4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56 * Carnegie Mellon requests users of this software to return to
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
66 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
71 * Virtual memory mapping module.
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
78 #include <sys/serialize.h>
80 #include <sys/vmmeter.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
86 #include <sys/malloc.h>
89 #include <vm/vm_param.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102 #include <sys/random.h>
103 #include <sys/sysctl.h>
106 * Virtual memory maps provide for the mapping, protection, and sharing
107 * of virtual memory objects. In addition, this module provides for an
108 * efficient virtual copy of memory from one map to another.
110 * Synchronization is required prior to most operations.
112 * Maps consist of an ordered doubly-linked list of simple entries.
113 * A hint and a RB tree is used to speed-up lookups.
115 * Callers looking to modify maps specify start/end addresses which cause
116 * the related map entry to be clipped if necessary, and then later
117 * recombined if the pieces remained compatible.
119 * Virtual copy operations are performed by copying VM object references
120 * from one map to another, and then marking both regions as copy-on-write.
122 static void vmspace_terminate(struct vmspace
*vm
);
123 static void vmspace_lock(struct vmspace
*vm
);
124 static void vmspace_unlock(struct vmspace
*vm
);
125 static void vmspace_dtor(void *obj
, void *private);
127 MALLOC_DEFINE(M_VMSPACE
, "vmspace", "vmspace objcache backingstore");
129 struct sysref_class vmspace_sysref_class
= {
132 .proto
= SYSREF_PROTO_VMSPACE
,
133 .offset
= offsetof(struct vmspace
, vm_sysref
),
134 .objsize
= sizeof(struct vmspace
),
136 .flags
= SRC_MANAGEDINIT
,
137 .dtor
= vmspace_dtor
,
139 .terminate
= (sysref_terminate_func_t
)vmspace_terminate
,
140 .lock
= (sysref_lock_func_t
)vmspace_lock
,
141 .unlock
= (sysref_lock_func_t
)vmspace_unlock
146 * per-cpu page table cross mappings are initialized in early boot
147 * and might require a considerable number of vm_map_entry structures.
149 #define VMEPERCPU (MAXCPU+1)
151 static struct vm_zone mapentzone_store
, mapzone_store
;
152 static vm_zone_t mapentzone
, mapzone
;
153 static struct vm_object mapentobj
, mapobj
;
155 static struct vm_map_entry map_entry_init
[MAX_MAPENT
];
156 static struct vm_map_entry cpu_map_entry_init
[MAXCPU
][VMEPERCPU
];
157 static struct vm_map map_init
[MAX_KMAP
];
159 static int randomize_mmap
;
160 SYSCTL_INT(_vm
, OID_AUTO
, randomize_mmap
, CTLFLAG_RW
, &randomize_mmap
, 0,
161 "Randomize mmap offsets");
163 static void vm_map_entry_shadow(vm_map_entry_t entry
);
164 static vm_map_entry_t
vm_map_entry_create(vm_map_t map
, int *);
165 static void vm_map_entry_dispose (vm_map_t map
, vm_map_entry_t entry
, int *);
166 static void _vm_map_clip_end (vm_map_t
, vm_map_entry_t
, vm_offset_t
, int *);
167 static void _vm_map_clip_start (vm_map_t
, vm_map_entry_t
, vm_offset_t
, int *);
168 static void vm_map_entry_delete (vm_map_t
, vm_map_entry_t
, int *);
169 static void vm_map_entry_unwire (vm_map_t
, vm_map_entry_t
);
170 static void vm_map_copy_entry (vm_map_t
, vm_map_t
, vm_map_entry_t
,
172 static void vm_map_split (vm_map_entry_t
);
173 static void vm_map_unclip_range (vm_map_t map
, vm_map_entry_t start_entry
, vm_offset_t start
, vm_offset_t end
, int *count
, int flags
);
176 * Initialize the vm_map module. Must be called before any other vm_map
179 * Map and entry structures are allocated from the general purpose
180 * memory pool with some exceptions:
182 * - The kernel map is allocated statically.
