HAMMER Utilities: Sync with recent work.
[dragonfly.git] / sys / kern / kern_synch.c
blob70f17daf6fedde2db524b2fdaf7bfa4f847173c5
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
39 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40 * $DragonFly: src/sys/kern/kern_synch.c,v 1.90 2008/04/30 04:19:57 dillon Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/serialize.h>
66 #include <machine/cpu.h>
67 #include <machine/smp.h>
69 TAILQ_HEAD(tslpque, thread);
71 static void sched_setup (void *dummy);
72 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74 int hogticks;
75 int lbolt;
76 int lbolt_syncer;
77 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
78 int ncpus;
79 int ncpus2, ncpus2_shift, ncpus2_mask;
80 int ncpus_fit, ncpus_fit_mask;
81 int safepri;
82 int tsleep_now_works;
84 static struct callout loadav_callout;
85 static struct callout schedcpu_callout;
86 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
88 #if !defined(KTR_TSLEEP)
89 #define KTR_TSLEEP KTR_ALL
90 #endif
91 KTR_INFO_MASTER(tsleep);
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
93 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
95 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
97 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
98 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
100 struct loadavg averunnable =
101 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
103 * Constants for averages over 1, 5, and 15 minutes
104 * when sampling at 5 second intervals.
106 static fixpt_t cexp[3] = {
107 0.9200444146293232 * FSCALE, /* exp(-1/12) */
108 0.9834714538216174 * FSCALE, /* exp(-1/60) */
109 0.9944598480048967 * FSCALE, /* exp(-1/180) */
112 static void endtsleep (void *);
113 static void unsleep_and_wakeup_thread(struct thread *td);
114 static void loadav (void *arg);
115 static void schedcpu (void *arg);
118 * Adjust the scheduler quantum. The quantum is specified in microseconds.
119 * Note that 'tick' is in microseconds per tick.
121 static int
122 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
124 int error, new_val;
126 new_val = sched_quantum * tick;
127 error = sysctl_handle_int(oidp, &new_val, 0, req);
128 if (error != 0 || req->newptr == NULL)
129 return (error);
130 if (new_val < tick)
131 return (EINVAL);
132 sched_quantum = new_val / tick;
133 hogticks = 2 * sched_quantum;
134 return (0);
137 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
138 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
141 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
142 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
143 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
145 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
146 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
148 * If you don't want to bother with the faster/more-accurate formula, you
149 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
150 * (more general) method of calculating the %age of CPU used by a process.
152 * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
154 #define CCPU_SHIFT 11
156 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
157 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
160 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
162 int fscale __unused = FSCALE; /* exported to systat */
163 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
166 * Recompute process priorities, once a second.
168 * Since the userland schedulers are typically event oriented, if the
169 * estcpu calculation at wakeup() time is not sufficient to make a
170 * process runnable relative to other processes in the system we have
171 * a 1-second recalc to help out.
173 * This code also allows us to store sysclock_t data in the process structure
174 * without fear of an overrun, since sysclock_t are guarenteed to hold
175 * several seconds worth of count.
177 * WARNING! callouts can preempt normal threads. However, they will not
178 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
180 static int schedcpu_stats(struct proc *p, void *data __unused);
181 static int schedcpu_resource(struct proc *p, void *data __unused);
183 static void
184 schedcpu(void *arg)
186 allproc_scan(schedcpu_stats, NULL);
187 allproc_scan(schedcpu_resource, NULL);
188 wakeup((caddr_t)&lbolt);
189 wakeup((caddr_t)&lbolt_syncer);
190 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
194 * General process statistics once a second
196 static int
197 schedcpu_stats(struct proc *p, void *data __unused)
199 struct lwp *lp;
201 crit_enter();
202 p->p_swtime++;
203 FOREACH_LWP_IN_PROC(lp, p) {
204 if (lp->lwp_stat == LSSLEEP)
205 lp->lwp_slptime++;
208 * Only recalculate processes that are active or have slept
209 * less then 2 seconds. The schedulers understand this.
