Remove duplicate include of header file "sys/bus.h".
[dragonfly.git] / sys / dev / netif / sis / if_sis.c
blob21ce1b43fb773766198c076edb6eee359721cc5d
1 /*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $
33 * $DragonFly: src/sys/dev/netif/sis/if_sis.c,v 1.37 2008/05/14 11:59:21 sephe Exp $
37 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38 * available from http://www.sis.com.tw.
40 * This driver also supports the NatSemi DP83815. Datasheets are
41 * available from http://www.national.com.
43 * Written by Bill Paul <wpaul@ee.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50 * simple TX and RX descriptors of 3 longwords in size. The receiver
51 * has a single perfect filter entry for the station address and a
52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53 * transceiver while the 7016 requires an external transceiver chip.
54 * Both chips offer the standard bit-bang MII interface as well as
55 * an enchanced PHY interface which simplifies accessing MII registers.
57 * The only downside to this chipset is that RX descriptors must be
58 * longword aligned.
61 #include "opt_polling.h"
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sysctl.h>
71 #include <sys/serialize.h>
72 #include <sys/thread2.h>
73 #include <sys/bus.h>
74 #include <sys/rman.h>
75 #include <sys/interrupt.h>
77 #include <net/if.h>
78 #include <net/ifq_var.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_types.h>
84 #include <net/vlan/if_vlan_var.h>
86 #include <net/bpf.h>
88 #include <dev/netif/mii_layer/mii.h>
89 #include <dev/netif/mii_layer/miivar.h>
91 #include <bus/pci/pcidevs.h>
92 #include <bus/pci/pcireg.h>
93 #include <bus/pci/pcivar.h>
95 #define SIS_USEIOSPACE
97 #include "if_sisreg.h"
99 /* "controller miibus0" required. See GENERIC if you get errors here. */
100 #include "miibus_if.h"
103 * Various supported device vendors/types and their names.
105 static struct sis_type sis_devs[] = {
106 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100BaseTX" },
107 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100BaseTX" },
108 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
109 { 0, 0, NULL }
112 static int sis_probe(device_t);
113 static int sis_attach(device_t);
114 static int sis_detach(device_t);
116 static int sis_newbuf(struct sis_softc *, struct sis_desc *,
117 struct mbuf *);
118 static int sis_encap(struct sis_softc *, struct mbuf *, uint32_t *);
119 static void sis_rxeof(struct sis_softc *);
120 static void sis_rxeoc(struct sis_softc *);
121 static void sis_txeof(struct sis_softc *);
122 static void sis_intr(void *);
123 static void sis_tick(void *);
124 static void sis_start(struct ifnet *);
125 static int sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
126 static void sis_init(void *);
127 static void sis_stop(struct sis_softc *);
128 static void sis_watchdog(struct ifnet *);
129 static void sis_shutdown(device_t);
130 static int sis_ifmedia_upd(struct ifnet *);
131 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
133 static uint16_t sis_reverse(uint16_t);
134 static void sis_delay(struct sis_softc *);
135 static void sis_eeprom_idle(struct sis_softc *);
136 static void sis_eeprom_putbyte(struct sis_softc *, int);
137 static void sis_eeprom_getword(struct sis_softc *, int, uint16_t *);
138 static void sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
139 #ifdef __i386__
140 static void sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int);
141 static void sis_read_mac(struct sis_softc *, device_t, caddr_t);
142 static device_t sis_find_bridge(device_t);
143 #endif
145 static void sis_mii_sync(struct sis_softc *);
146 static void sis_mii_send(struct sis_softc *, uint32_t, int);
147 static int sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
148 static int sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
149 static int sis_miibus_readreg(device_t, int, int);
150 static int sis_miibus_writereg(device_t, int, int, int);
151 static void sis_miibus_statchg(device_t);
153 static void sis_setmulti_sis(struct sis_softc *);
154 static void sis_setmulti_ns(struct sis_softc *);
155 static uint32_t sis_mchash(struct sis_softc *, const uint8_t *);
156 static void sis_reset(struct sis_softc *);
157 static int sis_list_rx_init(struct sis_softc *);
158 static int sis_list_tx_init(struct sis_softc *);
160 static void sis_dma_map_desc_ptr(void *, bus_dma_segment_t *, int, int);
161 static void sis_dma_map_desc_next(void *, bus_dma_segment_t *, int, int);
162 static void sis_dma_map_ring(void *, bus_dma_segment_t *, int, int);
163 #ifdef DEVICE_POLLING
164 static poll_handler_t sis_poll;
165 #endif
166 #ifdef SIS_USEIOSPACE
167 #define SIS_RES SYS_RES_IOPORT
168 #define SIS_RID SIS_PCI_LOIO
169 #else
170 #define SIS_RES SYS_RES_MEMORY
171 #define SIS_RID SIS_PCI_LOMEM
172 #endif
174 static device_method_t sis_methods[] = {
175 /* Device interface */
176 DEVMETHOD(device_probe, sis_probe),
177 DEVMETHOD(device_attach, sis_attach),
178 DEVMETHOD(device_detach, sis_detach),
179 DEVMETHOD(device_shutdown, sis_shutdown),
181 /* bus interface */
182 DEVMETHOD(bus_print_child, bus_generic_print_child),
183 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
185 /* MII interface */
186 DEVMETHOD(miibus_readreg, sis_miibus_readreg),
187 DEVMETHOD(miibus_writereg, sis_miibus_writereg),
188 DEVMETHOD(miibus_statchg, sis_miibus_statchg),
190 { 0, 0 }
193 static driver_t sis_driver = {
194 "sis",
195 sis_methods,
196 sizeof(struct sis_softc)
199 static devclass_t sis_devclass;
201 DECLARE_DUMMY_MODULE(if_sis);
202 DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
203 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
205 #define SIS_SETBIT(sc, reg, x) \
206 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
208 #define SIS_CLRBIT(sc, reg, x) \
209 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
211 #define SIO_SET(x) \
212 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
214 #define SIO_CLR(x) \
215 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
217 static void
218 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
220 struct sis_desc *r;
222 r = arg;
223 r->sis_next = segs->ds_addr;
226 static void
227 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
229 struct sis_desc *r;
231 r = arg;
232 r->sis_ptr = segs->ds_addr;
235 static void
236 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
238 uint32_t *p;
240 p = arg;
241 *p = segs->ds_addr;
245 * Routine to reverse the bits in a word. Stolen almost
246 * verbatim from /usr/games/fortune.
248 static uint16_t
249 sis_reverse(uint16_t n)
251 n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
252 n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
253 n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
254 n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
256 return(n);
259 static void
260 sis_delay(struct sis_softc *sc)
262 int idx;
264 for (idx = (300 / 33) + 1; idx > 0; idx--)
265 CSR_READ_4(sc, SIS_CSR);
268 static void
269 sis_eeprom_idle(struct sis_softc *sc)
271 int i;
273 SIO_SET(SIS_EECTL_CSEL);
274 sis_delay(sc);
275 SIO_SET(SIS_EECTL_CLK);
276 sis_delay(sc);
278 for (i = 0; i < 25; i++) {
279 SIO_CLR(SIS_EECTL_CLK);
280 sis_delay(sc);
281 SIO_SET(SIS_EECTL_CLK);
282 sis_delay(sc);
285 SIO_CLR(SIS_EECTL_CLK);
286 sis_delay(sc);
287 SIO_CLR(SIS_EECTL_CSEL);
288 sis_delay(sc);
289 CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
293 * Send a read command and address to the EEPROM, check for ACK.