183 * - Initial kernel map entries are allocated out of a static pool.
185 * These restrictions are necessary since malloc() uses the
186 * maps and requires map entries.
188 * Called from the low level boot code only.
193 mapzone
= &mapzone_store
;
194 zbootinit(mapzone
, "MAP", sizeof (struct vm_map
),
196 mapentzone
= &mapentzone_store
;
197 zbootinit(mapentzone
, "MAP ENTRY", sizeof (struct vm_map_entry
),
198 map_entry_init
, MAX_MAPENT
);
202 * Called prior to any vmspace allocations.
204 * Called from the low level boot code only.
209 zinitna(mapentzone
, &mapentobj
, NULL
, 0, 0,
210 ZONE_USE_RESERVE
| ZONE_SPECIAL
, 1);
211 zinitna(mapzone
, &mapobj
, NULL
, 0, 0, 0, 1);
218 * Red black tree functions
220 * The caller must hold the related map lock.
222 static int rb_vm_map_compare(vm_map_entry_t a
, vm_map_entry_t b
);
223 RB_GENERATE(vm_map_rb_tree
, vm_map_entry
, rb_entry
, rb_vm_map_compare
);
225 /* a->start is address, and the only field has to be initialized */
227 rb_vm_map_compare(vm_map_entry_t a
, vm_map_entry_t b
)
229 if (a
->start
< b
->start
)
231 else if (a
->start
> b
->start
)
237 * Allocate a vmspace structure, including a vm_map and pmap.
238 * Initialize numerous fields. While the initial allocation is zerod,
239 * subsequence reuse from the objcache leaves elements of the structure
240 * intact (particularly the pmap), so portions must be zerod.
242 * The structure is not considered activated until we call sysref_activate().
247 vmspace_alloc(vm_offset_t min
, vm_offset_t max
)
251 lwkt_gettoken(&vmspace_token
);
252 vm
= sysref_alloc(&vmspace_sysref_class
);
253 bzero(&vm
->vm_startcopy
,
254 (char *)&vm
->vm_endcopy
- (char *)&vm
->vm_startcopy
);
255 vm_map_init(&vm
->vm_map
, min
, max
, NULL
);
256 pmap_pinit(vmspace_pmap(vm
)); /* (some fields reused) */
257 vm
->vm_map
.pmap
= vmspace_pmap(vm
); /* XXX */
259 vm
->vm_exitingcnt
= 0;
260 cpu_vmspace_alloc(vm
);
261 sysref_activate(&vm
->vm_sysref
);
262 lwkt_reltoken(&vmspace_token
);
268 * dtor function - Some elements of the pmap are retained in the
269 * free-cached vmspaces to improve performance. We have to clean them up
270 * here before returning the vmspace to the memory pool.
275 vmspace_dtor(void *obj
, void *private)
277 struct vmspace
*vm
= obj
;
279 pmap_puninit(vmspace_pmap(vm
));
283 * Called in two cases:
285 * (1) When the last sysref is dropped, but exitingcnt might still be
288 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
289 * exitingcnt becomes zero
291 * sysref will not scrap the object until we call sysref_put() once more
292 * after the last ref has been dropped.
294 * Interlocked by the sysref API.
297 vmspace_terminate(struct vmspace
*vm
)
302 * If exitingcnt is non-zero we can't get rid of the entire vmspace
303 * yet, but we can scrap user memory.
305 lwkt_gettoken(&vmspace_token
);
306 if (vm
->vm_exitingcnt
) {
308 pmap_remove_pages(vmspace_pmap(vm
), VM_MIN_USER_ADDRESS
,
309 VM_MAX_USER_ADDRESS
);
310 vm_map_remove(&vm
->vm_map
, VM_MIN_USER_ADDRESS
,
311 VM_MAX_USER_ADDRESS
);
312 lwkt_reltoken(&vmspace_token
);
315 cpu_vmspace_free(vm
);
318 * Make sure any SysV shm is freed, it might not have in
323 KKASSERT(vm
->vm_upcalls
== NULL
);
326 * Lock the map, to wait out all other references to it.