211 if (lp->lwp_slptime <= 1) {
212 p->p_usched->recalculate(lp);
213 } else {
214 lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
217 crit_exit();
218 return(0);
222 * Resource checks. XXX break out since ksignal/killproc can block,
223 * limiting us to one process killed per second. There is probably
224 * a better way.
226 static int
227 schedcpu_resource(struct proc *p, void *data __unused)
229 u_int64_t ttime;
230 struct lwp *lp;
232 crit_enter();
233 if (p->p_stat == SIDL ||
234 p->p_stat == SZOMB ||
235 p->p_limit == NULL
237 crit_exit();
238 return(0);
241 ttime = 0;
242 FOREACH_LWP_IN_PROC(lp, p) {
244 * We may have caught an lp in the middle of being
245 * created, lwp_thread can be NULL.
247 if (lp->lwp_thread) {
248 ttime += lp->lwp_thread->td_sticks;
249 ttime += lp->lwp_thread->td_uticks;
253 switch(plimit_testcpulimit(p->p_limit, ttime)) {
254 case PLIMIT_TESTCPU_KILL:
255 killproc(p, "exceeded maximum CPU limit");
256 break;
257 case PLIMIT_TESTCPU_XCPU:
258 if ((p->p_flag & P_XCPU) == 0) {
259 p->p_flag |= P_XCPU;
260 ksignal(p, SIGXCPU);
262 break;
263 default:
264 break;
266 crit_exit();
267 return(0);
271 * This is only used by ps. Generate a cpu percentage use over
272 * a period of one second.
274 * MPSAFE
276 void
277 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
279 fixpt_t acc;
280 int remticks;
282 acc = (cpticks << FSHIFT) / ttlticks;
283 if (ttlticks >= ESTCPUFREQ) {
284 lp->lwp_pctcpu = acc;
285 } else {
286 remticks = ESTCPUFREQ - ttlticks;
287 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
288 ESTCPUFREQ;
293 * tsleep/wakeup hash table parameters. Try to find the sweet spot for
294 * like addresses being slept on.
296 #define TABLESIZE 1024
297 #define LOOKUP(x) (((intptr_t)(x) >> 6) & (TABLESIZE - 1))
299 static cpumask_t slpque_cpumasks[TABLESIZE];
302 * General scheduler initialization. We force a reschedule 25 times
303 * a second by default. Note that cpu0 is initialized in early boot and
304 * cannot make any high level calls.
306 * Each cpu has its own sleep queue.
308 void
309 sleep_gdinit(globaldata_t gd)
311 static struct tslpque slpque_cpu0[TABLESIZE];
312 int i;
314 if (gd->gd_cpuid == 0) {
315 sched_quantum = (hz + 24) / 25;
316 hogticks = 2 * sched_quantum;
318 gd->gd_tsleep_hash = slpque_cpu0;
319 } else {
320 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
321 M_TSLEEP, M_WAITOK | M_ZERO);
323 for (i = 0; i < TABLESIZE; ++i)
324 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
328 * General sleep call. Suspends the current process until a wakeup is
329 * performed on the specified identifier. The process will then be made
330 * runnable with the specified priority. Sleeps at most timo/hz seconds
331 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
332 * before and after sleeping, else signals are not checked. Returns 0 if
333 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
334 * signal needs to be delivered, ERESTART is returned if the current system
335 * call should be restarted if possible, and EINTR is returned if the system
336 * call should be interrupted by the signal (return EINTR).
338 * Note that if we are a process, we release_curproc() before messing with
339 * the LWKT scheduler.
341 * During autoconfiguration or after a panic, a sleep will simply
342 * lower the priority briefly to allow interrupts, then return.
