2 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
4 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * This module implements a general bitmap allocator/deallocator. The
38 * allocator eats around 2 bits per 'block'. The module does not
39 * try to interpret the meaning of a 'block' other then to return
40 * SWAPBLK_NONE on an allocation failure.
42 * A radix tree is used to maintain the bitmap. Two radix constants are
43 * involved: One for the bitmaps contained in the leaf nodes (typically
44 * 32), and one for the meta nodes (typically 16). Both meta and leaf
45 * nodes have a hint field. This field gives us a hint as to the largest
46 * free contiguous range of blocks under the node. It may contain a
47 * value that is too high, but will never contain a value that is too
48 * low. When the radix tree is searched, allocation failures in subtrees
51 * The radix tree also implements two collapsed states for meta nodes:
52 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
53 * in either of these two states, all information contained underneath
54 * the node is considered stale. These states are used to optimize
55 * allocation and freeing operations.
57 * The hinting greatly increases code efficiency for allocations while
58 * the general radix structure optimizes both allocations and frees. The
59 * radix tree should be able to operate well no matter how much
60 * fragmentation there is and no matter how large a bitmap is used.
62 * Unlike the rlist code, the blist code wires all necessary memory at
63 * creation time. Neither allocations nor frees require interaction with
64 * the memory subsystem. In contrast, the rlist code may allocate memory
65 * on an rlist_free() call. The non-blocking features of the blist code
66 * are used to great advantage in the swap code (vm/nswap_pager.c). The
67 * rlist code uses a little less overall memory then the blist code (but
68 * due to swap interleaving not all that much less), but the blist code
69 * scales much, much better.
71 * LAYOUT: The radix tree is layed out recursively using a
72 * linear array. Each meta node is immediately followed (layed out
73 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
74 * is a recursive structure but one that can be easily scanned through
75 * a very simple 'skip' calculation. In order to support large radixes,
76 * portions of the tree may reside outside our memory allocation. We
77 * handle this with an early-termination optimization (when bighint is
78 * set to -1) on the scan. The memory allocation is only large enough
79 * to cover the number of blocks requested at creation time even if it
80 * must be encompassed in larger root-node radix.
82 * NOTE: The allocator cannot currently allocate more then
83 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
84 * large' if you try. This is an area that could use improvement. The
85 * radix is large enough that this restriction does not effect the swap
86 * system, though. Currently only the allocation code is effected by
87 * this algorithmic unfeature. The freeing code can handle arbitrary
90 * NOTE: The radix may exceed BLIST_BMAP_RADIX bits in order to support
91 * up to 2^(BLIST_BMAP_RADIX-1) blocks. The first divison will
92 * drop the radix down and fit it within a signed BLIST_BMAP_RADIX
95 * This code can be compiled stand-alone for debugging.
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/lock.h>
103 #include <sys/kernel.h>
104 #include <sys/blist.h>
105 #include <sys/malloc.h>
109 #ifndef BLIST_NO_DEBUG
113 #define SWAPBLK_NONE ((swblk_t)-1)
115 #include <sys/types.h>
122 #define kmalloc(a,b,c) malloc(a)
123 #define kfree(a,b) free(a)
124 #define kprintf printf
125 #define KKASSERT(exp)
127 #include <sys/blist.h>
129 void panic(const char *ctl
, ...);
134 * static support functions
137 static swblk_t
blst_leaf_alloc(blmeta_t
*scan
, swblk_t blkat
,
138 swblk_t blk
, swblk_t count
);
139 static swblk_t
blst_meta_alloc(blmeta_t
*scan
, swblk_t blkat
,
140 swblk_t blk
, swblk_t count
,
141 int64_t radix
, swblk_t skip
);
142 static void blst_leaf_free(blmeta_t
*scan
, swblk_t relblk
, swblk_t count
);
143 static void blst_meta_free(blmeta_t
*scan
, swblk_t freeBlk
, swblk_t count
,
144 int64_t radix
, swblk_t skip
,
146 static swblk_t
blst_leaf_fill(blmeta_t
*scan
, swblk_t blk
, swblk_t count
);
147 static swblk_t
blst_meta_fill(blmeta_t
*scan
, swblk_t fillBlk
, swblk_t count
,
148 int64_t radix
, swblk_t skip
,
150 static void blst_copy(blmeta_t
*scan
, swblk_t blk
, int64_t radix
,
151 swblk_t skip
, blist_t dest
, swblk_t count
);
152 static swblk_t
blst_radix_init(blmeta_t
*scan
, int64_t radix
,
153 swblk_t skip
, swblk_t count
);
155 static void blst_radix_print(blmeta_t
*scan
, swblk_t blk
,
156 int64_t radix
, swblk_t skip
, int tab
);
160 static MALLOC_DEFINE(M_SWAP
, "SWAP", "Swap space");
164 * blist_create() - create a blist capable of handling up to the specified
167 * blocks must be greater then 0
169 * The smallest blist consists of a single leaf node capable of
170 * managing BLIST_BMAP_RADIX blocks.
