2 * Copyright 1998 Massachusetts Institute of Technology
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
33 * The kernel resource manager. This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly. Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
42 * There are two sorts of resources managed by this code. The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order. Most of the resources
46 * are of this type, as it is the most familiar. The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance). The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share. RMAN_GAUGE is not
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices. That
56 * is to say, sharing of overlapping-but-not-identical regions is not
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
64 #include <sys/malloc.h>
65 #include <sys/bus.h> /* XXX debugging */
67 #include <sys/sysctl.h>
70 TUNABLE_INT("debug.rman_debug", &rman_debug
);
71 SYSCTL_INT(_debug
, OID_AUTO
, rman_debug
, CTLFLAG_RW
,
72 &rman_debug
, 0, "rman debug");
74 #define DPRINTF(params) if (rman_debug) kprintf params
76 static MALLOC_DEFINE(M_RMAN
, "rman", "Resource manager");
78 struct rman_head rman_head
;
79 static struct lwkt_token rman_tok
; /* mutex to protect rman_head */
80 static int int_rman_activate_resource(struct rman
*rm
, struct resource
*r
,
81 struct resource
**whohas
);
82 static int int_rman_deactivate_resource(struct resource
*r
);
83 static int int_rman_release_resource(struct rman
*rm
, struct resource
*r
);
86 rman_init(struct rman
*rm
, int cpuid
)
92 TAILQ_INIT(&rman_head
);
93 lwkt_token_init(&rman_tok
, "rman");
96 if (rm
->rm_type
== RMAN_UNINIT
)
98 if (rm
->rm_type
== RMAN_GAUGE
)
99 panic("implement RMAN_GAUGE");
101 TAILQ_INIT(&rm
->rm_list
);
102 rm
->rm_slock
= kmalloc(sizeof *rm
->rm_slock
, M_RMAN
, M_NOWAIT
);
103 if (rm
->rm_slock
== NULL
)
105 lwkt_token_init(rm
->rm_slock
, "rmanslock");
107 rm
->rm_cpuid
= cpuid
;
109 lwkt_gettoken(&rman_tok
);
110 TAILQ_INSERT_TAIL(&rman_head
, rm
, rm_link
);
111 lwkt_reltoken(&rman_tok
);
116 * NB: this interface is not robust against programming errors which
117 * add multiple copies of the same region.
120 rman_manage_region(struct rman
*rm
, u_long start
, u_long end
)
122 struct resource
*r
, *s
;
124 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
125 rm
->rm_descr
, start
, end
));
126 r
= kmalloc(sizeof *r
, M_RMAN
, M_NOWAIT
| M_ZERO
);
136 lwkt_gettoken(rm
->rm_slock
);
137 for (s
= TAILQ_FIRST(&rm
->rm_list
);
138 s
&& s
->r_end
< r
->r_start
;
139 s
= TAILQ_NEXT(s
, r_link
))
143 TAILQ_INSERT_TAIL(&rm
->rm_list
, r
, r_link
);
145 TAILQ_INSERT_BEFORE(s
, r
, r_link
);
147 lwkt_reltoken(rm
->rm_slock
);
152 rman_fini(struct rman
*rm
)
156 lwkt_gettoken(rm
->rm_slock
);
157 TAILQ_FOREACH(r
, &rm
->rm_list
, r_link
) {
158 if (r
->r_flags
& RF_ALLOCATED
) {
159 lwkt_reltoken(rm
->rm_slock
);
165 * There really should only be one of these if we are in this
166 * state and the code is working properly, but it can't hurt.
168 while (!TAILQ_EMPTY(&rm
->rm_list
)) {
169 r
= TAILQ_FIRST(&rm
->rm_list
);
170 TAILQ_REMOVE(&rm
->rm_list
, r
, r_link
);
173 lwkt_reltoken(rm
->rm_slock
);
175 /* XXX what's the point of this if we are going to free the struct? */
176 lwkt_gettoken(&rman_tok
);
177 TAILQ_REMOVE(&rman_head
, rm
, rm_link
);
178 lwkt_reltoken(&rman_tok
);
179 kfree(rm
->rm_slock
, M_RMAN
);
185 rman_reserve_resource(struct rman
*rm
, u_long start
, u_long end
, u_long count
,
186 u_int flags
, device_t dev
)
189 struct resource
*r
, *s
, *rv
;
194 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
195 "%#lx, flags %u, device %s\n", rm
->rm_descr
, start
, end
,
197 dev
== NULL
? "<null>" : device_get_nameunit(dev
)));
198 want_activate
= (flags
& RF_ACTIVE
);
201 lwkt_gettoken(rm
->rm_slock
);
203 for (r
= TAILQ_FIRST(&rm
->rm_list
);
204 r
&& r
->r_end
< start
+ count
- 1;
205 r
= TAILQ_NEXT(r
, r_link
))
209 DPRINTF(("could not find a region\n"));
214 * First try to find an acceptable totally-unshared region.