295 static void
296 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
298 int d, i;
300 d = addr | SIS_EECMD_READ;
303 * Feed in each bit and stobe the clock.
305 for (i = 0x400; i; i >>= 1) {
306 if (d & i)
307 SIO_SET(SIS_EECTL_DIN);
308 else
309 SIO_CLR(SIS_EECTL_DIN);
310 sis_delay(sc);
311 SIO_SET(SIS_EECTL_CLK);
312 sis_delay(sc);
313 SIO_CLR(SIS_EECTL_CLK);
314 sis_delay(sc);
319 * Read a word of data stored in the EEPROM at address 'addr.'
321 static void
322 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
324 int i;
325 uint16_t word = 0;
327 /* Force EEPROM to idle state. */
328 sis_eeprom_idle(sc);
330 /* Enter EEPROM access mode. */
331 sis_delay(sc);
332 SIO_CLR(SIS_EECTL_CLK);
333 sis_delay(sc);
334 SIO_SET(SIS_EECTL_CSEL);
335 sis_delay(sc);
338 * Send address of word we want to read.
340 sis_eeprom_putbyte(sc, addr);
343 * Start reading bits from EEPROM.
345 for (i = 0x8000; i; i >>= 1) {
346 SIO_SET(SIS_EECTL_CLK);
347 sis_delay(sc);
348 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
349 word |= i;
350 sis_delay(sc);
351 SIO_CLR(SIS_EECTL_CLK);
352 sis_delay(sc);
355 /* Turn off EEPROM access mode. */
356 sis_eeprom_idle(sc);
358 *dest = word;
362 * Read a sequence of words from the EEPROM.
364 static void
365 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
367 int i;
368 uint16_t word = 0, *ptr;
370 for (i = 0; i < cnt; i++) {
371 sis_eeprom_getword(sc, off + i, &word);
372 ptr = (uint16_t *)(dest + (i * 2));
373 if (swap)
374 *ptr = ntohs(word);
375 else
376 *ptr = word;
380 #ifdef __i386__
381 static device_t
382 sis_find_bridge(device_t dev)
384 devclass_t pci_devclass;
385 device_t *pci_devices;
386 int pci_count = 0;
387 device_t *pci_children;
388 int pci_childcount = 0;
389 device_t *busp, *childp;
390 device_t child = NULL;
391 int i, j;
393 if ((pci_devclass = devclass_find("pci")) == NULL)
394 return(NULL);
396 devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
398 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
399 pci_childcount = 0;
400 device_get_children(*busp, &pci_children, &pci_childcount);
401 for (j = 0, childp = pci_children; j < pci_childcount;
402 j++, childp++) {
403 if (pci_get_vendor(*childp) == PCI_VENDOR_SIS &&
404 pci_get_device(*childp) == 0x0008) {
405 child = *childp;
406 goto done;
411 done:
412 kfree(pci_devices, M_TEMP);
413 kfree(pci_children, M_TEMP);
414 return(child);
417 static void
418 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off,
419 int cnt)
421 device_t bridge;
422 uint8_t reg;
423 int i;
424 bus_space_tag_t btag;
426 bridge = sis_find_bridge(dev);
427 if (bridge == NULL)
428 return;
429 reg = pci_read_config(bridge, 0x48, 1);
430 pci_write_config(bridge, 0x48, reg|0x40, 1);
432 /* XXX */
433 btag = I386_BUS_SPACE_IO;
435 for (i = 0; i < cnt; i++) {
436 bus_space_write_1(btag, 0x0, 0x70, i + off);
437 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
440 pci_write_config(bridge, 0x48, reg & ~0x40, 1);
443 static void
444 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
446 uint32_t filtsave, csrsave;
448 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
449 csrsave = CSR_READ_4(sc, SIS_CSR);
451 CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
452 CSR_WRITE_4(sc, SIS_CSR, 0);
454 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
456 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
457 ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
458 CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
459 ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
460 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
461 ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
463 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
464 CSR_WRITE_4(sc, SIS_CSR, csrsave);
466 #endif
469 * Sync the PHYs by setting data bit and strobing the clock 32 times.
471 static void
472 sis_mii_sync(struct sis_softc *sc)
474 int i;
476 SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
478 for (i = 0; i < 32; i++) {
479 SIO_SET(SIS_MII_CLK);
480 DELAY(1);
481 SIO_CLR(SIS_MII_CLK);
482 DELAY(1);
487 * Clock a series of bits through the MII.
489 static void
490 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
492 int i;
494 SIO_CLR(SIS_MII_CLK);
496 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
497 if (bits & i)
498 SIO_SET(SIS_MII_DATA);
499 else
500 SIO_CLR(SIS_MII_DATA);
501 DELAY(1);
502 SIO_CLR(SIS_MII_CLK);
503 DELAY(1);
504 SIO_SET(SIS_MII_CLK);
509 * Read an PHY register through the MII.
511 static int
512 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
514 int i, ack;
517 * Set up frame for RX.
519 frame->mii_stdelim = SIS_MII_STARTDELIM;
520 frame->mii_opcode = SIS_MII_READOP;
521 frame->mii_turnaround = 0;
522 frame->mii_data = 0;
525 * Turn on data xmit.
527 SIO_SET(SIS_MII_DIR);
529 sis_mii_sync(sc);
532 * Send command/address info.
534 sis_mii_send(sc, frame->mii_stdelim, 2);
535 sis_mii_send(sc, frame->mii_opcode, 2);
536 sis_mii_send(sc, frame->mii_phyaddr, 5);
537 sis_mii_send(sc, frame->mii_regaddr, 5);
539 /* Idle bit */
540 SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
541 DELAY(1);
542 SIO_SET(SIS_MII_CLK);
543 DELAY(1);
545 /* Turn off xmit. */
546 SIO_CLR(SIS_MII_DIR);
548 /* Check for ack */
549 SIO_CLR(SIS_MII_CLK);
550 DELAY(1);
551 ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
552 SIO_SET(SIS_MII_CLK);
553 DELAY(1);
556 * Now try reading data bits. If the ack failed, we still
557 * need to clock through 16 cycles to keep the PHY(s) in sync.
559 if (ack) {
560 for(i = 0; i < 16; i++) {
561 SIO_CLR(SIS_MII_CLK);
562 DELAY(1);
563 SIO_SET(SIS_MII_CLK);
564 DELAY(1);
566 goto fail;
569 for (i = 0x8000; i; i >>= 1) {
570 SIO_CLR(SIS_MII_CLK);
571 DELAY(1);
572 if (!ack) {
573 if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
574 frame->mii_data |= i;
575 DELAY(1);
577 SIO_SET(SIS_MII_CLK);
578 DELAY(1);
581 fail:
583 SIO_CLR(SIS_MII_CLK);
584 DELAY(1);
585 SIO_SET(SIS_MII_CLK);
586 DELAY(1);
588 if (ack)
589 return(1);
590 return(0);
594 * Write to a PHY register through the MII.
596 static int
597 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
600 * Set up frame for TX.
603 frame->mii_stdelim = SIS_MII_STARTDELIM;
604 frame->mii_opcode = SIS_MII_WRITEOP;
605 frame->mii_turnaround = SIS_MII_TURNAROUND;
608 * Turn on data output.
