kernel - Add a sampling history mechanism called kcollect (2)
[dragonfly.git] / sys / vm / swap_pager.c
blobc52ec2f217ba8d801390cece992362ec44352696
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * Copyright (c) 1994 John S. Dyson
37 * Copyright (c) 1990 University of Utah.
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
41 * This code is derived from software contributed to Berkeley by
42 * the Systems Programming Group of the University of Utah Computer
43 * Science Department.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * New Swap System
70 * Matthew Dillon
72 * Radix Bitmap 'blists'.
74 * - The new swapper uses the new radix bitmap code. This should scale
75 * to arbitrarily small or arbitrarily large swap spaces and an almost
76 * arbitrary degree of fragmentation.
78 * Features:
80 * - on the fly reallocation of swap during putpages. The new system
81 * does not try to keep previously allocated swap blocks for dirty
82 * pages.
84 * - on the fly deallocation of swap
86 * - No more garbage collection required. Unnecessarily allocated swap
87 * blocks only exist for dirty vm_page_t's now and these are already
88 * cycled (in a high-load system) by the pager. We also do on-the-fly
89 * removal of invalidated swap blocks when a page is destroyed
90 * or renamed.
92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/kcollect.h>
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
123 #include <sys/thread2.h>
124 #include <sys/buf2.h>
125 #include <vm/vm_page2.h>
127 #ifndef MAX_PAGEOUT_CLUSTER
128 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES
129 #endif
131 #define SWM_FREE 0x02 /* free, period */
132 #define SWM_POP 0x04 /* pop out */
134 #define SWBIO_READ 0x01
135 #define SWBIO_WRITE 0x02
136 #define SWBIO_SYNC 0x04
137 #define SWBIO_TTC 0x08 /* for VM_PAGER_TRY_TO_CACHE */
139 struct swfreeinfo {
140 vm_object_t object;
141 vm_pindex_t basei;
142 vm_pindex_t begi;
143 vm_pindex_t endi; /* inclusive */
146 struct swswapoffinfo {
147 vm_object_t object;
148 int devidx;
149 int shared;
153 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
154 * in the old system.
157 int swap_pager_full; /* swap space exhaustion (task killing) */
158 int swap_fail_ticks; /* when we became exhausted */
159 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
160 swblk_t vm_swap_cache_use;
161 swblk_t vm_swap_anon_use;
162 static int vm_report_swap_allocs;
164 static int nsw_rcount; /* free read buffers */
165 static int nsw_wcount_sync; /* limit write buffers / synchronous */
166 static int nsw_wcount_async; /* limit write buffers / asynchronous */
167 static int nsw_wcount_async_max;/* assigned maximum */
168 static int nsw_cluster_max; /* maximum VOP I/O allowed */
170 struct blist *swapblist;
171 static int swap_async_max = 4; /* maximum in-progress async I/O's */
172 static int swap_burst_read = 0; /* allow burst reading */
173 static swblk_t swapiterator; /* linearize allocations */
174 int swap_user_async = 0; /* user swap pager operation can be async */
176 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
178 /* from vm_swap.c */
179 extern struct vnode *swapdev_vp;
180 extern struct swdevt *swdevt;
181 extern int nswdev;
183 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
185 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
186 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
187 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
188 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
189 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
190 CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
192 #if SWBLK_BITS == 64
193 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
194 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
195 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
196 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
197 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
198 CTLFLAG_RD, &vm_swap_size, 0, "");
199 #else
200 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
201 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
202 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
203 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
204 SYSCTL_INT(_vm, OID_AUTO, swap_size,
205 CTLFLAG_RD, &vm_swap_size, 0, "");
206 #endif
207 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
208 CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
210 vm_zone_t swap_zone;
213 * Red-Black tree for swblock entries
215 * The caller must hold vm_token
217 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
218 vm_pindex_t, swb_index);
221 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
223 if (swb1->swb_index < swb2->swb_index)
224 return(-1);
225 if (swb1->swb_index > swb2->swb_index)
226 return(1);
227 return(0);
230 static
232 rb_swblock_scancmp(struct swblock *swb, void *data)
234 struct swfreeinfo *info = data;
236 if (swb->swb_index < info->basei)
237 return(-1);
238 if (swb->swb_index > info->endi)
239 return(1);
240 return(0);
243 static
245 rb_swblock_condcmp(struct swblock *swb, void *data)
247 struct swfreeinfo *info = data;
249 if (swb->swb_index < info->basei)
250 return(-1);
251 return(0);
255 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
256 * calls hooked from other parts of the VM system and do not appear here.
257 * (see vm/swap_pager.h).
260 static void swap_pager_dealloc (vm_object_t object);
261 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
262 static void swap_chain_iodone(struct bio *biox);
264 struct pagerops swappagerops = {
265 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
266 swap_pager_getpage, /* pagein */
267 swap_pager_putpages, /* pageout */
268 swap_pager_haspage /* get backing store status for page */
272 * SWB_DMMAX is in page-sized chunks with the new swap system. It was
273 * dev-bsized chunks in the old. SWB_DMMAX is always a power of 2.
275 * swap_*() routines are externally accessible. swp_*() routines are
276 * internal.
279 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
280 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
282 static __inline void swp_sizecheck (void);
283 static void swp_pager_async_iodone (struct bio *bio);
286 * Swap bitmap functions
289 static __inline void swp_pager_freeswapspace(vm_object_t object,
290 swblk_t blk, int npages);
291 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
294 * Metadata functions
297 static void swp_pager_meta_convert(vm_object_t);
298 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
299 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
300 static void swp_pager_meta_free_all(vm_object_t);
301 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
304 * SWP_SIZECHECK() - update swap_pager_full indication
306 * update the swap_pager_almost_full indication and warn when we are
307 * about to run out of swap space, using lowat/hiwat hysteresis.
309 * Clear swap_pager_full ( task killing ) indication when lowat is met.
311 * No restrictions on call
312 * This routine may not block.
313 * SMP races are ok.
315 static __inline void
316 swp_sizecheck(void)
318 if (vm_swap_size < nswap_lowat) {
319 if (swap_pager_almost_full == 0) {
320 kprintf("swap_pager: out of swap space\n");
321 swap_pager_almost_full = 1;
322 swap_fail_ticks = ticks;
324 } else {
325 swap_pager_full = 0;
326 if (vm_swap_size > nswap_hiwat)
327 swap_pager_almost_full = 0;
332 * Long-term data collection on 10-second interval. Return the value
333 * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
335 * Return total swap in the scale field. This can change if swap is
336 * regularly added or removed and may cause some historical confusion
337 * in that case, but SWAPPCT will always be historically accurate.
339 static uint64_t
340 collect_swap_callback(int n)
342 uint64_t total = vm_swap_size;
343 uint64_t anon = vm_swap_anon_use;
344 uint64_t cache = vm_swap_cache_use;
346 if (total == 0) /* avoid divide by zero */
347 total = 1;
348 kcollect_setvalue(KCOLLECT_SWAPANO, anon * PAGE_SIZE);
349 kcollect_setvalue(KCOLLECT_SWAPCAC, cache * PAGE_SIZE);
350 kcollect_setscale(KCOLLECT_SWAPANO, total);
351 kcollect_setscale(KCOLLECT_SWAPCAC, total);
352 return (((anon + cache) * 10000 + (total >> 1)) / total);
356 * SWAP_PAGER_INIT() - initialize the swap pager!
358 * Expected to be started from system init. NOTE: This code is run
359 * before much else so be careful what you depend on. Most of the VM
360 * system has yet to be initialized at this point.
362 * Called from the low level boot code only.
364 static void
365 swap_pager_init(void *arg __unused)
367 kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
368 KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
369 kcollect_register(KCOLLECT_SWAPANO, "swapmem", NULL,
370 KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
371 kcollect_register(KCOLLECT_SWAPCAC, "swapcsh", NULL,
372 KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
374 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
377 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
379 * Expected to be started from pageout process once, prior to entering
380 * its main loop.
382 * Called from the low level boot code only.
384 void
385 swap_pager_swap_init(void)
387 int n, n2;
390 * Number of in-transit swap bp operations. Don't
391 * exhaust the pbufs completely. Make sure we
392 * initialize workable values (0 will work for hysteresis
393 * but it isn't very efficient).
395 * The nsw_cluster_max is constrained by the number of pages an XIO
396 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
397 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
398 * constrained by the swap device interleave stripe size.
