2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $
35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.45 2008/06/12 23:25:02 dillon Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
45 #include <sys/filedesc.h>
47 #include <sys/signalvar.h>
48 #include <sys/spinlock.h>
52 #include <vm/vm_map.h>
54 #include <machine/smp.h>
56 #include <sys/spinlock2.h>
58 static MALLOC_DEFINE(M_PGRP
, "pgrp", "process group header");
59 MALLOC_DEFINE(M_SESSION
, "session", "session header");
60 MALLOC_DEFINE(M_PROC
, "proc", "Proc structures");
61 MALLOC_DEFINE(M_LWP
, "lwp", "lwp structures");
62 MALLOC_DEFINE(M_SUBPROC
, "subproc", "Proc sub-structures");
64 int ps_showallprocs
= 1;
65 static int ps_showallthreads
= 1;
66 SYSCTL_INT(_security
, OID_AUTO
, ps_showallprocs
, CTLFLAG_RW
,
68 "Unprivileged processes can see proccesses with different UID/GID");
69 SYSCTL_INT(_security
, OID_AUTO
, ps_showallthreads
, CTLFLAG_RW
,
70 &ps_showallthreads
, 0,
71 "Unprivileged processes can see kernel threads");
73 static void pgdelete(struct pgrp
*);
74 static void orphanpg(struct pgrp
*pg
);
75 static pid_t
proc_getnewpid_locked(int random_offset
);
80 struct pidhashhead
*pidhashtbl
;
82 struct pgrphashhead
*pgrphashtbl
;
84 struct proclist allproc
;
85 struct proclist zombproc
;
86 struct spinlock allproc_spin
;
89 * Random component to nextpid generation. We mix in a random factor to make
90 * it a little harder to predict. We sanity check the modulus value to avoid
91 * doing it in critical paths. Don't let it be too small or we pointlessly
92 * waste randomness entropy, and don't let it be impossibly large. Using a
93 * modulus that is too big causes a LOT more process table scans and slows
94 * down fork processing as the pidchecked caching is defeated.
96 static int randompid
= 0;
99 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS
)
104 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
105 if (error
|| !req
->newptr
)
107 if (pid
< 0 || pid
> PID_MAX
- 100) /* out of range */
109 else if (pid
< 2) /* NOP */
111 else if (pid
< 100) /* Make it reasonable */
117 SYSCTL_PROC(_kern
, OID_AUTO
, randompid
, CTLTYPE_INT
|CTLFLAG_RW
,
118 0, 0, sysctl_kern_randompid
, "I", "Random PID modulus");
121 * Initialize global process hashing structures.
127 LIST_INIT(&zombproc
);
128 spin_init(&allproc_spin
);
130 pidhashtbl
= hashinit(maxproc
/ 4, M_PROC
, &pidhash
);
131 pgrphashtbl
= hashinit(maxproc
/ 4, M_PROC
, &pgrphash
);
136 * Is p an inferior of the current process?