610 SIO_SET(SIS_MII_DIR);
612 sis_mii_sync(sc);
614 sis_mii_send(sc, frame->mii_stdelim, 2);
615 sis_mii_send(sc, frame->mii_opcode, 2);
616 sis_mii_send(sc, frame->mii_phyaddr, 5);
617 sis_mii_send(sc, frame->mii_regaddr, 5);
618 sis_mii_send(sc, frame->mii_turnaround, 2);
619 sis_mii_send(sc, frame->mii_data, 16);
621 /* Idle bit. */
622 SIO_SET(SIS_MII_CLK);
623 DELAY(1);
624 SIO_CLR(SIS_MII_CLK);
625 DELAY(1);
628 * Turn off xmit.
630 SIO_CLR(SIS_MII_DIR);
632 return(0);
635 static int
636 sis_miibus_readreg(device_t dev, int phy, int reg)
638 struct sis_softc *sc;
639 struct sis_mii_frame frame;
641 sc = device_get_softc(dev);
643 if (sc->sis_type == SIS_TYPE_83815) {
644 if (phy != 0)
645 return(0);
647 * The NatSemi chip can take a while after
648 * a reset to come ready, during which the BMSR
649 * returns a value of 0. This is *never* supposed
650 * to happen: some of the BMSR bits are meant to
651 * be hardwired in the on position, and this can
652 * confuse the miibus code a bit during the probe
653 * and attach phase. So we make an effort to check
654 * for this condition and wait for it to clear.
656 if (!CSR_READ_4(sc, NS_BMSR))
657 DELAY(1000);
658 return CSR_READ_4(sc, NS_BMCR + (reg * 4));
661 * Chipsets < SIS_635 seem not to be able to read/write
662 * through mdio. Use the enhanced PHY access register
663 * again for them.
665 if (sc->sis_type == SIS_TYPE_900 &&
666 sc->sis_rev < SIS_REV_635) {
667 int i, val = 0;
669 if (phy != 0)
670 return(0);
672 CSR_WRITE_4(sc, SIS_PHYCTL,
673 (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
674 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
676 for (i = 0; i < SIS_TIMEOUT; i++) {
677 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
678 break;
681 if (i == SIS_TIMEOUT) {
682 device_printf(dev, "PHY failed to come ready\n");
683 return(0);
686 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
688 if (val == 0xFFFF)
689 return(0);
691 return(val);
692 } else {
693 bzero((char *)&frame, sizeof(frame));
695 frame.mii_phyaddr = phy;
696 frame.mii_regaddr = reg;
697 sis_mii_readreg(sc, &frame);
699 return(frame.mii_data);
703 static int
704 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
706 struct sis_softc *sc;
707 struct sis_mii_frame frame;
709 sc = device_get_softc(dev);
711 if (sc->sis_type == SIS_TYPE_83815) {
712 if (phy != 0)
713 return(0);
714 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
715 return(0);
718 if (sc->sis_type == SIS_TYPE_900 &&
719 sc->sis_rev < SIS_REV_635) {
720 int i;
722 if (phy != 0)
723 return(0);
725 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
726 (reg << 6) | SIS_PHYOP_WRITE);
727 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
729 for (i = 0; i < SIS_TIMEOUT; i++) {
730 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
731 break;
734 if (i == SIS_TIMEOUT)
735 device_printf(dev, "PHY failed to come ready\n");
736 } else {
737 bzero((char *)&frame, sizeof(frame));
739 frame.mii_phyaddr = phy;
740 frame.mii_regaddr = reg;
741 frame.mii_data = data;
742 sis_mii_writereg(sc, &frame);
744 return(0);
747 static void
748 sis_miibus_statchg(device_t dev)
750 struct sis_softc *sc;
752 sc = device_get_softc(dev);
753 sis_init(sc);
756 static uint32_t
757 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
759 uint32_t crc, carry;
760 int i, j;
761 uint8_t c;
763 /* Compute CRC for the address value. */
764 crc = 0xFFFFFFFF; /* initial value */
766 for (i = 0; i < 6; i++) {
767 c = *(addr + i);
768 for (j = 0; j < 8; j++) {
769 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
770 crc <<= 1;
771 c >>= 1;
772 if (carry)
773 crc = (crc ^ 0x04c11db6) | carry;
778 * return the filter bit position
780 * The NatSemi chip has a 512-bit filter, which is
781 * different than the SiS, so we special-case it.
783 if (sc->sis_type == SIS_TYPE_83815)
784 return (crc >> 23);
785 else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
786 return (crc >> 24);
787 else
788 return (crc >> 25);
791 static void
792 sis_setmulti_ns(struct sis_softc *sc)
794 struct ifnet *ifp;
795 struct ifmultiaddr *ifma;
796 uint32_t h = 0, i, filtsave;
797 int bit, index;
799 ifp = &sc->arpcom.ac_if;
801 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
802 SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
803 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
804 return;
808 * We have to explicitly enable the multicast hash table
809 * on the NatSemi chip if we want to use it, which we do.
811 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
812 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
814 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
816 /* first, zot all the existing hash bits */
817 for (i = 0; i < 32; i++) {
818 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
819 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
822 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
823 if (ifma->ifma_addr->sa_family != AF_LINK)
824 continue;
825 h = sis_mchash(sc,
826 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
827 index = h >> 3;
828 bit = h & 0x1F;
829 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
830 if (bit > 0xF)
831 bit -= 0x10;
832 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
835 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
838 static void
839 sis_setmulti_sis(struct sis_softc *sc)
841 struct ifnet *ifp;
842 struct ifmultiaddr *ifma;
843 uint32_t h, i, n, ctl;
844 uint16_t hashes[16];
846 ifp = &sc->arpcom.ac_if;
848 /* hash table size */
849 if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
850 n = 16;
851 else
852 n = 8;
854 ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
856 if (ifp->if_flags & IFF_BROADCAST)
857 ctl |= SIS_RXFILTCTL_BROAD;
859 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
860 ctl |= SIS_RXFILTCTL_ALLMULTI;
861 if (ifp->if_flags & IFF_PROMISC)
862 ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
863 for (i = 0; i < n; i++)
864 hashes[i] = ~0;
865 } else {
866 for (i = 0; i < n; i++)
867 hashes[i] = 0;
868 i = 0;
869 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
870 if (ifma->ifma_addr->sa_family != AF_LINK)
871 continue;
872 h = sis_mchash(sc,
873 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
874 hashes[h >> 4] |= 1 << (h & 0xf);
875 i++;
877 if (i > n) {
878 ctl |= SIS_RXFILTCTL_ALLMULTI;
879 for (i = 0; i < n; i++)
880 hashes[i] = ~0;
884 for (i = 0; i < n; i++) {
885 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
886 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
889 CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
892 static void
893 sis_reset(struct sis_softc *sc)
895 struct ifnet *ifp = &sc->arpcom.ac_if;
896 int i;
898 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
900 for (i = 0; i < SIS_TIMEOUT; i++) {
901 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
902 break;
905 if (i == SIS_TIMEOUT)
906 if_printf(ifp, "reset never completed\n");
908 /* Wait a little while for the chip to get its brains in order. */
909 DELAY(1000);
912 * If this is a NetSemi chip, make sure to clear
913 * PME mode.
915 if (sc->sis_type == SIS_TYPE_83815) {
916 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
917 CSR_WRITE_4(sc, NS_CLKRUN, 0);
922 * Probe for an SiS chip. Check the PCI vendor and device
923 * IDs against our list and return a device name if we find a match.