400 * Currently we hardwire nsw_wcount_async to 4. This limit is
401 * designed to prevent other I/O from having high latencies due to
402 * our pageout I/O. The value 4 works well for one or two active swap
403 * devices but is probably a little low if you have more. Even so,
404 * a higher value would probably generate only a limited improvement
405 * with three or four active swap devices since the system does not
406 * typically have to pageout at extreme bandwidths. We will want
407 * at least 2 per swap devices, and 4 is a pretty good value if you
408 * have one NFS swap device due to the command/ack latency over NFS.
409 * So it all works out pretty well.
412 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
414 nsw_rcount = (nswbuf_kva + 1) / 2;
415 nsw_wcount_sync = (nswbuf_kva + 3) / 4;
416 nsw_wcount_async = 4;
417 nsw_wcount_async_max = nsw_wcount_async;
420 * The zone is dynamically allocated so generally size it to
421 * maxswzone (32MB to 256GB of KVM). Set a minimum size based
422 * on physical memory of around 8x (each swblock can hold 16 pages).
424 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
425 * has increased dramatically.
427 n = vmstats.v_page_count / 2;
428 if (maxswzone && n < maxswzone / sizeof(struct swblock))
429 n = maxswzone / sizeof(struct swblock);
430 n2 = n;
432 do {
433 swap_zone = zinit(
434 "SWAPMETA",
435 sizeof(struct swblock),
437 ZONE_INTERRUPT);
438 if (swap_zone != NULL)
439 break;
441 * if the allocation failed, try a zone two thirds the
442 * size of the previous attempt.
444 n -= ((n + 2) / 3);
445 } while (n > 0);
447 if (swap_zone == NULL)
448 panic("swap_pager_swap_init: swap_zone == NULL");
449 if (n2 != n)
450 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
454 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
455 * its metadata structures.
457 * This routine is called from the mmap and fork code to create a new
458 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
459 * and then converting it with swp_pager_meta_convert().
461 * We only support unnamed objects.
463 * No restrictions.
465 vm_object_t
466 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
468 vm_object_t object;
470 KKASSERT(handle == NULL);
471 object = vm_object_allocate_hold(OBJT_DEFAULT,
472 OFF_TO_IDX(offset + PAGE_MASK + size));
473 swp_pager_meta_convert(object);
474 vm_object_drop(object);
476 return (object);
480 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
482 * The swap backing for the object is destroyed. The code is
483 * designed such that we can reinstantiate it later, but this
484 * routine is typically called only when the entire object is
485 * about to be destroyed.
487 * The object must be locked or unreferenceable.
488 * No other requirements.
490 static void
491 swap_pager_dealloc(vm_object_t object)
493 vm_object_hold(object);
494 vm_object_pip_wait(object, "swpdea");
497 * Free all remaining metadata. We only bother to free it from
498 * the swap meta data. We do not attempt to free swapblk's still
499 * associated with vm_page_t's for this object. We do not care
500 * if paging is still in progress on some objects.
502 swp_pager_meta_free_all(object);
503 vm_object_drop(object);
506 /************************************************************************
507 * SWAP PAGER BITMAP ROUTINES *
508 ************************************************************************/
511 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
513 * Allocate swap for the requested number of pages. The starting
514 * swap block number (a page index) is returned or SWAPBLK_NONE
515 * if the allocation failed.
517 * Also has the side effect of advising that somebody made a mistake
518 * when they configured swap and didn't configure enough.
520 * The caller must hold the object.
521 * This routine may not block.
523 static __inline swblk_t
524 swp_pager_getswapspace(vm_object_t object, int npages)
526 swblk_t blk;
528 lwkt_gettoken(&vm_token);
529 blk = blist_allocat(swapblist, npages, swapiterator);
530 if (blk == SWAPBLK_NONE)
531 blk = blist_allocat(swapblist, npages, 0);
532 if (blk == SWAPBLK_NONE) {
533 if (swap_pager_full != 2) {
534 if (vm_swap_max == 0)
535 kprintf("Warning: The system would like to "
536 "page to swap but no swap space "
537 "is configured!\n");
538 else
539 kprintf("swap_pager_getswapspace: "
540 "swap full allocating %d pages\n",
541 npages);
542 swap_pager_full = 2;
543 if (swap_pager_almost_full == 0)
544 swap_fail_ticks = ticks;
545 swap_pager_almost_full = 1;
547 } else {
548 /* swapiterator = blk; disable for now, doesn't work well */
549 swapacctspace(blk, -npages);
550 if (object->type == OBJT_SWAP)
551 vm_swap_anon_use += npages;
552 else
553 vm_swap_cache_use += npages;
554 swp_sizecheck();
556 lwkt_reltoken(&vm_token);
557 return(blk);
561 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
563 * This routine returns the specified swap blocks back to the bitmap.
565 * Note: This routine may not block (it could in the old swap code),
566 * and through the use of the new blist routines it does not block.
568 * This routine may not block.
571 static __inline void
572 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
574 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
576 lwkt_gettoken(&vm_token);
577 sp->sw_nused -= npages;
578 if (object->type == OBJT_SWAP)
579 vm_swap_anon_use -= npages;
580 else
581 vm_swap_cache_use -= npages;
583 if (sp->sw_flags & SW_CLOSING) {
584 lwkt_reltoken(&vm_token);
585 return;
588 blist_free(swapblist, blk, npages);
589 vm_swap_size += npages;
590 swp_sizecheck();
591 lwkt_reltoken(&vm_token);
595 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
596 * range within an object.
598 * This is a globally accessible routine.
600 * This routine removes swapblk assignments from swap metadata.
602 * The external callers of this routine typically have already destroyed
603 * or renamed vm_page_t's associated with this range in the object so
604 * we should be ok.
606 * No requirements.
608 void
609 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
611 vm_object_hold(object);
612 swp_pager_meta_free(object, start, size);
613 vm_object_drop(object);
617 * No requirements.
619 void
620 swap_pager_freespace_all(vm_object_t object)
622 vm_object_hold(object);
623 swp_pager_meta_free_all(object);
624 vm_object_drop(object);
628 * This function conditionally frees swap cache swap starting at
629 * (*basei) in the object. (count) swap blocks will be nominally freed.
630 * The actual number of blocks freed can be more or less than the
631 * requested number.
633 * This function nominally returns the number of blocks freed. However,
634 * the actual number of blocks freed may be less then the returned value.
635 * If the function is unable to exhaust the object or if it is able to
636 * free (approximately) the requested number of blocks it returns
637 * a value n > count.
639 * If we exhaust the object we will return a value n <= count.
641 * The caller must hold the object.
643 * WARNING! If count == 0 then -1 can be returned as a degenerate case,
644 * callers should always pass a count value > 0.
646 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
649 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
651 struct swfreeinfo info;
652 int n;
653 int t;
655 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
657 info.object = object;
658 info.basei = *basei; /* skip up to this page index */
659 info.begi = count; /* max swap pages to destroy */
660 info.endi = count * 8; /* max swblocks to scan */
662 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
663 swap_pager_condfree_callback, &info);
664 *basei = info.basei;
667 * Take the higher difference swblocks vs pages
669 n = count - (int)info.begi;
670 t = count * 8 - (int)info.endi;
671 if (n < t)
672 n = t;
673 if (n < 1)
674 n = 1;
675 return(n);
679 * The idea is to free whole meta-block to avoid fragmenting
680 * the swap space or disk I/O. We only do this if NO VM pages
681 * are present.
683 * We do not have to deal with clearing PG_SWAPPED in related VM
684 * pages because there are no related VM pages.
686 * The caller must hold the object.
688 static int
689 swap_pager_condfree_callback(struct swblock *swap, void *data)
691 struct swfreeinfo *info = data;
692 vm_object_t object = info->object;
693 int i;
695 for (i = 0; i < SWAP_META_PAGES; ++i) {
696 if (vm_page_lookup(object, swap->swb_index + i))
697 break;
699 info->basei = swap->swb_index + SWAP_META_PAGES;
700 if (i == SWAP_META_PAGES) {
701 info->begi -= swap->swb_count;
702 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
704 --info->endi;
705 if ((int)info->begi < 0 || (int)info->endi < 0)
706 return(-1);
707 lwkt_yield();
708 return(0);
712 * Called by vm_page_alloc() when a new VM page is inserted
713 * into a VM object. Checks whether swap has been assigned to
714 * the page and sets PG_SWAPPED as necessary.
716 * (m) must be busied by caller and remains busied on return.
