boot/efi: Sync our TianoCore EDK II headers with the edk2-stable202002 tag.
[dragonfly.git] / sys / kern / subr_diskgpt.c
blobf738275bee4fc69bf8739bc1035eb671af90e737
1 /*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/conf.h>
38 #include <sys/endian.h>
39 #include <sys/diskslice.h>
40 #include <sys/diskmbr.h>
41 #include <sys/disk.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/syslog.h>
45 #include <sys/bus.h>
46 #include <sys/device.h>
47 #include <sys/gpt.h>
49 static void gpt_setslice(const char *sname, struct disk_info *info,
50 struct diskslice *sp, struct gpt_ent *sent);
53 * Handle GPT on raw disk. Note that GPTs are not recursive. The MBR is
54 * ignored once a GPT has been detected.
56 * GPTs always start at block #1, regardless of how the MBR has been set up.
57 * In fact, the MBR's starting block might be pointing to the boot partition
58 * in the GPT rather then to the start of the GPT.
60 * This routine is called from mbrinit() when a GPT has been detected.
62 int
63 gptinit(cdev_t dev, struct disk_info *info, struct diskslices **sspp)
65 struct buf *bp1 = NULL;
66 struct buf *bp2 = NULL;
67 struct gpt_hdr *gpt;
68 struct gpt_ent *ent;
69 struct diskslice *sp;
70 struct diskslices *ssp;
71 cdev_t wdev;
72 int error;
73 uint32_t len;
74 uint32_t entries;
75 uint32_t entsz;
76 uint32_t crc;
77 uint32_t table_lba;
78 uint32_t table_blocks;
79 int i = 0, j;
80 const char *dname;
83 * The GPT starts in sector 1.
85 wdev = dev;
86 dname = dev_dname(wdev);
87 bp1 = getpbuf_mem(NULL);
88 KKASSERT(info->d_media_blksize <= bp1->b_bufsize);
89 bp1->b_bio1.bio_offset = info->d_media_blksize;
90 bp1->b_bio1.bio_done = biodone_sync;
91 bp1->b_bio1.bio_flags |= BIO_SYNC;
92 bp1->b_bcount = info->d_media_blksize;
93 bp1->b_cmd = BUF_CMD_READ;
94 bp1->b_flags |= B_FAILONDIS;
95 dev_dstrategy(wdev, &bp1->b_bio1);
96 if (biowait(&bp1->b_bio1, "gptrd") != 0) {
97 kprintf("%s: reading GPT @ block 1: error %d\n",
98 dname, bp1->b_error);
99 error = EIO;
100 goto done;
104 * Header sanity check
106 gpt = (void *)bp1->b_data;
107 len = le32toh(gpt->hdr_size);
108 if (len < GPT_MIN_HDR_SIZE || len > info->d_media_blksize) {
109 kprintf("%s: Illegal GPT header size %d\n", dname, len);
110 error = EINVAL;
111 goto done;
114 crc = le32toh(gpt->hdr_crc_self);
115 gpt->hdr_crc_self = 0;
116 if (crc32(gpt, len) != crc) {
117 kprintf("%s: GPT CRC32 did not match\n", dname);
118 error = EINVAL;
119 goto done;
123 * Validate the partition table and its location, then read it
124 * into a buffer.