925 static int
926 sis_probe(device_t dev)
928 struct sis_type *t;
930 t = sis_devs;
932 while(t->sis_name != NULL) {
933 if ((pci_get_vendor(dev) == t->sis_vid) &&
934 (pci_get_device(dev) == t->sis_did)) {
935 device_set_desc(dev, t->sis_name);
936 return(0);
938 t++;
941 return(ENXIO);
945 * Attach the interface. Allocate softc structures, do ifmedia
946 * setup and ethernet/BPF attach.
948 static int
949 sis_attach(device_t dev)
951 uint8_t eaddr[ETHER_ADDR_LEN];
952 uint32_t command;
953 struct sis_softc *sc;
954 struct ifnet *ifp;
955 int error, rid, waittime;
957 error = waittime = 0;
958 sc = device_get_softc(dev);
960 if (pci_get_device(dev) == PCI_PRODUCT_SIS_900)
961 sc->sis_type = SIS_TYPE_900;
962 if (pci_get_device(dev) == PCI_PRODUCT_SIS_7016)
963 sc->sis_type = SIS_TYPE_7016;
964 if (pci_get_vendor(dev) == PCI_VENDOR_NS)
965 sc->sis_type = SIS_TYPE_83815;
967 sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
970 * Handle power management nonsense.
973 command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF;
974 if (command == 0x01) {
976 command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4);
977 if (command & SIS_PSTATE_MASK) {
978 uint32_t iobase, membase, irq;
980 /* Save important PCI config data. */
981 iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
982 membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
983 irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
985 /* Reset the power state. */
986 device_printf(dev, "chip is in D%d power mode "
987 "-- setting to D0\n", command & SIS_PSTATE_MASK);
988 command &= 0xFFFFFFFC;
989 pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4);
991 /* Restore PCI config data. */
992 pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
993 pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
994 pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
999 * Map control/status registers.
1001 command = pci_read_config(dev, PCIR_COMMAND, 4);
1002 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1003 pci_write_config(dev, PCIR_COMMAND, command, 4);
1004 command = pci_read_config(dev, PCIR_COMMAND, 4);
1006 #ifdef SIS_USEIOSPACE
1007 if (!(command & PCIM_CMD_PORTEN)) {
1008 device_printf(dev, "failed to enable I/O ports!\n");
1009 error = ENXIO;
1010 goto fail;
1012 #else
1013 if (!(command & PCIM_CMD_MEMEN)) {
1014 device_printf(dev, "failed to enable memory mapping!\n");
1015 error = ENXIO;
1016 goto fail;
1018 #endif
1020 rid = SIS_RID;
1021 sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
1023 if (sc->sis_res == NULL) {
1024 device_printf(dev, "couldn't map ports/memory\n");
1025 error = ENXIO;
1026 goto fail;
1029 sc->sis_btag = rman_get_bustag(sc->sis_res);
1030 sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1032 /* Allocate interrupt */
1033 rid = 0;
1034 sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1035 RF_SHAREABLE | RF_ACTIVE);
1037 if (sc->sis_irq == NULL) {
1038 device_printf(dev, "couldn't map interrupt\n");
1039 error = ENXIO;
1040 goto fail;
1043 /* Reset the adapter. */
1044 sis_reset(sc);
1046 if (sc->sis_type == SIS_TYPE_900 &&
1047 (sc->sis_rev == SIS_REV_635 ||
1048 sc->sis_rev == SIS_REV_900B)) {
1049 SIO_SET(SIS_CFG_RND_CNT);
1050 SIO_SET(SIS_CFG_PERR_DETECT);
1054 * Get station address from the EEPROM.
1056 switch (pci_get_vendor(dev)) {
1057 case PCI_VENDOR_NS:
1059 * Reading the MAC address out of the EEPROM on
1060 * the NatSemi chip takes a bit more work than
1061 * you'd expect. The address spans 4 16-bit words,
1062 * with the first word containing only a single bit.
1063 * You have to shift everything over one bit to
1064 * get it aligned properly. Also, the bits are
1065 * stored backwards (the LSB is really the MSB,
1066 * and so on) so you have to reverse them in order
1067 * to get the MAC address into the form we want.
1068 * Why? Who the hell knows.
1071 uint16_t tmp[4];
1073 sis_read_eeprom(sc, (caddr_t)&tmp,
1074 NS_EE_NODEADDR, 4, 0);
1076 /* Shift everything over one bit. */
1077 tmp[3] = tmp[3] >> 1;
1078 tmp[3] |= tmp[2] << 15;
1079 tmp[2] = tmp[2] >> 1;
1080 tmp[2] |= tmp[1] << 15;
1081 tmp[1] = tmp[1] >> 1;
1082 tmp[1] |= tmp[0] << 15;
1084 /* Now reverse all the bits. */
1085 tmp[3] = sis_reverse(tmp[3]);
1086 tmp[2] = sis_reverse(tmp[2]);
1087 tmp[1] = sis_reverse(tmp[1]);
1089 bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1091 break;
1092 case PCI_VENDOR_SIS:
1093 default:
1094 #ifdef __i386__
1096 * If this is a SiS 630E chipset with an embedded
1097 * SiS 900 controller, we have to read the MAC address
1098 * from the APC CMOS RAM. Our method for doing this
1099 * is very ugly since we have to reach out and grab
1100 * ahold of hardware for which we cannot properly
1101 * allocate resources. This code is only compiled on
1102 * the i386 architecture since the SiS 630E chipset
1103 * is for x86 motherboards only. Note that there are
1104 * a lot of magic numbers in this hack. These are
1105 * taken from SiS's Linux driver. I'd like to replace
1106 * them with proper symbolic definitions, but that
1107 * requires some datasheets that I don't have access
1108 * to at the moment.
1110 if (sc->sis_rev == SIS_REV_630S ||
1111 sc->sis_rev == SIS_REV_630E ||
1112 sc->sis_rev == SIS_REV_630EA1)
1113 sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1115 else if (sc->sis_rev == SIS_REV_635 ||
1116 sc->sis_rev == SIS_REV_630ET)
1117 sis_read_mac(sc, dev, (caddr_t)&eaddr);
1118 else if (sc->sis_rev == SIS_REV_96x) {
1120 * Allow to read EEPROM from LAN. It is shared
1121 * between a 1394 controller and the NIC and each
1122 * time we access it, we need to set SIS_EECMD_REQ.
1124 SIO_SET(SIS_EECMD_REQ);
1125 for (waittime = 0; waittime < SIS_TIMEOUT;
1126 waittime++) {
1127 /* Force EEPROM to idle state. */
1128 sis_eeprom_idle(sc);
1129 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1130 sis_read_eeprom(sc, (caddr_t)&eaddr,
1131 SIS_EE_NODEADDR, 3, 0);
1132 break;
1134 DELAY(1);
1137 * Set SIS_EECTL_CLK to high, so a other master
1138 * can operate on the i2c bus.
1140 SIO_SET(SIS_EECTL_CLK);
1141 /* Refuse EEPROM access by LAN */
1142 SIO_SET(SIS_EECMD_DONE);
1143 } else
1144 #endif
1145 sis_read_eeprom(sc, (caddr_t)&eaddr,
1146 SIS_EE_NODEADDR, 3, 0);
1147 break;
1150 callout_init(&sc->sis_timer);
1153 * Allocate the parent bus DMA tag appropriate for PCI.