718 void
719 swap_pager_page_inserted(vm_page_t m)
721 if (m->object->swblock_count) {
722 vm_object_hold(m->object);
723 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
724 vm_page_flag_set(m, PG_SWAPPED);
725 vm_object_drop(m->object);
730 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
732 * Assigns swap blocks to the specified range within the object. The
733 * swap blocks are not zerod. Any previous swap assignment is destroyed.
735 * Returns 0 on success, -1 on failure.
737 * The caller is responsible for avoiding races in the specified range.
738 * No other requirements.
741 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
743 int n = 0;
744 swblk_t blk = SWAPBLK_NONE;
745 vm_pindex_t beg = start; /* save start index */
747 vm_object_hold(object);
749 while (size) {
750 if (n == 0) {
751 n = BLIST_MAX_ALLOC;
752 while ((blk = swp_pager_getswapspace(object, n)) ==
753 SWAPBLK_NONE)
755 n >>= 1;
756 if (n == 0) {
757 swp_pager_meta_free(object, beg,
758 start - beg);
759 vm_object_drop(object);
760 return(-1);
764 swp_pager_meta_build(object, start, blk);
765 --size;
766 ++start;
767 ++blk;
768 --n;
770 swp_pager_meta_free(object, start, n);
771 vm_object_drop(object);
772 return(0);
776 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
777 * and destroy the source.
779 * Copy any valid swapblks from the source to the destination. In
780 * cases where both the source and destination have a valid swapblk,
781 * we keep the destination's.
783 * This routine is allowed to block. It may block allocating metadata
784 * indirectly through swp_pager_meta_build() or if paging is still in
785 * progress on the source.
787 * XXX vm_page_collapse() kinda expects us not to block because we
788 * supposedly do not need to allocate memory, but for the moment we
789 * *may* have to get a little memory from the zone allocator, but
790 * it is taken from the interrupt memory. We should be ok.
792 * The source object contains no vm_page_t's (which is just as well)
793 * The source object is of type OBJT_SWAP.
795 * The source and destination objects must be held by the caller.
797 void
798 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
799 vm_pindex_t base_index, int destroysource)
801 vm_pindex_t i;
803 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
804 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
807 * transfer source to destination.
809 for (i = 0; i < dstobject->size; ++i) {
810 swblk_t dstaddr;
813 * Locate (without changing) the swapblk on the destination,
814 * unless it is invalid in which case free it silently, or
815 * if the destination is a resident page, in which case the
816 * source is thrown away.
818 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
820 if (dstaddr == SWAPBLK_NONE) {
822 * Destination has no swapblk and is not resident,
823 * copy source.
825 swblk_t srcaddr;
827 srcaddr = swp_pager_meta_ctl(srcobject,
828 base_index + i, SWM_POP);
830 if (srcaddr != SWAPBLK_NONE)
831 swp_pager_meta_build(dstobject, i, srcaddr);
832 } else {
834 * Destination has valid swapblk or it is represented
835 * by a resident page. We destroy the sourceblock.
837 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
842 * Free left over swap blocks in source.
844 * We have to revert the type to OBJT_DEFAULT so we do not accidently
845 * double-remove the object from the swap queues.
847 if (destroysource) {
849 * Reverting the type is not necessary, the caller is going
850 * to destroy srcobject directly, but I'm doing it here
851 * for consistency since we've removed the object from its
852 * queues.
854 swp_pager_meta_free_all(srcobject);
855 if (srcobject->type == OBJT_SWAP)
856 srcobject->type = OBJT_DEFAULT;
861 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
862 * the requested page.
864 * We determine whether good backing store exists for the requested
865 * page and return TRUE if it does, FALSE if it doesn't.
867 * If TRUE, we also try to determine how much valid, contiguous backing
868 * store exists before and after the requested page within a reasonable
869 * distance. We do not try to restrict it to the swap device stripe
870 * (that is handled in getpages/putpages). It probably isn't worth
871 * doing here.
873 * No requirements.
875 boolean_t
876 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
878 swblk_t blk0;
881 * do we have good backing store at the requested index ?
883 vm_object_hold(object);
884 blk0 = swp_pager_meta_ctl(object, pindex, 0);
886 if (blk0 == SWAPBLK_NONE) {
887 vm_object_drop(object);
888 return (FALSE);
890 vm_object_drop(object);
891 return (TRUE);
895 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
897 * This removes any associated swap backing store, whether valid or
898 * not, from the page. This operates on any VM object, not just OBJT_SWAP
899 * objects.
901 * This routine is typically called when a page is made dirty, at
902 * which point any associated swap can be freed. MADV_FREE also
903 * calls us in a special-case situation
905 * NOTE!!! If the page is clean and the swap was valid, the caller
906 * should make the page dirty before calling this routine.
907 * This routine does NOT change the m->dirty status of the page.
908 * Also: MADV_FREE depends on it.
910 * The page must be busied.
911 * The caller can hold the object to avoid blocking, else we might block.
912 * No other requirements.
914 void
915 swap_pager_unswapped(vm_page_t m)
917 if (m->flags & PG_SWAPPED) {
918 vm_object_hold(m->object);
919 KKASSERT(m->flags & PG_SWAPPED);
920 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
921 vm_page_flag_clear(m, PG_SWAPPED);
922 vm_object_drop(m->object);
927 * SWAP_PAGER_STRATEGY() - read, write, free blocks
929 * This implements a VM OBJECT strategy function using swap backing store.
930 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
931 * types.
933 * This is intended to be a cacheless interface (i.e. caching occurs at
934 * higher levels), and is also used as a swap-based SSD cache for vnode
935 * and device objects.
937 * All I/O goes directly to and from the swap device.
939 * We currently attempt to run I/O synchronously or asynchronously as
940 * the caller requests. This isn't perfect because we loose error
941 * sequencing when we run multiple ops in parallel to satisfy a request.
942 * But this is swap, so we let it all hang out.
944 * No requirements.
946 void
947 swap_pager_strategy(vm_object_t object, struct bio *bio)
949 struct buf *bp = bio->bio_buf;
950 struct bio *nbio;
951 vm_pindex_t start;
952 vm_pindex_t biox_blkno = 0;
953 int count;
954 char *data;
955 struct bio *biox;
956 struct buf *bufx;
957 #if 0
958 struct bio_track *track;
959 #endif
961 #if 0
963 * tracking for swapdev vnode I/Os
965 if (bp->b_cmd == BUF_CMD_READ)
966 track = &swapdev_vp->v_track_read;
967 else
968 track = &swapdev_vp->v_track_write;
969 #endif
971 if (bp->b_bcount & PAGE_MASK) {
972 bp->b_error = EINVAL;
973 bp->b_flags |= B_ERROR | B_INVAL;
974 biodone(bio);
975 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
976 "not page bounded\n",
977 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
978 return;
982 * Clear error indication, initialize page index, count, data pointer.
984 bp->b_error = 0;
985 bp->b_flags &= ~B_ERROR;
986 bp->b_resid = bp->b_bcount;
988 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
989 count = howmany(bp->b_bcount, PAGE_SIZE);
990 data = bp->b_data;
993 * Deal with BUF_CMD_FREEBLKS
995 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
997 * FREE PAGE(s) - destroy underlying swap that is no longer
998 * needed.
1000 vm_object_hold(object);
1001 swp_pager_meta_free(object, start, count);
1002 vm_object_drop(object);
1003 bp->b_resid = 0;
1004 biodone(bio);
1005 return;
1009 * We need to be able to create a new cluster of I/O's. We cannot
1010 * use the caller fields of the passed bio so push a new one.
1012 * Because nbio is just a placeholder for the cluster links,
1013 * we can biodone() the original bio instead of nbio to make
1014 * things a bit more efficient.
1016 nbio = push_bio(bio);
1017 nbio->bio_offset = bio->bio_offset;
1018 nbio->bio_caller_info1.cluster_head = NULL;
1019 nbio->bio_caller_info2.cluster_tail = NULL;
1021 biox = NULL;
1022 bufx = NULL;
1025 * Execute read or write
1027 vm_object_hold(object);
1029 while (count > 0) {
1030 swblk_t blk;
1033 * Obtain block. If block not found and writing, allocate a
1034 * new block and build it into the object.
1036 blk = swp_pager_meta_ctl(object, start, 0);
1037 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1038 blk = swp_pager_getswapspace(object, 1);
1039 if (blk == SWAPBLK_NONE) {
1040 bp->b_error = ENOMEM;
1041 bp->b_flags |= B_ERROR;
1042 break;
1044 swp_pager_meta_build(object, start, blk);
1048 * Do we have to flush our current collection? Yes if:
1050 * - no swap block at this index
1051 * - swap block is not contiguous
1052 * - we cross a physical disk boundry in the
1053 * stripe.