327 * Delete all of the mappings and pages they hold, then call
328 * the pmap module to reclaim anything left.
330 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
331 vm_map_lock(&vm
->vm_map
);
332 vm_map_delete(&vm
->vm_map
, vm
->vm_map
.min_offset
,
333 vm
->vm_map
.max_offset
, &count
);
334 vm_map_unlock(&vm
->vm_map
);
335 vm_map_entry_release(count
);
337 pmap_release(vmspace_pmap(vm
));
338 sysref_put(&vm
->vm_sysref
);
339 lwkt_reltoken(&vmspace_token
);
343 * vmspaces are not currently locked.
346 vmspace_lock(struct vmspace
*vm __unused
)
351 vmspace_unlock(struct vmspace
*vm __unused
)
356 * This is called during exit indicating that the vmspace is no
357 * longer in used by an exiting process, but the process has not yet
363 vmspace_exitbump(struct vmspace
*vm
)
365 lwkt_gettoken(&vmspace_token
);
367 lwkt_reltoken(&vmspace_token
);
371 * This is called in the wait*() handling code. The vmspace can be terminated
372 * after the last wait is finished using it.
377 vmspace_exitfree(struct proc
*p
)
381 lwkt_gettoken(&vmspace_token
);
385 if (--vm
->vm_exitingcnt
== 0 && sysref_isinactive(&vm
->vm_sysref
))
386 vmspace_terminate(vm
);
387 lwkt_reltoken(&vmspace_token
);
391 * Swap useage is determined by taking the proportional swap used by
392 * VM objects backing the VM map. To make up for fractional losses,
393 * if the VM object has any swap use at all the associated map entries
394 * count for at least 1 swap page.
399 vmspace_swap_count(struct vmspace
*vmspace
)
401 vm_map_t map
= &vmspace
->vm_map
;
407 lwkt_gettoken(&vmspace_token
);
408 for (cur
= map
->header
.next
; cur
!= &map
->header
; cur
= cur
->next
) {
409 switch(cur
->maptype
) {
410 case VM_MAPTYPE_NORMAL
:
411 case VM_MAPTYPE_VPAGETABLE
:
412 if ((object
= cur
->object
.vm_object
) == NULL
)
414 if (object
->swblock_count
) {
415 n
= (cur
->end
- cur
->start
) / PAGE_SIZE
;
416 count
+= object
->swblock_count
*
417 SWAP_META_PAGES
* n
/ object
->size
+ 1;
424 lwkt_reltoken(&vmspace_token
);
429 * Calculate the approximate number of anonymous pages in use by
430 * this vmspace. To make up for fractional losses, we count each
431 * VM object as having at least 1 anonymous page.
436 vmspace_anonymous_count(struct vmspace
*vmspace
)
438 vm_map_t map
= &vmspace
->vm_map
;
443 lwkt_gettoken(&vmspace_token
);
444 for (cur
= map
->header
.next
; cur
!= &map
->header
; cur
= cur
->next
) {
445 switch(cur
->maptype
) {
446 case VM_MAPTYPE_NORMAL
:
447 case VM_MAPTYPE_VPAGETABLE
:
448 if ((object
= cur
->object
.vm_object
) == NULL
)
450 if (object
->type
!= OBJT_DEFAULT
&&
451 object
->type
!= OBJT_SWAP
) {
454 count
+= object
->resident_page_count
;
460 lwkt_reltoken(&vmspace_token
);
465 * Creates and returns a new empty VM map with the given physical map
466 * structure, and having the given lower and upper address bounds.