345 tsleep(void *ident, int flags, const char *wmesg, int timo)
347 struct thread *td = curthread;
348 struct lwp *lp = td->td_lwp;
349 struct proc *p = td->td_proc; /* may be NULL */
350 globaldata_t gd;
351 int sig;
352 int catch;
353 int id;
354 int error;
355 int oldpri;
356 struct callout thandle;
359 * NOTE: removed KTRPOINT, it could cause races due to blocking
360 * even in stable. Just scrap it for now.
362 if (tsleep_now_works == 0 || panicstr) {
364 * After a panic, or before we actually have an operational
365 * softclock, just give interrupts a chance, then just return;
367 * don't run any other procs or panic below,
368 * in case this is the idle process and already asleep.
370 splz();
371 oldpri = td->td_pri & TDPRI_MASK;
372 lwkt_setpri_self(safepri);
373 lwkt_switch();
374 lwkt_setpri_self(oldpri);
375 return (0);
377 logtsleep2(tsleep_beg, ident);
378 gd = td->td_gd;
379 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
382 * NOTE: all of this occurs on the current cpu, including any
383 * callout-based wakeups, so a critical section is a sufficient
384 * interlock.
386 * The entire sequence through to where we actually sleep must
387 * run without breaking the critical section.
389 id = LOOKUP(ident);
390 catch = flags & PCATCH;
391 error = 0;
392 sig = 0;
394 crit_enter_quick(td);
396 KASSERT(ident != NULL, ("tsleep: no ident"));
397 KASSERT(lp == NULL ||
398 lp->lwp_stat == LSRUN || /* Obvious */
399 lp->lwp_stat == LSSTOP, /* Set in tstop */
400 ("tsleep %p %s %d",
401 ident, wmesg, lp->lwp_stat));
404 * Setup for the current process (if this is a process).
406 if (lp) {
407 if (catch) {
409 * Early termination if PCATCH was set and a
410 * signal is pending, interlocked with the
411 * critical section.
413 * Early termination only occurs when tsleep() is
414 * entered while in a normal LSRUN state.
416 if ((sig = CURSIG(lp)) != 0)
417 goto resume;
420 * Early termination if PCATCH was set and a
421 * mailbox signal was possibly delivered prior to
422 * the system call even being made, in order to
423 * allow the user to interlock without having to
424 * make additional system calls.
426 if (p->p_flag & P_MAILBOX)
427 goto resume;
430 * Causes ksignal to wake us up when.
432 lp->lwp_flag |= LWP_SINTR;
436 * Make sure the current process has been untangled from
437 * the userland scheduler and initialize slptime to start
438 * counting.
440 if (flags & PNORESCHED)
441 td->td_flags |= TDF_NORESCHED;
442 p->p_usched->release_curproc(lp);
443 lp->lwp_slptime = 0;
447 * Move our thread to the correct queue and setup our wchan, etc.
449 lwkt_deschedule_self(td);
450 td->td_flags |= TDF_TSLEEPQ;
451 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
452 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
454 td->td_wchan = ident;
455 td->td_wmesg = wmesg;
456 td->td_wdomain = flags & PDOMAIN_MASK;
459 * Setup the timeout, if any
461 if (timo) {
462 callout_init(&thandle);
463 callout_reset(&thandle, timo, endtsleep, td);
467 * Beddy bye bye.
469 if (lp) {
471 * Ok, we are sleeping. Place us in the SSLEEP state.
473 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
475 * tstop() sets LSSTOP, so don't fiddle with that.
477 if (lp->lwp_stat != LSSTOP)
478 lp->lwp_stat = LSSLEEP;
479 lp->lwp_ru.ru_nvcsw++;
480 lwkt_switch();
483 * And when we are woken up, put us back in LSRUN. If we
484 * slept for over a second, recalculate our estcpu.