1055 if (
1056 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1057 ((biox_blkno ^ blk) & ~SWB_DMMASK)
1060 if (bp->b_cmd == BUF_CMD_READ) {
1061 ++mycpu->gd_cnt.v_swapin;
1062 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1063 } else {
1064 ++mycpu->gd_cnt.v_swapout;
1065 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1066 bufx->b_dirtyend = bufx->b_bcount;
1070 * Finished with this buf.
1072 KKASSERT(bufx->b_bcount != 0);
1073 if (bufx->b_cmd != BUF_CMD_READ)
1074 bufx->b_dirtyend = bufx->b_bcount;
1075 biox = NULL;
1076 bufx = NULL;
1080 * Add new swapblk to biox, instantiating biox if necessary.
1081 * Zero-fill reads are able to take a shortcut.
1083 if (blk == SWAPBLK_NONE) {
1085 * We can only get here if we are reading.
1087 bzero(data, PAGE_SIZE);
1088 bp->b_resid -= PAGE_SIZE;
1089 } else {
1090 if (biox == NULL) {
1091 /* XXX chain count > 4, wait to <= 4 */
1093 bufx = getpbuf(NULL);
1094 biox = &bufx->b_bio1;
1095 cluster_append(nbio, bufx);
1096 bufx->b_cmd = bp->b_cmd;
1097 biox->bio_done = swap_chain_iodone;
1098 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1099 biox->bio_caller_info1.cluster_parent = nbio;
1100 biox_blkno = blk;
1101 bufx->b_bcount = 0;
1102 bufx->b_data = data;
1104 bufx->b_bcount += PAGE_SIZE;
1106 --count;
1107 ++start;
1108 data += PAGE_SIZE;
1111 vm_object_drop(object);
1114 * Flush out last buffer
1116 if (biox) {
1117 if (bufx->b_cmd == BUF_CMD_READ) {
1118 ++mycpu->gd_cnt.v_swapin;
1119 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1120 } else {
1121 ++mycpu->gd_cnt.v_swapout;
1122 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1123 bufx->b_dirtyend = bufx->b_bcount;
1125 KKASSERT(bufx->b_bcount);
1126 if (bufx->b_cmd != BUF_CMD_READ)
1127 bufx->b_dirtyend = bufx->b_bcount;
1128 /* biox, bufx = NULL */
1132 * Now initiate all the I/O. Be careful looping on our chain as
1133 * I/O's may complete while we are still initiating them.
1135 * If the request is a 100% sparse read no bios will be present
1136 * and we just biodone() the buffer.
1138 nbio->bio_caller_info2.cluster_tail = NULL;
1139 bufx = nbio->bio_caller_info1.cluster_head;
1141 if (bufx) {
1142 while (bufx) {
1143 biox = &bufx->b_bio1;
1144 BUF_KERNPROC(bufx);
1145 bufx = bufx->b_cluster_next;
1146 vn_strategy(swapdev_vp, biox);
1148 } else {
1149 biodone(bio);
1153 * Completion of the cluster will also call biodone_chain(nbio).
1154 * We never call biodone(nbio) so we don't have to worry about
1155 * setting up a bio_done callback. It's handled in the sub-IO.
1157 /**/
1161 * biodone callback
1163 * No requirements.
1165 static void
1166 swap_chain_iodone(struct bio *biox)
1168 struct buf **nextp;
1169 struct buf *bufx; /* chained sub-buffer */
1170 struct bio *nbio; /* parent nbio with chain glue */
1171 struct buf *bp; /* original bp associated with nbio */
1172 int chain_empty;
1174 bufx = biox->bio_buf;
1175 nbio = biox->bio_caller_info1.cluster_parent;
1176 bp = nbio->bio_buf;
1179 * Update the original buffer
1181 KKASSERT(bp != NULL);
1182 if (bufx->b_flags & B_ERROR) {
1183 atomic_set_int(&bufx->b_flags, B_ERROR);
1184 bp->b_error = bufx->b_error; /* race ok */
1185 } else if (bufx->b_resid != 0) {
1186 atomic_set_int(&bufx->b_flags, B_ERROR);
1187 bp->b_error = EINVAL; /* race ok */
1188 } else {
1189 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1193 * Remove us from the chain.
1195 spin_lock(&swapbp_spin);
1196 nextp = &nbio->bio_caller_info1.cluster_head;
1197 while (*nextp != bufx) {
1198 KKASSERT(*nextp != NULL);
1199 nextp = &(*nextp)->b_cluster_next;
1201 *nextp = bufx->b_cluster_next;
1202 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1203 spin_unlock(&swapbp_spin);
1206 * Clean up bufx. If the chain is now empty we finish out
1207 * the parent. Note that we may be racing other completions
1208 * so we must use the chain_empty status from above.
1210 if (chain_empty) {
1211 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1212 atomic_set_int(&bp->b_flags, B_ERROR);
1213 bp->b_error = EINVAL;
1215 biodone_chain(nbio);
1217 relpbuf(bufx, NULL);
1221 * SWAP_PAGER_GETPAGES() - bring page in from swap
1223 * The requested page may have to be brought in from swap. Calculate the
1224 * swap block and bring in additional pages if possible. All pages must
1225 * have contiguous swap block assignments and reside in the same object.
1227 * The caller has a single vm_object_pip_add() reference prior to
1228 * calling us and we should return with the same.
1230 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1231 * and any additinal pages unbusied.
1233 * If the caller encounters a PG_RAM page it will pass it to us even though
1234 * it may be valid and dirty. We cannot overwrite the page in this case!
1235 * The case is used to allow us to issue pure read-aheads.
1237 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1238 * the PG_RAM page is validated at the same time as mreq. What we
1239 * really need to do is issue a separate read-ahead pbuf.
1241 * No requirements.
1243 static int
1244 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1246 struct buf *bp;
1247 struct bio *bio;
1248 vm_page_t mreq;
1249 vm_page_t m;
1250 vm_offset_t kva;
1251 swblk_t blk;
1252 int i;
1253 int j;
1254 int raonly;
1255 int error;
1256 u_int32_t flags;
1257 vm_page_t marray[XIO_INTERNAL_PAGES];
1259 mreq = *mpp;
1261 vm_object_hold(object);
1262 if (mreq->object != object) {
1263 panic("swap_pager_getpages: object mismatch %p/%p",
1264 object,
1265 mreq->object
1270 * We don't want to overwrite a fully valid page as it might be
1271 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1272 * valid page with PG_RAM set.
1274 * In this case we see if the next page is a suitable page-in
1275 * candidate and if it is we issue read-ahead. PG_RAM will be
1276 * set on the last page of the read-ahead to continue the pipeline.
1278 if (mreq->valid == VM_PAGE_BITS_ALL) {
1279 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1280 vm_object_drop(object);
1281 return(VM_PAGER_OK);
1283 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1284 if (blk == SWAPBLK_NONE) {
1285 vm_object_drop(object);
1286 return(VM_PAGER_OK);
1288 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1289 TRUE, &error);
1290 if (error) {
1291 vm_object_drop(object);
1292 return(VM_PAGER_OK);
1293 } else if (m == NULL) {
1295 * Use VM_ALLOC_QUICK to avoid blocking on cache
1296 * page reuse.
1298 m = vm_page_alloc(object, mreq->pindex + 1,
1299 VM_ALLOC_QUICK);
1300 if (m == NULL) {
1301 vm_object_drop(object);
1302 return(VM_PAGER_OK);
1304 } else {
1305 if (m->valid) {
1306 vm_page_wakeup(m);
1307 vm_object_drop(object);
1308 return(VM_PAGER_OK);
1310 vm_page_unqueue_nowakeup(m);
1312 /* page is busy */
1313 mreq = m;
1314 raonly = 1;
1315 } else {
1316 raonly = 0;
1320 * Try to block-read contiguous pages from swap if sequential,
1321 * otherwise just read one page. Contiguous pages from swap must
1322 * reside within a single device stripe because the I/O cannot be
1323 * broken up across multiple stripes.
1325 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1326 * set up such that the case(s) are handled implicitly.
