2 * Copyright (c) 1994,1997 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
61 #include <sys/spinlock2.h>
62 #include <vm/vm_page2.h>
73 BQUEUE_NONE
, /* not on any queue */
74 BQUEUE_LOCKED
, /* locked buffers */
75 BQUEUE_CLEAN
, /* non-B_DELWRI buffers */
76 BQUEUE_DIRTY
, /* B_DELWRI buffers */
77 BQUEUE_DIRTY_HW
, /* B_DELWRI buffers - heavy weight */
78 BQUEUE_EMPTY
, /* empty buffer headers */
80 BUFFER_QUEUES
/* number of buffer queues */
83 typedef enum bufq_type bufq_type_t
;
85 #define BD_WAKE_SIZE 16384
86 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
88 TAILQ_HEAD(bqueues
, buf
);
92 struct bqueues bufqueues
[BUFFER_QUEUES
];
95 struct bufpcpu bufpcpu
[MAXCPU
];
97 static MALLOC_DEFINE(M_BIOBUF
, "BIO buffer", "BIO buffer");
99 struct buf
*buf
; /* buffer header pool */
101 static void vfs_clean_pages(struct buf
*bp
);
102 static void vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
104 static void vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
106 static void vfs_vmio_release(struct buf
*bp
);
107 static int flushbufqueues(struct buf
*marker
, bufq_type_t q
);
108 static vm_page_t
bio_page_alloc(struct buf
*bp
, vm_object_t obj
,
109 vm_pindex_t pg
, int deficit
);
111 static void bd_signal(long totalspace
);
112 static void buf_daemon(void);
113 static void buf_daemon_hw(void);
116 * bogus page -- for I/O to/from partially complete buffers
117 * this is a temporary solution to the problem, but it is not
118 * really that bad. it would be better to split the buffer
119 * for input in the case of buffers partially already in memory,
120 * but the code is intricate enough already.
122 vm_page_t bogus_page
;
125 * These are all static, but make the ones we export globals so we do
126 * not need to use compiler magic.
128 long bufspace
; /* atomic ops */
130 long lobufspace
, hibufspace
;
131 static long lorunningspace
;
132 static long hirunningspace
;
133 static long dirtykvaspace
; /* atomic */
134 long dirtybufspace
; /* atomic (global for systat) */
135 static long dirtybufcount
; /* atomic */
136 static long dirtybufspacehw
; /* atomic */
137 static long dirtybufcounthw
; /* atomic */
138 static long runningbufspace
; /* atomic */
139 static long runningbufcount
; /* atomic */
140 long lodirtybufspace
;
141 long hidirtybufspace
;
142 static int getnewbufcalls
;
143 static int needsbuffer
; /* atomic */
144 static int runningbufreq
; /* atomic */
145 static int bd_request
; /* atomic */
146 static int bd_request_hw
; /* atomic */
147 static u_int bd_wake_ary
[BD_WAKE_SIZE
];
148 static u_int bd_wake_index
;
149 static u_int vm_cycle_point
= 40; /* 23-36 will migrate more act->inact */
150 static int debug_commit
;
151 static int debug_bufbio
;
152 static int debug_kvabio
;
153 static long bufcache_bw
= 200 * 1024 * 1024;
155 static struct thread
*bufdaemon_td
;
156 static struct thread
*bufdaemonhw_td
;
157 static u_int lowmempgallocs
;
158 static u_int flushperqueue
= 1024;
161 * Sysctls for operational control of the buffer cache.
163 SYSCTL_UINT(_vfs
, OID_AUTO
, flushperqueue
, CTLFLAG_RW
, &flushperqueue
, 0,
164 "Number of buffers to flush from each per-cpu queue");
165 SYSCTL_LONG(_vfs
, OID_AUTO
, lodirtybufspace
, CTLFLAG_RW
, &lodirtybufspace
, 0,
166 "Number of dirty buffers to flush before bufdaemon becomes inactive");
167 SYSCTL_LONG(_vfs
, OID_AUTO
, hidirtybufspace
, CTLFLAG_RW
, &hidirtybufspace
, 0,
168 "High watermark used to trigger explicit flushing of dirty buffers");
169 SYSCTL_LONG(_vfs
, OID_AUTO
, lorunningspace
, CTLFLAG_RW
, &lorunningspace
, 0,
170 "Minimum amount of buffer space required for active I/O");
171 SYSCTL_LONG(_vfs
, OID_AUTO
, hirunningspace
, CTLFLAG_RW
, &hirunningspace
, 0,
172 "Maximum amount of buffer space to usable for active I/O");
173 SYSCTL_LONG(_vfs
, OID_AUTO
, bufcache_bw
, CTLFLAG_RW
, &bufcache_bw
, 0,
174 "Buffer-cache -> VM page cache transfer bandwidth");
175 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgallocs
, CTLFLAG_RW
, &lowmempgallocs
, 0,
176 "Page allocations done during periods of very low free memory");
177 SYSCTL_UINT(_vfs
, OID_AUTO
, vm_cycle_point
, CTLFLAG_RW
, &vm_cycle_point
, 0,
178 "Recycle pages to active or inactive queue transition pt 0-64");
180 * Sysctls determining current state of the buffer cache.
182 SYSCTL_LONG(_vfs
, OID_AUTO
, nbuf
, CTLFLAG_RD
, &nbuf
, 0,
183 "Total number of buffers in buffer cache");
184 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtykvaspace
, CTLFLAG_RD
, &dirtykvaspace
, 0,
185 "KVA reserved by dirty buffers (all)");
186 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspace
, CTLFLAG_RD
, &dirtybufspace
, 0,
187 "Pending bytes of dirty buffers (all)");
188 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspacehw
, CTLFLAG_RD
, &dirtybufspacehw
, 0,
189 "Pending bytes of dirty buffers (heavy weight)");
190 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcount
, CTLFLAG_RD
, &dirtybufcount
, 0,
191 "Pending number of dirty buffers");
192 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcounthw
, CTLFLAG_RD
, &dirtybufcounthw
, 0,
193 "Pending number of dirty buffers (heavy weight)");
194 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufspace
, CTLFLAG_RD
, &runningbufspace
, 0,
195 "I/O bytes currently in progress due to asynchronous writes");
196 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufcount
, CTLFLAG_RD
, &runningbufcount
, 0,
197 "I/O buffers currently in progress due to asynchronous writes");
198 SYSCTL_LONG(_vfs
, OID_AUTO
, maxbufspace
, CTLFLAG_RD
, &maxbufspace
, 0,
199 "Hard limit on maximum amount of memory usable for buffer space");
200 SYSCTL_LONG(_vfs
, OID_AUTO
, hibufspace
, CTLFLAG_RD
, &hibufspace
, 0,
201 "Soft limit on maximum amount of memory usable for buffer space");
202 SYSCTL_LONG(_vfs
, OID_AUTO
, lobufspace
, CTLFLAG_RD
, &lobufspace
, 0,
203 "Minimum amount of memory to reserve for system buffer space");
204 SYSCTL_LONG(_vfs
, OID_AUTO
, bufspace
, CTLFLAG_RD
, &bufspace
, 0,
205 "Amount of memory available for buffers");
206 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufcalls
, CTLFLAG_RD
, &getnewbufcalls
, 0,
207 "New buffer header acquisition requests");
208 SYSCTL_INT(_vfs
, OID_AUTO
, debug_commit
, CTLFLAG_RW
, &debug_commit
, 0, "");
209 SYSCTL_INT(_vfs
, OID_AUTO
, debug_bufbio
, CTLFLAG_RW
, &debug_bufbio
, 0, "");
210 SYSCTL_INT(_vfs
, OID_AUTO
, debug_kvabio
, CTLFLAG_RW
, &debug_kvabio
, 0, "");
211 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, buf
, CTLFLAG_RD
, 0, sizeof(struct buf
),
212 "sizeof(struct buf)");
214 char *buf_wmesg
= BUF_WMESG
;
216 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
217 #define VFS_BIO_NEED_UNUSED02 0x02
218 #define VFS_BIO_NEED_UNUSED04 0x04
219 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
222 * Called when buffer space is potentially available for recovery.
223 * getnewbuf() will block on this flag when it is unable to free
224 * sufficient buffer space. Buffer space becomes recoverable when
225 * bp's get placed back in the queues.
231 * If someone is waiting for BUF space, wake them up. Even
232 * though we haven't freed the kva space yet, the waiting
233 * process will be able to now.
236 int flags
= needsbuffer
;
238 if ((flags
& VFS_BIO_NEED_BUFSPACE
) == 0)
240 if (atomic_cmpset_int(&needsbuffer
, flags
,
241 flags
& ~VFS_BIO_NEED_BUFSPACE
)) {
242 wakeup(&needsbuffer
);
252 * Accounting for I/O in progress.
256 runningbufwakeup(struct buf
*bp
)
261 if ((totalspace
= bp
->b_runningbufspace
) != 0) {
262 atomic_add_long(&runningbufspace
, -totalspace
);
263 atomic_add_long(&runningbufcount
, -1);
264 bp
->b_runningbufspace
= 0;
267 * see waitrunningbufspace() for limit test.
270 flags
= runningbufreq
;
274 if (atomic_cmpset_int(&runningbufreq
, flags
, 0)) {
275 wakeup(&runningbufreq
);
280 bd_signal(totalspace
);
287 * Called when a buffer has been added to one of the free queues to
288 * account for the buffer and to wakeup anyone waiting for free buffers.
289 * This typically occurs when large amounts of metadata are being handled
290 * by the buffer cache ( else buffer space runs out first, usually ).
301 if (atomic_cmpset_int(&needsbuffer
, flags
,
302 (flags
& ~VFS_BIO_NEED_ANY
))) {
303 wakeup(&needsbuffer
);
311 * waitrunningbufspace()
313 * If runningbufspace exceeds 4/6 hirunningspace we block until
314 * runningbufspace drops to 3/6 hirunningspace. We also block if another
315 * thread blocked here in order to be fair, even if runningbufspace
316 * is now lower than the limit.
318 * The caller may be using this function to block in a tight loop, we
319 * must block while runningbufspace is greater than at least
320 * hirunningspace * 3 / 6.
323 waitrunningbufspace(void)
325 long limit
= hirunningspace
* 4 / 6;
328 while (runningbufspace
> limit
|| runningbufreq
) {
329 tsleep_interlock(&runningbufreq
, 0);
330 flags
= atomic_fetchadd_int(&runningbufreq
, 1);
331 if (runningbufspace
> limit
|| flags
)
332 tsleep(&runningbufreq
, PINTERLOCKED
, "wdrn1", hz
);
337 * buf_dirty_count_severe:
339 * Return true if we have too many dirty buffers.
342 buf_dirty_count_severe(void)
344 return (runningbufspace
+ dirtykvaspace
>= hidirtybufspace
||
345 dirtybufcount
>= nbuf
/ 2);
349 * Return true if the amount of running I/O is severe and BIOQ should
353 buf_runningbufspace_severe(void)
355 return (runningbufspace
>= hirunningspace
* 4 / 6);
359 * vfs_buf_test_cache:
361 * Called when a buffer is extended. This function clears the B_CACHE
362 * bit if the newly extended portion of the buffer does not contain
365 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
366 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
367 * them while a clean buffer was present.
371 vfs_buf_test_cache(struct buf
*bp
,
372 vm_ooffset_t foff
, vm_offset_t off
, vm_offset_t size
,
375 if (bp
->b_flags
& B_CACHE
) {
376 int base
= (foff
+ off
) & PAGE_MASK
;
377 if (vm_page_is_valid(m
, base
, size
) == 0)
378 bp
->b_flags
&= ~B_CACHE
;
385 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
392 if (dirtykvaspace
< lodirtybufspace
&& dirtybufcount
< nbuf
/ 2)
395 if (bd_request
== 0 &&
396 (dirtykvaspace
> lodirtybufspace
/ 2 ||
397 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2)) {
398 if (atomic_fetchadd_int(&bd_request
, 1) == 0)
401 if (bd_request_hw
== 0 &&
402 (dirtykvaspace
> lodirtybufspace
/ 2 ||
403 dirtybufcounthw
>= nbuf
/ 2)) {
404 if (atomic_fetchadd_int(&bd_request_hw
, 1) == 0)
405 wakeup(&bd_request_hw
);
412 * Get the buf_daemon heated up when the number of running and dirty
413 * buffers exceeds the mid-point.
415 * Return the total number of dirty bytes past the second mid point
416 * as a measure of how much excess dirty data there is in the system.
425 mid1
= lodirtybufspace
+ (hidirtybufspace
- lodirtybufspace
) / 2;
427 totalspace
= runningbufspace
+ dirtykvaspace
;
428 if (totalspace
>= mid1
|| dirtybufcount
>= nbuf
/ 2) {
430 mid2
= mid1
+ (hidirtybufspace
- mid1
) / 2;
431 if (totalspace
>= mid2
)
432 return(totalspace
- mid2
);
440 * Wait for the buffer cache to flush (totalspace) bytes worth of
441 * buffers, then return.
443 * Regardless this function blocks while the number of dirty buffers
444 * exceeds hidirtybufspace.
447 bd_wait(long totalspace
)
454 if (curthread
== bufdaemonhw_td
|| curthread
== bufdaemon_td
)
457 while (totalspace
> 0) {
461 * Order is important. Suppliers adjust bd_wake_index after
462 * updating runningbufspace/dirtykvaspace. We want to fetch
463 * bd_wake_index before accessing. Any error should thus
466 i
= atomic_fetchadd_int(&bd_wake_index
, 0);
467 if (totalspace
> runningbufspace
+ dirtykvaspace
)
468 totalspace
= runningbufspace
+ dirtykvaspace
;
469 count
= totalspace
/ MAXBSIZE
;
470 if (count
>= BD_WAKE_SIZE
/ 2)
471 count
= BD_WAKE_SIZE
/ 2;
473 mi
= i
& BD_WAKE_MASK
;
476 * This is not a strict interlock, so we play a bit loose
477 * with locking access to dirtybufspace*. We have to re-check
478 * bd_wake_index to ensure that it hasn't passed us.
480 tsleep_interlock(&bd_wake_ary
[mi
], 0);
481 atomic_add_int(&bd_wake_ary
[mi
], 1);
482 j
= atomic_fetchadd_int(&bd_wake_index
, 0);
483 if ((int)(i
- j
) >= 0)
484 tsleep(&bd_wake_ary
[mi
], PINTERLOCKED
, "flstik", hz
);
486 totalspace
= runningbufspace
+ dirtykvaspace
- hidirtybufspace
;
493 * This function is called whenever runningbufspace or dirtykvaspace
494 * is reduced. Track threads waiting for run+dirty buffer I/O
498 bd_signal(long totalspace
)
502 if (totalspace
> 0) {
503 if (totalspace
> MAXBSIZE
* BD_WAKE_SIZE
)
504 totalspace
= MAXBSIZE
* BD_WAKE_SIZE
;
505 while (totalspace
> 0) {
506 i
= atomic_fetchadd_int(&bd_wake_index
, 1);
508 if (atomic_readandclear_int(&bd_wake_ary
[i
]))
509 wakeup(&bd_wake_ary
[i
]);
510 totalspace
-= MAXBSIZE
;
516 * BIO tracking support routines.
518 * Release a ref on a bio_track. Wakeup requests are atomically released
519 * along with the last reference so bk_active will never wind up set to
524 bio_track_rel(struct bio_track
*track
)
532 active
= track
->bk_active
;
533 if (active
== 1 && atomic_cmpset_int(&track
->bk_active
, 1, 0))
537 * Full-on. Note that the wait flag is only atomically released on
538 * the 1->0 count transition.
540 * We check for a negative count transition using bit 30 since bit 31
541 * has a different meaning.
544 desired
= (active
& 0x7FFFFFFF) - 1;
546 desired
|= active
& 0x80000000;
547 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
548 if (desired
& 0x40000000)
549 panic("bio_track_rel: bad count: %p", track
);
550 if (active
& 0x80000000)
554 active
= track
->bk_active
;
559 * Wait for the tracking count to reach 0.