139 inferior(struct proc
*p
)
141 for (; p
!= curproc
; p
= p
->p_pptr
)
148 * Locate a process by number
155 LIST_FOREACH(p
, PIDHASH(pid
), p_hash
) {
163 * Locate a process group by number
170 LIST_FOREACH(pgrp
, PGRPHASH(pgid
), pg_hash
) {
171 if (pgrp
->pg_id
== pgid
)
178 * Move p to a new or existing process group (and session)
181 enterpgrp(struct proc
*p
, pid_t pgid
, int mksess
)
183 struct pgrp
*pgrp
= pgfind(pgid
);
185 KASSERT(pgrp
== NULL
|| !mksess
,
186 ("enterpgrp: setsid into non-empty pgrp"));
187 KASSERT(!SESS_LEADER(p
),
188 ("enterpgrp: session leader attempted setpgrp"));
191 pid_t savepid
= p
->p_pid
;
196 KASSERT(p
->p_pid
== pgid
,
197 ("enterpgrp: new pgrp and pid != pgid"));
198 if ((np
= pfind(savepid
)) == NULL
|| np
!= p
)
200 MALLOC(pgrp
, struct pgrp
*, sizeof(struct pgrp
), M_PGRP
,
203 struct session
*sess
;
208 MALLOC(sess
, struct session
*, sizeof(struct session
),
209 M_SESSION
, M_WAITOK
);
211 sess
->s_sid
= p
->p_pid
;
213 sess
->s_ttyvp
= NULL
;
215 bcopy(p
->p_session
->s_login
, sess
->s_login
,
216 sizeof(sess
->s_login
));
217 p
->p_flag
&= ~P_CONTROLT
;
218 pgrp
->pg_session
= sess
;
219 KASSERT(p
== curproc
,
220 ("enterpgrp: mksession and p != curproc"));
222 pgrp
->pg_session
= p
->p_session
;
223 sess_hold(pgrp
->pg_session
);
226 LIST_INIT(&pgrp
->pg_members
);
227 LIST_INSERT_HEAD(PGRPHASH(pgid
), pgrp
, pg_hash
);
229 SLIST_INIT(&pgrp
->pg_sigiolst
);
230 lockinit(&pgrp
->pg_lock
, "pgwt", 0, 0);
231 } else if (pgrp
== p
->p_pgrp
)
235 * Adjust eligibility of affected pgrps to participate in job control.
236 * Increment eligibility counts before decrementing, otherwise we
237 * could reach 0 spuriously during the first call.
240 fixjobc(p
, p
->p_pgrp
, 0);
242 LIST_REMOVE(p
, p_pglist
);
243 if (LIST_EMPTY(&p
->p_pgrp
->pg_members
))
246 LIST_INSERT_HEAD(&pgrp
->pg_members
, p
, p_pglist
);
251 * remove process from process group
254 leavepgrp(struct proc
*p
)
257 LIST_REMOVE(p
, p_pglist
);
258 if (LIST_EMPTY(&p
->p_pgrp
->pg_members
))
265 * delete a process group
268 pgdelete(struct pgrp
*pgrp
)
272 * Reset any sigio structures pointing to us as a result of
273 * F_SETOWN with our pgid.
275 funsetownlst(&pgrp
->pg_sigiolst
);
277 if (pgrp
->pg_session
->s_ttyp
!= NULL
&&
278 pgrp
->pg_session
->s_ttyp
->t_pgrp
== pgrp
)
279 pgrp
->pg_session
->s_ttyp
->t_pgrp
= NULL
;
280 LIST_REMOVE(pgrp
, pg_hash
);
281 sess_rele(pgrp
->pg_session
);
286 * Adjust the ref count on a session structure. When the ref count falls to
287 * zero the tty is disassociated from the session and the session structure
288 * is freed. Note that tty assocation is not itself ref-counted.
291 sess_hold(struct session
*sp
)
297 sess_rele(struct session
*sp
)
299 KKASSERT(sp
->s_count
> 0);
300 if (--sp
->s_count
== 0) {
301 if (sp
->s_ttyp
&& sp
->s_ttyp
->t_session
) {
302 #ifdef TTY_DO_FULL_CLOSE
303 /* FULL CLOSE, see ttyclearsession() */
304 KKASSERT(sp
->s_ttyp
->t_session
== sp
);
305 sp
->s_ttyp
->t_session
= NULL
;
307 /* HALF CLOSE, see ttyclearsession() */
308 if (sp
->s_ttyp
->t_session
== sp
)
309 sp
->s_ttyp
->t_session
= NULL
;
312 kfree(sp
, M_SESSION
);
317 * Adjust pgrp jobc counters when specified process changes process group.
318 * We count the number of processes in each process group that "qualify"
319 * the group for terminal job control (those with a parent in a different
320 * process group of the same session). If that count reaches zero, the
321 * process group becomes orphaned. Check both the specified process'
322 * process group and that of its children.
323 * entering == 0 => p is leaving specified group.
324 * entering == 1 => p is entering specified group.
327 fixjobc(struct proc
*p
, struct pgrp
*pgrp
, int entering
)
329 struct pgrp
*hispgrp
;
330 struct session
*mysession
= pgrp
->pg_session
;
333 * Check p's parent to see whether p qualifies its own process
334 * group; if so, adjust count for p's process group.