486 lp->lwp_stat = LSRUN;
487 if (lp->lwp_slptime)
488 p->p_usched->recalculate(lp);
489 lp->lwp_slptime = 0;
490 } else {
491 lwkt_switch();
495 * Make sure we haven't switched cpus while we were asleep. It's
496 * not supposed to happen. Cleanup our temporary flags.
498 KKASSERT(gd == td->td_gd);
499 td->td_flags &= ~TDF_NORESCHED;
502 * Cleanup the timeout.
504 if (timo) {
505 if (td->td_flags & TDF_TIMEOUT) {
506 td->td_flags &= ~TDF_TIMEOUT;
507 error = EWOULDBLOCK;
508 } else {
509 callout_stop(&thandle);
514 * Since td_threadq is used both for our run queue AND for the
515 * tsleep hash queue, we can't still be on it at this point because
516 * we've gotten cpu back.
518 KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
519 td->td_wchan = NULL;
520 td->td_wmesg = NULL;
521 td->td_wdomain = 0;
524 * Figure out the correct error return. If interrupted by a
525 * signal we want to return EINTR or ERESTART.
527 * If P_MAILBOX is set no automatic system call restart occurs
528 * and we return EINTR. P_MAILBOX is meant to be used as an
529 * interlock, the user must poll it prior to any system call
530 * that it wishes to interlock a mailbox signal against since
531 * the flag is cleared on *any* system call that sleeps.
533 resume:
534 if (p) {
535 if (catch && error == 0) {
536 if ((p->p_flag & P_MAILBOX) && sig == 0) {
537 error = EINTR;
538 } else if (sig != 0 || (sig = CURSIG(lp))) {
539 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
540 error = EINTR;
541 else
542 error = ERESTART;
545 lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
546 p->p_flag &= ~P_MAILBOX;
548 logtsleep1(tsleep_end);
549 crit_exit_quick(td);
550 return (error);
554 * This is a dandy function that allows us to interlock tsleep/wakeup
555 * operations with unspecified upper level locks, such as lockmgr locks,
556 * simply by holding a critical section. The sequence is:
558 * (enter critical section)
559 * (acquire upper level lock)
560 * tsleep_interlock(blah)
561 * (release upper level lock)
562 * tsleep(blah, ...)
563 * (exit critical section)
565 * Basically this function sets our cpumask for the ident which informs
566 * other cpus that our cpu 'might' be waiting (or about to wait on) the
567 * hash index related to the ident. The critical section prevents another
568 * cpu's wakeup() from being processed on our cpu until we are actually
569 * able to enter the tsleep(). Thus, no race occurs between our attempt
570 * to release a resource and sleep, and another cpu's attempt to acquire
571 * a resource and call wakeup.
573 * There isn't much of a point to this function unless you call it while
574 * holding a critical section.
576 static __inline void
577 _tsleep_interlock(globaldata_t gd, void *ident)
579 int id = LOOKUP(ident);
581 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
584 void
585 tsleep_interlock(void *ident)
587 _tsleep_interlock(mycpu, ident);
591 * Interlocked spinlock sleep. An exclusively held spinlock must
592 * be passed to msleep(). The function will atomically release the
593 * spinlock and tsleep on the ident, then reacquire the spinlock and
594 * return.
596 * This routine is fairly important along the critical path, so optimize it
597 * heavily.
600 msleep(void *ident, struct spinlock *spin, int flags,
601 const char *wmesg, int timo)
603 globaldata_t gd = mycpu;
604 int error;
606 crit_enter_gd(gd);
607 _tsleep_interlock(gd, ident);
608 spin_unlock_wr_quick(gd, spin);
609 error = tsleep(ident, flags, wmesg, timo);
610 spin_lock_wr_quick(gd, spin);
611 crit_exit_gd(gd);
613 return (error);
617 * Interlocked serializer sleep. An exclusively held serializer must
618 * be passed to serialize_sleep(). The function will atomically release
619 * the serializer and tsleep on the ident, then reacquire the serializer
620 * and return.