561 * Use atomic ops such that the wait flag is only set atomically when
562 * bk_active is non-zero.
565 bio_track_wait(struct bio_track
*track
, int slp_flags
, int slp_timo
)
574 if (track
->bk_active
== 0)
578 * Full-on. Note that the wait flag may only be atomically set if
579 * the active count is non-zero.
581 * NOTE: We cannot optimize active == desired since a wakeup could
582 * clear active prior to our tsleep_interlock().
585 while ((active
= track
->bk_active
) != 0) {
587 desired
= active
| 0x80000000;
588 tsleep_interlock(track
, slp_flags
);
589 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
590 error
= tsleep(track
, slp_flags
| PINTERLOCKED
,
602 * Load time initialisation of the buffer cache, called from machine
603 * dependant initialization code.
607 bufinit(void *dummy __unused
)
609 struct bufpcpu
*pcpu
;
611 vm_offset_t bogus_offset
;
616 /* next, make a null set of free lists */
617 for (i
= 0; i
< ncpus
; ++i
) {
619 spin_init(&pcpu
->spin
, "bufinit");
620 for (j
= 0; j
< BUFFER_QUEUES
; j
++)
621 TAILQ_INIT(&pcpu
->bufqueues
[j
]);
625 * Finally, initialize each buffer header and stick on empty q.
626 * Each buffer gets its own KVA reservation.
631 for (n
= 0; n
< nbuf
; n
++) {
633 bzero(bp
, sizeof *bp
);
634 bp
->b_flags
= B_INVAL
; /* we're just an empty header */
635 bp
->b_cmd
= BUF_CMD_DONE
;
636 bp
->b_qindex
= BQUEUE_EMPTY
;
638 bp
->b_kvabase
= (void *)(vm_map_min(&buffer_map
) +
640 bp
->b_kvasize
= MAXBSIZE
;
642 xio_init(&bp
->b_xio
);
644 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
652 * maxbufspace is the absolute maximum amount of buffer space we are
653 * allowed to reserve in KVM and in real terms. The absolute maximum
654 * is nominally used by buf_daemon. hibufspace is the nominal maximum
655 * used by most other processes. The differential is required to
656 * ensure that buf_daemon is able to run when other processes might
657 * be blocked waiting for buffer space.
659 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
660 * too large or we might lockup a cpu for too long a period of
661 * time in our tight loop.
663 maxbufspace
= nbuf
* NBUFCALCSIZE
;
664 hibufspace
= lmax(3 * maxbufspace
/ 4, maxbufspace
- MAXBSIZE
* 10);
665 lobufspace
= hibufspace
* 7 / 8;
666 if (hibufspace
- lobufspace
> 64 * 1024 * 1024)
667 lobufspace
= hibufspace
- 64 * 1024 * 1024;
668 if (lobufspace
> hibufspace
- MAXBSIZE
)
669 lobufspace
= hibufspace
- MAXBSIZE
;
671 lorunningspace
= 512 * 1024;
672 /* hirunningspace -- see below */
675 * Reduce the chance of a deadlock occuring by limiting the number
676 * of delayed-write dirty buffers we allow to stack up.
678 * We don't want too much actually queued to the device at once
679 * (XXX this needs to be per-mount!), because the buffers will
680 * wind up locked for a very long period of time while the I/O
683 hidirtybufspace
= hibufspace
/ 2; /* dirty + running */
684 hirunningspace
= hibufspace
/ 16; /* locked & queued to device */
685 if (hirunningspace
< 1024 * 1024)
686 hirunningspace
= 1024 * 1024;
692 lodirtybufspace
= hidirtybufspace
/ 2;
695 * Maximum number of async ops initiated per buf_daemon loop. This is
696 * somewhat of a hack at the moment, we really need to limit ourselves
697 * based on the number of bytes of I/O in-transit that were initiated
701 bogus_offset
= kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
,
703 vm_object_hold(&kernel_object
);
704 bogus_page
= vm_page_alloc(&kernel_object
,
705 (bogus_offset
>> PAGE_SHIFT
),
707 vm_object_drop(&kernel_object
);
708 vmstats
.v_wire_count
++;
712 SYSINIT(do_bufinit
, SI_BOOT2_MACHDEP
, SI_ORDER_FIRST
, bufinit
, NULL
);
715 * Initialize the embedded bio structures, typically used by
716 * deprecated code which tries to allocate its own struct bufs.
719 initbufbio(struct buf
*bp
)
721 bp
->b_bio1
.bio_buf
= bp
;
722 bp
->b_bio1
.bio_prev
= NULL
;
723 bp
->b_bio1
.bio_offset
= NOOFFSET
;
724 bp
->b_bio1
.bio_next
= &bp
->b_bio2
;
725 bp
->b_bio1
.bio_done
= NULL
;
726 bp
->b_bio1
.bio_flags
= 0;
728 bp
->b_bio2
.bio_buf
= bp
;
729 bp
->b_bio2
.bio_prev
= &bp
->b_bio1
;
730 bp
->b_bio2
.bio_offset
= NOOFFSET
;
731 bp
->b_bio2
.bio_next
= NULL
;
732 bp
->b_bio2
.bio_done
= NULL
;
733 bp
->b_bio2
.bio_flags
= 0;
739 * Reinitialize the embedded bio structures as well as any additional
740 * translation cache layers.
743 reinitbufbio(struct buf
*bp
)
747 for (bio
= &bp
->b_bio1
; bio
; bio
= bio
->bio_next
) {
748 bio
->bio_done
= NULL
;
749 bio
->bio_offset
= NOOFFSET
;
754 * Undo the effects of an initbufbio().
757 uninitbufbio(struct buf
*bp
)
764 * Push another BIO layer onto an existing BIO and return it. The new
765 * BIO layer may already exist, holding cached translation data.
768 push_bio(struct bio
*bio
)
772 if ((nbio
= bio
->bio_next
) == NULL
) {
773 int index
= bio
- &bio
->bio_buf
->b_bio_array
[0];
774 if (index
>= NBUF_BIO
- 1) {
775 panic("push_bio: too many layers %d for bp %p",
776 index
, bio
->bio_buf
);
778 nbio
= &bio
->bio_buf
->b_bio_array
[index
+ 1];
779 bio
->bio_next
= nbio
;
780 nbio
->bio_prev
= bio
;
781 nbio
->bio_buf
= bio
->bio_buf
;
782 nbio
->bio_offset
= NOOFFSET
;
783 nbio
->bio_done
= NULL
;
784 nbio
->bio_next
= NULL
;
786 KKASSERT(nbio
->bio_done
== NULL
);
791 * Pop a BIO translation layer, returning the previous layer. The
792 * must have been previously pushed.
795 pop_bio(struct bio
*bio
)
797 return(bio
->bio_prev
);
801 clearbiocache(struct bio
*bio
)
804 bio
->bio_offset
= NOOFFSET
;
810 * Remove the buffer from the appropriate free list.
811 * (caller must be locked)
814 _bremfree(struct buf
*bp
)
816 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
818 if (bp
->b_qindex
!= BQUEUE_NONE
) {
819 KASSERT(BUF_LOCKINUSE(bp
), ("bremfree: bp %p not locked", bp
));
820 TAILQ_REMOVE(&pcpu
->bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
821 bp
->b_qindex
= BQUEUE_NONE
;
823 if (!BUF_LOCKINUSE(bp
))
824 panic("bremfree: removing a buffer not on a queue");
829 * bremfree() - must be called with a locked buffer
832 bremfree(struct buf
*bp
)
834 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
836 spin_lock(&pcpu
->spin
);
838 spin_unlock(&pcpu
->spin
);
842 * bremfree_locked - must be called with pcpu->spin locked
845 bremfree_locked(struct buf
*bp
)
851 * This version of bread issues any required I/O asyncnronously and
852 * makes a callback on completion.
854 * The callback must check whether BIO_DONE is set in the bio and issue
855 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
856 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
859 breadcb(struct vnode
*vp
, off_t loffset
, int size
, int bflags
,
860 void (*func
)(struct bio
*), void *arg
)
864 bp
= getblk(vp
, loffset
, size
, 0, 0);
866 /* if not found in cache, do some I/O */
867 if ((bp
->b_flags
& B_CACHE
) == 0) {
868 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
| B_NOTMETA
);
869 bp
->b_flags
|= bflags
;
870 bp
->b_cmd
= BUF_CMD_READ
;
871 bp
->b_bio1
.bio_done
= func
;
872 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
873 vfs_busy_pages(vp
, bp
);
875 vn_strategy(vp
, &bp
->b_bio1
);
878 * Since we are issuing the callback synchronously it cannot
879 * race the BIO_DONE, so no need for atomic ops here.
881 /*bp->b_bio1.bio_done = func;*/
882 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
883 bp
->b_bio1
.bio_flags
|= BIO_DONE
;
891 * breadnx() - Terminal function for bread() and breadn().
893 * This function will start asynchronous I/O on read-ahead blocks as well
894 * as satisfy the primary request.
896 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
897 * set, the buffer is valid and we do not have to do anything.
900 breadnx(struct vnode
*vp
, off_t loffset
, int size
, int bflags
,
901 off_t
*raoffset
, int *rabsize
,
902 int cnt
, struct buf
**bpp
)
904 struct buf
*bp
, *rabp
;
906 int rv
= 0, readwait
= 0;
907 int blkflags
= (bflags
& B_KVABIO
) ? GETBLK_KVABIO
: 0;
912 *bpp
= bp
= getblk(vp
, loffset
, size
, blkflags
, 0);
914 /* if not found in cache, do some I/O */
915 if ((bp
->b_flags
& B_CACHE
) == 0) {
916 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
| B_NOTMETA
);
917 bp
->b_flags
|= bflags
;
918 bp
->b_cmd
= BUF_CMD_READ
;
919 bp
->b_bio1
.bio_done
= biodone_sync
;
920 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
921 vfs_busy_pages(vp
, bp
);
922 vn_strategy(vp
, &bp
->b_bio1
);
926 for (i
= 0; i
< cnt
; i
++, raoffset
++, rabsize
++) {
927 if (inmem(vp
, *raoffset
))
929 rabp
= getblk(vp
, *raoffset
, *rabsize
, GETBLK_KVABIO
, 0);
931 if ((rabp
->b_flags
& B_CACHE
) == 0) {
932 rabp
->b_flags
&= ~(B_ERROR
| B_EINTR
|
933 B_INVAL
| B_NOTMETA
);
934 rabp
->b_flags
|= (bflags
& ~B_KVABIO
);
935 rabp
->b_cmd
= BUF_CMD_READ
;
936 vfs_busy_pages(vp
, rabp
);
938 vn_strategy(vp
, &rabp
->b_bio1
);
944 rv
= biowait(&bp
->b_bio1
, "biord");
951 * Synchronous write, waits for completion.
953 * Write, release buffer on completion. (Done by iodone
954 * if async). Do not bother writing anything if the buffer
957 * Note that we set B_CACHE here, indicating that buffer is
958 * fully valid and thus cacheable. This is true even of NFS
959 * now so we set it generally. This could be set either here
960 * or in biodone() since the I/O is synchronous. We put it
964 bwrite(struct buf
*bp
)
968 if (bp
->b_flags
& B_INVAL
) {
972 if (BUF_LOCKINUSE(bp
) == 0)
973 panic("bwrite: buffer is not busy???");
976 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
977 * call because it will remove the buffer from the vnode's
978 * dirty buffer list prematurely and possibly cause filesystem
979 * checks to race buffer flushes. This is now handled in
982 * bundirty(bp); REMOVED
985 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
986 bp
->b_flags
|= B_CACHE
;
987 bp
->b_cmd
= BUF_CMD_WRITE
;
989 bp
->b_bio1
.bio_done
= biodone_sync
;
990 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
991 vfs_busy_pages(bp
->b_vp
, bp
);
994 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
995 * valid for vnode-backed buffers.
997 bsetrunningbufspace(bp
, bp
->b_bufsize
);
998 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
999 error
= biowait(&bp
->b_bio1
, "biows");
1008 * Asynchronous write. Start output on a buffer, but do not wait for
1009 * it to complete. The buffer is released when the output completes.
1011 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1012 * B_INVAL buffers. Not us.
1015 bawrite(struct buf
*bp
)
1017 if (bp
->b_flags
& B_INVAL
) {
1021 if (BUF_LOCKINUSE(bp
) == 0)
1022 panic("bawrite: buffer is not busy???");
1025 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1026 * call because it will remove the buffer from the vnode's
1027 * dirty buffer list prematurely and possibly cause filesystem
1028 * checks to race buffer flushes. This is now handled in
1031 * bundirty(bp); REMOVED
1033 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1034 bp
->b_flags
|= B_CACHE
;
1035 bp
->b_cmd
= BUF_CMD_WRITE
;
1037 KKASSERT(bp
->b_bio1
.bio_done
== NULL
);
1038 vfs_busy_pages(bp
->b_vp
, bp
);
1041 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1042 * valid for vnode-backed buffers.
1044 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1046 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1052 * Delayed write. (Buffer is marked dirty). Do not bother writing
1053 * anything if the buffer is marked invalid.
1055 * Note that since the buffer must be completely valid, we can safely
1056 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1057 * biodone() in order to prevent getblk from writing the buffer
1058 * out synchronously.
1061 bdwrite(struct buf
*bp
)
1063 if (BUF_LOCKINUSE(bp
) == 0)
1064 panic("bdwrite: buffer is not busy");
1066 if (bp
->b_flags
& B_INVAL
) {
1072 dsched_buf_enter(bp
); /* might stack */
1075 * Set B_CACHE, indicating that the buffer is fully valid. This is
1076 * true even of NFS now.
1078 bp
->b_flags
|= B_CACHE
;
1081 * This bmap keeps the system from needing to do the bmap later,
1082 * perhaps when the system is attempting to do a sync. Since it
1083 * is likely that the indirect block -- or whatever other datastructure
1084 * that the filesystem needs is still in memory now, it is a good
1085 * thing to do this. Note also, that if the pageout daemon is
1086 * requesting a sync -- there might not be enough memory to do
1087 * the bmap then... So, this is important to do.
1089 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
1090 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
, &bp
->b_bio2
.bio_offset
,
1091 NULL
, NULL
, BUF_CMD_WRITE
);
1095 * Because the underlying pages may still be mapped and
1096 * writable trying to set the dirty buffer (b_dirtyoff/end)
1097 * range here will be inaccurate.
1099 * However, we must still clean the pages to satisfy the
1100 * vnode_pager and pageout daemon, so they think the pages
1101 * have been "cleaned". What has really occured is that
1102 * they've been earmarked for later writing by the buffer
1105 * So we get the b_dirtyoff/end update but will not actually
1106 * depend on it (NFS that is) until the pages are busied for
1109 vfs_clean_pages(bp
);
1113 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1114 * due to the softdep code.
1119 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1120 * This is used by tmpfs.
1122 * It is important for any VFS using this routine to NOT use it for
1123 * IO_SYNC or IO_ASYNC operations which occur when the system really
1124 * wants to flush VM pages to backing store.
1127 buwrite(struct buf
*bp
)
1133 * Only works for VMIO buffers. If the buffer is already
1134 * marked for delayed-write we can't avoid the bdwrite().
1136 if ((bp
->b_flags
& B_VMIO
) == 0 || (bp
->b_flags
& B_DELWRI
)) {
1142 * Mark as needing a commit.
1144 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1145 m
= bp
->b_xio
.xio_pages
[i
];
1146 vm_page_need_commit(m
);
1154 * Turn buffer into delayed write request by marking it B_DELWRI.
1155 * B_RELBUF and B_NOCACHE must be cleared.
1157 * We reassign the buffer to itself to properly update it in the
1158 * dirty/clean lists.
1160 * Must be called from a critical section.
1161 * The buffer must be on BQUEUE_NONE.