174 blist_create(swblk_t blocks
)
181 * Calculate radix and skip field used for scanning.
183 * Radix can exceed BLIST_BMAP_RADIX bits even if swblk_t is limited
184 * to BLIST_BMAP_RADIX bits.
186 radix
= BLIST_BMAP_RADIX
;
188 while (radix
< blocks
) {
189 radix
*= BLIST_META_RADIX
;
190 skip
= (skip
+ 1) * BLIST_META_RADIX
;
194 bl
= kmalloc(sizeof(struct blist
), M_SWAP
, M_WAITOK
| M_ZERO
);
196 bl
->bl_blocks
= blocks
;
197 bl
->bl_radix
= radix
;
199 bl
->bl_rootblks
= 1 +
200 blst_radix_init(NULL
, bl
->bl_radix
, bl
->bl_skip
, blocks
);
201 bl
->bl_root
= kmalloc(sizeof(blmeta_t
) * bl
->bl_rootblks
,
204 #if defined(BLIST_DEBUG)
206 "BLIST representing %lu blocks (%lu MB of swap)"
207 ", requiring %6.2fM of ram\n",
209 bl
->bl_blocks
* 4 / 1024,
210 (bl
->bl_rootblks
* sizeof(blmeta_t
) + 1023) / (1024.0 * 1024.0)
212 kprintf("BLIST raw radix tree: %lu records, top-radix %lu\n",
213 bl
->bl_rootblks
, bl
->bl_radix
);
215 blst_radix_init(bl
->bl_root
, bl
->bl_radix
, bl
->bl_skip
, blocks
);
221 blist_destroy(blist_t bl
)
223 kfree(bl
->bl_root
, M_SWAP
);
228 * blist_alloc() - reserve space in the block bitmap. Return the base
229 * of a contiguous region or SWAPBLK_NONE if space could
234 blist_alloc(blist_t bl
, swblk_t count
)
236 swblk_t blk
= SWAPBLK_NONE
;
239 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
240 blk
= blst_leaf_alloc(bl
->bl_root
, 0, 0, count
);
242 blk
= blst_meta_alloc(bl
->bl_root
, 0, 0, count
,
243 bl
->bl_radix
, bl
->bl_skip
);
244 if (blk
!= SWAPBLK_NONE
)
245 bl
->bl_free
-= count
;
251 blist_allocat(blist_t bl
, swblk_t count
, swblk_t blkat
)
253 swblk_t blk
= SWAPBLK_NONE
;
256 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
257 blk
= blst_leaf_alloc(bl
->bl_root
, blkat
, 0, count
);
259 blk
= blst_meta_alloc(bl
->bl_root
, blkat
, 0, count
,
260 bl
->bl_radix
, bl
->bl_skip
);
261 if (blk
!= SWAPBLK_NONE
)
262 bl
->bl_free
-= count
;
268 * blist_free() - free up space in the block bitmap. Return the base
269 * of a contiguous region. Panic if an inconsistancy is
274 blist_free(blist_t bl
, swblk_t blkno
, swblk_t count
)
277 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
278 blst_leaf_free(bl
->bl_root
, blkno
, count
);
280 blst_meta_free(bl
->bl_root
, blkno
, count
, bl
->bl_radix
, bl
->bl_skip
, 0);
281 bl
->bl_free
+= count
;
286 * blist_fill() - mark a region in the block bitmap as off-limits
287 * to the allocator (i.e. allocate it), ignoring any
288 * existing allocations. Return the number of blocks
289 * actually filled that were free before the call.