623 serialize_sleep(void *ident, struct lwkt_serialize *slz, int flags,
624 const char *wmesg, int timo)
626 int ret;
628 ASSERT_SERIALIZED(slz);
630 crit_enter();
631 tsleep_interlock(ident);
632 lwkt_serialize_exit(slz);
633 ret = tsleep(ident, flags, wmesg, timo);
634 lwkt_serialize_enter(slz);
635 crit_exit();
637 return ret;
641 * Directly block on the LWKT thread by descheduling it. This
642 * is much faster then tsleep(), but the only legal way to wake
643 * us up is to directly schedule the thread.
645 * Setting TDF_SINTR will cause new signals to directly schedule us.
647 * This routine is typically called while in a critical section.
650 lwkt_sleep(const char *wmesg, int flags)
652 thread_t td = curthread;
653 int sig;
655 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
656 td->td_flags |= TDF_BLOCKED;
657 td->td_wmesg = wmesg;
658 lwkt_deschedule_self(td);
659 lwkt_switch();
660 td->td_wmesg = NULL;
661 td->td_flags &= ~TDF_BLOCKED;
662 return(0);
664 if ((sig = CURSIG(td->td_lwp)) != 0) {
665 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
666 return(EINTR);
667 else
668 return(ERESTART);
671 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
672 td->td_wmesg = wmesg;
673 lwkt_deschedule_self(td);
674 lwkt_switch();
675 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
676 td->td_wmesg = NULL;
677 return(0);
681 * Implement the timeout for tsleep.
683 * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
684 * we only call setrunnable if the process is not stopped.
686 * This type of callout timeout is scheduled on the same cpu the process
687 * is sleeping on. Also, at the moment, the MP lock is held.
689 static void
690 endtsleep(void *arg)
692 thread_t td = arg;
693 struct lwp *lp;
695 ASSERT_MP_LOCK_HELD(curthread);
696 crit_enter();
699 * cpu interlock. Thread flags are only manipulated on
700 * the cpu owning the thread. proc flags are only manipulated
701 * by the older of the MP lock. We have both.
703 if (td->td_flags & TDF_TSLEEPQ) {
704 td->td_flags |= TDF_TIMEOUT;
706 if ((lp = td->td_lwp) != NULL) {
707 lp->lwp_flag |= LWP_BREAKTSLEEP;
708 if (lp->lwp_proc->p_stat != SSTOP)
709 setrunnable(lp);
710 } else {
711 unsleep_and_wakeup_thread(td);
714 crit_exit();
718 * Unsleep and wakeup a thread. This function runs without the MP lock
719 * which means that it can only manipulate thread state on the owning cpu,
720 * and cannot touch the process state at all.
722 static
723 void
724 unsleep_and_wakeup_thread(struct thread *td)
726 globaldata_t gd = mycpu;
727 int id;
729 #ifdef SMP
730 if (td->td_gd != gd) {
731 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
732 return;
734 #endif
735 crit_enter();
736 if (td->td_flags & TDF_TSLEEPQ) {
737 td->td_flags &= ~TDF_TSLEEPQ;
738 id = LOOKUP(td->td_wchan);
739 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
740 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
741 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
742 lwkt_schedule(td);
744 crit_exit();
748 * Make all processes sleeping on the specified identifier runnable.
749 * count may be zero or one only.
751 * The domain encodes the sleep/wakeup domain AND the first cpu to check
752 * (which is always the current cpu). As we iterate across cpus
754 * This call may run without the MP lock held. We can only manipulate thread
755 * state on the cpu owning the thread. We CANNOT manipulate process state
756 * at all.