1164 bdirty(struct buf
*bp
)
1166 KASSERT(bp
->b_qindex
== BQUEUE_NONE
,
1167 ("bdirty: buffer %p still on queue %d", bp
, bp
->b_qindex
));
1168 if (bp
->b_flags
& B_NOCACHE
) {
1169 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp
);
1170 bp
->b_flags
&= ~B_NOCACHE
;
1172 if (bp
->b_flags
& B_INVAL
) {
1173 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp
);
1175 bp
->b_flags
&= ~B_RELBUF
;
1177 if ((bp
->b_flags
& B_DELWRI
) == 0) {
1178 lwkt_gettoken(&bp
->b_vp
->v_token
);
1179 bp
->b_flags
|= B_DELWRI
;
1181 lwkt_reltoken(&bp
->b_vp
->v_token
);
1183 atomic_add_long(&dirtybufcount
, 1);
1184 atomic_add_long(&dirtykvaspace
, bp
->b_kvasize
);
1185 atomic_add_long(&dirtybufspace
, bp
->b_bufsize
);
1186 if (bp
->b_flags
& B_HEAVY
) {
1187 atomic_add_long(&dirtybufcounthw
, 1);
1188 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1195 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1196 * needs to be flushed with a different buf_daemon thread to avoid
1197 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1200 bheavy(struct buf
*bp
)
1202 if ((bp
->b_flags
& B_HEAVY
) == 0) {
1203 bp
->b_flags
|= B_HEAVY
;
1204 if (bp
->b_flags
& B_DELWRI
) {
1205 atomic_add_long(&dirtybufcounthw
, 1);
1206 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1214 * Clear B_DELWRI for buffer.
1216 * Must be called from a critical section.
1218 * The buffer is typically on BQUEUE_NONE but there is one case in
1219 * brelse() that calls this function after placing the buffer on
1220 * a different queue.
1223 bundirty(struct buf
*bp
)
1225 if (bp
->b_flags
& B_DELWRI
) {
1226 lwkt_gettoken(&bp
->b_vp
->v_token
);
1227 bp
->b_flags
&= ~B_DELWRI
;
1229 lwkt_reltoken(&bp
->b_vp
->v_token
);
1231 atomic_add_long(&dirtybufcount
, -1);
1232 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1233 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1234 if (bp
->b_flags
& B_HEAVY
) {
1235 atomic_add_long(&dirtybufcounthw
, -1);
1236 atomic_add_long(&dirtybufspacehw
, -bp
->b_bufsize
);
1238 bd_signal(bp
->b_bufsize
);
1241 * Since it is now being written, we can clear its deferred write flag.
1243 bp
->b_flags
&= ~B_DEFERRED
;
1247 * Set the b_runningbufspace field, used to track how much I/O is
1248 * in progress at any given moment.
1251 bsetrunningbufspace(struct buf
*bp
, int bytes
)
1253 bp
->b_runningbufspace
= bytes
;
1255 atomic_add_long(&runningbufspace
, bytes
);
1256 atomic_add_long(&runningbufcount
, 1);
1263 * Release a busy buffer and, if requested, free its resources. The
1264 * buffer will be stashed in the appropriate bufqueue[] allowing it
1265 * to be accessed later as a cache entity or reused for other purposes.
1268 brelse(struct buf
*bp
)
1270 struct bufpcpu
*pcpu
;
1272 int saved_flags
= bp
->b_flags
;
1275 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1276 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1279 * If B_NOCACHE is set we are being asked to destroy the buffer and
1280 * its backing store. Clear B_DELWRI.
1282 * B_NOCACHE is set in two cases: (1) when the caller really wants
1283 * to destroy the buffer and backing store and (2) when the caller
1284 * wants to destroy the buffer and backing store after a write
1287 if ((bp
->b_flags
& (B_NOCACHE
|B_DELWRI
)) == (B_NOCACHE
|B_DELWRI
)) {
1291 if ((bp
->b_flags
& (B_INVAL
| B_DELWRI
)) == B_DELWRI
) {
1293 * A re-dirtied buffer is only subject to destruction
1294 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1296 /* leave buffer intact */
1297 } else if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
)) ||
1298 (bp
->b_bufsize
<= 0)) {
1300 * Either a failed read or we were asked to free or not
1301 * cache the buffer. This path is reached with B_DELWRI
1302 * set only if B_INVAL is already set. B_NOCACHE governs
1303 * backing store destruction.
1305 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1306 * buffer cannot be immediately freed.
1308 bp
->b_flags
|= B_INVAL
;
1309 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1311 if (bp
->b_flags
& B_DELWRI
) {
1312 atomic_add_long(&dirtybufcount
, -1);
1313 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1314 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1315 if (bp
->b_flags
& B_HEAVY
) {
1316 atomic_add_long(&dirtybufcounthw
, -1);
1317 atomic_add_long(&dirtybufspacehw
,
1320 bd_signal(bp
->b_bufsize
);
1322 bp
->b_flags
&= ~(B_DELWRI
| B_CACHE
);
1326 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1327 * or if b_refs is non-zero.
1329 * If vfs_vmio_release() is called with either bit set, the
1330 * underlying pages may wind up getting freed causing a previous
1331 * write (bdwrite()) to get 'lost' because pages associated with
1332 * a B_DELWRI bp are marked clean. Pages associated with a
1333 * B_LOCKED buffer may be mapped by the filesystem.
1335 * If we want to release the buffer ourselves (rather then the
1336 * originator asking us to release it), give the originator a
1337 * chance to countermand the release by setting B_LOCKED.
1339 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1340 * if B_DELWRI is set.
1342 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1343 * on pages to return pages to the VM page queues.
1345 if ((bp
->b_flags
& (B_DELWRI
| B_LOCKED
)) || bp
->b_refs
) {
1346 bp
->b_flags
&= ~B_RELBUF
;
1347 } else if (vm_page_count_min(0)) {
1348 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1349 buf_deallocate(bp
); /* can set B_LOCKED */
1350 if (bp
->b_flags
& (B_DELWRI
| B_LOCKED
))
1351 bp
->b_flags
&= ~B_RELBUF
;
1353 bp
->b_flags
|= B_RELBUF
;
1357 * Make sure b_cmd is clear. It may have already been cleared by
1360 * At this point destroying the buffer is governed by the B_INVAL
1361 * or B_RELBUF flags.
1363 bp
->b_cmd
= BUF_CMD_DONE
;
1364 dsched_buf_exit(bp
);
1367 * VMIO buffer rundown. Make sure the VM page array is restored
1368 * after an I/O may have replaces some of the pages with bogus pages
1369 * in order to not destroy dirty pages in a fill-in read.
1371 * Note that due to the code above, if a buffer is marked B_DELWRI
1372 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1373 * B_INVAL may still be set, however.
1375 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1376 * but not the backing store. B_NOCACHE will destroy the backing
1379 * Note that dirty NFS buffers contain byte-granular write ranges
1380 * and should not be destroyed w/ B_INVAL even if the backing store
1383 if (bp
->b_flags
& B_VMIO
) {
1385 * Rundown for VMIO buffers which are not dirty NFS buffers.
1397 * Get the base offset and length of the buffer. Note that
1398 * in the VMIO case if the buffer block size is not
1399 * page-aligned then b_data pointer may not be page-aligned.
1400 * But our b_xio.xio_pages array *IS* page aligned.
1402 * block sizes less then DEV_BSIZE (usually 512) are not
1403 * supported due to the page granularity bits (m->valid,
1404 * m->dirty, etc...).
1406 * See man buf(9) for more information
1409 resid
= bp
->b_bufsize
;
1410 foff
= bp
->b_loffset
;
1412 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1413 m
= bp
->b_xio
.xio_pages
[i
];
1416 * If we hit a bogus page, fixup *all* of them
1417 * now. Note that we left these pages wired
1418 * when we removed them so they had better exist,
1419 * and they cannot be ripped out from under us so
1420 * no critical section protection is necessary.
1422 if (m
== bogus_page
) {
1424 poff
= OFF_TO_IDX(bp
->b_loffset
);
1426 vm_object_hold(obj
);
1427 for (j
= i
; j
< bp
->b_xio
.xio_npages
; j
++) {
1430 mtmp
= bp
->b_xio
.xio_pages
[j
];
1431 if (mtmp
== bogus_page
) {
1432 if ((bp
->b_flags
& B_HASBOGUS
) == 0)
1433 panic("brelse: bp %p corrupt bogus", bp
);
1434 mtmp
= vm_page_lookup(obj
, poff
+ j
);
1436 panic("brelse: bp %p page %d missing", bp
, j
);
1437 bp
->b_xio
.xio_pages
[j
] = mtmp
;
1440 vm_object_drop(obj
);
1442 if ((bp
->b_flags
& B_HASBOGUS
) ||
1443 (bp
->b_flags
& B_INVAL
) == 0) {
1444 pmap_qenter_noinval(
1445 trunc_page((vm_offset_t
)bp
->b_data
),
1446 bp
->b_xio
.xio_pages
,
1447 bp
->b_xio
.xio_npages
);
1448 bp
->b_flags
&= ~B_HASBOGUS
;
1449 bp
->b_flags
|= B_KVABIO
;
1452 m
= bp
->b_xio
.xio_pages
[i
];
1456 * Invalidate the backing store if B_NOCACHE is set
1457 * (e.g. used with vinvalbuf()). If this is NFS
1458 * we impose a requirement that the block size be
1459 * a multiple of PAGE_SIZE and create a temporary
1460 * hack to basically invalidate the whole page. The
1461 * problem is that NFS uses really odd buffer sizes
1462 * especially when tracking piecemeal writes and
1463 * it also vinvalbuf()'s a lot, which would result
1464 * in only partial page validation and invalidation
1465 * here. If the file page is mmap()'d, however,
1466 * all the valid bits get set so after we invalidate
1467 * here we would end up with weird m->valid values
1468 * like 0xfc. nfs_getpages() can't handle this so
1469 * we clear all the valid bits for the NFS case
1470 * instead of just some of them.
1472 * The real bug is the VM system having to set m->valid
1473 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1474 * itself is an artifact of the whole 512-byte
1475 * granular mess that exists to support odd block
1476 * sizes and UFS meta-data block sizes (e.g. 6144).
1477 * A complete rewrite is required.
1481 if (bp
->b_flags
& (B_NOCACHE
|B_ERROR
)) {
1482 int poffset
= foff
& PAGE_MASK
;
1485 presid
= PAGE_SIZE
- poffset
;
1486 if (bp
->b_vp
->v_tag
== VT_NFS
&&
1487 bp
->b_vp
->v_type
== VREG
) {
1489 } else if (presid
> resid
) {
1492 KASSERT(presid
>= 0, ("brelse: extra page"));
1493 vm_page_set_invalid(m
, poffset
, presid
);
1496 * Also make sure any swap cache is removed
1497 * as it is now stale (HAMMER in particular
1498 * uses B_NOCACHE to deal with buffer
1501 swap_pager_unswapped(m
);
1503 resid
-= PAGE_SIZE
- (foff
& PAGE_MASK
);
1504 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
1506 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1507 vfs_vmio_release(bp
);
1510 * Rundown for non-VMIO buffers.
1512 * XXX With B_MALLOC buffers removed, there should no longer
1513 * be any situation where brelse() is called on a non B_VMIO
1514 * buffer. Recommend assertion here. XXX
1516 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
)) {
1519 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1525 if (bp
->b_qindex
!= BQUEUE_NONE
)
1526 panic("brelse: free buffer onto another queue???");
1529 * Figure out the correct queue to place the cleaned up buffer on.
1530 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1531 * disassociated from their vnode.
1533 * Return the buffer to its original pcpu area
1535 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1536 spin_lock(&pcpu
->spin
);
1538 if (bp
->b_flags
& B_LOCKED
) {
1540 * Buffers that are locked are placed in the locked queue
1541 * immediately, regardless of their state.
1543 bp
->b_qindex
= BQUEUE_LOCKED
;
1544 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1546 } else if (bp
->b_bufsize
== 0) {
1548 * Buffers with no memory. Due to conditionals near the top
1549 * of brelse() such buffers should probably already be
1550 * marked B_INVAL and disassociated from their vnode.
1552 bp
->b_flags
|= B_INVAL
;
1553 KASSERT(bp
->b_vp
== NULL
,
1554 ("bp1 %p flags %08x/%08x vnode %p "
1555 "unexpectededly still associated!",
1556 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1557 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1558 bp
->b_qindex
= BQUEUE_EMPTY
;
1559 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1561 } else if (bp
->b_flags
& (B_INVAL
| B_NOCACHE
| B_RELBUF
)) {
1563 * Buffers with junk contents. Again these buffers had better
1564 * already be disassociated from their vnode.
1566 KASSERT(bp
->b_vp
== NULL
,
1567 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1568 "still associated!",
1569 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1570 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1571 bp
->b_flags
|= B_INVAL
;
1572 bp
->b_qindex
= BQUEUE_CLEAN
;
1573 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1577 * Remaining buffers. These buffers are still associated with
1580 switch(bp
->b_flags
& (B_DELWRI
|B_HEAVY
)) {
1582 bp
->b_qindex
= BQUEUE_DIRTY
;
1583 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1586 case B_DELWRI
| B_HEAVY
:
1587 bp
->b_qindex
= BQUEUE_DIRTY_HW
;
1588 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1593 * NOTE: Buffers are always placed at the end of the
1594 * queue. If B_AGE is not set the buffer will cycle
1595 * through the queue twice.
1597 bp
->b_qindex
= BQUEUE_CLEAN
;
1598 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1603 spin_unlock(&pcpu
->spin
);
1606 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1607 * on the correct queue but we have not yet unlocked it.
1609 if ((bp
->b_flags
& (B_INVAL
|B_DELWRI
)) == (B_INVAL
|B_DELWRI
))
1613 * The bp is on an appropriate queue unless locked. If it is not
1614 * locked or dirty we can wakeup threads waiting for buffer space.
1616 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1617 * if B_INVAL is set ).
1619 if ((bp
->b_flags
& (B_LOCKED
|B_DELWRI
)) == 0)
1623 * Something we can maybe free or reuse
1625 if (bp
->b_bufsize
|| bp
->b_kvasize
)
1629 * Clean up temporary flags and unlock the buffer.
1631 bp
->b_flags
&= ~(B_NOCACHE
| B_RELBUF
| B_DIRECT
);
1638 * Release a buffer back to the appropriate queue but do not try to free
1639 * it. The buffer is expected to be used again soon.
1641 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1642 * biodone() to requeue an async I/O on completion. It is also used when
1643 * known good buffers need to be requeued but we think we may need the data
1646 * XXX we should be able to leave the B_RELBUF hint set on completion.
1649 bqrelse(struct buf
*bp
)
1651 struct bufpcpu
*pcpu
;
1653 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1654 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1656 if (bp
->b_qindex
!= BQUEUE_NONE
)
1657 panic("bqrelse: free buffer onto another queue???");
1659 buf_act_advance(bp
);
1661 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1662 spin_lock(&pcpu
->spin
);
1664 if (bp
->b_flags
& B_LOCKED
) {
1666 * Locked buffers are released to the locked queue. However,
1667 * if the buffer is dirty it will first go into the dirty
1668 * queue and later on after the I/O completes successfully it
1669 * will be released to the locked queue.
1671 bp
->b_qindex
= BQUEUE_LOCKED
;
1672 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1674 } else if (bp
->b_flags
& B_DELWRI
) {
1675 bp
->b_qindex
= (bp
->b_flags
& B_HEAVY
) ?
1676 BQUEUE_DIRTY_HW
: BQUEUE_DIRTY
;
1677 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1679 } else if (vm_page_count_min(0)) {
1681 * We are too low on memory, we have to try to free the
1682 * buffer (most importantly: the wired pages making up its
1683 * backing store) *now*.
1685 spin_unlock(&pcpu
->spin
);
1689 bp
->b_qindex
= BQUEUE_CLEAN
;
1690 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1693 spin_unlock(&pcpu
->spin
);
1696 * We have now placed the buffer on the proper queue, but have yet
1699 if ((bp
->b_flags
& B_LOCKED
) == 0 &&
1700 ((bp
->b_flags
& B_INVAL
) || (bp
->b_flags
& B_DELWRI
) == 0)) {
1705 * Something we can maybe free or reuse.