336 if ((hispgrp
= p
->p_pptr
->p_pgrp
) != pgrp
&&
337 hispgrp
->pg_session
== mysession
) {
340 else if (--pgrp
->pg_jobc
== 0)
345 * Check this process' children to see whether they qualify
346 * their process groups; if so, adjust counts for children's
349 LIST_FOREACH(p
, &p
->p_children
, p_sibling
)
350 if ((hispgrp
= p
->p_pgrp
) != pgrp
&&
351 hispgrp
->pg_session
== mysession
&&
352 p
->p_stat
!= SZOMB
) {
355 else if (--hispgrp
->pg_jobc
== 0)
361 * A process group has become orphaned;
362 * if there are any stopped processes in the group,
363 * hang-up all process in that group.
366 orphanpg(struct pgrp
*pg
)
370 LIST_FOREACH(p
, &pg
->pg_members
, p_pglist
) {
371 if (p
->p_stat
== SSTOP
) {
372 LIST_FOREACH(p
, &pg
->pg_members
, p_pglist
) {
382 * Add a new process to the allproc list and the PID hash. This
383 * also assigns a pid to the new process.
385 * MPALMOSTSAFE - acquires mplock for karc4random() call
388 proc_add_allproc(struct proc
*p
)
392 if ((random_offset
= randompid
) != 0) {
394 random_offset
= karc4random() % random_offset
;
398 spin_lock_wr(&allproc_spin
);
399 p
->p_pid
= proc_getnewpid_locked(random_offset
);
400 LIST_INSERT_HEAD(&allproc
, p
, p_list
);
401 LIST_INSERT_HEAD(PIDHASH(p
->p_pid
), p
, p_hash
);
402 spin_unlock_wr(&allproc_spin
);
406 * Calculate a new process pid. This function is integrated into
407 * proc_add_allproc() to guarentee that the new pid is not reused before
408 * the new process can be added to the allproc list.
410 * MPSAFE - must be called with allproc_spin held.
414 proc_getnewpid_locked(int random_offset
)
416 static pid_t nextpid
;
417 static pid_t pidchecked
;
421 * Find an unused process ID. We remember a range of unused IDs
422 * ready to use (from nextpid+1 through pidchecked-1).
424 nextpid
= nextpid
+ 1 + random_offset
;
427 * If the process ID prototype has wrapped around,
428 * restart somewhat above 0, as the low-numbered procs
429 * tend to include daemons that don't exit.
431 if (nextpid
>= PID_MAX
) {
432 nextpid
= nextpid
% PID_MAX
;
437 if (nextpid
>= pidchecked
) {
440 pidchecked
= PID_MAX
;
442 * Scan the active and zombie procs to check whether this pid
443 * is in use. Remember the lowest pid that's greater
444 * than nextpid, so we can avoid checking for a while.
446 p
= LIST_FIRST(&allproc
);
448 for (; p
!= 0; p
= LIST_NEXT(p
, p_list
)) {
449 while (p
->p_pid
== nextpid
||
450 p
->p_pgrp
->pg_id
== nextpid
||
451 p
->p_session
->s_sid
== nextpid
) {
453 if (nextpid
>= pidchecked
)
456 if (p
->p_pid
> nextpid
&& pidchecked
> p
->p_pid
)
457 pidchecked
= p
->p_pid
;
458 if (p
->p_pgrp
->pg_id
> nextpid
&&
459 pidchecked
> p
->p_pgrp
->pg_id
)
460 pidchecked
= p
->p_pgrp
->pg_id
;
461 if (p
->p_session
->s_sid
> nextpid
&&
462 pidchecked
> p
->p_session
->s_sid
)
463 pidchecked
= p
->p_session
->s_sid
;
467 p
= LIST_FIRST(&zombproc
);
475 * Called from exit1 to remove a process from the allproc
476 * list and move it to the zombie list.