1328 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1329 marray[0] = mreq;
1331 for (i = 1; i <= swap_burst_read &&
1332 i < XIO_INTERNAL_PAGES &&
1333 mreq->pindex + i < object->size; ++i) {
1334 swblk_t iblk;
1336 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1337 if (iblk != blk + i)
1338 break;
1339 if ((blk ^ iblk) & ~SWB_DMMASK)
1340 break;
1341 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1342 TRUE, &error);
1343 if (error) {
1344 break;
1345 } else if (m == NULL) {
1347 * Use VM_ALLOC_QUICK to avoid blocking on cache
1348 * page reuse.
1350 m = vm_page_alloc(object, mreq->pindex + i,
1351 VM_ALLOC_QUICK);
1352 if (m == NULL)
1353 break;
1354 } else {
1355 if (m->valid) {
1356 vm_page_wakeup(m);
1357 break;
1359 vm_page_unqueue_nowakeup(m);
1361 /* page is busy */
1362 marray[i] = m;
1364 if (i > 1)
1365 vm_page_flag_set(marray[i - 1], PG_RAM);
1368 * If mreq is the requested page and we have nothing to do return
1369 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1370 * page and must be cleaned up.
1372 if (blk == SWAPBLK_NONE) {
1373 KKASSERT(i == 1);
1374 if (raonly) {
1375 vnode_pager_freepage(mreq);
1376 vm_object_drop(object);
1377 return(VM_PAGER_OK);
1378 } else {
1379 vm_object_drop(object);
1380 return(VM_PAGER_FAIL);
1385 * map our page(s) into kva for input
1387 bp = getpbuf_kva(&nsw_rcount);
1388 bio = &bp->b_bio1;
1389 kva = (vm_offset_t) bp->b_kvabase;
1390 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1391 pmap_qenter(kva, bp->b_xio.xio_pages, i);
1393 bp->b_data = (caddr_t)kva;
1394 bp->b_bcount = PAGE_SIZE * i;
1395 bp->b_xio.xio_npages = i;
1396 bio->bio_done = swp_pager_async_iodone;
1397 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1398 bio->bio_caller_info1.index = SWBIO_READ;
1401 * Set index. If raonly set the index beyond the array so all
1402 * the pages are treated the same, otherwise the original mreq is
1403 * at index 0.
1405 if (raonly)
1406 bio->bio_driver_info = (void *)(intptr_t)i;
1407 else
1408 bio->bio_driver_info = (void *)(intptr_t)0;
1410 for (j = 0; j < i; ++j)
1411 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1413 mycpu->gd_cnt.v_swapin++;
1414 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1417 * We still hold the lock on mreq, and our automatic completion routine
1418 * does not remove it.
1420 vm_object_pip_add(object, bp->b_xio.xio_npages);
1423 * perform the I/O. NOTE!!! bp cannot be considered valid after
1424 * this point because we automatically release it on completion.
1425 * Instead, we look at the one page we are interested in which we
1426 * still hold a lock on even through the I/O completion.
1428 * The other pages in our m[] array are also released on completion,
1429 * so we cannot assume they are valid anymore either.
1431 bp->b_cmd = BUF_CMD_READ;
1432 BUF_KERNPROC(bp);
1433 vn_strategy(swapdev_vp, bio);
1436 * Wait for the page we want to complete. PG_SWAPINPROG is always
1437 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1438 * is set in the meta-data.
1440 * If this is a read-ahead only we return immediately without
1441 * waiting for I/O.
1443 if (raonly) {
1444 vm_object_drop(object);
1445 return(VM_PAGER_OK);
1449 * Read-ahead includes originally requested page case.
1451 for (;;) {
1452 flags = mreq->flags;
1453 cpu_ccfence();
1454 if ((flags & PG_SWAPINPROG) == 0)
1455 break;
1456 tsleep_interlock(mreq, 0);
1457 if (!atomic_cmpset_int(&mreq->flags, flags,
1458 flags | PG_WANTED | PG_REFERENCED)) {
1459 continue;
1461 mycpu->gd_cnt.v_intrans++;
1462 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1463 kprintf(
1464 "swap_pager: indefinite wait buffer: "
1465 " bp %p offset: %lld, size: %ld\n",
1467 (long long)bio->bio_offset,
1468 (long)bp->b_bcount
1474 * Disallow speculative reads prior to the PG_SWAPINPROG test.
1476 cpu_lfence();
1479 * mreq is left busied after completion, but all the other pages
1480 * are freed. If we had an unrecoverable read error the page will
1481 * not be valid.
1483 vm_object_drop(object);
1484 if (mreq->valid != VM_PAGE_BITS_ALL)
1485 return(VM_PAGER_ERROR);
1486 else
1487 return(VM_PAGER_OK);
1490 * A final note: in a low swap situation, we cannot deallocate swap
1491 * and mark a page dirty here because the caller is likely to mark
1492 * the page clean when we return, causing the page to possibly revert
1493 * to all-zero's later.
1498 * swap_pager_putpages:
1500 * Assign swap (if necessary) and initiate I/O on the specified pages.
1502 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1503 * are automatically converted to SWAP objects.
1505 * In a low memory situation we may block in vn_strategy(), but the new
1506 * vm_page reservation system coupled with properly written VFS devices
1507 * should ensure that no low-memory deadlock occurs. This is an area
1508 * which needs work.
1510 * The parent has N vm_object_pip_add() references prior to
1511 * calling us and will remove references for rtvals[] that are
1512 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1513 * completion.
1515 * The parent has soft-busy'd the pages it passes us and will unbusy
1516 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1517 * We need to unbusy the rest on I/O completion.
1519 * No requirements.
1521 void
1522 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1523 int flags, int *rtvals)
1525 int i;
1526 int n = 0;
1528 vm_object_hold(object);
1530 if (count && m[0]->object != object) {
1531 panic("swap_pager_getpages: object mismatch %p/%p",
1532 object,
1533 m[0]->object
1538 * Step 1
1540 * Turn object into OBJT_SWAP
1541 * Check for bogus sysops
1543 * Force sync if not pageout process, we don't want any single
1544 * non-pageout process to be able to hog the I/O subsystem! This
1545 * can be overridden by setting.
1547 if (object->type == OBJT_DEFAULT) {
1548 if (object->type == OBJT_DEFAULT)
1549 swp_pager_meta_convert(object);
1553 * Normally we force synchronous swap I/O if this is not the
1554 * pageout daemon to prevent any single user process limited
1555 * via RLIMIT_RSS from hogging swap write bandwidth.
1557 if (curthread != pagethread && swap_user_async == 0)
1558 flags |= VM_PAGER_PUT_SYNC;
1561 * Step 2
1563 * Update nsw parameters from swap_async_max sysctl values.
1564 * Do not let the sysop crash the machine with bogus numbers.
1566 if (swap_async_max != nsw_wcount_async_max) {
1567 int n;
1570 * limit range
1572 if ((n = swap_async_max) > nswbuf_kva / 2)
1573 n = nswbuf_kva / 2;
1574 if (n < 1)
1575 n = 1;
1576 swap_async_max = n;
1579 * Adjust difference ( if possible ). If the current async
1580 * count is too low, we may not be able to make the adjustment
1581 * at this time.
1583 * vm_token needed for nsw_wcount sleep interlock
1585 lwkt_gettoken(&vm_token);
1586 n -= nsw_wcount_async_max;
1587 if (nsw_wcount_async + n >= 0) {
1588 nsw_wcount_async_max += n;
1589 pbuf_adjcount(&nsw_wcount_async, n);
1591 lwkt_reltoken(&vm_token);
1595 * Step 3
1597 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1598 * The page is left dirty until the pageout operation completes
1599 * successfully.
1602 for (i = 0; i < count; i += n) {
1603 struct buf *bp;
1604 struct bio *bio;
1605 swblk_t blk;
1606 int j;
1609 * Maximum I/O size is limited by a number of factors.
1612 n = min(BLIST_MAX_ALLOC, count - i);
1613 n = min(n, nsw_cluster_max);
1615 lwkt_gettoken(&vm_token);
1618 * Get biggest block of swap we can. If we fail, fall
1619 * back and try to allocate a smaller block. Don't go
1620 * overboard trying to allocate space if it would overly
1621 * fragment swap.
1623 while (
1624 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1625 n > 4
1627 n >>= 1;
1629 if (blk == SWAPBLK_NONE) {
1630 for (j = 0; j < n; ++j)
1631 rtvals[i+j] = VM_PAGER_FAIL;
1632 lwkt_reltoken(&vm_token);
1633 continue;
1635 if (vm_report_swap_allocs > 0) {
1636 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1637 --vm_report_swap_allocs;
1641 * The I/O we are constructing cannot cross a physical
1642 * disk boundry in the swap stripe.