1707 if (bp
->b_bufsize
&& !(bp
->b_flags
& B_DELWRI
))
1711 * Final cleanup and unlock. Clear bits that are only used while a
1712 * buffer is actively locked.
1714 bp
->b_flags
&= ~(B_NOCACHE
| B_RELBUF
);
1715 dsched_buf_exit(bp
);
1720 * Hold a buffer, preventing it from being reused. This will prevent
1721 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1722 * operations. If a B_INVAL operation occurs the buffer will remain held
1723 * but the underlying pages may get ripped out.
1725 * These functions are typically used in VOP_READ/VOP_WRITE functions
1726 * to hold a buffer during a copyin or copyout, preventing deadlocks
1727 * or recursive lock panics when read()/write() is used over mmap()'d
1730 * NOTE: bqhold() requires that the buffer be locked at the time of the
1731 * hold. bqdrop() has no requirements other than the buffer having
1732 * previously been held.
1735 bqhold(struct buf
*bp
)
1737 atomic_add_int(&bp
->b_refs
, 1);
1741 bqdrop(struct buf
*bp
)
1743 KKASSERT(bp
->b_refs
> 0);
1744 atomic_add_int(&bp
->b_refs
, -1);
1748 * Return backing pages held by the buffer 'bp' back to the VM system.
1749 * This routine is called when the bp is invalidated, released, or
1752 * The KVA mapping (b_data) for the underlying pages is removed by
1755 * WARNING! This routine is integral to the low memory critical path
1756 * when a buffer is B_RELBUF'd. If the system has a severe page
1757 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1758 * queues so they can be reused in the current pageout daemon
1762 vfs_vmio_release(struct buf
*bp
)
1767 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1768 m
= bp
->b_xio
.xio_pages
[i
];
1769 bp
->b_xio
.xio_pages
[i
] = NULL
;
1772 * We need to own the page in order to safely unwire it.
1774 vm_page_busy_wait(m
, FALSE
, "vmiopg");
1777 * The VFS is telling us this is not a meta-data buffer
1778 * even if it is backed by a block device.
1780 if (bp
->b_flags
& B_NOTMETA
)
1781 vm_page_flag_set(m
, PG_NOTMETA
);
1784 * This is a very important bit of code. We try to track
1785 * VM page use whether the pages are wired into the buffer
1786 * cache or not. While wired into the buffer cache the
1787 * bp tracks the act_count.
1789 * We can choose to place unwired pages on the inactive
1790 * queue (0) or active queue (1). If we place too many
1791 * on the active queue the queue will cycle the act_count
1792 * on pages we'd like to keep, just from single-use pages
1793 * (such as when doing a tar-up or file scan).
1795 if (bp
->b_act_count
< vm_cycle_point
)
1796 vm_page_unwire(m
, 0);
1798 vm_page_unwire(m
, 1);
1801 * If the wire_count has dropped to 0 we may need to take
1802 * further action before unbusying the page.
1804 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1806 if (m
->wire_count
== 0) {
1807 if (bp
->b_flags
& B_DIRECT
) {
1809 * Attempt to free the page if B_DIRECT is
1810 * set, the caller does not desire the page
1814 vm_page_try_to_free(m
);
1815 } else if ((bp
->b_flags
& (B_NOTMETA
| B_TTC
)) ||
1816 vm_page_count_min(0)) {
1818 * Attempt to move the page to PQ_CACHE
1819 * if B_NOTMETA is set. This flag is set
1820 * by HAMMER to remove one of the two pages
1821 * present when double buffering is enabled.
1823 * Attempt to move the page to PQ_CACHE
1824 * If we have a severe page deficit. This
1825 * will cause buffer cache operations related
1826 * to pageouts to recycle the related pages
1827 * in order to avoid a low memory deadlock.
1829 m
->act_count
= bp
->b_act_count
;
1830 vm_page_try_to_cache(m
);
1833 * Nominal case, leave the page on the
1834 * queue the original unwiring placed it on
1835 * (active or inactive).
1837 m
->act_count
= bp
->b_act_count
;
1846 * Zero out the pmap pte's for the mapping, but don't bother
1847 * invalidating the TLB. The range will be properly invalidating
1848 * when new pages are entered into the mapping.
1850 * This in particular reduces tmpfs tear-down overhead and reduces
1851 * buffer cache re-use overhead (one invalidation sequence instead
1852 * of two per re-use).
1854 pmap_qremove_noinval(trunc_page((vm_offset_t
) bp
->b_data
),
1855 bp
->b_xio
.xio_npages
);
1856 CPUMASK_ASSZERO(bp
->b_cpumask
);
1857 if (bp
->b_bufsize
) {
1858 atomic_add_long(&bufspace
, -bp
->b_bufsize
);
1862 bp
->b_xio
.xio_npages
= 0;
1863 bp
->b_flags
&= ~(B_VMIO
| B_TTC
);
1864 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1870 * Find and initialize a new buffer header, freeing up existing buffers
1871 * in the bufqueues as necessary. The new buffer is returned locked.
1873 * Important: B_INVAL is not set. If the caller wishes to throw the
1874 * buffer away, the caller must set B_INVAL prior to calling brelse().
1877 * We have insufficient buffer headers
1878 * We have insufficient buffer space
1880 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1881 * Instead we ask the buf daemon to do it for us. We attempt to
1882 * avoid piecemeal wakeups of the pageout daemon.
1885 getnewbuf(int blkflags
, int slptimeo
, int size
, int maxsize
)
1887 struct bufpcpu
*pcpu
;
1892 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
1893 int maxloops
= 200000;
1894 int restart_reason
= 0;
1895 struct buf
*restart_bp
= NULL
;
1896 static char flushingbufs
[MAXCPU
];
1900 * We can't afford to block since we might be holding a vnode lock,
1901 * which may prevent system daemons from running. We deal with
1902 * low-memory situations by proactively returning memory and running
1903 * async I/O rather then sync I/O.
1907 nqcpu
= mycpu
->gd_cpuid
;
1908 flushingp
= &flushingbufs
[nqcpu
];
1910 if (bufspace
< lobufspace
)
1913 if (debug_bufbio
&& --maxloops
== 0)
1914 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1915 mycpu
->gd_cpuid
, restart_reason
, restart_bp
);
1918 * Setup for scan. If we do not have enough free buffers,
1919 * we setup a degenerate case that immediately fails. Note
1920 * that if we are specially marked process, we are allowed to
1921 * dip into our reserves.
1923 * The scanning sequence is nominally: EMPTY->CLEAN
1925 pcpu
= &bufpcpu
[nqcpu
];
1926 spin_lock(&pcpu
->spin
);
1929 * Prime the scan for this cpu. Locate the first buffer to
1930 * check. If we are flushing buffers we must skip the
1933 nqindex
= BQUEUE_EMPTY
;
1934 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_EMPTY
]);
1935 if (nbp
== NULL
|| *flushingp
) {
1936 nqindex
= BQUEUE_CLEAN
;
1937 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
]);
1941 * Run scan, possibly freeing data and/or kva mappings on the fly,
1944 * WARNING! spin is held!
1946 while ((bp
= nbp
) != NULL
) {
1947 int qindex
= nqindex
;
1949 nbp
= TAILQ_NEXT(bp
, b_freelist
);
1952 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1953 * cycles through the queue twice before being selected.
1955 if (qindex
== BQUEUE_CLEAN
&&
1956 (bp
->b_flags
& B_AGE
) == 0 && nbp
) {
1957 bp
->b_flags
|= B_AGE
;
1958 TAILQ_REMOVE(&pcpu
->bufqueues
[qindex
],
1960 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[qindex
],
1966 * Calculate next bp ( we can only use it if we do not block
1967 * or do other fancy things ).
1972 nqindex
= BQUEUE_CLEAN
;
1973 if ((nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
])))
1987 KASSERT(bp
->b_qindex
== qindex
,
1988 ("getnewbuf: inconsistent queue %d bp %p", qindex
, bp
));
1991 * Note: we no longer distinguish between VMIO and non-VMIO
1994 KASSERT((bp
->b_flags
& B_DELWRI
) == 0,
1995 ("delwri buffer %p found in queue %d", bp
, qindex
));
1998 * Do not try to reuse a buffer with a non-zero b_refs.
1999 * This is an unsynchronized test. A synchronized test
2000 * is also performed after we lock the buffer.
2006 * Start freeing the bp. This is somewhat involved. nbp
2007 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2008 * on the clean list must be disassociated from their
2009 * current vnode. Buffers on the empty lists have
2010 * already been disassociated.
2012 * b_refs is checked after locking along with queue changes.
2013 * We must check here to deal with zero->nonzero transitions
2014 * made by the owner of the buffer lock, which is used by
2015 * VFS's to hold the buffer while issuing an unlocked
2016 * uiomove()s. We cannot invalidate the buffer's pages
2017 * for this case. Once we successfully lock a buffer the
2018 * only 0->1 transitions of b_refs will occur via findblk().
2020 * We must also check for queue changes after successful
2021 * locking as the current lock holder may dispose of the
2022 * buffer and change its queue.
2024 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
2025 spin_unlock(&pcpu
->spin
);
2026 tsleep(&bd_request
, 0, "gnbxxx", (hz
+ 99) / 100);
2031 if (bp
->b_qindex
!= qindex
|| bp
->b_refs
) {
2032 spin_unlock(&pcpu
->spin
);
2038 bremfree_locked(bp
);
2039 spin_unlock(&pcpu
->spin
);
2042 * Dependancies must be handled before we disassociate the
2045 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2046 * be immediately disassociated. HAMMER then becomes
2047 * responsible for releasing the buffer.
2049 * NOTE: spin is UNLOCKED now.
2051 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
2053 if (bp
->b_flags
& B_LOCKED
) {
2059 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2063 * CLEAN buffers have content or associations that must be
2064 * cleaned out if not repurposing.
2066 if (qindex
== BQUEUE_CLEAN
) {
2067 if (bp
->b_flags
& B_VMIO
)
2068 vfs_vmio_release(bp
);
2074 * NOTE: nbp is now entirely invalid. We can only restart
2075 * the scan from this point on.
2077 * Get the rest of the buffer freed up. b_kva* is still
2078 * valid after this operation.
2080 KASSERT(bp
->b_vp
== NULL
,
2081 ("bp3 %p flags %08x vnode %p qindex %d "
2082 "unexpectededly still associated!",
2083 bp
, bp
->b_flags
, bp
->b_vp
, qindex
));
2084 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
2089 if (bp
->b_flags
& (B_VNDIRTY
| B_VNCLEAN
| B_HASHED
)) {
2090 kprintf("getnewbuf: caught bug vp queue "
2091 "%p/%08x qidx %d\n",
2092 bp
, bp
->b_flags
, qindex
);
2095 bp
->b_flags
= B_BNOCLIP
;
2096 bp
->b_cmd
= BUF_CMD_DONE
;
2101 bp
->b_xio
.xio_npages
= 0;
2102 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
2103 bp
->b_act_count
= ACT_INIT
;
2105 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2107 if (blkflags
& GETBLK_BHEAVY
)
2108 bp
->b_flags
|= B_HEAVY
;
2110 if (bufspace
>= hibufspace
)
2112 if (bufspace
< lobufspace
)
2115 bp
->b_flags
|= B_INVAL
;
2123 * b_refs can transition to a non-zero value while we hold
2124 * the buffer locked due to a findblk(). Our brelvp() above
2125 * interlocked any future possible transitions due to
2128 * If we find b_refs to be non-zero we can destroy the
2129 * buffer's contents but we cannot yet reuse the buffer.
2132 bp
->b_flags
|= B_INVAL
;
2141 * We found our buffer!
2147 * If we exhausted our list, iterate other cpus. If that fails,
2148 * sleep as appropriate. We may have to wakeup various daemons
2149 * and write out some dirty buffers.
2151 * Generally we are sleeping due to insufficient buffer space.
2153 * NOTE: spin is held if bp is NULL, else it is not held.
2159 spin_unlock(&pcpu
->spin
);
2161 nqcpu
= (nqcpu
+ 1) % ncpus
;
2162 if (nqcpu
!= mycpu
->gd_cpuid
) {
2168 if (bufspace
>= hibufspace
) {
2170 flags
= VFS_BIO_NEED_BUFSPACE
;
2173 flags
= VFS_BIO_NEED_ANY
;
2176 bd_speedup(); /* heeeelp */
2177 atomic_set_int(&needsbuffer
, flags
);
2178 while (needsbuffer
& flags
) {
2181 tsleep_interlock(&needsbuffer
, 0);
2182 value
= atomic_fetchadd_int(&needsbuffer
, 0);
2183 if (value
& flags
) {
2184 if (tsleep(&needsbuffer
, PINTERLOCKED
|slpflags
,
2185 waitmsg
, slptimeo
)) {
2192 * We finally have a valid bp. Reset b_data.
2194 * (spin is not held)
2196 bp
->b_data
= bp
->b_kvabase
;
2204 * Buffer flushing daemon. Buffers are normally flushed by the
2205 * update daemon but if it cannot keep up this process starts to
2206 * take the load in an attempt to prevent getnewbuf() from blocking.
2208 * Once a flush is initiated it does not stop until the number
2209 * of buffers falls below lodirtybuffers, but we will wake up anyone
2210 * waiting at the mid-point.
2212 static struct kproc_desc buf_kp
= {
2217 SYSINIT(bufdaemon
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2218 kproc_start
, &buf_kp
);
2220 static struct kproc_desc bufhw_kp
= {
2225 SYSINIT(bufdaemon_hw
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2226 kproc_start
, &bufhw_kp
);
2229 buf_daemon1(struct thread
*td
, int queue
, int (*buf_limit_fn
)(long),
2235 marker
= kmalloc(sizeof(*marker
), M_BIOBUF
, M_WAITOK
| M_ZERO
);
2236 marker
->b_flags
|= B_MARKER
;
2237 marker
->b_qindex
= BQUEUE_NONE
;
2241 * This process needs to be suspended prior to shutdown sync.
2243 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
2244 td
, SHUTDOWN_PRI_LAST
);
2245 curthread
->td_flags
|= TDF_SYSTHREAD
;
2248 * This process is allowed to take the buffer cache to the limit
2251 kproc_suspend_loop();
2254 * Do the flush as long as the number of dirty buffers
2255 * (including those running) exceeds lodirtybufspace.
2257 * When flushing limit running I/O to hirunningspace
2258 * Do the flush. Limit the amount of in-transit I/O we
2259 * allow to build up, otherwise we would completely saturate
2260 * the I/O system. Wakeup any waiting processes before we
2261 * normally would so they can run in parallel with our drain.
2263 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2264 * but because we split the operation into two threads we
2265 * have to cut it in half for each thread.
2267 waitrunningbufspace();
2268 limit
= lodirtybufspace
/ 2;
2269 while (buf_limit_fn(limit
)) {
2270 if (flushbufqueues(marker
, queue
) == 0)
2272 if (runningbufspace
< hirunningspace
)
2274 waitrunningbufspace();
2278 * We reached our low water mark, reset the
2279 * request and sleep until we are needed again.
2280 * The sleep is just so the suspend code works.
2282 tsleep_interlock(bd_req
, 0);
2283 if (atomic_swap_int(bd_req
, 0) == 0)
2284 tsleep(bd_req
, PINTERLOCKED
, "psleep", hz
);
2287 /*kfree(marker, M_BIOBUF);*/
2291 buf_daemon_limit(long limit
)
2293 return (runningbufspace
+ dirtykvaspace
> limit
||
2294 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2);
2298 buf_daemon_hw_limit(long limit
)
2300 return (runningbufspace
+ dirtykvaspace
> limit
||
2301 dirtybufcounthw
>= nbuf
/ 2);
2307 buf_daemon1(bufdaemon_td
, BQUEUE_DIRTY
, buf_daemon_limit
,
2314 buf_daemon1(bufdaemonhw_td
, BQUEUE_DIRTY_HW
, buf_daemon_hw_limit
,
2319 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2320 * localized version of the queue. Each call made to this function iterates
2321 * to another cpu. It is desireable to flush several buffers from the same
2322 * cpu's queue at once, as these are likely going to be linear.