293 blist_fill(blist_t bl
, swblk_t blkno
, swblk_t count
)
298 if (bl
->bl_radix
== BLIST_BMAP_RADIX
) {
299 filled
= blst_leaf_fill(bl
->bl_root
, blkno
, count
);
301 filled
= blst_meta_fill(bl
->bl_root
, blkno
, count
,
302 bl
->bl_radix
, bl
->bl_skip
, 0);
304 bl
->bl_free
-= filled
;
312 * blist_resize() - resize an existing radix tree to handle the
313 * specified number of blocks. This will reallocate
314 * the tree and transfer the previous bitmap to the new
315 * one. When extending the tree you can specify whether
316 * the new blocks are to left allocated or freed.
320 blist_resize(blist_t
*pbl
, swblk_t count
, int freenew
)
322 blist_t newbl
= blist_create(count
);
326 if (count
> save
->bl_blocks
)
327 count
= save
->bl_blocks
;
328 blst_copy(save
->bl_root
, 0, save
->bl_radix
, save
->bl_skip
, newbl
, count
);
331 * If resizing upwards, should we free the new space or not?
333 if (freenew
&& count
< newbl
->bl_blocks
) {
334 blist_free(newbl
, count
, newbl
->bl_blocks
- count
);
342 * blist_print() - dump radix tree
346 blist_print(blist_t bl
)
348 kprintf("BLIST {\n");
349 blst_radix_print(bl
->bl_root
, 0, bl
->bl_radix
, bl
->bl_skip
, 4);
355 /************************************************************************
356 * ALLOCATION SUPPORT FUNCTIONS *
357 ************************************************************************
359 * These support functions do all the actual work. They may seem
360 * rather longish, but that's because I've commented them up. The
361 * actual code is straight forward.
366 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
368 * This is the core of the allocator and is optimized for the 1 block
369 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
370 * somewhat slower. The 1 block allocation case is log2 and extremely
375 blst_leaf_alloc(blmeta_t
*scan
, swblk_t blkat __unused
, swblk_t blk
,
378 u_swblk_t orig
= scan
->u
.bmu_bitmap
;
382 * Optimize bitmap all-allocated case. Also, count = 1
383 * case assumes at least 1 bit is free in the bitmap, so
384 * we have to take care of this case here.
386 scan
->bm_bighint
= 0;
387 return(SWAPBLK_NONE
);
391 * Optimized code to allocate one bit out of the bitmap
394 int j
= BLIST_BMAP_RADIX
/2;
397 mask
= (u_swblk_t
)-1 >> (BLIST_BMAP_RADIX
/2);
400 if ((orig
& mask
) == 0) {
407 scan
->u
.bmu_bitmap
&= ~((swblk_t
)1 << r
);
410 if (count
<= BLIST_BMAP_RADIX
) {
412 * non-optimized code to allocate N bits out of the bitmap.
413 * The more bits, the faster the code runs. It will run
414 * the slowest allocating 2 bits, but since there aren't any
415 * memory ops in the core loop (or shouldn't be, anyway),
416 * you probably won't notice the difference.
419 int n
= (int)(BLIST_BMAP_RADIX
- count
);
422 mask
= (u_swblk_t
)-1 >> n
;
424 for (j
= 0; j
<= n
; ++j
) {
425 if ((orig
& mask
) == mask
) {
426 scan
->u
.bmu_bitmap
&= ~mask
;
434 * We couldn't allocate count in this subtree, update bighint.
436 scan
->bm_bighint
= count
- 1;
438 return(SWAPBLK_NONE
);
442 * blist_meta_alloc() - allocate at a meta in the radix tree.