1155 #define SIS_NSEG_NEW 32
1156 error = bus_dma_tag_create(NULL, /* parent */
1157 1, 0, /* alignment, boundary */
1158 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1159 BUS_SPACE_MAXADDR, /* highaddr */
1160 NULL, NULL, /* filter, filterarg */
1161 MAXBSIZE, SIS_NSEG_NEW, /* maxsize, nsegments */
1162 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1163 BUS_DMA_ALLOCNOW, /* flags */
1164 &sc->sis_parent_tag);
1165 if (error)
1166 goto fail;
1169 * Now allocate a tag for the DMA descriptor lists and a chunk
1170 * of DMA-able memory based on the tag. Also obtain the physical
1171 * addresses of the RX and TX ring, which we'll need later.
1172 * All of our lists are allocated as a contiguous block of memory.
1174 error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1175 1, 0, /* alignment, boundary */
1176 BUS_SPACE_MAXADDR, /* lowaddr */
1177 BUS_SPACE_MAXADDR, /* highaddr */
1178 NULL, NULL, /* filter, filterarg */
1179 SIS_RX_LIST_SZ, 1, /* maxsize, nsegments */
1180 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1181 0, /* flags */
1182 &sc->sis_ldata.sis_rx_tag);
1183 if (error)
1184 goto fail;
1186 error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1187 (void **)&sc->sis_ldata.sis_rx_list,
1188 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1189 &sc->sis_ldata.sis_rx_dmamap);
1191 if (error) {
1192 device_printf(dev, "no memory for rx list buffers!\n");
1193 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1194 sc->sis_ldata.sis_rx_tag = NULL;
1195 goto fail;
1198 error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1199 sc->sis_ldata.sis_rx_dmamap,
1200 sc->sis_ldata.sis_rx_list,
1201 sizeof(struct sis_desc), sis_dma_map_ring,
1202 &sc->sis_cdata.sis_rx_paddr, 0);
1204 if (error) {
1205 device_printf(dev, "cannot get address of the rx ring!\n");
1206 bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1207 sc->sis_ldata.sis_rx_list,
1208 sc->sis_ldata.sis_rx_dmamap);
1209 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1210 sc->sis_ldata.sis_rx_tag = NULL;
1211 goto fail;
1214 error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1215 1, 0, /* alignment, boundary */
1216 BUS_SPACE_MAXADDR, /* lowaddr */
1217 BUS_SPACE_MAXADDR, /* highaddr */
1218 NULL, NULL, /* filter, filterarg */
1219 SIS_TX_LIST_SZ, 1, /* maxsize, nsegments */
1220 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1221 0, /* flags */
1222 &sc->sis_ldata.sis_tx_tag);
1223 if (error)
1224 goto fail;
1226 error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1227 (void **)&sc->sis_ldata.sis_tx_list,
1228 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1229 &sc->sis_ldata.sis_tx_dmamap);
1231 if (error) {
1232 device_printf(dev, "no memory for tx list buffers!\n");
1233 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1234 sc->sis_ldata.sis_tx_tag = NULL;
1235 goto fail;
1238 error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1239 sc->sis_ldata.sis_tx_dmamap,
1240 sc->sis_ldata.sis_tx_list,
1241 sizeof(struct sis_desc), sis_dma_map_ring,
1242 &sc->sis_cdata.sis_tx_paddr, 0);
1244 if (error) {
1245 device_printf(dev, "cannot get address of the tx ring!\n");
1246 bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1247 sc->sis_ldata.sis_tx_list,
1248 sc->sis_ldata.sis_tx_dmamap);
1249 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1250 sc->sis_ldata.sis_tx_tag = NULL;
1251 goto fail;
1254 error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1255 1, 0, /* alignment, boundary */
1256 BUS_SPACE_MAXADDR, /* lowaddr */
1257 BUS_SPACE_MAXADDR, /* highaddr */
1258 NULL, NULL, /* filter, filterarg */
1259 MCLBYTES, 1, /* maxsize, nsegments */
1260 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1261 0, /* flags */
1262 &sc->sis_tag);
1263 if (error)
1264 goto fail;
1266 ifp = &sc->arpcom.ac_if;
1267 ifp->if_softc = sc;
1268 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1269 ifp->if_mtu = ETHERMTU;
1270 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1271 ifp->if_ioctl = sis_ioctl;
1272 ifp->if_start = sis_start;
1273 ifp->if_watchdog = sis_watchdog;
1274 ifp->if_init = sis_init;
1275 ifp->if_baudrate = 10000000;
1276 ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1277 ifq_set_ready(&ifp->if_snd);
1278 #ifdef DEVICE_POLLING
1279 ifp->if_poll = sis_poll;
1280 #endif
1281 ifp->if_capenable = ifp->if_capabilities;
1284 * Do MII setup.
1286 if (mii_phy_probe(dev, &sc->sis_miibus,
1287 sis_ifmedia_upd, sis_ifmedia_sts)) {
1288 device_printf(dev, "MII without any PHY!\n");
1289 error = ENXIO;
1290 goto fail;
1294 * Call MI attach routine.
1296 ether_ifattach(ifp, eaddr, NULL);
1299 * Tell the upper layer(s) we support long frames.
1301 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1303 error = bus_setup_intr(dev, sc->sis_irq, INTR_NETSAFE,
1304 sis_intr, sc,
1305 &sc->sis_intrhand,
1306 ifp->if_serializer);
1308 if (error) {
1309 device_printf(dev, "couldn't set up irq\n");
1310 ether_ifdetach(ifp);
1311 goto fail;
1314 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sis_irq));
1315 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1317 fail:
1318 if (error)
1319 sis_detach(dev);
1321 return(error);
1325 * Shutdown hardware and free up resources. It is called in both the error case
1326 * and the normal detach case so it needs to be careful about only freeing
1327 * resources that have actually been allocated.
1329 static int
1330 sis_detach(device_t dev)
1332 struct sis_softc *sc = device_get_softc(dev);
1333 struct ifnet *ifp = &sc->arpcom.ac_if;
1336 if (device_is_attached(dev)) {
1337 lwkt_serialize_enter(ifp->if_serializer);
1338 sis_reset(sc);
1339 sis_stop(sc);
1340 bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1341 lwkt_serialize_exit(ifp->if_serializer);
1343 ether_ifdetach(ifp);
1345 if (sc->sis_miibus)
1346 device_delete_child(dev, sc->sis_miibus);
1347 bus_generic_detach(dev);
1349 if (sc->sis_irq)
1350 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1351 if (sc->sis_res)
1352 bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1354 if (sc->sis_ldata.sis_rx_tag) {
1355 bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1356 sc->sis_ldata.sis_rx_dmamap);
1357 bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1358 sc->sis_ldata.sis_rx_list,
1359 sc->sis_ldata.sis_rx_dmamap);
1360 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1363 if (sc->sis_ldata.sis_tx_tag) {
1364 bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1365 sc->sis_ldata.sis_tx_dmamap);
1366 bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1367 sc->sis_ldata.sis_tx_list,
1368 sc->sis_ldata.sis_tx_dmamap);
1369 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1371 if (sc->sis_tag)
1372 bus_dma_tag_destroy(sc->sis_tag);
1373 if (sc->sis_parent_tag)
1374 bus_dma_tag_destroy(sc->sis_parent_tag);
1376 return(0);
1380 * Initialize the transmit descriptors.