216 for (s
= r
; s
; s
= TAILQ_NEXT(s
, r_link
)) {
217 DPRINTF(("considering [%#lx, %#lx]\n", s
->r_start
, s
->r_end
));
218 if (s
->r_start
> end
- (count
- 1)) {
219 DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
223 if (s
->r_flags
& RF_ALLOCATED
) {
224 DPRINTF(("region is allocated\n"));
227 rstart
= ulmax(s
->r_start
, start
);
228 rstart
= rounddown2(rstart
+ (1ul << RF_ALIGNMENT(flags
)) - 1,
229 1ul << RF_ALIGNMENT(flags
));
230 rend
= ulmin(s
->r_end
, ulmax(start
+ count
- 1, end
));
231 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
232 rstart
, rend
, (rend
- rstart
+ 1), count
));
234 if ((rend
- rstart
+ 1) >= count
) {
235 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
236 rstart
, rend
, (rend
- rstart
+ 1)));
237 if ((s
->r_end
- s
->r_start
+ 1) == count
) {
238 DPRINTF(("candidate region is entire chunk\n"));
240 rv
->r_flags
|= RF_ALLOCATED
| flags
;
246 * If s->r_start < rstart and
247 * s->r_end > rstart + count - 1, then
248 * we need to split the region into three pieces
249 * (the middle one will get returned to the user).
250 * Otherwise, we are allocating at either the
251 * beginning or the end of s, so we only need to
252 * split it in two. The first case requires
253 * two new allocations; the second requires but one.
255 rv
= kmalloc(sizeof *rv
, M_RMAN
, M_NOWAIT
| M_ZERO
);
258 rv
->r_start
= rstart
;
259 rv
->r_end
= rstart
+ count
- 1;
260 rv
->r_flags
= flags
| RF_ALLOCATED
;
265 if (s
->r_start
< rv
->r_start
&& s
->r_end
> rv
->r_end
) {
266 DPRINTF(("splitting region in three parts: "
267 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
268 s
->r_start
, rv
->r_start
- 1,
269 rv
->r_start
, rv
->r_end
,
270 rv
->r_end
+ 1, s
->r_end
));
272 * We are allocating in the middle.
274 r
= kmalloc(sizeof *r
, M_RMAN
,
281 r
->r_start
= rv
->r_end
+ 1;
283 r
->r_flags
= s
->r_flags
;
287 s
->r_end
= rv
->r_start
- 1;
288 TAILQ_INSERT_AFTER(&rm
->rm_list
, s
, rv
,
290 TAILQ_INSERT_AFTER(&rm
->rm_list
, rv
, r
,
292 } else if (s
->r_start
== rv
->r_start
) {
293 DPRINTF(("allocating from the beginning\n"));
295 * We are allocating at the beginning.
297 s
->r_start
= rv
->r_end
+ 1;
298 TAILQ_INSERT_BEFORE(s
, rv
, r_link
);
300 DPRINTF(("allocating at the end\n"));
302 * We are allocating at the end.
304 s
->r_end
= rv
->r_start
- 1;
305 TAILQ_INSERT_AFTER(&rm
->rm_list
, s
, rv
,
313 * Now find an acceptable shared region, if the client's requirements
314 * allow sharing. By our implementation restriction, a candidate
315 * region must match exactly by both size and sharing type in order
316 * to be considered compatible with the client's request. (The
317 * former restriction could probably be lifted without too much
318 * additional work, but this does not seem warranted.)
320 DPRINTF(("no unshared regions found\n"));
321 if ((flags
& (RF_SHAREABLE
| RF_TIMESHARE
)) == 0)
324 for (s
= r
; s
; s
= TAILQ_NEXT(s
, r_link
)) {
325 if (s
->r_start
> end
)
327 if ((s
->r_flags
& flags
) != flags
)
329 rstart
= ulmax(s
->r_start
, start
);
330 rend
= ulmin(s
->r_end
, ulmax(start
+ count
, end
));
331 if (s
->r_start
>= start
&& s
->r_end
<= end
332 && (s
->r_end
- s
->r_start
+ 1) == count
) {
333 rv
= kmalloc(sizeof *rv
, M_RMAN
, M_NOWAIT
| M_ZERO
);
336 rv
->r_start
= s
->r_start
;
337 rv
->r_end
= s
->r_end
;
338 rv
->r_flags
= s
->r_flags
&
339 (RF_ALLOCATED
| RF_SHAREABLE
| RF_TIMESHARE
);
342 if (s
->r_sharehead
== 0) {
343 s
->r_sharehead
= kmalloc(sizeof *s
->r_sharehead
,
346 if (s
->r_sharehead
== 0) {
351 LIST_INIT(s
->r_sharehead
);
352 LIST_INSERT_HEAD(s
->r_sharehead
, s
,
354 s
->r_flags
|= RF_FIRSTSHARE
;
356 rv
->r_sharehead
= s
->r_sharehead
;
357 LIST_INSERT_HEAD(s
->r_sharehead
, rv
, r_sharelink
);
363 * We couldn't find anything.