1644 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1645 j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1646 swp_pager_freeswapspace(object, blk + j, n - j);
1647 n = j;
1651 * All I/O parameters have been satisfied, build the I/O
1652 * request and assign the swap space.
1654 if ((flags & VM_PAGER_PUT_SYNC))
1655 bp = getpbuf_kva(&nsw_wcount_sync);
1656 else
1657 bp = getpbuf_kva(&nsw_wcount_async);
1658 bio = &bp->b_bio1;
1660 lwkt_reltoken(&vm_token);
1662 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1664 bp->b_bcount = PAGE_SIZE * n;
1665 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1667 for (j = 0; j < n; ++j) {
1668 vm_page_t mreq = m[i+j];
1670 swp_pager_meta_build(mreq->object, mreq->pindex,
1671 blk + j);
1672 if (object->type == OBJT_SWAP)
1673 vm_page_dirty(mreq);
1674 rtvals[i+j] = VM_PAGER_OK;
1676 vm_page_flag_set(mreq, PG_SWAPINPROG);
1677 bp->b_xio.xio_pages[j] = mreq;
1679 bp->b_xio.xio_npages = n;
1681 mycpu->gd_cnt.v_swapout++;
1682 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1684 bp->b_dirtyoff = 0; /* req'd for NFS */
1685 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1686 bp->b_cmd = BUF_CMD_WRITE;
1687 bio->bio_caller_info1.index = SWBIO_WRITE;
1689 #if 0
1690 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1691 bio->bio_crc = iscsi_crc32(bp->b_data, bp->b_bcount);
1693 uint32_t crc = 0;
1694 for (j = 0; j < n; ++j) {
1695 vm_page_t mm = bp->b_xio.xio_pages[j];
1696 char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm));
1697 crc = iscsi_crc32_ext(p, PAGE_SIZE, crc);
1699 if (bio->bio_crc != crc) {
1700 kprintf("PREWRITE MISMATCH-A "
1701 "bdata=%08x dmap=%08x bdata=%08x (%d)\n",
1702 bio->bio_crc,
1703 crc,
1704 iscsi_crc32(bp->b_data, bp->b_bcount),
1705 bp->b_bcount);
1706 #ifdef _KERNEL_VIRTUAL
1707 madvise(bp->b_data, bp->b_bcount, MADV_INVAL);
1708 #endif
1709 crc = 0;
1710 for (j = 0; j < n; ++j) {
1711 vm_page_t mm = bp->b_xio.xio_pages[j];
1712 char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm));
1713 crc = iscsi_crc32_ext(p, PAGE_SIZE, crc);
1715 kprintf("PREWRITE MISMATCH-B "
1716 "bdata=%08x dmap=%08x\n",
1717 iscsi_crc32(bp->b_data, bp->b_bcount),
1718 crc);
1721 #endif
1724 * asynchronous
1726 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1727 bio->bio_done = swp_pager_async_iodone;
1728 BUF_KERNPROC(bp);
1729 vn_strategy(swapdev_vp, bio);
1731 for (j = 0; j < n; ++j)
1732 rtvals[i+j] = VM_PAGER_PEND;
1733 continue;
1737 * Issue synchrnously.
1739 * Wait for the sync I/O to complete, then update rtvals.
1740 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1741 * our async completion routine at the end, thus avoiding a
1742 * double-free.
1744 bio->bio_caller_info1.index |= SWBIO_SYNC;
1745 if (flags & VM_PAGER_TRY_TO_CACHE)
1746 bio->bio_caller_info1.index |= SWBIO_TTC;
1747 bio->bio_done = biodone_sync;
1748 bio->bio_flags |= BIO_SYNC;
1749 vn_strategy(swapdev_vp, bio);
1750 biowait(bio, "swwrt");
1752 for (j = 0; j < n; ++j)
1753 rtvals[i+j] = VM_PAGER_PEND;
1756 * Now that we are through with the bp, we can call the
1757 * normal async completion, which frees everything up.
1759 swp_pager_async_iodone(bio);
1761 vm_object_drop(object);
1765 * No requirements.
1767 * Recalculate the low and high-water marks.
1769 void
1770 swap_pager_newswap(void)
1773 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1774 * limitation imposed by the blist code. Remember that this
1775 * will be divided by NSWAP_MAX (4), so each swap device is
1776 * limited to around a terrabyte.
1778 if (vm_swap_max) {
1779 nswap_lowat = (int64_t)vm_swap_max * 4 / 100; /* 4% left */
1780 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100; /* 6% left */
1781 kprintf("swap low/high-water marks set to %d/%d\n",
1782 nswap_lowat, nswap_hiwat);
1783 } else {
1784 nswap_lowat = 128;
1785 nswap_hiwat = 512;
1787 swp_sizecheck();
1791 * swp_pager_async_iodone:
1793 * Completion routine for asynchronous reads and writes from/to swap.
1794 * Also called manually by synchronous code to finish up a bp.
1796 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1797 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1798 * unbusy all pages except the 'main' request page. For WRITE
1799 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1800 * because we marked them all VM_PAGER_PEND on return from putpages ).
1802 * This routine may not block.
1804 * No requirements.
1806 static void
1807 swp_pager_async_iodone(struct bio *bio)
1809 struct buf *bp = bio->bio_buf;
1810 vm_object_t object = NULL;
1811 int i;
1812 int *nswptr;
1815 * report error
1817 if (bp->b_flags & B_ERROR) {
1818 kprintf(
1819 "swap_pager: I/O error - %s failed; offset %lld,"
1820 "size %ld, error %d\n",
1821 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1822 "pagein" : "pageout"),
1823 (long long)bio->bio_offset,
1824 (long)bp->b_bcount,
1825 bp->b_error
1830 * set object.
1832 if (bp->b_xio.xio_npages)
1833 object = bp->b_xio.xio_pages[0]->object;
1835 #if 0
1836 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1837 if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1838 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1839 kprintf("SWAPOUT: BADCRC %08x %08x\n",
1840 bio->bio_crc,
1841 iscsi_crc32(bp->b_data, bp->b_bcount));
1842 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1843 vm_page_t m = bp->b_xio.xio_pages[i];
1844 if (m->flags & PG_WRITEABLE)
1845 kprintf("SWAPOUT: "
1846 "%d/%d %p writable\n",
1847 i, bp->b_xio.xio_npages, m);
1851 #endif
1854 * remove the mapping for kernel virtual
1856 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1859 * cleanup pages. If an error occurs writing to swap, we are in
1860 * very serious trouble. If it happens to be a disk error, though,
1861 * we may be able to recover by reassigning the swap later on. So
1862 * in this case we remove the m->swapblk assignment for the page
1863 * but do not free it in the rlist. The errornous block(s) are thus
1864 * never reallocated as swap. Redirty the page and continue.
1866 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1867 vm_page_t m = bp->b_xio.xio_pages[i];
1869 if (bp->b_flags & B_ERROR) {
1871 * If an error occurs I'd love to throw the swapblk
1872 * away without freeing it back to swapspace, so it
1873 * can never be used again. But I can't from an
1874 * interrupt.
1877 if (bio->bio_caller_info1.index & SWBIO_READ) {
1879 * When reading, reqpage needs to stay
1880 * locked for the parent, but all other
1881 * pages can be freed. We still want to
1882 * wakeup the parent waiting on the page,
1883 * though. ( also: pg_reqpage can be -1 and
1884 * not match anything ).
1886 * We have to wake specifically requested pages
1887 * up too because we cleared PG_SWAPINPROG and
1888 * someone may be waiting for that.
1890 * NOTE: For reads, m->dirty will probably
1891 * be overridden by the original caller
1892 * of getpages so don't play cute tricks
1893 * here.
1895 * NOTE: We can't actually free the page from
1896 * here, because this is an interrupt.
1897 * It is not legal to mess with
1898 * object->memq from an interrupt.
1899 * Deactivate the page instead.
1901 * WARNING! The instant PG_SWAPINPROG is
1902 * cleared another cpu may start
1903 * using the mreq page (it will
1904 * check m->valid immediately).
1907 m->valid = 0;
1908 vm_page_flag_clear(m, PG_SWAPINPROG);
1911 * bio_driver_info holds the requested page
1912 * index.
1914 if (i != (int)(intptr_t)bio->bio_driver_info) {
1915 vm_page_deactivate(m);
1916 vm_page_wakeup(m);
1917 } else {
1918 vm_page_flash(m);
1921 * If i == bp->b_pager.pg_reqpage, do not wake
1922 * the page up. The caller needs to.