1382 static int
1383 sis_list_tx_init(struct sis_softc *sc)
1385 struct sis_list_data *ld;
1386 struct sis_ring_data *cd;
1387 int i, nexti;
1389 cd = &sc->sis_cdata;
1390 ld = &sc->sis_ldata;
1392 for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1393 nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1394 ld->sis_tx_list[i].sis_nextdesc =
1395 &ld->sis_tx_list[nexti];
1396 bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1397 sc->sis_ldata.sis_tx_dmamap,
1398 &ld->sis_tx_list[nexti],
1399 sizeof(struct sis_desc), sis_dma_map_desc_next,
1400 &ld->sis_tx_list[i], 0);
1401 ld->sis_tx_list[i].sis_mbuf = NULL;
1402 ld->sis_tx_list[i].sis_ptr = 0;
1403 ld->sis_tx_list[i].sis_ctl = 0;
1406 cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1408 bus_dmamap_sync(sc->sis_ldata.sis_tx_tag, sc->sis_ldata.sis_tx_dmamap,
1409 BUS_DMASYNC_PREWRITE);
1411 return(0);
1415 * Initialize the RX descriptors and allocate mbufs for them. Note that
1416 * we arrange the descriptors in a closed ring, so that the last descriptor
1417 * points back to the first.
1419 static int
1420 sis_list_rx_init(struct sis_softc *sc)
1422 struct sis_list_data *ld;
1423 struct sis_ring_data *cd;
1424 int i, nexti;
1426 ld = &sc->sis_ldata;
1427 cd = &sc->sis_cdata;
1429 for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1430 if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1431 return(ENOBUFS);
1432 nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1433 ld->sis_rx_list[i].sis_nextdesc =
1434 &ld->sis_rx_list[nexti];
1435 bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1436 sc->sis_ldata.sis_rx_dmamap,
1437 &ld->sis_rx_list[nexti],
1438 sizeof(struct sis_desc), sis_dma_map_desc_next,
1439 &ld->sis_rx_list[i], 0);
1442 bus_dmamap_sync(sc->sis_ldata.sis_rx_tag, sc->sis_ldata.sis_rx_dmamap,
1443 BUS_DMASYNC_PREWRITE);
1445 cd->sis_rx_prod = 0;
1447 return(0);
1451 * Initialize an RX descriptor and attach an MBUF cluster.
1453 static int
1454 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1456 if (m == NULL) {
1457 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1458 if (m == NULL)
1459 return(ENOBUFS);
1460 } else {
1461 m->m_data = m->m_ext.ext_buf;
1464 c->sis_mbuf = m;
1465 c->sis_ctl = SIS_RXLEN;
1467 bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1468 bus_dmamap_load(sc->sis_tag, c->sis_map, mtod(m, void *), MCLBYTES,
1469 sis_dma_map_desc_ptr, c, 0);
1470 bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1472 return(0);
1476 * A frame has been uploaded: pass the resulting mbuf chain up to
1477 * the higher level protocols.
1479 static void
1480 sis_rxeof(struct sis_softc *sc)
1482 struct mbuf *m;
1483 struct ifnet *ifp;
1484 struct sis_desc *cur_rx;
1485 int i, total_len = 0;
1486 uint32_t rxstat;
1488 ifp = &sc->arpcom.ac_if;
1489 i = sc->sis_cdata.sis_rx_prod;
1491 while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1493 #ifdef DEVICE_POLLING
1494 if (ifp->if_flags & IFF_POLLING) {
1495 if (sc->rxcycles <= 0)
1496 break;
1497 sc->rxcycles--;
1499 #endif /* DEVICE_POLLING */
1500 cur_rx = &sc->sis_ldata.sis_rx_list[i];
1501 rxstat = cur_rx->sis_rxstat;
1502 bus_dmamap_sync(sc->sis_tag, cur_rx->sis_map,
1503 BUS_DMASYNC_POSTWRITE);
1504 bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1505 bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1506 m = cur_rx->sis_mbuf;
1507 cur_rx->sis_mbuf = NULL;
1508 total_len = SIS_RXBYTES(cur_rx);
1509 SIS_INC(i, SIS_RX_LIST_CNT);
1512 * If an error occurs, update stats, clear the
1513 * status word and leave the mbuf cluster in place:
1514 * it should simply get re-used next time this descriptor
1515 * comes up in the ring.
1517 if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1518 ifp->if_ierrors++;
1519 if (rxstat & SIS_RXSTAT_COLL)
1520 ifp->if_collisions++;
1521 sis_newbuf(sc, cur_rx, m);
1522 continue;
1525 /* No errors; receive the packet. */
1526 #ifdef __i386__
1528 * On the x86 we do not have alignment problems, so try to
1529 * allocate a new buffer for the receive ring, and pass up
1530 * the one where the packet is already, saving the expensive
1531 * copy done in m_devget().
1532 * If we are on an architecture with alignment problems, or
1533 * if the allocation fails, then use m_devget and leave the
1534 * existing buffer in the receive ring.
1536 if (sis_newbuf(sc, cur_rx, NULL) == 0)
1537 m->m_pkthdr.len = m->m_len = total_len;
1538 else
1539 #endif
1541 struct mbuf *m0;
1542 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1543 total_len + ETHER_ALIGN, 0, ifp, NULL);
1544 sis_newbuf(sc, cur_rx, m);
1545 if (m0 == NULL) {
1546 ifp->if_ierrors++;
1547 continue;
1549 m_adj(m0, ETHER_ALIGN);
1550 m = m0;
1553 ifp->if_ipackets++;
1554 ifp->if_input(ifp, m);
1557 sc->sis_cdata.sis_rx_prod = i;
1560 static void
1561 sis_rxeoc(struct sis_softc *sc)
1563 sis_rxeof(sc);
1564 sis_init(sc);
1568 * A frame was downloaded to the chip. It's safe for us to clean up
1569 * the list buffers.
1572 static void
1573 sis_txeof(struct sis_softc *sc)
1575 struct sis_desc *cur_tx;
1576 struct ifnet *ifp;
1577 uint32_t idx;
1579 ifp = &sc->arpcom.ac_if;
1582 * Go through our tx list and free mbufs for those
1583 * frames that have been transmitted.
1585 for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1586 sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1587 cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1589 if (SIS_OWNDESC(cur_tx))
1590 break;
1592 if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1593 continue;
1595 if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1596 ifp->if_oerrors++;
1597 if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1598 ifp->if_collisions++;
1599 if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1600 ifp->if_collisions++;
1603 ifp->if_collisions +=
1604 (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1606 ifp->if_opackets++;
1607 if (cur_tx->sis_mbuf != NULL) {
1608 m_freem(cur_tx->sis_mbuf);
1609 cur_tx->sis_mbuf = NULL;
1610 bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1611 bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1615 if (idx != sc->sis_cdata.sis_tx_cons) {
1616 /* we freed up some buffers */
1617 sc->sis_cdata.sis_tx_cons = idx;
1618 ifp->if_flags &= ~IFF_OACTIVE;
1621 ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1624 static void
1625 sis_tick(void *xsc)
1627 struct sis_softc *sc = xsc;
1628 struct mii_data *mii;
1629 struct ifnet *ifp = &sc->arpcom.ac_if;
1631 lwkt_serialize_enter(ifp->if_serializer);
1633 mii = device_get_softc(sc->sis_miibus);
1634 mii_tick(mii);
1636 if (!sc->sis_link) {
1637 mii_pollstat(mii);
1638 if (mii->mii_media_status & IFM_ACTIVE &&
1639 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1640 sc->sis_link++;
1641 if (!ifq_is_empty(&ifp->if_snd))
1642 if_devstart(ifp);
1645 callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1646 lwkt_serialize_exit(ifp->if_serializer);
1649 #ifdef DEVICE_POLLING
1651 static void
1652 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1654 struct sis_softc *sc = ifp->if_softc;
1656 switch(cmd) {
1657 case POLL_REGISTER:
1658 /* disable interrupts */
1659 CSR_WRITE_4(sc, SIS_IER, 0);
1660 break;
1661 case POLL_DEREGISTER:
1662 /* enable interrupts */
1663 CSR_WRITE_4(sc, SIS_IER, 1);
1664 break;
1665 default:
1667 * On the sis, reading the status register also clears it.