365 DPRINTF(("no region found\n"));
368 * If the user specified RF_ACTIVE in the initial flags,
369 * which is reflected in `want_activate', we attempt to atomically
370 * activate the resource. If this fails, we release the resource
371 * and indicate overall failure. (This behavior probably doesn't
372 * make sense for RF_TIMESHARE-type resources.)
374 if (rv
&& want_activate
) {
375 struct resource
*whohas
;
376 DPRINTF(("activating region\n"));
377 if (int_rman_activate_resource(rm
, rv
, &whohas
)) {
378 int_rman_release_resource(rm
, rv
);
382 lwkt_reltoken(rm
->rm_slock
);
387 int_rman_activate_resource(struct rman
*rm
, struct resource
*r
,
388 struct resource
**whohas
)
394 * If we are not timesharing, then there is nothing much to do.
395 * If we already have the resource, then there is nothing at all to do.
396 * If we are not on a sharing list with anybody else, then there is
399 if ((r
->r_flags
& RF_TIMESHARE
) == 0
400 || (r
->r_flags
& RF_ACTIVE
) != 0
401 || r
->r_sharehead
== 0) {
402 r
->r_flags
|= RF_ACTIVE
;
407 for (s
= LIST_FIRST(r
->r_sharehead
); s
&& ok
;
408 s
= LIST_NEXT(s
, r_sharelink
)) {
409 if ((s
->r_flags
& RF_ACTIVE
) != 0) {
415 r
->r_flags
|= RF_ACTIVE
;
422 rman_activate_resource(struct resource
*r
)
425 struct resource
*whohas
;
429 lwkt_gettoken(rm
->rm_slock
);
430 rv
= int_rman_activate_resource(rm
, r
, &whohas
);
431 lwkt_reltoken(rm
->rm_slock
);
439 rman_await_resource(struct resource
*r
, int slpflags
, int timo
)
442 struct resource
*whohas
;
447 lwkt_gettoken(rm
->rm_slock
);
448 rv
= int_rman_activate_resource(rm
, r
, &whohas
);
450 return (rv
); /* returns with ilock held */
452 if (r
->r_sharehead
== 0)
453 panic("rman_await_resource");
455 * A critical section will hopefully will prevent a race
456 * between lwkt_reltoken and tsleep where a process
457 * could conceivably get in and release the resource
458 * before we have a chance to sleep on it. YYY
461 whohas
->r_flags
|= RF_WANTED
;
462 rv
= tsleep(r
->r_sharehead
, slpflags
, "rmwait", timo
);
464 lwkt_reltoken(rm
->rm_slock
);
475 int_rman_deactivate_resource(struct resource
*r
)
477 r
->r_flags
&= ~RF_ACTIVE
;
478 if (r
->r_flags
& RF_WANTED
) {
479 r
->r_flags
&= ~RF_WANTED
;
480 wakeup(r
->r_sharehead
);
486 rman_deactivate_resource(struct resource
*r
)
491 lwkt_gettoken(rm
->rm_slock
);
492 int_rman_deactivate_resource(r
);
493 lwkt_reltoken(rm
->rm_slock
);
498 int_rman_release_resource(struct rman
*rm
, struct resource
*r
)
500 struct resource
*s
, *t
;
502 if (r
->r_flags
& RF_ACTIVE
)
503 int_rman_deactivate_resource(r
);
506 * Check for a sharing list first. If there is one, then we don't
507 * have to think as hard.
509 if (r
->r_sharehead
) {
511 * If a sharing list exists, then we know there are at
514 * If we are in the main circleq, appoint someone else.
516 LIST_REMOVE(r
, r_sharelink
);
517 s
= LIST_FIRST(r
->r_sharehead
);
518 if (r
->r_flags
& RF_FIRSTSHARE
) {
519 s
->r_flags
|= RF_FIRSTSHARE
;
520 TAILQ_INSERT_BEFORE(r
, s
, r_link
);
521 TAILQ_REMOVE(&rm
->rm_list
, r
, r_link
);
525 * Make sure that the sharing list goes away completely
526 * if the resource is no longer being shared at all.