2324 * We must be careful to free up B_INVAL buffers instead of write them, which
2325 * NFS is particularly sensitive to.
2327 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2328 * really want to try to get the buffer out and reuse it due to the write
2329 * load on the machine.
2331 * We must lock the buffer in order to check its validity before we can mess
2332 * with its contents. spin isn't enough.
2335 flushbufqueues(struct buf
*marker
, bufq_type_t q
)
2337 struct bufpcpu
*pcpu
;
2340 u_int loops
= flushperqueue
;
2341 int lcpu
= marker
->b_qcpu
;
2343 KKASSERT(marker
->b_qindex
== BQUEUE_NONE
);
2344 KKASSERT(marker
->b_flags
& B_MARKER
);
2348 * Spinlock needed to perform operations on the queue and may be
2349 * held through a non-blocking BUF_LOCK(), but cannot be held when
2350 * BUF_UNLOCK()ing or through any other major operation.
2352 pcpu
= &bufpcpu
[marker
->b_qcpu
];
2353 spin_lock(&pcpu
->spin
);
2354 marker
->b_qindex
= q
;
2355 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2358 while ((bp
= TAILQ_NEXT(bp
, b_freelist
)) != NULL
) {
2360 * NOTE: spinlock is always held at the top of the loop
2362 if (bp
->b_flags
& B_MARKER
)
2364 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2365 kprintf("Unexpected clean buffer %p\n", bp
);
2368 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
))
2370 KKASSERT(bp
->b_qcpu
== marker
->b_qcpu
&& bp
->b_qindex
== q
);
2373 * Once the buffer is locked we will have no choice but to
2374 * unlock the spinlock around a later BUF_UNLOCK and re-set
2375 * bp = marker when looping. Move the marker now to make
2378 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2379 TAILQ_INSERT_AFTER(&pcpu
->bufqueues
[q
], bp
, marker
, b_freelist
);
2382 * Must recheck B_DELWRI after successfully locking
2385 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2386 spin_unlock(&pcpu
->spin
);
2388 spin_lock(&pcpu
->spin
);
2394 * Remove the buffer from its queue. We still own the
2400 * Disposing of an invalid buffer counts as a flush op
2402 if (bp
->b_flags
& B_INVAL
) {
2403 spin_unlock(&pcpu
->spin
);
2409 * Release the spinlock for the more complex ops we
2410 * are now going to do.
2412 spin_unlock(&pcpu
->spin
);
2416 * This is a bit messy
2418 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
2419 (bp
->b_flags
& B_DEFERRED
) == 0 &&
2420 buf_countdeps(bp
, 0)) {
2421 spin_lock(&pcpu
->spin
);
2422 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[q
], bp
, b_freelist
);
2424 bp
->b_flags
|= B_DEFERRED
;
2425 spin_unlock(&pcpu
->spin
);
2427 spin_lock(&pcpu
->spin
);
2433 * spinlock not held here.
2435 * If the buffer has a dependancy, buf_checkwrite() must
2436 * also return 0 for us to be able to initate the write.
2438 * If the buffer is flagged B_ERROR it may be requeued
2439 * over and over again, we try to avoid a live lock.
2441 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& buf_checkwrite(bp
)) {
2443 } else if (bp
->b_flags
& B_ERROR
) {
2444 tsleep(bp
, 0, "bioer", 1);
2445 bp
->b_flags
&= ~B_AGE
;
2448 bp
->b_flags
|= B_AGE
| B_KVABIO
;
2451 /* bp invalid but needs to be NULL-tested if we break out */
2453 spin_lock(&pcpu
->spin
);
2459 /* bp is invalid here but can be NULL-tested to advance */
2461 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2462 marker
->b_qindex
= BQUEUE_NONE
;
2463 spin_unlock(&pcpu
->spin
);
2466 * Advance the marker to be fair.
2468 marker
->b_qcpu
= (marker
->b_qcpu
+ 1) % ncpus
;
2470 if (marker
->b_qcpu
!= lcpu
)
2480 * Returns true if no I/O is needed to access the associated VM object.
2481 * This is like findblk except it also hunts around in the VM system for
2484 * Note that we ignore vm_page_free() races from interrupts against our
2485 * lookup, since if the caller is not protected our return value will not
2486 * be any more valid then otherwise once we exit the critical section.
2489 inmem(struct vnode
*vp
, off_t loffset
)
2492 vm_offset_t toff
, tinc
, size
;
2496 if (findblk(vp
, loffset
, FINDBLK_TEST
))
2498 if (vp
->v_mount
== NULL
)
2500 if ((obj
= vp
->v_object
) == NULL
)
2504 if (size
> vp
->v_mount
->mnt_stat
.f_iosize
)
2505 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
2507 vm_object_hold(obj
);
2508 for (toff
= 0; toff
< vp
->v_mount
->mnt_stat
.f_iosize
; toff
+= tinc
) {
2509 m
= vm_page_lookup(obj
, OFF_TO_IDX(loffset
+ toff
));
2515 if (tinc
> PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
))
2516 tinc
= PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
);
2517 if (vm_page_is_valid(m
,
2518 (vm_offset_t
) ((toff
+ loffset
) & PAGE_MASK
), tinc
) == 0) {
2523 vm_object_drop(obj
);
2530 * Locate and return the specified buffer. Unless flagged otherwise,
2531 * a locked buffer will be returned if it exists or NULL if it does not.
2533 * findblk()'d buffers are still on the bufqueues and if you intend
2534 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2535 * and possibly do other stuff to it.
2537 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2538 * for locking the buffer and ensuring that it remains
2539 * the desired buffer after locking.
2541 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2542 * to acquire the lock we return NULL, even if the
2545 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2546 * reuse by getnewbuf() but does not prevent
2547 * disassociation (B_INVAL). Used to avoid deadlocks
2548 * against random (vp,loffset)s due to reassignment.
2550 * FINDBLK_KVABIO - Only applicable when returning a locked buffer.
2551 * Indicates that the caller supports B_KVABIO.
2553 * (0) - Lock the buffer blocking.
2556 findblk(struct vnode
*vp
, off_t loffset
, int flags
)
2561 lkflags
= LK_EXCLUSIVE
;
2562 if (flags
& FINDBLK_NBLOCK
)
2563 lkflags
|= LK_NOWAIT
;
2567 * Lookup. Ref the buf while holding v_token to prevent
2568 * reuse (but does not prevent diassociation).
2570 lwkt_gettoken_shared(&vp
->v_token
);
2571 bp
= buf_rb_hash_RB_LOOKUP(&vp
->v_rbhash_tree
, loffset
);
2573 lwkt_reltoken(&vp
->v_token
);
2577 lwkt_reltoken(&vp
->v_token
);
2580 * If testing only break and return bp, do not lock.
2582 if (flags
& FINDBLK_TEST
)
2586 * Lock the buffer, return an error if the lock fails.
2587 * (only FINDBLK_NBLOCK can cause the lock to fail).
2589 if (BUF_LOCK(bp
, lkflags
)) {
2590 atomic_subtract_int(&bp
->b_refs
, 1);
2591 /* bp = NULL; not needed */
2596 * Revalidate the locked buf before allowing it to be
2599 * B_KVABIO is only set/cleared when locking. When
2600 * clearing B_KVABIO, we must ensure that the buffer
2601 * is synchronized to all cpus.
2603 if (bp
->b_vp
== vp
&& bp
->b_loffset
== loffset
) {
2604 if (flags
& FINDBLK_KVABIO
)
2605 bp
->b_flags
|= B_KVABIO
;
2610 atomic_subtract_int(&bp
->b_refs
, 1);
2617 if ((flags
& FINDBLK_REF
) == 0)
2618 atomic_subtract_int(&bp
->b_refs
, 1);
2625 * Similar to getblk() except only returns the buffer if it is
2626 * B_CACHE and requires no other manipulation. Otherwise NULL
2627 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2628 * and the getblk() would block.
2630 * If B_RAM is set the buffer might be just fine, but we return
2631 * NULL anyway because we want the code to fall through to the
2632 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2634 * If blksize is 0 the buffer cache buffer must already be fully
2637 * If blksize is non-zero getblk() will be used, allowing a buffer
2638 * to be reinstantiated from its VM backing store. The buffer must
2639 * still be fully cached after reinstantiation to be returned.
2642 getcacheblk(struct vnode
*vp
, off_t loffset
, int blksize
, int blkflags
)
2647 if (blkflags
& GETBLK_NOWAIT
)
2648 fndflags
|= FINDBLK_NBLOCK
;
2649 if (blkflags
& GETBLK_KVABIO
)
2650 fndflags
|= FINDBLK_KVABIO
;
2653 bp
= getblk(vp
, loffset
, blksize
, blkflags
, 0);
2655 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
)) == B_CACHE
) {
2656 bp
->b_flags
&= ~B_AGE
;
2657 if (bp
->b_flags
& B_RAM
) {
2667 bp
= findblk(vp
, loffset
, fndflags
);
2669 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) ==
2671 bp
->b_flags
&= ~B_AGE
;
2685 * Get a block given a specified block and offset into a file/device.
2686 * B_INVAL may or may not be set on return. The caller should clear
2687 * B_INVAL prior to initiating a READ.
2689 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2690 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2691 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2692 * without doing any of those things the system will likely believe
2693 * the buffer to be valid (especially if it is not B_VMIO), and the
2694 * next getblk() will return the buffer with B_CACHE set.
2696 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2697 * an existing buffer.
2699 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2700 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2701 * and then cleared based on the backing VM. If the previous buffer is
2702 * non-0-sized but invalid, B_CACHE will be cleared.
2704 * If getblk() must create a new buffer, the new buffer is returned with
2705 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2706 * case it is returned with B_INVAL clear and B_CACHE set based on the
2709 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2710 * B_CACHE bit is clear.
2712 * What this means, basically, is that the caller should use B_CACHE to
2713 * determine whether the buffer is fully valid or not and should clear
2714 * B_INVAL prior to issuing a read. If the caller intends to validate
2715 * the buffer by loading its data area with something, the caller needs
2716 * to clear B_INVAL. If the caller does this without issuing an I/O,
2717 * the caller should set B_CACHE ( as an optimization ), else the caller
2718 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2719 * a write attempt or if it was a successfull read. If the caller
2720 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2721 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2725 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2726 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2729 getblk(struct vnode
*vp
, off_t loffset
, int size
, int blkflags
, int slptimeo
)
2732 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
2736 if (size
> MAXBSIZE
)
2737 panic("getblk: size(%d) > MAXBSIZE(%d)", size
, MAXBSIZE
);
2738 if (vp
->v_object
== NULL
)
2739 panic("getblk: vnode %p has no object!", vp
);
2742 * NOTE: findblk does not try to resolve KVABIO in REF-only mode.
2743 * we still have to handle that ourselves.
2746 if ((bp
= findblk(vp
, loffset
, FINDBLK_REF
| FINDBLK_TEST
)) != NULL
) {
2748 * The buffer was found in the cache, but we need to lock it.
2749 * We must acquire a ref on the bp to prevent reuse, but
2750 * this will not prevent disassociation (brelvp()) so we
2751 * must recheck (vp,loffset) after acquiring the lock.
2753 * Without the ref the buffer could potentially be reused
2754 * before we acquire the lock and create a deadlock
2755 * situation between the thread trying to reuse the buffer
2756 * and us due to the fact that we would wind up blocking
2757 * on a random (vp,loffset).
2759 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2760 if (blkflags
& GETBLK_NOWAIT
) {
2764 lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
2765 if (blkflags
& GETBLK_PCATCH
)
2766 lkflags
|= LK_PCATCH
;
2767 error
= BUF_TIMELOCK(bp
, lkflags
, "getblk", slptimeo
);
2770 if (error
== ENOLCK
)
2774 /* buffer may have changed on us */
2779 * Once the buffer has been locked, make sure we didn't race
2780 * a buffer recyclement. Buffers that are no longer hashed
2781 * will have b_vp == NULL, so this takes care of that check
2784 if (bp
->b_vp
!= vp
|| bp
->b_loffset
!= loffset
) {
2786 kprintf("Warning buffer %p (vp %p loffset %lld) "
2788 bp
, vp
, (long long)loffset
);
2795 * If SZMATCH any pre-existing buffer must be of the requested
2796 * size or NULL is returned. The caller absolutely does not
2797 * want getblk() to bwrite() the buffer on a size mismatch.
2799 if ((blkflags
& GETBLK_SZMATCH
) && size
!= bp
->b_bcount
) {
2805 * All vnode-based buffers must be backed by a VM object.
2807 * Set B_KVABIO for any incidental work, we will fix it
2810 KKASSERT(bp
->b_flags
& B_VMIO
);
2811 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2812 bp
->b_flags
&= ~B_AGE
;
2813 bp
->b_flags
|= B_KVABIO
;
2816 * Make sure that B_INVAL buffers do not have a cached
2817 * block number translation.
2819 if ((bp
->b_flags
& B_INVAL
) &&
2820 (bp
->b_bio2
.bio_offset
!= NOOFFSET
)) {
2821 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2822 " did not have cleared bio_offset cache\n",
2823 bp
, vp
, (long long)loffset
);
2824 clearbiocache(&bp
->b_bio2
);
2828 * The buffer is locked. B_CACHE is cleared if the buffer is
2831 * After the bremfree(), disposals must use b[q]relse().
2833 if (bp
->b_flags
& B_INVAL
)
2834 bp
->b_flags
&= ~B_CACHE
;
2838 * Any size inconsistancy with a dirty buffer or a buffer
2839 * with a softupdates dependancy must be resolved. Resizing
2840 * the buffer in such circumstances can lead to problems.
2842 * Dirty or dependant buffers are written synchronously.
2843 * Other types of buffers are simply released and
2844 * reconstituted as they may be backed by valid, dirty VM
2845 * pages (but not marked B_DELWRI).
2847 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2848 * and may be left over from a prior truncation (and thus
2849 * no longer represent the actual EOF point), so we
2850 * definitely do not want to B_NOCACHE the backing store.
2852 if (size
!= bp
->b_bcount
) {
2853 if (bp
->b_flags
& B_DELWRI
) {
2854 bp
->b_flags
|= B_RELBUF
;
2856 } else if (LIST_FIRST(&bp
->b_dep
)) {
2857 bp
->b_flags
|= B_RELBUF
;
2860 bp
->b_flags
|= B_RELBUF
;
2865 KKASSERT(size
<= bp
->b_kvasize
);
2866 KASSERT(bp
->b_loffset
!= NOOFFSET
,
2867 ("getblk: no buffer offset"));
2870 * A buffer with B_DELWRI set and B_CACHE clear must
2871 * be committed before we can return the buffer in
2872 * order to prevent the caller from issuing a read
2873 * ( due to B_CACHE not being set ) and overwriting
2876 * Most callers, including NFS and FFS, need this to
2877 * operate properly either because they assume they
2878 * can issue a read if B_CACHE is not set, or because
2879 * ( for example ) an uncached B_DELWRI might loop due
2880 * to softupdates re-dirtying the buffer. In the latter
2881 * case, B_CACHE is set after the first write completes,
2882 * preventing further loops.
2884 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2885 * above while extending the buffer, we cannot allow the
2886 * buffer to remain with B_CACHE set after the write
2887 * completes or it will represent a corrupt state. To
2888 * deal with this we set B_NOCACHE to scrap the buffer
2891 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2892 * I'm not even sure this state is still possible
2893 * now that getblk() writes out any dirty buffers
2896 * We might be able to do something fancy, like setting
2897 * B_CACHE in bwrite() except if B_DELWRI is already set,
2898 * so the below call doesn't set B_CACHE, but that gets real
2899 * confusing. This is much easier.