758 static void
759 _wakeup(void *ident, int domain)
761 struct tslpque *qp;
762 struct thread *td;
763 struct thread *ntd;
764 globaldata_t gd;
765 #ifdef SMP
766 cpumask_t mask;
767 #endif
768 int id;
770 crit_enter();
771 logtsleep2(wakeup_beg, ident);
772 gd = mycpu;
773 id = LOOKUP(ident);
774 qp = &gd->gd_tsleep_hash[id];
775 restart:
776 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
777 ntd = TAILQ_NEXT(td, td_threadq);
778 if (td->td_wchan == ident &&
779 td->td_wdomain == (domain & PDOMAIN_MASK)
781 KKASSERT(td->td_flags & TDF_TSLEEPQ);
782 td->td_flags &= ~TDF_TSLEEPQ;
783 TAILQ_REMOVE(qp, td, td_threadq);
784 if (TAILQ_FIRST(qp) == NULL) {
785 atomic_clear_int(&slpque_cpumasks[id],
786 gd->gd_cpumask);
788 lwkt_schedule(td);
789 if (domain & PWAKEUP_ONE)
790 goto done;
791 goto restart;
795 #ifdef SMP
797 * We finished checking the current cpu but there still may be
798 * more work to do. Either wakeup_one was requested and no matching
799 * thread was found, or a normal wakeup was requested and we have
800 * to continue checking cpus.
802 * It should be noted that this scheme is actually less expensive then
803 * the old scheme when waking up multiple threads, since we send
804 * only one IPI message per target candidate which may then schedule
805 * multiple threads. Before we could have wound up sending an IPI
806 * message for each thread on the target cpu (!= current cpu) that
807 * needed to be woken up.
809 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
810 * should be ok since we are passing idents in the IPI rather then
811 * thread pointers.
813 if ((domain & PWAKEUP_MYCPU) == 0 &&
814 (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
815 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
816 domain | PWAKEUP_MYCPU);
818 #endif
819 done:
820 logtsleep1(wakeup_end);
821 crit_exit();
825 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
827 void
828 wakeup(void *ident)
830 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
834 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
836 void
837 wakeup_one(void *ident)
839 /* XXX potentially round-robin the first responding cpu */
840 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
844 * Wakeup threads tsleep()ing on the specified ident on the current cpu
845 * only.
847 void
848 wakeup_mycpu(void *ident)
850 _wakeup(ident, PWAKEUP_MYCPU);
854 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
855 * only.
857 void
858 wakeup_mycpu_one(void *ident)
860 /* XXX potentially round-robin the first responding cpu */
861 _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
865 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
866 * only.
868 void
869 wakeup_oncpu(globaldata_t gd, void *ident)
871 #ifdef SMP
872 if (gd == mycpu) {
873 _wakeup(ident, PWAKEUP_MYCPU);
874 } else {
875 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
877 #else
878 _wakeup(ident, PWAKEUP_MYCPU);
879 #endif
883 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
884 * only.
886 void
887 wakeup_oncpu_one(globaldata_t gd, void *ident)
889 #ifdef SMP
890 if (gd == mycpu) {
891 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
892 } else {
893 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
895 #else
896 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
897 #endif
901 * Wakeup all threads waiting on the specified ident that slept using
902 * the specified domain, on all cpus.
904 void
905 wakeup_domain(void *ident, int domain)
907 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
911 * Wakeup one thread waiting on the specified ident that slept using
912 * the specified domain, on any cpu.
914 void
915 wakeup_domain_one(void *ident, int domain)
917 /* XXX potentially round-robin the first responding cpu */
918 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
922 * setrunnable()
924 * Make a process runnable. The MP lock must be held on call. This only
925 * has an effect if we are in SSLEEP. We only break out of the
926 * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
928 * NOTE: With the MP lock held we can only safely manipulate the process
929 * structure. We cannot safely manipulate the thread structure.
931 void
932 setrunnable(struct lwp *lp)
934 crit_enter();
935 ASSERT_MP_LOCK_HELD(curthread);
936 if (lp->lwp_stat == LSSTOP)
937 lp->lwp_stat = LSSLEEP;
938 if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
939 unsleep_and_wakeup_thread(lp->lwp_thread);
940 crit_exit();
944 * The process is stopped due to some condition, usually because p_stat is
945 * set to SSTOP, but also possibly due to being traced.