471 vm_map_create(vm_map_t result
, pmap_t pmap
, vm_offset_t min
, vm_offset_t max
)
474 result
= zalloc(mapzone
);
475 vm_map_init(result
, min
, max
, pmap
);
480 * Initialize an existing vm_map structure such as that in the vmspace
481 * structure. The pmap is initialized elsewhere.
486 vm_map_init(struct vm_map
*map
, vm_offset_t min
, vm_offset_t max
, pmap_t pmap
)
488 map
->header
.next
= map
->header
.prev
= &map
->header
;
489 RB_INIT(&map
->rb_root
);
494 map
->min_offset
= min
;
495 map
->max_offset
= max
;
497 map
->first_free
= &map
->header
;
498 map
->hint
= &map
->header
;
501 lockinit(&map
->lock
, "thrd_sleep", 0, 0);
505 * Shadow the vm_map_entry's object. This typically needs to be done when
506 * a write fault is taken on an entry which had previously been cloned by
507 * fork(). The shared object (which might be NULL) must become private so
508 * we add a shadow layer above it.
510 * Object allocation for anonymous mappings is defered as long as possible.
511 * When creating a shadow, however, the underlying object must be instantiated
512 * so it can be shared.
514 * If the map segment is governed by a virtual page table then it is
515 * possible to address offsets beyond the mapped area. Just allocate
516 * a maximally sized object for this case.
518 * The vm_map must be exclusively locked.
519 * No other requirements.
523 vm_map_entry_shadow(vm_map_entry_t entry
)
525 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
526 vm_object_shadow(&entry
->object
.vm_object
, &entry
->offset
,
527 0x7FFFFFFF); /* XXX */
529 vm_object_shadow(&entry
->object
.vm_object
, &entry
->offset
,
530 atop(entry
->end
- entry
->start
));
532 entry
->eflags
&= ~MAP_ENTRY_NEEDS_COPY
;
536 * Allocate an object for a vm_map_entry.
538 * Object allocation for anonymous mappings is defered as long as possible.
539 * This function is called when we can defer no longer, generally when a map
540 * entry might be split or forked or takes a page fault.
542 * If the map segment is governed by a virtual page table then it is
543 * possible to address offsets beyond the mapped area. Just allocate
544 * a maximally sized object for this case.
546 * The vm_map must be exclusively locked.
547 * No other requirements.
550 vm_map_entry_allocate_object(vm_map_entry_t entry
)
554 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
555 obj
= vm_object_allocate(OBJT_DEFAULT
, 0x7FFFFFFF); /* XXX */
557 obj
= vm_object_allocate(OBJT_DEFAULT
,
558 atop(entry
->end
- entry
->start
));
560 entry
->object
.vm_object
= obj
;
565 * Set an initial negative count so the first attempt to reserve
566 * space preloads a bunch of vm_map_entry's for this cpu. Also
567 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
568 * map a new page for vm_map_entry structures. SMP systems are
569 * particularly sensitive.
571 * This routine is called in early boot so we cannot just call
572 * vm_map_entry_reserve().
574 * Called from the low level boot code only (for each cpu)
577 vm_map_entry_reserve_cpu_init(globaldata_t gd
)
579 vm_map_entry_t entry
;
582 gd
->gd_vme_avail
-= MAP_RESERVE_COUNT
* 2;
583 entry
= &cpu_map_entry_init
[gd
->gd_cpuid
][0];
584 for (i
= 0; i
< VMEPERCPU
; ++i
, ++entry
) {
585 entry
->next
= gd
->gd_vme_base
;
586 gd
->gd_vme_base
= entry
;
591 * Reserves vm_map_entry structures so code later on can manipulate
592 * map_entry structures within a locked map without blocking trying
593 * to allocate a new vm_map_entry.
598 vm_map_entry_reserve(int count
)
600 struct globaldata
*gd
= mycpu
;
601 vm_map_entry_t entry
;
604 * Make sure we have enough structures in gd_vme_base to handle
605 * the reservation request.