2901 if ((bp
->b_flags
& (B_CACHE
|B_DELWRI
)) == B_DELWRI
) {
2902 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2903 "and CACHE clear, b_flags %08x\n",
2904 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_flags
);
2905 bp
->b_flags
|= B_NOCACHE
;
2911 * Buffer is not in-core, create new buffer. The buffer
2912 * returned by getnewbuf() is locked. Note that the returned
2913 * buffer is also considered valid (not marked B_INVAL).
2915 * Calculating the offset for the I/O requires figuring out
2916 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2917 * the mount's f_iosize otherwise. If the vnode does not
2918 * have an associated mount we assume that the passed size is
2921 * Note that vn_isdisk() cannot be used here since it may
2922 * return a failure for numerous reasons. Note that the
2923 * buffer size may be larger then the block size (the caller
2924 * will use block numbers with the proper multiple). Beware
2925 * of using any v_* fields which are part of unions. In
2926 * particular, in DragonFly the mount point overloading
2927 * mechanism uses the namecache only and the underlying
2928 * directory vnode is not a special case.
2932 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
2934 else if (vp
->v_mount
)
2935 bsize
= vp
->v_mount
->mnt_stat
.f_iosize
;
2939 maxsize
= size
+ (loffset
& PAGE_MASK
);
2940 maxsize
= imax(maxsize
, bsize
);
2942 bp
= getnewbuf(blkflags
, slptimeo
, size
, maxsize
);
2944 if (slpflags
|| slptimeo
)
2950 * Atomically insert the buffer into the hash, so that it can
2951 * be found by findblk().
2953 * If bgetvp() returns non-zero a collision occured, and the
2954 * bp will not be associated with the vnode.
2956 * Make sure the translation layer has been cleared.
2958 bp
->b_loffset
= loffset
;
2959 bp
->b_bio2
.bio_offset
= NOOFFSET
;
2960 /* bp->b_bio2.bio_next = NULL; */
2962 if (bgetvp(vp
, bp
, size
)) {
2963 bp
->b_flags
|= B_INVAL
;
2969 * All vnode-based buffers must be backed by a VM object.
2971 * Set B_KVABIO for incidental work
2973 KKASSERT(vp
->v_object
!= NULL
);
2974 bp
->b_flags
|= B_VMIO
| B_KVABIO
;
2975 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2981 * Do the nasty smp broadcast (if the buffer needs it) when KVABIO
2984 if (bp
&& (blkflags
& GETBLK_KVABIO
) == 0) {
2993 * Reacquire a buffer that was previously released to the locked queue,
2994 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2995 * set B_LOCKED (which handles the acquisition race).
2997 * To this end, either B_LOCKED must be set or the dependancy list must be
3001 regetblk(struct buf
*bp
)
3003 KKASSERT((bp
->b_flags
& B_LOCKED
) || LIST_FIRST(&bp
->b_dep
) != NULL
);
3004 BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_RETRY
);
3011 * This code constitutes the buffer memory from either anonymous system
3012 * memory (in the case of non-VMIO operations) or from an associated
3013 * VM object (in the case of VMIO operations). This code is able to
3014 * resize a buffer up or down.
3016 * Note that this code is tricky, and has many complications to resolve
3017 * deadlock or inconsistant data situations. Tread lightly!!!
3018 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3019 * the caller. Calling this code willy nilly can result in the loss of
3022 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3023 * B_CACHE for the non-VMIO case.
3025 * This routine does not need to be called from a critical section but you
3026 * must own the buffer.
3029 allocbuf(struct buf
*bp
, int size
)
3036 if (BUF_LOCKINUSE(bp
) == 0)
3037 panic("allocbuf: buffer not busy");
3039 if (bp
->b_kvasize
< size
)
3040 panic("allocbuf: buffer too small");
3042 KKASSERT(bp
->b_flags
& B_VMIO
);
3044 newbsize
= roundup2(size
, DEV_BSIZE
);
3045 desiredpages
= ((int)(bp
->b_loffset
& PAGE_MASK
) +
3046 newbsize
+ PAGE_MASK
) >> PAGE_SHIFT
;
3047 KKASSERT(desiredpages
<= XIO_INTERNAL_PAGES
);
3050 * Set B_CACHE initially if buffer is 0 length or will become
3053 if (size
== 0 || bp
->b_bufsize
== 0)
3054 bp
->b_flags
|= B_CACHE
;
3056 if (newbsize
< bp
->b_bufsize
) {
3058 * DEV_BSIZE aligned new buffer size is less then the
3059 * DEV_BSIZE aligned existing buffer size. Figure out
3060 * if we have to remove any pages.
3062 if (desiredpages
< bp
->b_xio
.xio_npages
) {
3063 for (i
= desiredpages
; i
< bp
->b_xio
.xio_npages
; i
++) {
3065 * the page is not freed here -- it
3066 * is the responsibility of
3067 * vnode_pager_setsize
3069 m
= bp
->b_xio
.xio_pages
[i
];
3070 KASSERT(m
!= bogus_page
,
3071 ("allocbuf: bogus page found"));
3072 vm_page_busy_wait(m
, TRUE
, "biodep");
3073 bp
->b_xio
.xio_pages
[i
] = NULL
;
3074 vm_page_unwire(m
, 0);
3077 pmap_qremove_noinval((vm_offset_t
)
3078 trunc_page((vm_offset_t
)bp
->b_data
) +
3079 (desiredpages
<< PAGE_SHIFT
),
3080 (bp
->b_xio
.xio_npages
- desiredpages
));
3081 bp
->b_xio
.xio_npages
= desiredpages
;
3084 * Don't bother invalidating the pmap changes
3085 * (which wastes global SMP invalidation IPIs)
3086 * when setting the size to 0. This case occurs
3087 * when called via getnewbuf() during buffer
3090 if (desiredpages
== 0) {
3091 CPUMASK_ASSZERO(bp
->b_cpumask
);
3096 } else if (size
> bp
->b_bcount
) {
3098 * We are growing the buffer, possibly in a
3099 * byte-granular fashion.
3107 * Step 1, bring in the VM pages from the object,
3108 * allocating them if necessary. We must clear
3109 * B_CACHE if these pages are not valid for the
3110 * range covered by the buffer.
3115 vm_object_hold(obj
);
3116 while (bp
->b_xio
.xio_npages
< desiredpages
) {
3121 pi
= OFF_TO_IDX(bp
->b_loffset
) +
3122 bp
->b_xio
.xio_npages
;
3125 * Blocking on m->busy_count might lead to a
3128 * vm_fault->getpages->cluster_read->allocbuf
3130 m
= vm_page_lookup_busy_try(obj
, pi
, FALSE
,
3133 vm_page_sleep_busy(m
, FALSE
, "pgtblk");
3138 * note: must allocate system pages
3139 * since blocking here could intefere
3140 * with paging I/O, no matter which
3143 m
= bio_page_alloc(bp
, obj
, pi
,
3145 bp
->b_xio
.xio_npages
);
3149 bp
->b_flags
&= ~B_CACHE
;
3150 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3151 ++bp
->b_xio
.xio_npages
;
3157 * We found a page and were able to busy it.
3161 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3162 ++bp
->b_xio
.xio_npages
;
3163 if (bp
->b_act_count
< m
->act_count
)
3164 bp
->b_act_count
= m
->act_count
;
3166 vm_object_drop(obj
);
3169 * Step 2. We've loaded the pages into the buffer,
3170 * we have to figure out if we can still have B_CACHE
3171 * set. Note that B_CACHE is set according to the
3172 * byte-granular range ( bcount and size ), not the
3173 * aligned range ( newbsize ).
3175 * The VM test is against m->valid, which is DEV_BSIZE
3176 * aligned. Needless to say, the validity of the data
3177 * needs to also be DEV_BSIZE aligned. Note that this
3178 * fails with NFS if the server or some other client
3179 * extends the file's EOF. If our buffer is resized,
3180 * B_CACHE may remain set! XXX
3183 toff
= bp
->b_bcount
;
3184 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
3186 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
3189 if (tinc
> (size
- toff
))
3192 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >>
3200 bp
->b_xio
.xio_pages
[pi
]
3207 * Step 3, fixup the KVM pmap. Remember that
3208 * bp->b_data is relative to bp->b_loffset, but
3209 * bp->b_loffset may be offset into the first page.
3211 bp
->b_data
= (caddr_t
)trunc_page((vm_offset_t
)bp
->b_data
);
3212 pmap_qenter_noinval((vm_offset_t
)bp
->b_data
,
3213 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3214 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
3215 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
3218 atomic_add_long(&bufspace
, newbsize
- bp
->b_bufsize
);
3220 /* adjust space use on already-dirty buffer */
3221 if (bp
->b_flags
& B_DELWRI
) {
3222 /* dirtykvaspace unchanged */
3223 atomic_add_long(&dirtybufspace
, newbsize
- bp
->b_bufsize
);
3224 if (bp
->b_flags
& B_HEAVY
) {
3225 atomic_add_long(&dirtybufspacehw
,
3226 newbsize
- bp
->b_bufsize
);
3229 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
3230 bp
->b_bcount
= size
; /* requested buffer size */
3237 * Wait for buffer I/O completion, returning error status. B_EINTR
3238 * is converted into an EINTR error but not cleared (since a chain
3239 * of biowait() calls may occur).
3241 * On return bpdone() will have been called but the buffer will remain
3242 * locked and will not have been brelse()'d.
3244 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3245 * likely still in progress on return.
3247 * NOTE! This operation is on a BIO, not a BUF.
3249 * NOTE! BIO_DONE is cleared by vn_strategy()
3252 _biowait(struct bio
*bio
, const char *wmesg
, int to
)
3254 struct buf
*bp
= bio
->bio_buf
;
3259 KKASSERT(bio
== &bp
->b_bio1
);
3261 flags
= bio
->bio_flags
;
3262 if (flags
& BIO_DONE
)
3264 nflags
= flags
| BIO_WANT
;
3265 tsleep_interlock(bio
, 0);
3266 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3268 error
= tsleep(bio
, PINTERLOCKED
, wmesg
, to
);
3269 else if (bp
->b_cmd
== BUF_CMD_READ
)
3270 error
= tsleep(bio
, PINTERLOCKED
, "biord", to
);
3272 error
= tsleep(bio
, PINTERLOCKED
, "biowr", to
);
3274 kprintf("tsleep error biowait %d\n", error
);
3283 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3284 bio
->bio_flags
&= ~(BIO_DONE
| BIO_SYNC
);
3285 if (bp
->b_flags
& B_EINTR
)
3287 if (bp
->b_flags
& B_ERROR
)
3288 return (bp
->b_error
? bp
->b_error
: EIO
);
3293 biowait(struct bio
*bio
, const char *wmesg
)
3295 return(_biowait(bio
, wmesg
, 0));
3299 biowait_timeout(struct bio
*bio
, const char *wmesg
, int to
)
3301 return(_biowait(bio
, wmesg
, to
));
3305 * This associates a tracking count with an I/O. vn_strategy() and
3306 * dev_dstrategy() do this automatically but there are a few cases
3307 * where a vnode or device layer is bypassed when a block translation
3308 * is cached. In such cases bio_start_transaction() may be called on
3309 * the bypassed layers so the system gets an I/O in progress indication
3310 * for those higher layers.
3313 bio_start_transaction(struct bio
*bio
, struct bio_track
*track
)
3315 bio
->bio_track
= track
;
3316 bio_track_ref(track
);
3317 dsched_buf_enter(bio
->bio_buf
); /* might stack */
3321 * Initiate I/O on a vnode.
3323 * SWAPCACHE OPERATION:
3325 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3326 * devfs also uses b_vp for fake buffers so we also have to check
3327 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3328 * underlying block device. The swap assignments are related to the
3329 * buffer cache buffer's b_vp, not the passed vp.
3331 * The passed vp == bp->b_vp only in the case where the strategy call
3332 * is made on the vp itself for its own buffers (a regular file or
3333 * block device vp). The filesystem usually then re-calls vn_strategy()
3334 * after translating the request to an underlying device.
3336 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3337 * underlying buffer cache buffers.
3339 * We can only deal with page-aligned buffers at the moment, because
3340 * we can't tell what the real dirty state for pages straddling a buffer
3343 * In order to call swap_pager_strategy() we must provide the VM object
3344 * and base offset for the underlying buffer cache pages so it can find
3348 vn_strategy(struct vnode
*vp
, struct bio
*bio
)
3350 struct bio_track
*track
;
3351 struct buf
*bp
= bio
->bio_buf
;
3353 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3356 * Set when an I/O is issued on the bp. Cleared by consumers
3357 * (aka HAMMER), allowing the consumer to determine if I/O had
3358 * actually occurred.
3360 bp
->b_flags
|= B_IOISSUED
;
3363 * Handle the swapcache intercept.
3365 * NOTE: The swapcache itself always supports KVABIO and will
3366 * do the right thing if its underlying devices do not.
3368 if (vn_cache_strategy(vp
, bio
))
3372 * If the vnode does not support KVABIO and the buffer is using
3373 * KVABIO, we must synchronize b_data to all cpus before dispatching.
3375 if ((vp
->v_flag
& VKVABIO
) == 0 && (bp
->b_flags
& B_KVABIO
))
3379 * Otherwise do the operation through the filesystem
3381 if (bp
->b_cmd
== BUF_CMD_READ
)
3382 track
= &vp
->v_track_read
;
3384 track
= &vp
->v_track_write
;
3385 KKASSERT((bio
->bio_flags
& BIO_DONE
) == 0);
3386 bio
->bio_track
= track
;
3387 bio_track_ref(track
);
3388 dsched_buf_enter(bp
); /* might stack */
3389 vop_strategy(*vp
->v_ops
, vp
, bio
);
3393 * vn_cache_strategy()
3395 * Returns 1 if the interrupt was successful, 0 if not.
3397 * NOTE: This function supports the KVABIO API wherein b_data might not
3398 * be synchronized to the current cpu.
3400 static void vn_cache_strategy_callback(struct bio
*bio
);
3403 vn_cache_strategy(struct vnode
*vp
, struct bio
*bio
)
3405 struct buf
*bp
= bio
->bio_buf
;
3412 * Stop using swapcache if paniced, dumping, or dumped
3414 if (panicstr
|| dumping
)
3418 * Is this buffer cache buffer suitable for reading from
3421 if (vm_swapcache_read_enable
== 0 ||
3422 bp
->b_cmd
!= BUF_CMD_READ
||
3423 ((bp
->b_flags
& B_CLUSTER
) == 0 &&
3424 (bp
->b_vp
== NULL
|| (bp
->b_flags
& B_PAGING
))) ||
3425 ((int)bp
->b_loffset
& PAGE_MASK
) != 0 ||
3426 (bp
->b_bcount
& PAGE_MASK
) != 0) {
3431 * Figure out the original VM object (it will match the underlying
3432 * VM pages). Note that swap cached data uses page indices relative
3433 * to that object, not relative to bio->bio_offset.
3435 if (bp
->b_flags
& B_CLUSTER
)
3436 object
= vp
->v_object
;
3438 object
= bp
->b_vp
->v_object
;
3441 * In order to be able to use the swap cache all underlying VM
3442 * pages must be marked as such, and we can't have any bogus pages.
3444 for (i
= 0; i
< bp
->b_xio
.xio_npages
; ++i
) {
3445 m
= bp
->b_xio
.xio_pages
[i
];
3446 if ((m
->flags
& PG_SWAPPED
) == 0)
3448 if (m
== bogus_page
)
3453 * If we are good then issue the I/O using swap_pager_strategy().
3455 * We can only do this if the buffer actually supports object-backed
3456 * I/O. If it doesn't npages will be 0.
3458 if (i
&& i
== bp
->b_xio
.xio_npages
) {
3459 m
= bp
->b_xio
.xio_pages
[0];
3460 nbio
= push_bio(bio
);
3461 nbio
->bio_done
= vn_cache_strategy_callback
;
3462 nbio
->bio_offset
= ptoa(m
->pindex
);
3463 KKASSERT(m
->object
== object
);
3464 swap_pager_strategy(object
, nbio
);
3471 * This is a bit of a hack but since the vn_cache_strategy() function can
3472 * override a VFS's strategy function we must make sure that the bio, which
3473 * is probably bio2, doesn't leak an unexpected offset value back to the
3474 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3475 * bio went through its own file strategy function and the the bio2 offset
3476 * is a cached disk offset when, in fact, it isn't.