947 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
948 * because the parent may check the child's status before the child actually
949 * gets to this routine.
951 * This routine is called with the current lwp only, typically just
952 * before returning to userland.
954 * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
955 * SIGCONT to break out of the tsleep.
957 void
958 tstop(void)
960 struct lwp *lp = curthread->td_lwp;
961 struct proc *p = lp->lwp_proc;
963 lp->lwp_flag |= LWP_BREAKTSLEEP;
964 lp->lwp_stat = LSSTOP;
965 crit_enter();
967 * If LWP_WSTOP is set, we were sleeping
968 * while our process was stopped. At this point
969 * we were already counted as stopped.
971 if ((lp->lwp_flag & LWP_WSTOP) == 0) {
973 * If we're the last thread to stop, signal
974 * our parent.
976 p->p_nstopped++;
977 lp->lwp_flag |= LWP_WSTOP;
978 if (p->p_nstopped == p->p_nthreads) {
979 p->p_flag &= ~P_WAITED;
980 wakeup(p->p_pptr);
981 if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
982 ksignal(p->p_pptr, SIGCHLD);
985 tsleep(lp->lwp_proc, 0, "stop", 0);
986 p->p_nstopped--;
987 lp->lwp_flag &= ~LWP_WSTOP;
988 crit_exit();
992 * Yield / synchronous reschedule. This is a bit tricky because the trap
993 * code might have set a lazy release on the switch function. Setting
994 * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
995 * switch, and that we are given a greater chance of affinity with our
996 * current cpu.
998 * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
999 * run queue. lwkt_switch() will also execute any assigned passive release
1000 * (which usually calls release_curproc()), allowing a same/higher priority
1001 * process to be designated as the current process.
1003 * While it is possible for a lower priority process to be designated,
1004 * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1005 * round-robin back to us and we will be able to re-acquire the current
1006 * process designation.
1008 void
1009 uio_yield(void)
1011 struct thread *td = curthread;
1012 struct proc *p = td->td_proc;
1014 lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1015 if (p) {
1016 p->p_flag |= P_PASSIVE_ACQ;
1017 lwkt_switch();
1018 p->p_flag &= ~P_PASSIVE_ACQ;
1019 } else {
1020 lwkt_switch();
1025 * Compute a tenex style load average of a quantity on
1026 * 1, 5 and 15 minute intervals.
1028 static int loadav_count_runnable(struct lwp *p, void *data);
1030 static void
1031 loadav(void *arg)
1033 struct loadavg *avg;
1034 int i, nrun;
1036 nrun = 0;
1037 alllwp_scan(loadav_count_runnable, &nrun);
1038 avg = &averunnable;
1039 for (i = 0; i < 3; i++) {
1040 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1041 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1045 * Schedule the next update to occur after 5 seconds, but add a
1046 * random variation to avoid synchronisation with processes that
1047 * run at regular intervals.
1049 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1050 loadav, NULL);
1053 static int
1054 loadav_count_runnable(struct lwp *lp, void *data)
1056 int *nrunp = data;
1057 thread_t td;
1059 switch (lp->lwp_stat) {
1060 case LSRUN:
1061 if ((td = lp->lwp_thread) == NULL)
1062 break;
1063 if (td->td_flags & TDF_BLOCKED)
1064 break;
1065 ++*nrunp;
1066 break;
1067 default:
1068 break;
1070 return(0);
1073 /* ARGSUSED */
1074 static void
1075 sched_setup(void *dummy)
1077 callout_init(&loadav_callout);
1078 callout_init(&schedcpu_callout);
1080 /* Kick off timeout driven events by calling first time. */
1081 schedcpu(NULL);
1082 loadav(NULL);