481 proc_move_allproc_zombie(struct proc
*p
)
483 spin_lock_wr(&allproc_spin
);
485 spin_unlock_wr(&allproc_spin
);
486 tsleep(p
, 0, "reap1", hz
/ 10);
487 spin_lock_wr(&allproc_spin
);
489 LIST_REMOVE(p
, p_list
);
490 LIST_INSERT_HEAD(&zombproc
, p
, p_list
);
491 LIST_REMOVE(p
, p_hash
);
493 spin_unlock_wr(&allproc_spin
);
497 * This routine is called from kern_wait() and will remove the process
498 * from the zombie list and the sibling list. This routine will block
499 * if someone has a lock on the proces (p_lock).
504 proc_remove_zombie(struct proc
*p
)
506 spin_lock_wr(&allproc_spin
);
508 spin_unlock_wr(&allproc_spin
);
509 tsleep(p
, 0, "reap1", hz
/ 10);
510 spin_lock_wr(&allproc_spin
);
512 LIST_REMOVE(p
, p_list
); /* off zombproc */
513 LIST_REMOVE(p
, p_sibling
);
514 spin_unlock_wr(&allproc_spin
);
518 * Scan all processes on the allproc list. The process is automatically
519 * held for the callback. A return value of -1 terminates the loop.
524 allproc_scan(int (*callback
)(struct proc
*, void *), void *data
)
529 spin_lock_rd(&allproc_spin
);
530 LIST_FOREACH(p
, &allproc
, p_list
) {
532 spin_unlock_rd(&allproc_spin
);
533 r
= callback(p
, data
);
534 spin_lock_rd(&allproc_spin
);
539 spin_unlock_rd(&allproc_spin
);
543 * Scan all lwps of processes on the allproc list. The lwp is automatically
544 * held for the callback. A return value of -1 terminates the loop.
546 * possibly not MPSAFE, needs to access foreingn proc structures
549 alllwp_scan(int (*callback
)(struct lwp
*, void *), void *data
)
555 spin_lock_rd(&allproc_spin
);
556 LIST_FOREACH(p
, &allproc
, p_list
) {
558 spin_unlock_rd(&allproc_spin
);
559 FOREACH_LWP_IN_PROC(lp
, p
) {
561 r
= callback(lp
, data
);
564 spin_lock_rd(&allproc_spin
);
569 spin_unlock_rd(&allproc_spin
);
573 * Scan all processes on the zombproc list. The process is automatically
574 * held for the callback. A return value of -1 terminates the loop.
579 zombproc_scan(int (*callback
)(struct proc
*, void *), void *data
)
584 spin_lock_rd(&allproc_spin
);
585 LIST_FOREACH(p
, &zombproc
, p_list
) {
587 spin_unlock_rd(&allproc_spin
);
588 r
= callback(p
, data
);
589 spin_lock_rd(&allproc_spin
);
594 spin_unlock_rd(&allproc_spin
);
601 DB_SHOW_COMMAND(pgrpdump
, pgrpdump
)
607 for (i
= 0; i
<= pgrphash
; i
++) {
608 if (!LIST_EMPTY(&pgrphashtbl
[i
])) {
609 kprintf("\tindx %d\n", i
);
610 LIST_FOREACH(pgrp
, &pgrphashtbl
[i
], pg_hash
) {
612 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
613 (void *)pgrp
, (long)pgrp
->pg_id
,
614 (void *)pgrp
->pg_session
,
615 pgrp
->pg_session
->s_count
,
616 (void *)LIST_FIRST(&pgrp
->pg_members
));
617 LIST_FOREACH(p
, &pgrp
->pg_members
, p_pglist
) {
618 kprintf("\t\tpid %ld addr %p pgrp %p\n",
619 (long)p
->p_pid
, (void *)p
,
629 * Locate a process on the zombie list. Return a held process or NULL.