1668 * So before returning to intr mode we must make sure that all
1669 * possible pending sources of interrupts have been served.
1670 * In practice this means run to completion the *eof routines,
1671 * and then call the interrupt routine
1673 sc->rxcycles = count;
1674 sis_rxeof(sc);
1675 sis_txeof(sc);
1676 if (!ifq_is_empty(&ifp->if_snd))
1677 if_devstart(ifp);
1679 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1680 uint32_t status;
1682 /* Reading the ISR register clears all interrupts. */
1683 status = CSR_READ_4(sc, SIS_ISR);
1685 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1686 sis_rxeoc(sc);
1688 if (status & (SIS_ISR_RX_IDLE))
1689 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1691 if (status & SIS_ISR_SYSERR) {
1692 sis_reset(sc);
1693 sis_init(sc);
1696 break;
1699 #endif /* DEVICE_POLLING */
1701 static void
1702 sis_intr(void *arg)
1704 struct sis_softc *sc;
1705 struct ifnet *ifp;
1706 uint32_t status;
1708 sc = arg;
1709 ifp = &sc->arpcom.ac_if;
1711 /* Supress unwanted interrupts */
1712 if (!(ifp->if_flags & IFF_UP)) {
1713 sis_stop(sc);
1714 return;
1717 /* Disable interrupts. */
1718 CSR_WRITE_4(sc, SIS_IER, 0);
1720 for (;;) {
1721 /* Reading the ISR register clears all interrupts. */
1722 status = CSR_READ_4(sc, SIS_ISR);
1724 if ((status & SIS_INTRS) == 0)
1725 break;
1727 if (status &
1728 (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK |
1729 SIS_ISR_TX_IDLE) )
1730 sis_txeof(sc);
1732 if (status &
1733 (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE))
1734 sis_rxeof(sc);
1736 if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1737 sis_rxeoc(sc);
1739 if (status & (SIS_ISR_RX_IDLE))
1740 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1742 if (status & SIS_ISR_SYSERR) {
1743 sis_reset(sc);
1744 sis_init(sc);
1748 /* Re-enable interrupts. */
1749 CSR_WRITE_4(sc, SIS_IER, 1);
1751 if (!ifq_is_empty(&ifp->if_snd))
1752 if_devstart(ifp);
1756 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1757 * pointers to the fragment pointers.
1759 static int
1760 sis_encap(struct sis_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1762 struct sis_desc *f = NULL;
1763 struct mbuf *m;
1764 int frag, cur, cnt = 0;
1767 * Start packing the mbufs in this chain into
1768 * the fragment pointers. Stop when we run out
1769 * of fragments or hit the end of the mbuf chain.
1771 cur = frag = *txidx;
1773 for (m = m_head; m != NULL; m = m->m_next) {
1774 if (m->m_len != 0) {
1775 if ((SIS_TX_LIST_CNT -
1776 (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1777 break;
1778 f = &sc->sis_ldata.sis_tx_list[frag];
1779 f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1780 bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1781 bus_dmamap_load(sc->sis_tag, f->sis_map,
1782 mtod(m, void *), m->m_len,
1783 sis_dma_map_desc_ptr, f, 0);
1784 bus_dmamap_sync(sc->sis_tag, f->sis_map,
1785 BUS_DMASYNC_PREREAD);
1786 if (cnt != 0)
1787 f->sis_ctl |= SIS_CMDSTS_OWN;
1788 cur = frag;
1789 SIS_INC(frag, SIS_TX_LIST_CNT);
1790 cnt++;
1793 /* Caller should make sure that 'm_head' is not excessive fragmented */
1794 KASSERT(m == NULL, ("too many fragments\n"));
1796 sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1797 sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1798 sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1799 sc->sis_cdata.sis_tx_cnt += cnt;
1800 *txidx = frag;
1802 return(0);
1806 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1807 * to the mbuf data regions directly in the transmit lists. We also save a
1808 * copy of the pointers since the transmit list fragment pointers are
1809 * physical addresses.
1812 static void
1813 sis_start(struct ifnet *ifp)
1815 struct sis_softc *sc;
1816 struct mbuf *m_head = NULL, *m_defragged;
1817 uint32_t idx;
1818 int need_trans;
1820 sc = ifp->if_softc;
1822 if (!sc->sis_link) {
1823 ifq_purge(&ifp->if_snd);
1824 return;
1827 idx = sc->sis_cdata.sis_tx_prod;
1829 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1830 return;
1832 need_trans = 0;
1833 while (sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1834 struct mbuf *m;
1835 int cnt;
1838 * If there's no way we can send any packets, return now.
1840 if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2) {
1841 ifp->if_flags |= IFF_OACTIVE;
1842 break;
1845 m_defragged = NULL;
1846 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1847 if (m_head == NULL)
1848 break;
1850 again:
1851 cnt = 0;
1852 for (m = m_head; m != NULL; m = m->m_next)
1853 ++cnt;
1854 if ((SIS_TX_LIST_CNT -
1855 (sc->sis_cdata.sis_tx_cnt + cnt)) < 2) {
1856 if (m_defragged != NULL) {
1858 * Even after defragmentation, there
1859 * are still too many fragments, so
1860 * drop this packet.
1862 m_freem(m_head);
1863 ifp->if_flags |= IFF_OACTIVE;
1864 break;
1867 m_defragged = m_defrag(m_head, MB_DONTWAIT);
1868 if (m_defragged == NULL) {
1869 m_freem(m_head);
1870 continue;
1872 m_head = m_defragged;
1874 /* Recount # of fragments */
1875 goto again;
1878 sis_encap(sc, m_head, &idx);
1879 need_trans = 1;
1882 * If there's a BPF listener, bounce a copy of this frame
1883 * to him.
1885 BPF_MTAP(ifp, m_head);
1888 if (!need_trans)
1889 return;
1891 /* Transmit */
1892 sc->sis_cdata.sis_tx_prod = idx;
1893 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1896 * Set a timeout in case the chip goes out to lunch.
1898 ifp->if_timer = 5;
1901 static void
1902 sis_init(void *xsc)
1904 struct sis_softc *sc = xsc;
1905 struct ifnet *ifp = &sc->arpcom.ac_if;
1906 struct mii_data *mii;
1909 * Cancel pending I/O and free all RX/TX buffers.
1911 sis_stop(sc);
1913 mii = device_get_softc(sc->sis_miibus);
1915 /* Set MAC address */
1916 if (sc->sis_type == SIS_TYPE_83815) {
1917 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1918 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1919 ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1920 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1921 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1922 ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1923 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1924 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1925 ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1926 } else {
1927 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1928 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1929 ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1930 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1931 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1932 ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1933 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1934 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1935 ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1938 /* Init circular RX list. */
1939 if (sis_list_rx_init(sc) == ENOBUFS) {
1940 if_printf(ifp, "initialization failed: "
1941 "no memory for rx buffers\n");
1942 sis_stop(sc);
1943 return;
1947 * Init tx descriptors.