1924 } else {
1926 * If a write error occurs remove the swap
1927 * assignment (note that PG_SWAPPED may or
1928 * may not be set depending on prior activity).
1930 * Re-dirty OBJT_SWAP pages as there is no
1931 * other backing store, we can't throw the
1932 * page away.
1934 * Non-OBJT_SWAP pages (aka swapcache) must
1935 * not be dirtied since they may not have
1936 * been dirty in the first place, and they
1937 * do have backing store (the vnode).
1939 vm_page_busy_wait(m, FALSE, "swadpg");
1940 vm_object_hold(m->object);
1941 swp_pager_meta_ctl(m->object, m->pindex,
1942 SWM_FREE);
1943 vm_page_flag_clear(m, PG_SWAPPED);
1944 vm_object_drop(m->object);
1945 if (m->object->type == OBJT_SWAP) {
1946 vm_page_dirty(m);
1947 vm_page_activate(m);
1949 vm_page_io_finish(m);
1950 vm_page_flag_clear(m, PG_SWAPINPROG);
1951 vm_page_wakeup(m);
1953 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1955 * NOTE: for reads, m->dirty will probably be
1956 * overridden by the original caller of getpages so
1957 * we cannot set them in order to free the underlying
1958 * swap in a low-swap situation. I don't think we'd
1959 * want to do that anyway, but it was an optimization
1960 * that existed in the old swapper for a time before
1961 * it got ripped out due to precisely this problem.
1963 * If not the requested page then deactivate it.
1965 * Note that the requested page, reqpage, is left
1966 * busied, but we still have to wake it up. The
1967 * other pages are released (unbusied) by
1968 * vm_page_wakeup(). We do not set reqpage's
1969 * valid bits here, it is up to the caller.
1973 * NOTE: Can't call pmap_clear_modify(m) from an
1974 * interrupt thread, the pmap code may have to
1975 * map non-kernel pmaps and currently asserts
1976 * the case.
1978 * WARNING! The instant PG_SWAPINPROG is
1979 * cleared another cpu may start
1980 * using the mreq page (it will
1981 * check m->valid immediately).
1983 /*pmap_clear_modify(m);*/
1984 m->valid = VM_PAGE_BITS_ALL;
1985 vm_page_undirty(m);
1986 vm_page_flag_set(m, PG_SWAPPED);
1987 vm_page_flag_clear(m, PG_SWAPINPROG);
1990 * We have to wake specifically requested pages
1991 * up too because we cleared PG_SWAPINPROG and
1992 * could be waiting for it in getpages. However,
1993 * be sure to not unbusy getpages specifically
1994 * requested page - getpages expects it to be
1995 * left busy.
1997 * bio_driver_info holds the requested page
1999 if (i != (int)(intptr_t)bio->bio_driver_info) {
2000 vm_page_deactivate(m);
2001 vm_page_wakeup(m);
2002 } else {
2003 vm_page_flash(m);
2005 } else {
2007 * Mark the page clean but do not mess with the
2008 * pmap-layer's modified state. That state should
2009 * also be clear since the caller protected the
2010 * page VM_PROT_READ, but allow the case.
2012 * We are in an interrupt, avoid pmap operations.
2014 * If we have a severe page deficit, deactivate the
2015 * page. Do not try to cache it (which would also
2016 * involve a pmap op), because the page might still
2017 * be read-heavy.
2019 * When using the swap to cache clean vnode pages
2020 * we do not mess with the page dirty bits.
2022 * NOTE! Nobody is waiting for the key mreq page
2023 * on write completion.
2025 vm_page_busy_wait(m, FALSE, "swadpg");
2026 if (m->object->type == OBJT_SWAP)
2027 vm_page_undirty(m);
2028 vm_page_flag_set(m, PG_SWAPPED);
2029 vm_page_flag_clear(m, PG_SWAPINPROG);
2030 if (vm_page_count_severe())
2031 vm_page_deactivate(m);
2032 vm_page_io_finish(m);
2033 if (bio->bio_caller_info1.index & SWBIO_TTC)
2034 vm_page_try_to_cache(m);
2035 else
2036 vm_page_wakeup(m);
2041 * adjust pip. NOTE: the original parent may still have its own
2042 * pip refs on the object.
2045 if (object)
2046 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2049 * Release the physical I/O buffer.
2051 * NOTE: Due to synchronous operations in the write case b_cmd may
2052 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
2053 * been cleared.
2055 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2057 lwkt_gettoken(&vm_token);
2058 if (bio->bio_caller_info1.index & SWBIO_READ)
2059 nswptr = &nsw_rcount;
2060 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2061 nswptr = &nsw_wcount_sync;
2062 else
2063 nswptr = &nsw_wcount_async;
2064 bp->b_cmd = BUF_CMD_DONE;
2065 relpbuf(bp, nswptr);
2066 lwkt_reltoken(&vm_token);
2070 * Fault-in a potentially swapped page and remove the swap reference.
2071 * (used by swapoff code)
2073 * object must be held.
2075 static __inline void
2076 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2078 struct vnode *vp;
2079 vm_page_t m;
2080 int error;
2082 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2084 if (object->type == OBJT_VNODE) {
2086 * Any swap related to a vnode is due to swapcache. We must
2087 * vget() the vnode in case it is not active (otherwise
2088 * vref() will panic). Calling vm_object_page_remove() will
2089 * ensure that any swap ref is removed interlocked with the
2090 * page. clean_only is set to TRUE so we don't throw away
2091 * dirty pages.
2093 vp = object->handle;
2094 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2095 if (error == 0) {
2096 vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2097 vput(vp);
2099 } else {
2101 * Otherwise it is a normal OBJT_SWAP object and we can
2102 * fault the page in and remove the swap.
2104 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2105 VM_PROT_NONE,
2106 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2107 sharedp, &error);
2108 if (m)
2109 vm_page_unhold(m);
2114 * This removes all swap blocks related to a particular device. We have
2115 * to be careful of ripups during the scan.
2117 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2120 swap_pager_swapoff(int devidx)
2122 struct vm_object_hash *hash;
2123 struct swswapoffinfo info;
2124 struct vm_object marker;
2125 vm_object_t object;
2126 int n;
2128 bzero(&marker, sizeof(marker));
2129 marker.type = OBJT_MARKER;
2131 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2132 hash = &vm_object_hash[n];
2134 lwkt_gettoken(&hash->token);
2135 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2137 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2138 if (object->type == OBJT_MARKER)
2139 goto skip;
2140 if (object->type != OBJT_SWAP &&
2141 object->type != OBJT_VNODE)
2142 goto skip;
2143 vm_object_hold(object);
2144 if (object->type != OBJT_SWAP &&
2145 object->type != OBJT_VNODE) {
2146 vm_object_drop(object);
2147 goto skip;
2149 info.object = object;
2150 info.shared = 0;
2151 info.devidx = devidx;
2152 swblock_rb_tree_RB_SCAN(&object->swblock_root,
2153 NULL, swp_pager_swapoff_callback,
2154 &info);
2155 vm_object_drop(object);
2156 skip:
2157 if (object == TAILQ_NEXT(&marker, object_list)) {
2158 TAILQ_REMOVE(&hash->list, &marker, object_list);
2159 TAILQ_INSERT_AFTER(&hash->list, object,
2160 &marker, object_list);
2163 TAILQ_REMOVE(&hash->list, &marker, object_list);
2164 lwkt_reltoken(&hash->token);
2168 * If we fail to locate all swblocks we just fail gracefully and
2169 * do not bother to restore paging on the swap device. If the
2170 * user wants to retry the user can retry.
2172 if (swdevt[devidx].sw_nused)
2173 return (1);
2174 else
2175 return (0);
2178 static
2180 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2182 struct swswapoffinfo *info = data;
2183 vm_object_t object = info->object;
2184 vm_pindex_t index;
2185 swblk_t v;
2186 int i;
2188 index = swap->swb_index;
2189 for (i = 0; i < SWAP_META_PAGES; ++i) {
2191 * Make sure we don't race a dying object. This will
2192 * kill the scan of the object's swap blocks entirely.
2194 if (object->flags & OBJ_DEAD)
2195 return(-1);
2198 * Fault the page, which can obviously block. If the swap
2199 * structure disappears break out.