126 entries = le32toh(gpt->hdr_entries);
127 entsz = le32toh(gpt->hdr_entsz);
128 table_lba = le32toh(gpt->hdr_lba_table);
129 table_blocks = (entries * entsz + info->d_media_blksize - 1) /
130 info->d_media_blksize;
131 if (entries < 1 || entries > 128 ||
132 entsz < 128 || (entsz & 7) || entsz > MAXBSIZE / entries ||
133 table_lba < 2 || table_lba + table_blocks > info->d_media_blocks) {
134 kprintf("%s: GPT partition table is out of bounds\n", dname);
135 error = EINVAL;
136 goto done;
140 * XXX subject to device dma size limitations
142 bp2 = getpbuf_mem(NULL);
143 KKASSERT((int)(table_blocks * info->d_media_blksize) <= bp2->b_bufsize);
144 bp2->b_bio1.bio_offset = (off_t)table_lba * info->d_media_blksize;
145 bp2->b_bio1.bio_done = biodone_sync;
146 bp2->b_bio1.bio_flags |= BIO_SYNC;
147 bp2->b_bcount = table_blocks * info->d_media_blksize;
148 bp2->b_cmd = BUF_CMD_READ;
149 bp2->b_flags |= B_FAILONDIS;
150 dev_dstrategy(wdev, &bp2->b_bio1);
151 if (biowait(&bp2->b_bio1, "gptrd") != 0) {
152 kprintf("%s: reading GPT partition table @ %lld: error %d\n",
153 dname,
154 (long long)bp2->b_bio1.bio_offset,
155 bp2->b_error);
156 error = EIO;
157 goto done;
161 * We are passed a pointer to a minimal slices struct. Replace
162 * it with a maximal one (128 slices + special slices). Well,
163 * really there is only one special slice (the WHOLE_DISK_SLICE)
164 * since we use the compatibility slice for s0, but don't quibble.
167 kfree(*sspp, M_DEVBUF);
168 ssp = *sspp = dsmakeslicestruct(BASE_SLICE+128, info);
171 * Create a slice for each partition.
173 for (i = 0; i < (int)entries && i < 128; ++i) {
174 struct gpt_ent sent;
175 char partname[2];
176 char *sname;
178 ent = (void *)((char *)bp2->b_data + i * entsz);
179 le_uuid_dec(&ent->ent_type, &sent.ent_type);
180 le_uuid_dec(&ent->ent_uuid, &sent.ent_uuid);
181 sent.ent_lba_start = le64toh(ent->ent_lba_start);
182 sent.ent_lba_end = le64toh(ent->ent_lba_end);
183 sent.ent_attr = le64toh(ent->ent_attr);
185 for (j = 0; j < NELEM(ent->ent_name); ++j)
186 sent.ent_name[j] = le16toh(ent->ent_name[j]);
189 * The COMPATIBILITY_SLICE is actually slice 0 (s0). This
190 * is a bit weird becaue the whole-disk slice is #1, so
191 * slice 1 (s1) starts at BASE_SLICE.
193 if (i == 0)
194 sp = &ssp->dss_slices[COMPATIBILITY_SLICE];
195 else
196 sp = &ssp->dss_slices[BASE_SLICE+i-1];
197 sname = dsname(dev, dkunit(dev), WHOLE_DISK_SLICE,
198 WHOLE_SLICE_PART, partname);
200 if (kuuid_is_nil(&sent.ent_type))
201 continue;
203 if (sent.ent_lba_start < table_lba + table_blocks ||
204 sent.ent_lba_end >= info->d_media_blocks ||
205 sent.ent_lba_start >= sent.ent_lba_end) {
206 kprintf("%s part %d: unavailable, bad start or "
207 "ending lba\n",
208 sname, i);
209 } else {
210 gpt_setslice(sname, info, sp, &sent);
213 ssp->dss_nslices = BASE_SLICE + i;
215 error = 0;
216 done:
217 if (bp1) {
218 bp1->b_flags |= B_INVAL | B_AGE;
219 relpbuf(bp1, NULL);
221 if (bp2) {
222 bp2->b_flags |= B_INVAL | B_AGE;
223 relpbuf(bp2, NULL);
225 if (error == EINVAL)
226 error = 0;
227 return (error);
230 static
231 void
232 gpt_setslice(const char *sname, struct disk_info *info, struct diskslice *sp,
233 struct gpt_ent *sent)
235 sp->ds_offset = sent->ent_lba_start;
236 sp->ds_size = sent->ent_lba_end + 1 - sent->ent_lba_start;
237 sp->ds_type = 1; /* XXX */
238 sp->ds_type_uuid = sent->ent_type;
239 sp->ds_stor_uuid = sent->ent_uuid;
240 sp->ds_reserved = 0; /* no reserved sectors */