444 * Attempt to allocate at a meta node. If we can't, we update
445 * bighint and return a failure. Updating bighint optimize future
446 * calls that hit this node. We have to check for our collapse cases
447 * and we have a few optimizations strewn in as well.
450 blst_meta_alloc(blmeta_t
*scan
, swblk_t blkat
,
451 swblk_t blk
, swblk_t count
,
452 int64_t radix
, swblk_t skip
)
454 int hintok
= (blk
>= blkat
);
455 swblk_t next_skip
= ((swblk_t
)skip
/ BLIST_META_RADIX
);
459 kprintf("blist_meta_alloc blkat %ld blk %ld count %ld radix %ld\n",
460 blkat
, blk
, count
, radix
);
464 * ALL-ALLOCATED special case
466 if (scan
->u
.bmu_avail
== 0) {
467 scan
->bm_bighint
= 0;
468 return(SWAPBLK_NONE
);
472 * ALL-FREE special case, initialize uninitialized
475 * NOTE: radix may exceed 32 bits until first division.
477 if (scan
->u
.bmu_avail
== radix
) {
478 scan
->bm_bighint
= radix
;
480 radix
/= BLIST_META_RADIX
;
481 for (i
= 1; i
<= skip
; i
+= next_skip
) {
482 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
484 if (next_skip
== 1) {
485 scan
[i
].u
.bmu_bitmap
= (u_swblk_t
)-1;
486 scan
[i
].bm_bighint
= BLIST_BMAP_RADIX
;
488 scan
[i
].bm_bighint
= (swblk_t
)radix
;
489 scan
[i
].u
.bmu_avail
= (swblk_t
)radix
;
493 radix
/= BLIST_META_RADIX
;
496 for (i
= 1; i
<= skip
; i
+= next_skip
) {
497 if (count
<= scan
[i
].bm_bighint
&&
498 blk
+ (swblk_t
)radix
> blkat
) {
500 * count fits in object
503 if (next_skip
== 1) {
504 r
= blst_leaf_alloc(&scan
[i
], blkat
,
507 r
= blst_meta_alloc(&scan
[i
], blkat
,
509 radix
, next_skip
- 1);
511 if (r
!= SWAPBLK_NONE
) {
512 scan
->u
.bmu_avail
-= count
;
513 if (scan
->bm_bighint
> scan
->u
.bmu_avail
)
514 scan
->bm_bighint
= scan
->u
.bmu_avail
;
517 /* bighint was updated by recursion */
518 } else if (scan
[i
].bm_bighint
== (swblk_t
)-1) {
523 } else if (count
> (swblk_t
)radix
) {
525 * count does not fit in object even if it were
528 panic("blist_meta_alloc: allocation too large %lu/%lu",
531 blk
+= (swblk_t
)radix
;
535 * We couldn't allocate count in this subtree, update bighint.
537 if (hintok
&& scan
->bm_bighint
>= count
)
538 scan
->bm_bighint
= count
- 1;
539 return(SWAPBLK_NONE
);
543 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
546 blst_leaf_free(blmeta_t
*scan
, swblk_t blk
, swblk_t count
)
549 * free some data in this bitmap
552 * 0000111111111110000
556 int n
= blk
& (BLIST_BMAP_RADIX
- 1);
559 mask
= ((u_swblk_t
)-1 << n
) &
560 ((u_swblk_t
)-1 >> (BLIST_BMAP_RADIX
- count
- n
));
562 if (scan
->u
.bmu_bitmap
& mask
)
563 panic("blst_radix_free: freeing free block");
564 scan
->u
.bmu_bitmap
|= mask
;
567 * We could probably do a better job here. We are required to make
568 * bighint at least as large as the biggest contiguous block of
569 * data. If we just shoehorn it, a little extra overhead will
570 * be incured on the next allocation (but only that one typically).
572 scan
->bm_bighint
= BLIST_BMAP_RADIX
;
576 * BLST_META_FREE() - free allocated blocks from radix tree meta info
578 * This support routine frees a range of blocks from the bitmap.