3479 vn_cache_strategy_callback(struct bio
*bio
)
3481 bio
->bio_offset
= NOOFFSET
;
3482 biodone(pop_bio(bio
));
3488 * Finish I/O on a buffer after all BIOs have been processed.
3489 * Called when the bio chain is exhausted or by biowait. If called
3490 * by biowait, elseit is typically 0.
3492 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3493 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3494 * assuming B_INVAL is clear.
3496 * For the VMIO case, we set B_CACHE if the op was a read and no
3497 * read error occured, or if the op was a write. B_CACHE is never
3498 * set if the buffer is invalid or otherwise uncacheable.
3500 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3501 * initiator to leave B_INVAL set to brelse the buffer out of existance
3502 * in the biodone routine.
3504 * bpdone is responsible for calling bundirty() on the buffer after a
3505 * successful write. We previously did this prior to initiating the
3506 * write under the assumption that the buffer might be dirtied again
3507 * while the write was in progress, however doing it before-hand creates
3508 * a race condition prior to the call to vn_strategy() where the
3509 * filesystem may not be aware that a dirty buffer is present.
3510 * It should not be possible for the buffer or its underlying pages to
3511 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3515 bpdone(struct buf
*bp
, int elseit
)
3519 KASSERT(BUF_LOCKINUSE(bp
), ("bpdone: bp %p not busy", bp
));
3520 KASSERT(bp
->b_cmd
!= BUF_CMD_DONE
,
3521 ("bpdone: bp %p already done!", bp
));
3524 * No more BIOs are left. All completion functions have been dealt
3525 * with, now we clean up the buffer.
3528 bp
->b_cmd
= BUF_CMD_DONE
;
3531 * Only reads and writes are processed past this point.
3533 if (cmd
!= BUF_CMD_READ
&& cmd
!= BUF_CMD_WRITE
) {
3534 if (cmd
== BUF_CMD_FREEBLKS
)
3535 bp
->b_flags
|= B_NOCACHE
;
3542 * A failed write must re-dirty the buffer unless B_INVAL
3545 * A successful write must clear the dirty flag. This is done after
3546 * the write to ensure that the buffer remains on the vnode's dirty
3547 * list for filesystem interlocks / checks until the write is actually
3548 * complete. HAMMER2 is sensitive to this issue.
3550 * Only applicable to normal buffers (with VPs). vinum buffers may
3553 * Must be done prior to calling buf_complete() as the callback might
3554 * re-dirty the buffer.
3556 if (cmd
== BUF_CMD_WRITE
) {
3557 if ((bp
->b_flags
& (B_ERROR
| B_INVAL
)) == B_ERROR
) {
3558 bp
->b_flags
&= ~B_NOCACHE
;
3568 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3569 * a lot worse. XXX - move this above the clearing of b_cmd
3571 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
3574 if (bp
->b_flags
& B_VMIO
) {
3580 struct vnode
*vp
= bp
->b_vp
;
3584 #if defined(VFS_BIO_DEBUG)
3585 if (vp
->v_auxrefs
== 0)
3586 panic("bpdone: zero vnode hold count");
3587 if ((vp
->v_flag
& VOBJBUF
) == 0)
3588 panic("bpdone: vnode is not setup for merged cache");
3591 foff
= bp
->b_loffset
;
3592 KASSERT(foff
!= NOOFFSET
, ("bpdone: no buffer offset"));
3593 KASSERT(obj
!= NULL
, ("bpdone: missing VM object"));
3595 #if defined(VFS_BIO_DEBUG)
3596 if (obj
->paging_in_progress
< bp
->b_xio
.xio_npages
) {
3597 kprintf("bpdone: paging in progress(%d) < "
3598 "bp->b_xio.xio_npages(%d)\n",
3599 obj
->paging_in_progress
,
3600 bp
->b_xio
.xio_npages
);
3605 * Set B_CACHE if the op was a normal read and no error
3606 * occured. B_CACHE is set for writes in the b*write()
3609 iosize
= bp
->b_bcount
- bp
->b_resid
;
3610 if (cmd
== BUF_CMD_READ
&&
3611 (bp
->b_flags
& (B_INVAL
|B_NOCACHE
|B_ERROR
)) == 0) {
3612 bp
->b_flags
|= B_CACHE
;
3615 vm_object_hold(obj
);
3616 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3620 resid
= ((foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
) - foff
;
3625 * cleanup bogus pages, restoring the originals. Since
3626 * the originals should still be wired, we don't have
3627 * to worry about interrupt/freeing races destroying
3628 * the VM object association.
3630 m
= bp
->b_xio
.xio_pages
[i
];
3631 if (m
== bogus_page
) {
3632 if ((bp
->b_flags
& B_HASBOGUS
) == 0)
3633 panic("bpdone: bp %p corrupt bogus", bp
);
3634 m
= vm_page_lookup(obj
, OFF_TO_IDX(foff
));
3636 panic("bpdone: page disappeared");
3637 bp
->b_xio
.xio_pages
[i
] = m
;
3642 #if defined(VFS_BIO_DEBUG)
3643 if (OFF_TO_IDX(foff
) != m
->pindex
) {
3644 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3646 (unsigned long)foff
, (long)m
->pindex
);
3651 * In the write case, the valid and clean bits are
3652 * already changed correctly (see bdwrite()), so we
3653 * only need to do this here in the read case.
3655 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
3656 if (cmd
== BUF_CMD_READ
&& isbogus
== 0 && resid
> 0)
3657 vfs_clean_one_page(bp
, i
, m
);
3660 * when debugging new filesystems or buffer I/O
3661 * methods, this is the most common error that pops
3662 * up. if you see this, you have not set the page
3663 * busy flag correctly!!!
3665 if ((m
->busy_count
& PBUSY_MASK
) == 0) {
3666 kprintf("bpdone: page busy < 0, "
3667 "pindex: %d, foff: 0x(%x,%x), "
3668 "resid: %d, index: %d\n",
3669 (int) m
->pindex
, (int)(foff
>> 32),
3670 (int) foff
& 0xffffffff, resid
, i
);
3671 if (!vn_isdisk(vp
, NULL
))
3672 kprintf(" iosize: %ld, loffset: %lld, "
3673 "flags: 0x%08x, npages: %d\n",
3674 bp
->b_vp
->v_mount
->mnt_stat
.f_iosize
,
3675 (long long)bp
->b_loffset
,
3676 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3678 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3679 (long long)bp
->b_loffset
,
3680 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3681 kprintf(" valid: 0x%x, dirty: 0x%x, "
3685 panic("bpdone: page busy < 0");
3687 vm_page_io_finish(m
);
3689 vm_object_pip_wakeup(obj
);
3690 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3693 if (bp
->b_flags
& B_HASBOGUS
) {
3694 pmap_qenter_noinval(trunc_page((vm_offset_t
)bp
->b_data
),
3695 bp
->b_xio
.xio_pages
,
3696 bp
->b_xio
.xio_npages
);
3697 bp
->b_flags
&= ~B_HASBOGUS
;
3700 vm_object_drop(obj
);
3704 * Finish up by releasing the buffer. There are no more synchronous
3705 * or asynchronous completions, those were handled by bio_done
3709 if (bp
->b_flags
& (B_NOCACHE
|B_INVAL
|B_ERROR
|B_RELBUF
))
3720 biodone(struct bio
*bio
)
3722 struct buf
*bp
= bio
->bio_buf
;
3724 runningbufwakeup(bp
);
3727 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3730 biodone_t
*done_func
;
3731 struct bio_track
*track
;
3734 * BIO tracking. Most but not all BIOs are tracked.
3736 if ((track
= bio
->bio_track
) != NULL
) {
3737 bio_track_rel(track
);
3738 bio
->bio_track
= NULL
;
3742 * A bio_done function terminates the loop. The function
3743 * will be responsible for any further chaining and/or
3744 * buffer management.
3746 * WARNING! The done function can deallocate the buffer!
3748 if ((done_func
= bio
->bio_done
) != NULL
) {
3749 bio
->bio_done
= NULL
;
3753 bio
= bio
->bio_prev
;
3757 * If we've run out of bio's do normal [a]synchronous completion.
3763 * Synchronous biodone - this terminates a synchronous BIO.
3765 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3766 * but still locked. The caller must brelse() the buffer after waiting
3770 biodone_sync(struct bio
*bio
)
3772 struct buf
*bp
= bio
->bio_buf
;
3776 KKASSERT(bio
== &bp
->b_bio1
);
3780 flags
= bio
->bio_flags
;
3781 nflags
= (flags
| BIO_DONE
) & ~BIO_WANT
;
3783 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3784 if (flags
& BIO_WANT
)
3794 * This routine is called in lieu of iodone in the case of
3795 * incomplete I/O. This keeps the busy status for pages
3799 vfs_unbusy_pages(struct buf
*bp
)
3803 runningbufwakeup(bp
);
3805 if (bp
->b_flags
& B_VMIO
) {
3806 struct vnode
*vp
= bp
->b_vp
;
3810 vm_object_hold(obj
);
3812 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3813 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3816 * When restoring bogus changes the original pages
3817 * should still be wired, so we are in no danger of
3818 * losing the object association and do not need
3819 * critical section protection particularly.
3821 if (m
== bogus_page
) {
3822 m
= vm_page_lookup(obj
, OFF_TO_IDX(bp
->b_loffset
) + i
);
3824 panic("vfs_unbusy_pages: page missing");
3826 bp
->b_xio
.xio_pages
[i
] = m
;
3828 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
3829 vm_page_io_finish(m
);
3831 vm_object_pip_wakeup(obj
);
3833 if (bp
->b_flags
& B_HASBOGUS
) {
3834 pmap_qenter_noinval(trunc_page((vm_offset_t
)bp
->b_data
),
3835 bp
->b_xio
.xio_pages
,
3836 bp
->b_xio
.xio_npages
);
3837 bp
->b_flags
&= ~B_HASBOGUS
;
3840 vm_object_drop(obj
);
3847 * This routine is called before a device strategy routine.
3848 * It is used to tell the VM system that paging I/O is in
3849 * progress, and treat the pages associated with the buffer
3850 * almost as being PBUSY_LOCKED. Also the object 'paging_in_progress'
3851 * flag is handled to make sure that the object doesn't become
3854 * Since I/O has not been initiated yet, certain buffer flags
3855 * such as B_ERROR or B_INVAL may be in an inconsistant state
3856 * and should be ignored.
3859 vfs_busy_pages(struct vnode
*vp
, struct buf
*bp
)
3862 struct lwp
*lp
= curthread
->td_lwp
;
3865 * The buffer's I/O command must already be set. If reading,
3866 * B_CACHE must be 0 (double check against callers only doing
3867 * I/O when B_CACHE is 0).
3869 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3870 KKASSERT(bp
->b_cmd
== BUF_CMD_WRITE
|| (bp
->b_flags
& B_CACHE
) == 0);
3872 if (bp
->b_flags
& B_VMIO
) {
3876 KASSERT(bp
->b_loffset
!= NOOFFSET
,
3877 ("vfs_busy_pages: no buffer offset"));
3880 * Busy all the pages. We have to busy them all at once
3881 * to avoid deadlocks.
3884 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3885 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3887 if (vm_page_busy_try(m
, FALSE
)) {
3888 vm_page_sleep_busy(m
, FALSE
, "vbpage");
3890 vm_page_wakeup(bp
->b_xio
.xio_pages
[i
]);
3896 * Setup for I/O, soft-busy the page right now because
3897 * the next loop may block.
3899 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3900 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3902 if ((bp
->b_flags
& B_CLUSTER
) == 0) {
3903 vm_object_pip_add(obj
, 1);
3904 vm_page_io_start(m
);
3909 * Adjust protections for I/O and do bogus-page mapping.
3910 * Assume that vm_page_protect() can block (it can block
3911 * if VM_PROT_NONE, don't take any chances regardless).
3913 * In particular note that for writes we must incorporate
3914 * page dirtyness from the VM system into the buffer's
3917 * For reads we theoretically must incorporate page dirtyness
3918 * from the VM system to determine if the page needs bogus
3919 * replacement, but we shortcut the test by simply checking
3920 * that all m->valid bits are set, indicating that the page
3921 * is fully valid and does not need to be re-read. For any
3922 * VM system dirtyness the page will also be fully valid
3923 * since it was mapped at one point.
3926 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3927 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3929 if (bp
->b_cmd
== BUF_CMD_WRITE
) {
3931 * When readying a vnode-backed buffer for
3932 * a write we must zero-fill any invalid
3933 * portions of the backing VM pages, mark
3934 * it valid and clear related dirty bits.
3936 * vfs_clean_one_page() incorporates any
3937 * VM dirtyness and updates the b_dirtyoff
3938 * range (after we've made the page RO).
3940 * It is also expected that the pmap modified
3941 * bit has already been cleared by the
3942 * vm_page_protect(). We may not be able
3943 * to clear all dirty bits for a page if it
3944 * was also memory mapped (NFS).
3946 * Finally be sure to unassign any swap-cache
3947 * backing store as it is now stale.
3949 vm_page_protect(m
, VM_PROT_READ
);
3950 vfs_clean_one_page(bp
, i
, m
);
3951 swap_pager_unswapped(m
);
3952 } else if (m
->valid
== VM_PAGE_BITS_ALL
) {
3954 * When readying a vnode-backed buffer for
3955 * read we must replace any dirty pages with
3956 * a bogus page so dirty data is not destroyed
3957 * when filling gaps.
3959 * To avoid testing whether the page is
3960 * dirty we instead test that the page was
3961 * at some point mapped (m->valid fully
3962 * valid) with the understanding that
3963 * this also covers the dirty case.
3965 bp
->b_xio
.xio_pages
[i
] = bogus_page
;
3966 bp
->b_flags
|= B_HASBOGUS
;
3968 } else if (m
->valid
& m
->dirty
) {
3970 * This case should not occur as partial
3971 * dirtyment can only happen if the buffer
3972 * is B_CACHE, and this code is not entered
3973 * if the buffer is B_CACHE.
3975 kprintf("Warning: vfs_busy_pages - page not "
3976 "fully valid! loff=%jx bpf=%08x "
3977 "idx=%d val=%02x dir=%02x\n",
3978 (uintmax_t)bp
->b_loffset
, bp
->b_flags
,
3979 i
, m
->valid
, m
->dirty
);
3980 vm_page_protect(m
, VM_PROT_NONE
);
3983 * The page is not valid and can be made
3986 vm_page_protect(m
, VM_PROT_NONE
);
3991 pmap_qenter_noinval(trunc_page((vm_offset_t
)bp
->b_data
),
3992 bp
->b_xio
.xio_pages
,
3993 bp
->b_xio
.xio_npages
);
3999 * This is the easiest place to put the process accounting for the I/O
4003 if (bp
->b_cmd
== BUF_CMD_READ
)
4004 lp
->lwp_ru
.ru_inblock
++;
4006 lp
->lwp_ru
.ru_oublock
++;
4011 * Tell the VM system that the pages associated with this buffer
4012 * are clean. This is used for delayed writes where the data is
4013 * going to go to disk eventually without additional VM intevention.
4015 * NOTE: While we only really need to clean through to b_bcount, we
4016 * just go ahead and clean through to b_bufsize.
4019 vfs_clean_pages(struct buf
*bp
)
4024 if ((bp
->b_flags
& B_VMIO
) == 0)
4027 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4028 ("vfs_clean_pages: no buffer offset"));
4030 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4031 m
= bp
->b_xio
.xio_pages
[i
];
4032 vfs_clean_one_page(bp
, i
, m
);
4037 * vfs_clean_one_page:
4039 * Set the valid bits and clear the dirty bits in a page within a
4040 * buffer. The range is restricted to the buffer's size and the
4041 * buffer's logical offset might index into the first page.