608 while (gd
->gd_vme_avail
< count
) {
609 entry
= zalloc(mapentzone
);
610 entry
->next
= gd
->gd_vme_base
;
611 gd
->gd_vme_base
= entry
;
614 gd
->gd_vme_avail
-= count
;
621 * Releases previously reserved vm_map_entry structures that were not
622 * used. If we have too much junk in our per-cpu cache clean some of
628 vm_map_entry_release(int count
)
630 struct globaldata
*gd
= mycpu
;
631 vm_map_entry_t entry
;
634 gd
->gd_vme_avail
+= count
;
635 while (gd
->gd_vme_avail
> MAP_RESERVE_SLOP
) {
636 entry
= gd
->gd_vme_base
;
637 KKASSERT(entry
!= NULL
);
638 gd
->gd_vme_base
= entry
->next
;
641 zfree(mapentzone
, entry
);
648 * Reserve map entry structures for use in kernel_map itself. These
649 * entries have *ALREADY* been reserved on a per-cpu basis when the map
650 * was inited. This function is used by zalloc() to avoid a recursion
651 * when zalloc() itself needs to allocate additional kernel memory.
653 * This function works like the normal reserve but does not load the
654 * vm_map_entry cache (because that would result in an infinite
655 * recursion). Note that gd_vme_avail may go negative. This is expected.
657 * Any caller of this function must be sure to renormalize after
658 * potentially eating entries to ensure that the reserve supply
664 vm_map_entry_kreserve(int count
)
666 struct globaldata
*gd
= mycpu
;
669 gd
->gd_vme_avail
-= count
;
671 KASSERT(gd
->gd_vme_base
!= NULL
,
672 ("no reserved entries left, gd_vme_avail = %d\n",
678 * Release previously reserved map entries for kernel_map. We do not
679 * attempt to clean up like the normal release function as this would
680 * cause an unnecessary (but probably not fatal) deep procedure call.
685 vm_map_entry_krelease(int count
)
687 struct globaldata
*gd
= mycpu
;
690 gd
->gd_vme_avail
+= count
;
695 * Allocates a VM map entry for insertion. No entry fields are filled in.
697 * The entries should have previously been reserved. The reservation count
698 * is tracked in (*countp).
702 static vm_map_entry_t
703 vm_map_entry_create(vm_map_t map
, int *countp
)
705 struct globaldata
*gd
= mycpu
;
706 vm_map_entry_t entry
;
708 KKASSERT(*countp
> 0);
711 entry
= gd
->gd_vme_base
;
712 KASSERT(entry
!= NULL
, ("gd_vme_base NULL! count %d", *countp
));
713 gd
->gd_vme_base
= entry
->next
;
720 * Dispose of a vm_map_entry that is no longer being referenced.
725 vm_map_entry_dispose(vm_map_t map
, vm_map_entry_t entry
, int *countp
)
727 struct globaldata
*gd
= mycpu
;
729 KKASSERT(map
->hint
!= entry
);
730 KKASSERT(map
->first_free
!= entry
);
734 entry
->next
= gd
->gd_vme_base
;
735 gd
->gd_vme_base
= entry
;
741 * Insert/remove entries from maps.
743 * The related map must be exclusively locked.
744 * No other requirements.