579 * The range must be entirely enclosed by this radix node. If a
580 * meta node, we break the range down recursively to free blocks
581 * in subnodes (which means that this code can free an arbitrary
582 * range whereas the allocation code cannot allocate an arbitrary
587 blst_meta_free(blmeta_t
*scan
, swblk_t freeBlk
, swblk_t count
,
588 int64_t radix
, swblk_t skip
, swblk_t blk
)
591 swblk_t next_skip
= ((swblk_t
)skip
/ BLIST_META_RADIX
);
594 kprintf("FREE (%lx,%lu) FROM (%lx,%lu)\n",
601 * ALL-ALLOCATED special case, initialize for recursion.
603 * We will short-cut the ALL-ALLOCATED -> ALL-FREE case.
605 if (scan
->u
.bmu_avail
== 0) {
606 scan
->u
.bmu_avail
= count
;
607 scan
->bm_bighint
= count
;
609 if (count
!= radix
) {
610 for (i
= 1; i
<= skip
; i
+= next_skip
) {
611 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
613 scan
[i
].bm_bighint
= 0;
614 if (next_skip
== 1) {
615 scan
[i
].u
.bmu_bitmap
= 0;
617 scan
[i
].u
.bmu_avail
= 0;
623 scan
->u
.bmu_avail
+= count
;
624 /* scan->bm_bighint = radix; */
628 * ALL-FREE special case.
630 * Set bighint for higher levels to snoop.
632 if (scan
->u
.bmu_avail
== radix
) {
633 scan
->bm_bighint
= radix
;
638 * Break the free down into its components
640 if (scan
->u
.bmu_avail
> radix
) {
641 panic("blst_meta_free: freeing already "
642 "free blocks (%lu) %lu/%lu",
643 count
, (long)scan
->u
.bmu_avail
, radix
);
646 radix
/= BLIST_META_RADIX
;
648 i
= (freeBlk
- blk
) / (swblk_t
)radix
;
649 blk
+= i
* (swblk_t
)radix
;
650 i
= i
* next_skip
+ 1;
652 while (i
<= skip
&& blk
< freeBlk
+ count
) {
655 v
= blk
+ (swblk_t
)radix
- freeBlk
;
659 if (scan
->bm_bighint
== (swblk_t
)-1)
660 panic("blst_meta_free: freeing unexpected range");
662 if (next_skip
== 1) {
663 blst_leaf_free(&scan
[i
], freeBlk
, v
);
665 blst_meta_free(&scan
[i
], freeBlk
, v
,
666 radix
, next_skip
- 1, blk
);
670 * After having dealt with the becomes-all-free case any
671 * partial free will not be able to bring us to the
672 * becomes-all-free state.
674 * We can raise bighint to at least the sub-segment's
677 if (scan
->bm_bighint
< scan
[i
].bm_bighint
) {
678 scan
->bm_bighint
= scan
[i
].bm_bighint
;
682 blk
+= (swblk_t
)radix
;
688 * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
690 * Allocates all blocks in the specified range regardless of
691 * any existing allocations in that range. Returns the number
692 * of blocks allocated by the call.
695 blst_leaf_fill(blmeta_t
*scan
, swblk_t blk
, swblk_t count
)
697 int n
= blk
& (BLIST_BMAP_RADIX
- 1);
699 u_swblk_t mask
, bitmap
;
701 mask
= ((u_swblk_t
)-1 << n
) &
702 ((u_swblk_t
)-1 >> (BLIST_BMAP_RADIX
- count
- n
));
704 /* Count the number of blocks we're about to allocate */
705 bitmap
= scan
->u
.bmu_bitmap
& mask
;
706 for (nblks
= 0; bitmap
!= 0; nblks
++)
707 bitmap
&= bitmap
- 1;
709 scan
->u
.bmu_bitmap
&= ~mask
;
714 * BLST_META_FILL() - allocate specific blocks at a meta node
716 * Allocates the specified range of blocks, regardless of
717 * any existing allocations in the range. The range must
718 * be within the extent of this node. Returns the number
719 * of blocks allocated by the call.