4043 * The caller has busied or soft-busied the page and it is not mapped,
4044 * test and incorporate the dirty bits into b_dirtyoff/end before
4045 * clearing them. Note that we need to clear the pmap modified bits
4046 * after determining the the page was dirty, vm_page_set_validclean()
4047 * does not do it for us.
4049 * This routine is typically called after a read completes (dirty should
4050 * be zero in that case as we are not called on bogus-replace pages),
4051 * or before a write is initiated.
4054 vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4062 * Calculate offset range within the page but relative to buffer's
4063 * loffset. loffset might be offset into the first page.
4065 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4066 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4072 soff
= (pageno
<< PAGE_SHIFT
);
4073 eoff
= soff
+ PAGE_SIZE
;
4081 * Test dirty bits and adjust b_dirtyoff/end.
4083 * If dirty pages are incorporated into the bp any prior
4084 * B_NEEDCOMMIT state (NFS) must be cleared because the
4085 * caller has not taken into account the new dirty data.
4087 * If the page was memory mapped the dirty bits might go beyond the
4088 * end of the buffer, but we can't really make the assumption that
4089 * a file EOF straddles the buffer (even though this is the case for
4090 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4091 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4092 * This also saves some console spam.
4094 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4095 * NFS can handle huge commits but not huge writes.
4097 vm_page_test_dirty(m
);
4099 if ((bp
->b_flags
& B_NEEDCOMMIT
) &&
4100 (m
->dirty
& vm_page_bits(soff
& PAGE_MASK
, eoff
- soff
))) {
4102 kprintf("Warning: vfs_clean_one_page: bp %p "
4103 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4104 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4106 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_bcount
,
4107 bp
->b_flags
, bp
->b_cmd
,
4108 m
->valid
, m
->dirty
, xoff
, soff
, eoff
,
4109 bp
->b_dirtyoff
, bp
->b_dirtyend
);
4110 bp
->b_flags
&= ~(B_NEEDCOMMIT
| B_CLUSTEROK
);
4112 print_backtrace(-1);
4115 * Only clear the pmap modified bits if ALL the dirty bits
4116 * are set, otherwise the system might mis-clear portions
4119 if (m
->dirty
== VM_PAGE_BITS_ALL
&&
4120 (bp
->b_flags
& B_NEEDCOMMIT
) == 0) {
4121 pmap_clear_modify(m
);
4123 if (bp
->b_dirtyoff
> soff
- xoff
)
4124 bp
->b_dirtyoff
= soff
- xoff
;
4125 if (bp
->b_dirtyend
< eoff
- xoff
)
4126 bp
->b_dirtyend
= eoff
- xoff
;
4130 * Set related valid bits, clear related dirty bits.
4131 * Does not mess with the pmap modified bit.
4133 * WARNING! We cannot just clear all of m->dirty here as the
4134 * buffer cache buffers may use a DEV_BSIZE'd aligned
4135 * block size, or have an odd size (e.g. NFS at file EOF).
4136 * The putpages code can clear m->dirty to 0.
4138 * If a VOP_WRITE generates a buffer cache buffer which
4139 * covers the same space as mapped writable pages the
4140 * buffer flush might not be able to clear all the dirty
4141 * bits and still require a putpages from the VM system
4144 * WARNING! vm_page_set_validclean() currently assumes vm_token
4145 * is held. The page might not be busied (bdwrite() case).
4146 * XXX remove this comment once we've validated that this
4147 * is no longer an issue.
4149 vm_page_set_validclean(m
, soff
& PAGE_MASK
, eoff
- soff
);
4154 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4155 * The page data is assumed to be valid (there is no zeroing here).
4158 vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4166 * Calculate offset range within the page but relative to buffer's
4167 * loffset. loffset might be offset into the first page.
4169 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4170 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4176 soff
= (pageno
<< PAGE_SHIFT
);
4177 eoff
= soff
+ PAGE_SIZE
;
4183 vm_page_set_validdirty(m
, soff
& PAGE_MASK
, eoff
- soff
);
4190 * Clear a buffer. This routine essentially fakes an I/O, so we need
4191 * to clear B_ERROR and B_INVAL.
4193 * Note that while we only theoretically need to clear through b_bcount,
4194 * we go ahead and clear through b_bufsize.
4197 vfs_bio_clrbuf(struct buf
*bp
)
4201 KKASSERT(bp
->b_flags
& B_VMIO
);
4203 bp
->b_flags
&= ~(B_INVAL
| B_EINTR
| B_ERROR
);
4206 if ((bp
->b_xio
.xio_npages
== 1) && (bp
->b_bufsize
< PAGE_SIZE
) &&
4207 (bp
->b_loffset
& PAGE_MASK
) == 0) {
4208 mask
= (1 << (bp
->b_bufsize
/ DEV_BSIZE
)) - 1;
4209 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == mask
) {
4213 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == 0) {
4214 bzero(bp
->b_data
, bp
->b_bufsize
);
4215 bp
->b_xio
.xio_pages
[0]->valid
|= mask
;
4221 for(i
= 0; i
< bp
->b_xio
.xio_npages
; i
++, sa
=ea
) {
4222 int j
= ((vm_offset_t
)sa
& PAGE_MASK
) / DEV_BSIZE
;
4223 ea
= (caddr_t
)trunc_page((vm_offset_t
)sa
+ PAGE_SIZE
);
4224 ea
= (caddr_t
)(vm_offset_t
)ulmin(
4225 (u_long
)(vm_offset_t
)ea
,
4226 (u_long
)(vm_offset_t
)bp
->b_data
+ bp
->b_bufsize
);
4227 mask
= ((1 << ((ea
- sa
) / DEV_BSIZE
)) - 1) << j
;
4228 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == mask
)
4230 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == 0) {
4233 for (; sa
< ea
; sa
+= DEV_BSIZE
, j
++) {
4234 if ((bp
->b_xio
.xio_pages
[i
]->valid
&
4236 bzero(sa
, DEV_BSIZE
);
4240 bp
->b_xio
.xio_pages
[i
]->valid
|= mask
;
4246 * Allocate a page for a buffer cache buffer.
4248 * If NULL is returned the caller is expected to retry (typically check if
4249 * the page already exists on retry before trying to allocate one).
4251 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4252 * function will use the system reserve with the hope that the page
4253 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4254 * is done with the buffer.
4256 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4257 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4258 * is capable of retiring pages (to swap). For TMPFS we don't dig
4259 * into the system reserve because doing so could stall out pretty
4260 * much every process running on the system.
4264 bio_page_alloc(struct buf
*bp
, vm_object_t obj
, vm_pindex_t pg
, int deficit
)
4266 int vmflags
= VM_ALLOC_NORMAL
| VM_ALLOC_NULL_OK
;
4269 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj
));
4274 vmflags
|= VM_ALLOC_CPU(obj
->pg_color
% ncpus
);
4277 * Try a normal allocation first.
4279 p
= vm_page_alloc(obj
, pg
, vmflags
);
4282 if (vm_page_lookup(obj
, pg
))
4284 vm_pageout_deficit
+= deficit
;
4287 * Try again, digging into the system reserve.
4289 * Trying to recover pages from the buffer cache here can deadlock
4290 * against other threads trying to busy underlying pages so we
4291 * depend on the code in brelse() and bqrelse() to free/cache the
4292 * underlying buffer cache pages when memory is low.
4294 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4295 vmflags
|= VM_ALLOC_SYSTEM
| VM_ALLOC_INTERRUPT
;
4296 else if (bp
->b_vp
&& bp
->b_vp
->v_tag
== VT_TMPFS
)
4299 vmflags
|= VM_ALLOC_SYSTEM
;
4301 /*recoverbufpages();*/
4302 p
= vm_page_alloc(obj
, pg
, vmflags
);
4305 if (vm_page_lookup(obj
, pg
))
4309 * Wait for memory to free up and try again
4311 if (vm_page_count_severe())
4313 vm_wait(hz
/ 20 + 1);
4315 p
= vm_page_alloc(obj
, pg
, vmflags
);
4318 if (vm_page_lookup(obj
, pg
))
4322 * Ok, now we are really in trouble.
4325 static struct krate biokrate
= { .freq
= 1 };
4326 krateprintf(&biokrate
,
4327 "Warning: bio_page_alloc: memory exhausted "
4328 "during buffer cache page allocation from %s\n",
4329 curthread
->td_comm
);
4331 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4332 vm_wait(hz
/ 20 + 1);
4334 vm_wait(hz
/ 2 + 1);
4339 * The buffer's mapping has changed. Adjust the buffer's memory
4340 * synchronization. The caller is the exclusive holder of the buffer
4341 * and has set or cleared B_KVABIO according to preference.
4343 * WARNING! If the caller is using B_KVABIO mode, this function will
4344 * not map the data to the current cpu. The caller must also
4345 * call bkvasync(bp).
4348 bkvareset(struct buf
*bp
)
4350 if (bp
->b_flags
& B_KVABIO
) {
4351 CPUMASK_ASSZERO(bp
->b_cpumask
);
4353 CPUMASK_ORMASK(bp
->b_cpumask
, smp_active_mask
);
4360 * The buffer will be used by the caller on the caller's cpu, synchronize
4361 * its data to the current cpu. Caller must control the buffer by holding
4362 * its lock, but calling cpu does not necessarily have to be the owner of
4363 * the lock (i.e. HAMMER2's concurrent I/O accessors).
4365 * If B_KVABIO is not set, the buffer is already fully synchronized.
4368 bkvasync(struct buf
*bp
)
4370 int cpuid
= mycpu
->gd_cpuid
;
4373 if ((bp
->b_flags
& B_KVABIO
) &&
4374 CPUMASK_TESTBIT(bp
->b_cpumask
, cpuid
) == 0) {
4376 while (bdata
< bp
->b_data
+ bp
->b_bufsize
) {
4378 bdata
+= PAGE_SIZE
-
4379 ((intptr_t)bdata
& PAGE_MASK
);
4381 ATOMIC_CPUMASK_ORBIT(bp
->b_cpumask
, cpuid
);
4386 * The buffer will be used by a subsystem that does not understand
4387 * the KVABIO API. Make sure its data is synchronized to all cpus.
4389 * If B_KVABIO is not set, the buffer is already fully synchronized.
4391 * NOTE! This is the only safe way to clear B_KVABIO on a buffer.
4394 bkvasync_all(struct buf
*bp
)
4396 if (debug_kvabio
> 0) {
4398 print_backtrace(10);
4401 if ((bp
->b_flags
& B_KVABIO
) &&
4402 CPUMASK_CMPMASKNEQ(bp
->b_cpumask
, smp_active_mask
)) {
4405 ATOMIC_CPUMASK_ORMASK(bp
->b_cpumask
, smp_active_mask
);
4407 bp
->b_flags
&= ~B_KVABIO
;
4411 * Scan all buffers in the system and issue the callback.
4414 scan_all_buffers(int (*callback
)(struct buf
*, void *), void *info
)
4420 for (n
= 0; n
< nbuf
; ++n
) {
4421 if ((error
= callback(&buf
[n
], info
)) < 0) {
4431 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4432 * completion to the master buffer.
4435 nestiobuf_iodone(struct bio
*bio
)
4438 struct buf
*mbp
, *bp
;
4439 struct devstat
*stats
;
4444 mbio
= bio
->bio_caller_info1
.ptr
;
4445 stats
= bio
->bio_caller_info2
.ptr
;
4446 mbp
= mbio
->bio_buf
;
4448 KKASSERT(bp
->b_bcount
<= bp
->b_bufsize
);
4449 KKASSERT(mbp
!= bp
);
4451 error
= bp
->b_error
;
4452 if (bp
->b_error
== 0 &&
4453 (bp
->b_bcount
< bp
->b_bufsize
|| bp
->b_resid
> 0)) {
4455 * Not all got transfered, raise an error. We have no way to
4456 * propagate these conditions to mbp.
4461 donebytes
= bp
->b_bufsize
;
4465 nestiobuf_done(mbio
, donebytes
, error
, stats
);
4469 nestiobuf_done(struct bio
*mbio
, int donebytes
, int error
, struct devstat
*stats
)
4473 mbp
= mbio
->bio_buf
;
4475 KKASSERT((int)(intptr_t)mbio
->bio_driver_info
> 0);
4478 * If an error occured, propagate it to the master buffer.
4480 * Several biodone()s may wind up running concurrently so
4481 * use an atomic op to adjust b_flags.
4484 mbp
->b_error
= error
;
4485 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4489 * Decrement the operations in progress counter and terminate the
4490 * I/O if this was the last bit.
4492 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4495 devstat_end_transaction_buf(stats
, mbp
);
4501 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4502 * the mbio from being biodone()'d while we are still adding sub-bios to
4506 nestiobuf_init(struct bio
*bio
)
4508 bio
->bio_driver_info
= (void *)1;
4512 * The BIOs added to the nestedio have already been started, remove the
4513 * count that placeheld our mbio and biodone() it if the count would
4517 nestiobuf_start(struct bio
*mbio
)
4519 struct buf
*mbp
= mbio
->bio_buf
;
4522 * Decrement the operations in progress counter and terminate the
4523 * I/O if this was the last bit.
4525 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4526 if (mbp
->b_flags
& B_ERROR
)
4527 mbp
->b_resid
= mbp
->b_bcount
;
4535 * Set an intermediate error prior to calling nestiobuf_start()
4538 nestiobuf_error(struct bio
*mbio
, int error
)
4540 struct buf
*mbp
= mbio
->bio_buf
;
4543 mbp
->b_error
= error
;
4544 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4549 * nestiobuf_add: setup a "nested" buffer.
4551 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4552 * => 'bp' should be a buffer allocated by getiobuf.
4553 * => 'offset' is a byte offset in the master buffer.
4554 * => 'size' is a size in bytes of this nested buffer.
4557 nestiobuf_add(struct bio
*mbio
, struct buf
*bp
, int offset
, size_t size
, struct devstat
*stats
)
4559 struct buf
*mbp
= mbio
->bio_buf
;
4560 struct vnode
*vp
= mbp
->b_vp
;
4562 KKASSERT(mbp
->b_bcount
>= offset
+ size
);
4564 atomic_add_int((int *)&mbio
->bio_driver_info
, 1);
4566 /* kernel needs to own the lock for it to be released in biodone */
4569 bp
->b_cmd
= mbp
->b_cmd
;
4570 bp
->b_bio1
.bio_done
= nestiobuf_iodone
;
4571 bp
->b_data
= (char *)mbp
->b_data
+ offset
;
4572 bp
->b_resid
= bp
->b_bcount
= size
;
4573 bp
->b_bufsize
= bp
->b_bcount
;
4575 bp
->b_bio1
.bio_track
= NULL
;
4576 bp
->b_bio1
.bio_caller_info1
.ptr
= mbio
;
4577 bp
->b_bio1
.bio_caller_info2
.ptr
= stats
;
4582 DB_SHOW_COMMAND(buffer
, db_show_buffer
)
4585 struct buf
*bp
= (struct buf
*)addr
;
4588 db_printf("usage: show buffer <addr>\n");
4592 db_printf("b_flags = 0x%pb%i\n", PRINT_BUF_FLAGS
, bp
->b_flags
);
4593 db_printf("b_cmd = %d\n", bp
->b_cmd
);
4594 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4595 "b_resid = %d\n, b_data = %p, "
4596 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4597 bp
->b_error
, bp
->b_bufsize
, bp
->b_bcount
, bp
->b_resid
,
4599 (long long)bp
->b_bio2
.bio_offset
,
4600 (long long)(bp
->b_bio2
.bio_next
?
4601 bp
->b_bio2
.bio_next
->bio_offset
: (off_t
)-1));
4602 if (bp
->b_xio
.xio_npages
) {
4604 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4605 bp
->b_xio
.xio_npages
);
4606 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4608 m
= bp
->b_xio
.xio_pages
[i
];
4609 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m
->object
,
4610 (u_long
)m
->pindex
, (u_long
)VM_PAGE_TO_PHYS(m
));
4611 if ((i
+ 1) < bp
->b_xio
.xio_npages
)