746 * NOTE! We currently acquire the vmspace_token only to avoid races
747 * against the pageout daemon's calls to vmspace_*_count(), which
748 * are unable to safely lock the vm_map without potentially
752 vm_map_entry_link(vm_map_t map
,
753 vm_map_entry_t after_where
,
754 vm_map_entry_t entry
)
756 ASSERT_VM_MAP_LOCKED(map
);
758 lwkt_gettoken(&vmspace_token
);
760 entry
->prev
= after_where
;
761 entry
->next
= after_where
->next
;
762 entry
->next
->prev
= entry
;
763 after_where
->next
= entry
;
764 if (vm_map_rb_tree_RB_INSERT(&map
->rb_root
, entry
))
765 panic("vm_map_entry_link: dup addr map %p ent %p", map
, entry
);
766 lwkt_reltoken(&vmspace_token
);
770 vm_map_entry_unlink(vm_map_t map
,
771 vm_map_entry_t entry
)
776 ASSERT_VM_MAP_LOCKED(map
);
778 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
779 panic("vm_map_entry_unlink: attempt to mess with "
780 "locked entry! %p", entry
);
782 lwkt_gettoken(&vmspace_token
);
787 vm_map_rb_tree_RB_REMOVE(&map
->rb_root
, entry
);
789 lwkt_reltoken(&vmspace_token
);
793 * Finds the map entry containing (or immediately preceding) the specified
794 * address in the given map. The entry is returned in (*entry).
796 * The boolean result indicates whether the address is actually contained
799 * The related map must be locked.
800 * No other requirements.
803 vm_map_lookup_entry(vm_map_t map
, vm_offset_t address
, vm_map_entry_t
*entry
)
808 ASSERT_VM_MAP_LOCKED(map
);
811 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
812 * the hint code with the red-black lookup meets with system crashes
813 * and lockups. We do not yet know why.
815 * It is possible that the problem is related to the setting
816 * of the hint during map_entry deletion, in the code specified
817 * at the GGG comment later on in this file.
820 * Quickly check the cached hint, there's a good chance of a match.
822 if (map
->hint
!= &map
->header
) {
824 if (address
>= tmp
->start
&& address
< tmp
->end
) {
832 * Locate the record from the top of the tree. 'last' tracks the
833 * closest prior record and is returned if no match is found, which
834 * in binary tree terms means tracking the most recent right-branch
835 * taken. If there is no prior record, &map->header is returned.
838 tmp
= RB_ROOT(&map
->rb_root
);
841 if (address
>= tmp
->start
) {
842 if (address
< tmp
->end
) {
848 tmp
= RB_RIGHT(tmp
, rb_entry
);
850 tmp
= RB_LEFT(tmp
, rb_entry
);
858 * Inserts the given whole VM object into the target map at the specified
859 * address range. The object's size should match that of the address range.
861 * The map must be exclusively locked.
862 * The caller must have reserved sufficient vm_map_entry structures.
864 * If object is non-NULL, ref count must be bumped by caller
865 * prior to making call to account for the new entry.
868 vm_map_insert(vm_map_t map
, int *countp
,
869 vm_object_t object
, vm_ooffset_t offset
,
870 vm_offset_t start
, vm_offset_t end
,
871 vm_maptype_t maptype
,
872 vm_prot_t prot
, vm_prot_t max
,
875 vm_map_entry_t new_entry
;
876 vm_map_entry_t prev_entry
;
877 vm_map_entry_t temp_entry
;
878 vm_eflags_t protoeflags
;
880 ASSERT_VM_MAP_LOCKED(map
);
883 * Check that the start and end points are not bogus.
885 if ((start
< map
->min_offset
) || (end
> map
->max_offset
) ||
887 return (KERN_INVALID_ADDRESS
);
890 * Find the entry prior to the proposed starting address; if it's part
891 * of an existing entry, this range is bogus.
893 if (vm_map_lookup_entry(map
, start
, &temp_entry
))
894 return (KERN_NO_SPACE
);
896 prev_entry
= temp_entry
;
899 * Assert that the next entry doesn't overlap the end point.