722 blst_meta_fill(blmeta_t
*scan
, swblk_t fillBlk
, swblk_t count
,
723 int64_t radix
, swblk_t skip
, swblk_t blk
)
726 swblk_t next_skip
= ((swblk_t
)skip
/ BLIST_META_RADIX
);
729 if (count
== radix
|| scan
->u
.bmu_avail
== 0) {
731 * ALL-ALLOCATED special case
733 nblks
= scan
->u
.bmu_avail
;
734 scan
->u
.bmu_avail
= 0;
735 scan
->bm_bighint
= count
;
739 if (scan
->u
.bmu_avail
== radix
) {
740 radix
/= BLIST_META_RADIX
;
743 * ALL-FREE special case, initialize sublevel
745 for (i
= 1; i
<= skip
; i
+= next_skip
) {
746 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
748 if (next_skip
== 1) {
749 scan
[i
].u
.bmu_bitmap
= (u_swblk_t
)-1;
750 scan
[i
].bm_bighint
= BLIST_BMAP_RADIX
;
752 scan
[i
].bm_bighint
= (swblk_t
)radix
;
753 scan
[i
].u
.bmu_avail
= (swblk_t
)radix
;
757 radix
/= BLIST_META_RADIX
;
760 if (count
> (swblk_t
)radix
)
761 panic("blst_meta_fill: allocation too large");
763 i
= (fillBlk
- blk
) / (swblk_t
)radix
;
764 blk
+= i
* (swblk_t
)radix
;
765 i
= i
* next_skip
+ 1;
767 while (i
<= skip
&& blk
< fillBlk
+ count
) {
770 v
= blk
+ (swblk_t
)radix
- fillBlk
;
774 if (scan
->bm_bighint
== (swblk_t
)-1)
775 panic("blst_meta_fill: filling unexpected range");
777 if (next_skip
== 1) {
778 nblks
+= blst_leaf_fill(&scan
[i
], fillBlk
, v
);
780 nblks
+= blst_meta_fill(&scan
[i
], fillBlk
, v
,
781 radix
, next_skip
- 1, blk
);
785 blk
+= (swblk_t
)radix
;
788 scan
->u
.bmu_avail
-= nblks
;
793 * BLIST_RADIX_COPY() - copy one radix tree to another
795 * Locates free space in the source tree and frees it in the destination
796 * tree. The space may not already be free in the destination.
800 blst_copy(blmeta_t
*scan
, swblk_t blk
, int64_t radix
,
801 swblk_t skip
, blist_t dest
, swblk_t count
)
810 if (radix
== BLIST_BMAP_RADIX
) {
811 u_swblk_t v
= scan
->u
.bmu_bitmap
;
813 if (v
== (u_swblk_t
)-1) {
814 blist_free(dest
, blk
, count
);
818 for (i
= 0; i
< BLIST_BMAP_RADIX
&& i
< count
; ++i
) {
819 if (v
& ((swblk_t
)1 << i
))
820 blist_free(dest
, blk
+ i
, 1);
830 if (scan
->u
.bmu_avail
== 0) {
832 * Source all allocated, leave dest allocated
836 if (scan
->u
.bmu_avail
== radix
) {
838 * Source all free, free entire dest
841 blist_free(dest
, blk
, count
);
843 blist_free(dest
, blk
, (swblk_t
)radix
);
848 radix
/= BLIST_META_RADIX
;
849 next_skip
= ((u_swblk_t
)skip
/ BLIST_META_RADIX
);
851 for (i
= 1; count
&& i
<= skip
; i
+= next_skip
) {
852 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
855 if (count
>= (swblk_t
)radix
) {
864 count
-= (swblk_t
)radix
;
878 blk
+= (swblk_t
)radix
;
883 * BLST_RADIX_INIT() - initialize radix tree
885 * Initialize our meta structures and bitmaps and calculate the exact
886 * amount of space required to manage 'count' blocks - this space may
887 * be considerably less then the calculated radix due to the large
888 * RADIX values we use.