636 LIST_FOREACH(p
, &zombproc
, p_list
)
643 sysctl_out_proc(struct proc
*p
, struct sysctl_req
*req
, int flags
)
645 struct kinfo_proc ki
;
647 int skp
= 0, had_output
= 0;
650 bzero(&ki
, sizeof(ki
));
651 fill_kinfo_proc(p
, &ki
);
652 if ((flags
& KERN_PROC_FLAG_LWP
) == 0)
655 FOREACH_LWP_IN_PROC(lp
, p
) {
657 fill_kinfo_lwp(lp
, &ki
.kp_lwp
);
659 error
= SYSCTL_OUT(req
, &ki
, sizeof(ki
));
666 /* We need to output at least the proc, even if there is no lwp. */
667 if (had_output
== 0) {
668 error
= SYSCTL_OUT(req
, &ki
, sizeof(ki
));
674 sysctl_out_proc_kthread(struct thread
*td
, struct sysctl_req
*req
, int flags
)
676 struct kinfo_proc ki
;
679 fill_kinfo_proc_kthread(td
, &ki
);
680 error
= SYSCTL_OUT(req
, &ki
, sizeof(ki
));
687 sysctl_kern_proc(SYSCTL_HANDLER_ARGS
)
689 int *name
= (int*) arg1
;
690 int oid
= oidp
->oid_number
;
691 u_int namelen
= arg2
;
693 struct proclist
*plist
;
695 int doingzomb
, flags
= 0;
699 struct ucred
*cr1
= curproc
->p_ucred
;
701 flags
= oid
& KERN_PROC_FLAGMASK
;
702 oid
&= ~KERN_PROC_FLAGMASK
;
704 if ((oid
== KERN_PROC_ALL
&& namelen
!= 0) ||
705 (oid
!= KERN_PROC_ALL
&& namelen
!= 1))
708 if (oid
== KERN_PROC_PID
) {
709 p
= pfind((pid_t
)name
[0]);
712 if (!PRISON_CHECK(cr1
, p
->p_ucred
))
715 error
= sysctl_out_proc(p
, req
, flags
);
721 /* overestimate by 5 procs */
722 error
= SYSCTL_OUT(req
, 0, sizeof (struct kinfo_proc
) * 5);
726 for (doingzomb
= 0; doingzomb
<= 1; doingzomb
++) {
731 LIST_FOREACH_MUTABLE(p
, plist
, p_list
, np
) {
733 * Show a user only their processes.
735 if ((!ps_showallprocs
) && p_trespass(cr1
, p
->p_ucred
))
738 * Skip embryonic processes.
740 if (p
->p_stat
== SIDL
)
743 * TODO - make more efficient (see notes below).
748 /* could do this by traversing pgrp */
749 if (p
->p_pgrp
== NULL
||
750 p
->p_pgrp
->pg_id
!= (pid_t
)name
[0])
755 if ((p
->p_flag
& P_CONTROLT
) == 0 ||
756 p
->p_session
== NULL
||
757 p
->p_session
->s_ttyp
== NULL
||
758 dev2udev(p
->p_session
->s_ttyp
->t_dev
) !=
764 if (p
->p_ucred
== NULL
||
765 p
->p_ucred
->cr_uid
!= (uid_t
)name
[0])
770 if (p
->p_ucred
== NULL
||
771 p
->p_ucred
->cr_ruid
!= (uid_t
)name
[0])
776 if (!PRISON_CHECK(cr1
, p
->p_ucred
))
779 error
= sysctl_out_proc(p
, req
, flags
);
787 * Iterate over all active cpus and scan their thread list. Start
788 * with the next logical cpu and end with our original cpu. We
789 * migrate our own thread to each target cpu in order to safely scan
790 * its thread list. In the last loop we migrate back to our original
793 origcpu
= mycpu
->gd_cpuid
;
794 if (!ps_showallthreads
|| jailed(cr1
))
796 for (n
= 1; n
<= ncpus
; ++n
) {
800 nid
= (origcpu
+ n
) % ncpus
;
801 if ((smp_active_mask
& (1 << nid
)) == 0)
803 rgd
= globaldata_find(nid
);
804 lwkt_setcpu_self(rgd
);
806 TAILQ_FOREACH(td
, &mycpu
->gd_tdallq
, td_allq
) {
819 error
= sysctl_out_proc_kthread(td
, req
, doingzomb
);
830 * This sysctl allows a process to retrieve the argument list or process
831 * title for another process without groping around in the address space
832 * of the other process. It also allow a process to set its own "process
833 * title to a string of its own choice.