2201 v = swap->swb_pages[i];
2202 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2203 swp_pager_fault_page(object, &info->shared,
2204 swap->swb_index + i);
2205 /* swap ptr might go away */
2206 if (RB_LOOKUP(swblock_rb_tree,
2207 &object->swblock_root, index) != swap) {
2208 break;
2212 return(0);
2215 /************************************************************************
2216 * SWAP META DATA *
2217 ************************************************************************
2219 * These routines manipulate the swap metadata stored in the
2220 * OBJT_SWAP object.
2222 * Swap metadata is implemented with a global hash and not directly
2223 * linked into the object. Instead the object simply contains
2224 * appropriate tracking counters.
2228 * Lookup the swblock containing the specified swap block index.
2230 * The caller must hold the object.
2232 static __inline
2233 struct swblock *
2234 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2236 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2237 index &= ~(vm_pindex_t)SWAP_META_MASK;
2238 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2242 * Remove a swblock from the RB tree.
2244 * The caller must hold the object.
2246 static __inline
2247 void
2248 swp_pager_remove(vm_object_t object, struct swblock *swap)
2250 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2251 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2255 * Convert default object to swap object if necessary
2257 * The caller must hold the object.
2259 static void
2260 swp_pager_meta_convert(vm_object_t object)
2262 if (object->type == OBJT_DEFAULT) {
2263 object->type = OBJT_SWAP;
2264 KKASSERT(object->swblock_count == 0);
2269 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2271 * We first convert the object to a swap object if it is a default
2272 * object. Vnode objects do not need to be converted.
2274 * The specified swapblk is added to the object's swap metadata. If
2275 * the swapblk is not valid, it is freed instead. Any previously
2276 * assigned swapblk is freed.
2278 * The caller must hold the object.
2280 static void
2281 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2283 struct swblock *swap;
2284 struct swblock *oswap;
2285 vm_pindex_t v;
2287 KKASSERT(swapblk != SWAPBLK_NONE);
2288 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2291 * Convert object if necessary
2293 if (object->type == OBJT_DEFAULT)
2294 swp_pager_meta_convert(object);
2297 * Locate swblock. If not found create, but if we aren't adding
2298 * anything just return. If we run out of space in the map we wait
2299 * and, since the hash table may have changed, retry.
2301 retry:
2302 swap = swp_pager_lookup(object, index);
2304 if (swap == NULL) {
2305 int i;
2307 swap = zalloc(swap_zone);
2308 if (swap == NULL) {
2309 vm_wait(0);
2310 goto retry;
2312 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2313 swap->swb_count = 0;
2315 ++object->swblock_count;
2317 for (i = 0; i < SWAP_META_PAGES; ++i)
2318 swap->swb_pages[i] = SWAPBLK_NONE;
2319 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2320 KKASSERT(oswap == NULL);
2324 * Delete prior contents of metadata.
2326 * NOTE: Decrement swb_count after the freeing operation (which
2327 * might block) to prevent racing destruction of the swblock.
2329 index &= SWAP_META_MASK;
2331 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2332 swap->swb_pages[index] = SWAPBLK_NONE;
2333 /* can block */
2334 swp_pager_freeswapspace(object, v, 1);
2335 --swap->swb_count;
2336 --mycpu->gd_vmtotal.t_vm;
2340 * Enter block into metadata
2342 swap->swb_pages[index] = swapblk;
2343 if (swapblk != SWAPBLK_NONE) {
2344 ++swap->swb_count;
2345 ++mycpu->gd_vmtotal.t_vm;
2350 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2352 * The requested range of blocks is freed, with any associated swap
2353 * returned to the swap bitmap.
2355 * This routine will free swap metadata structures as they are cleaned
2356 * out. This routine does *NOT* operate on swap metadata associated
2357 * with resident pages.
2359 * The caller must hold the object.
2361 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2363 static void
2364 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2366 struct swfreeinfo info;
2368 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2371 * Nothing to do
2373 if (object->swblock_count == 0) {
2374 KKASSERT(RB_EMPTY(&object->swblock_root));
2375 return;
2377 if (count == 0)
2378 return;
2381 * Setup for RB tree scan. Note that the pindex range can be huge
2382 * due to the 64 bit page index space so we cannot safely iterate.
2384 info.object = object;
2385 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2386 info.begi = index;
2387 info.endi = index + count - 1;
2388 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2389 swp_pager_meta_free_callback, &info);
2393 * The caller must hold the object.
2395 static
2397 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2399 struct swfreeinfo *info = data;
2400 vm_object_t object = info->object;
2401 int index;
2402 int eindex;
2405 * Figure out the range within the swblock. The wider scan may
2406 * return edge-case swap blocks when the start and/or end points
2407 * are in the middle of a block.
2409 if (swap->swb_index < info->begi)
2410 index = (int)info->begi & SWAP_META_MASK;
2411 else
2412 index = 0;
2414 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2415 eindex = (int)info->endi & SWAP_META_MASK;
2416 else
2417 eindex = SWAP_META_MASK;
2420 * Scan and free the blocks. The loop terminates early
2421 * if (swap) runs out of blocks and could be freed.
2423 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2424 * to deal with a zfree race.
2426 while (index <= eindex) {
2427 swblk_t v = swap->swb_pages[index];
2429 if (v != SWAPBLK_NONE) {
2430 swap->swb_pages[index] = SWAPBLK_NONE;
2431 /* can block */
2432 swp_pager_freeswapspace(object, v, 1);
2433 --mycpu->gd_vmtotal.t_vm;
2434 if (--swap->swb_count == 0) {
2435 swp_pager_remove(object, swap);
2436 zfree(swap_zone, swap);
2437 --object->swblock_count;
2438 break;
2441 ++index;
2444 /* swap may be invalid here due to zfree above */
2445 lwkt_yield();
2447 return(0);
2451 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2453 * This routine locates and destroys all swap metadata associated with
2454 * an object.
2456 * NOTE: Decrement swb_count after the freeing operation (which
2457 * might block) to prevent racing destruction of the swblock.
2459 * The caller must hold the object.
2461 static void
2462 swp_pager_meta_free_all(vm_object_t object)
2464 struct swblock *swap;
2465 int i;
2467 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2469 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2470 swp_pager_remove(object, swap);
2471 for (i = 0; i < SWAP_META_PAGES; ++i) {
2472 swblk_t v = swap->swb_pages[i];
2473 if (v != SWAPBLK_NONE) {
2474 /* can block */
2475 swp_pager_freeswapspace(object, v, 1);
2476 --swap->swb_count;
2477 --mycpu->gd_vmtotal.t_vm;
2480 if (swap->swb_count != 0)
2481 panic("swap_pager_meta_free_all: swb_count != 0");
2482 zfree(swap_zone, swap);
2483 --object->swblock_count;
2484 lwkt_yield();
2486 KKASSERT(object->swblock_count == 0);
2490 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2492 * This routine is capable of looking up, popping, or freeing
2493 * swapblk assignments in the swap meta data or in the vm_page_t.
2494 * The routine typically returns the swapblk being looked-up, or popped,
2495 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2496 * was invalid. This routine will automatically free any invalid
2497 * meta-data swapblks.
2499 * It is not possible to store invalid swapblks in the swap meta data
2500 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2502 * When acting on a busy resident page and paging is in progress, we
2503 * have to wait until paging is complete but otherwise can act on the
2504 * busy page.
2506 * SWM_FREE remove and free swap block from metadata
2507 * SWM_POP remove from meta data but do not free.. pop it out
2509 * The caller must hold the object.
2511 static swblk_t
2512 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2514 struct swblock *swap;
2515 swblk_t r1;
2517 if (object->swblock_count == 0)
2518 return(SWAPBLK_NONE);
2520 r1 = SWAPBLK_NONE;
2521 swap = swp_pager_lookup(object, index);
2523 if (swap != NULL) {
2524 index &= SWAP_META_MASK;
2525 r1 = swap->swb_pages[index];
2527 if (r1 != SWAPBLK_NONE) {
2528 if (flags & (SWM_FREE|SWM_POP)) {
2529 swap->swb_pages[index] = SWAPBLK_NONE;
2530 --mycpu->gd_vmtotal.t_vm;
2531 if (--swap->swb_count == 0) {
2532 swp_pager_remove(object, swap);
2533 zfree(swap_zone, swap);
2534 --object->swblock_count;
2537 /* swap ptr may be invalid */
2538 if (flags & SWM_FREE) {
2539 swp_pager_freeswapspace(object, r1, 1);
2540 r1 = SWAPBLK_NONE;
2543 /* swap ptr may be invalid */
2545 return(r1);