892 blst_radix_init(blmeta_t
*scan
, int64_t radix
, swblk_t skip
, swblk_t count
)
896 swblk_t memindex
= 0;
902 if (radix
== BLIST_BMAP_RADIX
) {
904 scan
->bm_bighint
= 0;
905 scan
->u
.bmu_bitmap
= 0;
911 * Meta node. If allocating the entire object we can special
912 * case it. However, we need to figure out how much memory
913 * is required to manage 'count' blocks, so we continue on anyway.
917 scan
->bm_bighint
= 0;
918 scan
->u
.bmu_avail
= 0;
921 radix
/= BLIST_META_RADIX
;
922 next_skip
= ((u_swblk_t
)skip
/ BLIST_META_RADIX
);
924 for (i
= 1; i
<= skip
; i
+= next_skip
) {
925 if (count
>= (swblk_t
)radix
) {
927 * Allocate the entire object
929 memindex
= i
+ blst_radix_init(
930 ((scan
) ? &scan
[i
] : NULL
),
935 count
-= (swblk_t
)radix
;
936 } else if (count
> 0) {
938 * Allocate a partial object
940 memindex
= i
+ blst_radix_init(
941 ((scan
) ? &scan
[i
] : NULL
),
949 * Add terminator and break out
952 scan
[i
].bm_bighint
= (swblk_t
)-1;
964 blst_radix_print(blmeta_t
*scan
, swblk_t blk
, int64_t radix
, swblk_t skip
, int tab
)
969 if (radix
== BLIST_BMAP_RADIX
) {
971 "%*.*s(%04lx,%lu): bitmap %016lx big=%lu\n",
980 if (scan
->u
.bmu_avail
== 0) {
982 "%*.*s(%04lx,%ld) ALL ALLOCATED\n",
989 if (scan
->u
.bmu_avail
== radix
) {
991 "%*.*s(%04lx,%ld) ALL FREE\n",
1000 "%*.*s(%04lx,%lu): subtree (%lu/%lu) big=%lu {\n",
1002 blk
, (long long)radix
,
1008 radix
/= BLIST_META_RADIX
;
1009 next_skip
= ((u_swblk_t
)skip
/ BLIST_META_RADIX
);
1012 for (i
= 1; i
<= skip
; i
+= next_skip
) {
1013 if (scan
[i
].bm_bighint
== (swblk_t
)-1) {
1015 "%*.*s(%04lx,%ld): Terminator\n",
1028 blk
+= (swblk_t
)radix
;
1043 main(int ac
, char **av
)
1045 swblk_t size
= 1024;
1049 for (i
= 1; i
< ac
; ++i
) {
1050 const char *ptr
= av
[i
];
1052 size
= strtol(ptr
, NULL
, 0);
1056 fprintf(stderr
, "Bad option: %s\n", ptr
- 2);
1059 bl
= blist_create(size
);
1060 blist_free(bl
, 0, size
);
1069 kprintf("%lu/%lu/%llu> ",
1070 bl
->bl_free
, size
, (long long)bl
->bl_radix
);
1072 if (fgets(buf
, sizeof(buf
), stdin
) == NULL
)
1076 if (sscanf(buf
+ 1, "%li", &count
) == 1) {
1077 blist_resize(&bl
, count
, 1);
1086 if (sscanf(buf
+ 1, "%li %li", &count
, &blkat
) == 1) {
1087 kprintf("count %ld\n", count
);
1088 swblk_t blk
= blist_alloc(bl
, count
);
1089 kprintf(" R=%04lx\n", blk
);
1090 } else if (sscanf(buf
+ 1, "%li %li", &count
, &blkat
) == 2) {
1091 swblk_t blk
= blist_allocat(bl
, count
, blkat
);
1092 kprintf(" R=%04lx\n", blk
);
1098 if (sscanf(buf
+ 1, "%li %li", &da
, &count
) == 2) {
1099 blist_free(bl
, da
, count
);
1105 if (sscanf(buf
+ 1, "%li %li", &da
, &count
) == 2) {
1107 blist_fill(bl
, da
, count
));
1121 " hex may be specified with 0x prefix\n"
1133 panic(const char *ctl
, ...)
1137 __va_start(va
, ctl
);
1138 vfprintf(stderr
, ctl
, va
);
1139 fprintf(stderr
, "\n");