_out_proc(p, req, flags);
720 PRELE(p);
721 return (error);
724 if (!req->oldptr) {
725 /* overestimate by 5 procs */
726 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
727 if (error)
728 return (error);
730 for (doingzomb = 0; doingzomb <= 1; doingzomb++) {
731 if (doingzomb)
732 plist = &zombproc;
733 else
734 plist = &allproc;
735 LIST_FOREACH_MUTABLE(p, plist, p_list, np) {
737 * Show a user only their processes.
739 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred))
740 continue;
742 * Skip embryonic processes.
744 if (p->p_stat == SIDL)
745 continue;
747 * TODO - make more efficient (see notes below).
748 * do by session.
750 switch (oid) {
751 case KERN_PROC_PGRP:
752 /* could do this by traversing pgrp */
753 if (p->p_pgrp == NULL ||
754 p->p_pgrp->pg_id != (pid_t)name[0])
755 continue;
756 break;
758 case KERN_PROC_TTY:
759 if ((p->p_flag & P_CONTROLT) == 0 ||
760 p->p_session == NULL ||
761 p->p_session->s_ttyp == NULL ||
762 dev2udev(p->p_session->s_ttyp->t_dev) !=
763 (udev_t)name[0])
764 continue;
765 break;
767 case KERN_PROC_UID:
768 if (p->p_ucred == NULL ||
769 p->p_ucred->cr_uid != (uid_t)name[0])
770 continue;
771 break;
773 case KERN_PROC_RUID:
774 if (p->p_ucred == NULL ||
775 p->p_ucred->cr_ruid != (uid_t)name[0])
776 continue;
777 break;
780 if (!PRISON_CHECK(cr1, p->p_ucred))
781 continue;
782 PHOLD(p);
783 error = sysctl_out_proc(p, req, flags);
784 PRELE(p);
785 if (error)
786 return (error);
791 * Iterate over all active cpus and scan their thread list. Start
792 * with the next logical cpu and end with our original cpu. We
793 * migrate our own thread to each target cpu in order to safely scan
794 * its thread list. In the last loop we migrate back to our original
795 * cpu.
797 origcpu = mycpu->gd_cpuid;
798 if (!ps_showallthreads || jailed(cr1))
799 goto post_threads;
800 for (n = 1; n <= ncpus; ++n) {
801 globaldata_t rgd;
802 int nid;
804 nid = (origcpu + n) % ncpus;
805 if ((smp_active_mask & (1 << nid)) == 0)
806 continue;
807 rgd = globaldata_find(nid);
808 lwkt_setcpu_self(rgd);
810 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) {
811 if (td->td_proc)
812 continue;
813 switch (oid) {
814 case KERN_PROC_PGRP:
815 case KERN_PROC_TTY:
816 case KERN_PROC_UID:
817 case KERN_PROC_RUID:
818 continue;
819 default:
820 break;
822 lwkt_hold(td);
823 error = sysctl_out_proc_kthread(td, req, doingzomb);
824 lwkt_rele(td);
825 if (error)
826 return (error);
829 post_threads:
830 return (0);
834 * This sysctl allows a process to retrieve the argument list or process
835 * title for another process without groping around in the address space
836 * of the other process. It also allow a process to set its own "process
837 * title to a string of its own choice.
839 static int
840 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
842 int *name = (int*) arg1;
843 u_int namelen = arg2;
844 struct proc *p;
845 struct pargs *pa;
846 int error = 0;
847 struct ucred *cr1 = curproc->p_ucred;
849 if (namelen != 1)
850 return (EINVAL);
852 p = pfind((pid_t)name[0]);
853 if (!p)
854 return (0);
856 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
857 return (0);
859 if (req->newptr && curproc != p)
860 return (EPERM);
862 if (req->oldptr && p->p_args != NULL)
863 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length);
864 if (req->newptr == NULL)
865 return (error);
867 if (p->p_args && --p->p_args->ar_ref == 0)
868 FREE(p->p_args, M_PARGS);
869 p->p_args = NULL;
871 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
872 return (error);
874 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen,
875 M_PARGS, M_WAITOK);
876 pa->ar_ref = 1;
877 pa->ar_length = req->newlen;
878 error = SYSCTL_IN(req, pa->ar_args, req->newlen);
879 if (!error)
880 p->p_args = pa;
881 else
882 FREE(pa, M_PARGS);
883 return (error);
886 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
888 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
889 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
891 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
892 sysctl_kern_proc, "Process table");
894 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
895 sysctl_kern_proc, "Process table");
897 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
898 sysctl_kern_proc, "Process table");
900 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
901 sysctl_kern_proc, "Process table");
903 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
904 sysctl_kern_proc, "Process table");
906 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD,
907 sysctl_kern_proc, "Process table");
909 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD,
910 sysctl_kern_proc, "Process table");
912 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD,
913 sysctl_kern_proc, "Process table");
915 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD,
916 sysctl_kern_proc, "Process table");
918 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD,
919 sysctl_kern_proc, "Process table");
921 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD,
922 sysctl_kern_proc, "Process table");
924 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
925 sysctl_kern_proc_args, "Process argument list");