528 if (LIST_NEXT(s
, r_sharelink
) == 0) {
529 kfree(s
->r_sharehead
, M_RMAN
);
531 s
->r_flags
&= ~RF_FIRSTSHARE
;
537 * Look at the adjacent resources in the list and see if our
538 * segment can be merged with any of them.
540 s
= TAILQ_PREV(r
, resource_head
, r_link
);
541 t
= TAILQ_NEXT(r
, r_link
);
543 if (s
!= NULL
&& (s
->r_flags
& RF_ALLOCATED
) == 0
544 && t
!= NULL
&& (t
->r_flags
& RF_ALLOCATED
) == 0) {
546 * Merge all three segments.
549 TAILQ_REMOVE(&rm
->rm_list
, r
, r_link
);
550 TAILQ_REMOVE(&rm
->rm_list
, t
, r_link
);
552 } else if (s
!= NULL
&& (s
->r_flags
& RF_ALLOCATED
) == 0) {
554 * Merge previous segment with ours.
557 TAILQ_REMOVE(&rm
->rm_list
, r
, r_link
);
558 } else if (t
!= NULL
&& (t
->r_flags
& RF_ALLOCATED
) == 0) {
560 * Merge next segment with ours.
562 t
->r_start
= r
->r_start
;
563 TAILQ_REMOVE(&rm
->rm_list
, r
, r_link
);
566 * At this point, we know there is nothing we
567 * can potentially merge with, because on each
568 * side, there is either nothing there or what is
569 * there is still allocated. In that case, we don't
570 * want to remove r from the list; we simply want to
571 * change it to an unallocated region and return
572 * without freeing anything.
574 r
->r_flags
&= ~RF_ALLOCATED
;
584 rman_release_resource(struct resource
*r
)
586 struct rman
*rm
= r
->r_rm
;
589 lwkt_gettoken(rm
->rm_slock
);
590 rv
= int_rman_release_resource(rm
, r
);
591 lwkt_reltoken(rm
->rm_slock
);
596 * Find the hightest bit set, and add one if more than one bit
597 * set. We're effectively computing the ceil(log2(size)) here.
599 * This function cannot compute alignments above (1LU<<63)+1
600 * as this would require returning '64' which will not fit in
601 * the flags field and doesn't work well for calculations either.
604 rman_make_alignment_flags(size_t size
)
608 for (i
= 63; i
; --i
) {
609 if ((1LU << i
) & size
)
612 if (~(1LU << i
) & size
)
616 return(RF_ALIGNMENT_LOG2(i
));
620 * Sysctl interface for scanning the resource lists.
622 * We take two input parameters; the index into the list of resource
623 * managers, and the resource offset into the list.
626 sysctl_rman(SYSCTL_HANDLER_ARGS
)
628 int *name
= (int *)arg1
;
629 u_int namelen
= arg2
;
630 int rman_idx
, res_idx
;
632 struct resource
*res
;
634 struct u_resource ures
;
640 if (bus_data_generation_check(name
[0]))
646 * Find the indexed resource manager
648 TAILQ_FOREACH(rm
, &rman_head
, rm_link
) {
656 * If the resource index is -1, we want details on the
660 urm
.rm_handle
= (uintptr_t)rm
;
661 strlcpy(urm
.rm_descr
, rm
->rm_descr
, RM_TEXTLEN
);
662 urm
.rm_start
= rm
->rm_start
;
663 urm
.rm_size
= rm
->rm_end
- rm
->rm_start
+ 1;
664 urm
.rm_type
= rm
->rm_type
;
666 error
= SYSCTL_OUT(req
, &urm
, sizeof(urm
));
671 * Find the indexed resource and return it.
673 TAILQ_FOREACH(res
, &rm
->rm_list
, r_link
) {
674 if (res_idx
-- == 0) {
675 ures
.r_handle
= (uintptr_t)res
;
676 ures
.r_parent
= (uintptr_t)res
->r_rm
;
677 ures
.r_device
= (uintptr_t)res
->r_dev
;
678 if (res
->r_dev
!= NULL
) {
679 if (device_get_name(res
->r_dev
) != NULL
) {
680 ksnprintf(ures
.r_devname
, RM_TEXTLEN
,
682 device_get_name(res
->r_dev
),
683 device_get_unit(res
->r_dev
));
685 strlcpy(ures
.r_devname
, "nomatch",
689 ures
.r_devname
[0] = '\0';
691 ures
.r_start
= res
->r_start
;
692 ures
.r_size
= res
->r_end
- res
->r_start
+ 1;
693 ures
.r_flags
= res
->r_flags
;
695 error
= SYSCTL_OUT(req
, &ures
, sizeof(ures
));
702 SYSCTL_NODE(_hw_bus
, OID_AUTO
, rman
, CTLFLAG_RD
, sysctl_rman
,
703 "kernel resource manager");