836 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS
)
838 int *name
= (int*) arg1
;
839 u_int namelen
= arg2
;
843 struct ucred
*cr1
= curproc
->p_ucred
;
848 p
= pfind((pid_t
)name
[0]);
852 if ((!ps_argsopen
) && p_trespass(cr1
, p
->p_ucred
))
855 if (req
->newptr
&& curproc
!= p
)
858 if (req
->oldptr
&& p
->p_args
!= NULL
)
859 error
= SYSCTL_OUT(req
, p
->p_args
->ar_args
, p
->p_args
->ar_length
);
860 if (req
->newptr
== NULL
)
863 if (p
->p_args
&& --p
->p_args
->ar_ref
== 0)
864 FREE(p
->p_args
, M_PARGS
);
867 if (req
->newlen
+ sizeof(struct pargs
) > ps_arg_cache_limit
)
870 MALLOC(pa
, struct pargs
*, sizeof(struct pargs
) + req
->newlen
,
873 pa
->ar_length
= req
->newlen
;
874 error
= SYSCTL_IN(req
, pa
->ar_args
, req
->newlen
);
882 SYSCTL_NODE(_kern
, KERN_PROC
, proc
, CTLFLAG_RD
, 0, "Process table");
884 SYSCTL_PROC(_kern_proc
, KERN_PROC_ALL
, all
, CTLFLAG_RD
|CTLTYPE_STRUCT
,
885 0, 0, sysctl_kern_proc
, "S,proc", "Return entire process table");
887 SYSCTL_NODE(_kern_proc
, KERN_PROC_PGRP
, pgrp
, CTLFLAG_RD
,
888 sysctl_kern_proc
, "Process table");
890 SYSCTL_NODE(_kern_proc
, KERN_PROC_TTY
, tty
, CTLFLAG_RD
,
891 sysctl_kern_proc
, "Process table");
893 SYSCTL_NODE(_kern_proc
, KERN_PROC_UID
, uid
, CTLFLAG_RD
,
894 sysctl_kern_proc
, "Process table");
896 SYSCTL_NODE(_kern_proc
, KERN_PROC_RUID
, ruid
, CTLFLAG_RD
,
897 sysctl_kern_proc
, "Process table");
899 SYSCTL_NODE(_kern_proc
, KERN_PROC_PID
, pid
, CTLFLAG_RD
,
900 sysctl_kern_proc
, "Process table");
902 SYSCTL_NODE(_kern_proc
, (KERN_PROC_ALL
| KERN_PROC_FLAG_LWP
), all_lwp
, CTLFLAG_RD
,
903 sysctl_kern_proc
, "Process table");
905 SYSCTL_NODE(_kern_proc
, (KERN_PROC_PGRP
| KERN_PROC_FLAG_LWP
), pgrp_lwp
, CTLFLAG_RD
,
906 sysctl_kern_proc
, "Process table");
908 SYSCTL_NODE(_kern_proc
, (KERN_PROC_TTY
| KERN_PROC_FLAG_LWP
), tty_lwp
, CTLFLAG_RD
,
909 sysctl_kern_proc
, "Process table");
911 SYSCTL_NODE(_kern_proc
, (KERN_PROC_UID
| KERN_PROC_FLAG_LWP
), uid_lwp
, CTLFLAG_RD
,
912 sysctl_kern_proc
, "Process table");
914 SYSCTL_NODE(_kern_proc
, (KERN_PROC_RUID
| KERN_PROC_FLAG_LWP
), ruid_lwp
, CTLFLAG_RD
,
915 sysctl_kern_proc
, "Process table");
917 SYSCTL_NODE(_kern_proc
, (KERN_PROC_PID
| KERN_PROC_FLAG_LWP
), pid_lwp
, CTLFLAG_RD
,
918 sysctl_kern_proc
, "Process table");
920 SYSCTL_NODE(_kern_proc
, KERN_PROC_ARGS
, args
, CTLFLAG_RW
| CTLFLAG_ANYBODY
,
921 sysctl_kern_proc_args
, "Process argument list");