1949 sis_list_tx_init(sc);
1952 * For the NatSemi chip, we have to explicitly enable the
1953 * reception of ARP frames, as well as turn on the 'perfect
1954 * match' filter where we store the station address, otherwise
1955 * we won't receive unicasts meant for this host.
1957 if (sc->sis_type == SIS_TYPE_83815) {
1958 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1959 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1962 /* If we want promiscuous mode, set the allframes bit. */
1963 if (ifp->if_flags & IFF_PROMISC)
1964 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1965 else
1966 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1969 * Set the capture broadcast bit to capture broadcast frames.
1971 if (ifp->if_flags & IFF_BROADCAST)
1972 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1973 else
1974 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1977 * Load the multicast filter.
1979 if (sc->sis_type == SIS_TYPE_83815)
1980 sis_setmulti_ns(sc);
1981 else
1982 sis_setmulti_sis(sc);
1984 /* Turn the receive filter on */
1985 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1988 * Load the address of the RX and TX lists.
1990 CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
1991 CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
1993 /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1994 * the PCI bus. When this bit is set, the Max DMA Burst Size
1995 * for TX/RX DMA should be no larger than 16 double words.
1997 if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
1998 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1999 else
2000 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2002 /* Accept Long Packets for VLAN support */
2003 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2005 /* Set TX configuration */
2006 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
2007 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2008 else
2009 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2011 /* Set full/half duplex mode. */
2012 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2013 SIS_SETBIT(sc, SIS_TX_CFG,
2014 (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2015 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2016 } else {
2017 SIS_CLRBIT(sc, SIS_TX_CFG,
2018 (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2019 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2023 * Enable interrupts.
2025 CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2026 #ifdef DEVICE_POLLING
2028 * ... only enable interrupts if we are not polling, make sure
2029 * they are off otherwise.
2031 if (ifp->if_flags & IFF_POLLING)
2032 CSR_WRITE_4(sc, SIS_IER, 0);
2033 else
2034 #endif /* DEVICE_POLLING */
2035 CSR_WRITE_4(sc, SIS_IER, 1);
2037 /* Enable receiver and transmitter. */
2038 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2039 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2041 #ifdef notdef
2042 mii_mediachg(mii);
2043 #endif
2046 * Page 75 of the DP83815 manual recommends the
2047 * following register settings "for optimum
2048 * performance." Note however that at least three
2049 * of the registers are listed as "reserved" in
2050 * the register map, so who knows what they do.
2052 if (sc->sis_type == SIS_TYPE_83815) {
2053 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2054 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2055 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2056 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2057 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2060 ifp->if_flags |= IFF_RUNNING;
2061 ifp->if_flags &= ~IFF_OACTIVE;
2063 callout_reset(&sc->sis_timer, hz, sis_tick, sc);
2067 * Set media options.
2069 static int
2070 sis_ifmedia_upd(struct ifnet *ifp)
2072 struct sis_softc *sc;
2073 struct mii_data *mii;
2075 sc = ifp->if_softc;
2077 mii = device_get_softc(sc->sis_miibus);
2078 sc->sis_link = 0;
2079 if (mii->mii_instance) {
2080 struct mii_softc *miisc;
2081 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2082 mii_phy_reset(miisc);
2084 mii_mediachg(mii);
2086 return(0);
2090 * Report current media status.
2092 static void
2093 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2095 struct sis_softc *sc;
2096 struct mii_data *mii;
2098 sc = ifp->if_softc;
2100 mii = device_get_softc(sc->sis_miibus);
2101 mii_pollstat(mii);
2102 ifmr->ifm_active = mii->mii_media_active;
2103 ifmr->ifm_status = mii->mii_media_status;
2106 static int
2107 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2109 struct sis_softc *sc = ifp->if_softc;
2110 struct ifreq *ifr = (struct ifreq *) data;
2111 struct mii_data *mii;
2112 int error = 0;
2114 switch(command) {
2115 case SIOCSIFFLAGS:
2116 if (ifp->if_flags & IFF_UP) {
2117 sis_init(sc);
2118 } else {
2119 if (ifp->if_flags & IFF_RUNNING)
2120 sis_stop(sc);
2122 error = 0;
2123 break;
2124 case SIOCADDMULTI:
2125 case SIOCDELMULTI:
2126 if (sc->sis_type == SIS_TYPE_83815)
2127 sis_setmulti_ns(sc);
2128 else
2129 sis_setmulti_sis(sc);
2130 error = 0;
2131 break;
2132 case SIOCGIFMEDIA:
2133 case SIOCSIFMEDIA:
2134 mii = device_get_softc(sc->sis_miibus);
2135 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2136 break;
2137 default:
2138 error = ether_ioctl(ifp, command, data);
2139 break;
2141 return(error);
2144 static void
2145 sis_watchdog(struct ifnet *ifp)
2147 struct sis_softc *sc;
2149 sc = ifp->if_softc;
2151 ifp->if_oerrors++;
2152 if_printf(ifp, "watchdog timeout\n");
2154 sis_stop(sc);
2155 sis_reset(sc);
2156 sis_init(sc);
2158 if (!ifq_is_empty(&ifp->if_snd))
2159 if_devstart(ifp);
2163 * Stop the adapter and free any mbufs allocated to the
2164 * RX and TX lists.
2166 static void
2167 sis_stop(struct sis_softc *sc)
2169 int i;
2170 struct ifnet *ifp;
2172 ifp = &sc->arpcom.ac_if;
2173 ifp->if_timer = 0;
2175 callout_stop(&sc->sis_timer);
2177 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2178 CSR_WRITE_4(sc, SIS_IER, 0);
2179 CSR_WRITE_4(sc, SIS_IMR, 0);
2180 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2181 DELAY(1000);
2182 CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2183 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2185 sc->sis_link = 0;
2188 * Free data in the RX lists.
2190 for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2191 if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2192 bus_dmamap_unload(sc->sis_tag,
2193 sc->sis_ldata.sis_rx_list[i].sis_map);
2194 bus_dmamap_destroy(sc->sis_tag,
2195 sc->sis_ldata.sis_rx_list[i].sis_map);
2196 m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2197 sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2200 bzero(sc->sis_ldata.sis_rx_list, sizeof(sc->sis_ldata.sis_rx_list));
2203 * Free the TX list buffers.
2205 for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2206 if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2207 bus_dmamap_unload(sc->sis_tag,
2208 sc->sis_ldata.sis_tx_list[i].sis_map);
2209 bus_dmamap_destroy(sc->sis_tag,
2210 sc->sis_ldata.sis_tx_list[i].sis_map);
2211 m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2212 sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2216 bzero(sc->sis_ldata.sis_tx_list, sizeof(sc->sis_ldata.sis_tx_list));
2220 * Stop all chip I/O so that the kernel's probe routines don't
2221 * get confused by errant DMAs when rebooting.
2223 static void
2224 sis_shutdown(device_t dev)
2226 struct sis_softc *sc;
2227 struct ifnet *ifp;
2229 sc = device_get_softc(dev);
2230 ifp = &sc->arpcom.ac_if;
2231 lwkt_serialize_enter(ifp->if_serializer);
2232 sis_reset(sc);
2233 sis_stop(sc);
2234 lwkt_serialize_exit(ifp->if_serializer);