902 if ((prev_entry
->next
!= &map
->header
) &&
903 (prev_entry
->next
->start
< end
))
904 return (KERN_NO_SPACE
);
908 if (cow
& MAP_COPY_ON_WRITE
)
909 protoeflags
|= MAP_ENTRY_COW
|MAP_ENTRY_NEEDS_COPY
;
911 if (cow
& MAP_NOFAULT
) {
912 protoeflags
|= MAP_ENTRY_NOFAULT
;
914 KASSERT(object
== NULL
,
915 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
917 if (cow
& MAP_DISABLE_SYNCER
)
918 protoeflags
|= MAP_ENTRY_NOSYNC
;
919 if (cow
& MAP_DISABLE_COREDUMP
)
920 protoeflags
|= MAP_ENTRY_NOCOREDUMP
;
921 if (cow
& MAP_IS_STACK
)
922 protoeflags
|= MAP_ENTRY_STACK
;
923 if (cow
& MAP_IS_KSTACK
)
924 protoeflags
|= MAP_ENTRY_KSTACK
;
926 lwkt_gettoken(&vm_token
);
927 lwkt_gettoken(&vmobj_token
);
931 * When object is non-NULL, it could be shared with another
932 * process. We have to set or clear OBJ_ONEMAPPING
936 vm_object_lock(object
);
937 if ((object
->ref_count
> 1) || (object
->shadow_count
!= 0)) {
938 vm_object_clear_flag(object
, OBJ_ONEMAPPING
);
940 vm_object_unlock(object
);
942 else if ((prev_entry
!= &map
->header
) &&
943 (prev_entry
->eflags
== protoeflags
) &&
944 (prev_entry
->end
== start
) &&
945 (prev_entry
->wired_count
== 0) &&
946 prev_entry
->maptype
== maptype
&&
947 ((prev_entry
->object
.vm_object
== NULL
) ||
948 vm_object_coalesce(prev_entry
->object
.vm_object
,
949 OFF_TO_IDX(prev_entry
->offset
),
950 (vm_size_t
)(prev_entry
->end
- prev_entry
->start
),
951 (vm_size_t
)(end
- prev_entry
->end
)))) {
953 * We were able to extend the object. Determine if we
954 * can extend the previous map entry to include the
957 if ((prev_entry
->inheritance
== VM_INHERIT_DEFAULT
) &&
958 (prev_entry
->protection
== prot
) &&
959 (prev_entry
->max_protection
== max
)) {
960 lwkt_reltoken(&vmobj_token
);
961 lwkt_reltoken(&vm_token
);
962 map
->size
+= (end
- prev_entry
->end
);
963 prev_entry
->end
= end
;
964 vm_map_simplify_entry(map
, prev_entry
, countp
);
965 return (KERN_SUCCESS
);
969 * If we can extend the object but cannot extend the
970 * map entry, we have to create a new map entry. We
971 * must bump the ref count on the extended object to
972 * account for it. object may be NULL.
974 object
= prev_entry
->object
.vm_object
;
975 offset
= prev_entry
->offset
+
976 (prev_entry
->end
- prev_entry
->start
);
977 vm_object_reference_locked(object
);
980 lwkt_reltoken(&vmobj_token
);
981 lwkt_reltoken(&vm_token
);
984 * NOTE: if conditionals fail, object can be NULL here. This occurs
985 * in things like the buffer map where we manage kva but do not manage
993 new_entry
= vm_map_entry_create(map
, countp
);
994 new_entry
->start
= start
;
995 new_entry
->end
= end
;
997 new_entry
->maptype
= maptype
;
998 new_entry
->eflags
= protoeflags
;
999 new_entry
->object
.vm_object
= object
;
1000 new_entry
->offset
= offset
;
1001 new_entry
->aux
.master_pde
= 0;
1003 new_entry
->inheritance
= VM_INHERIT_DEFAULT
;
1004 new_entry
->protection
= prot
;
1005 new_entry
->max_protection
= max
;
1006 new_entry
->wired_count
= 0;
1009 * Insert the new entry into the list
1012 vm_map_entry_link(map
, prev_entry
, new_entry
);
1013 map
->size
+= new_entry
->end
- new_entry
->start
;
1016 * Update the free space hint. Entries cannot overlap.
1017 * An exact comparison is needed to avoid matching
1018 * against the map->header.
1020 if ((map
->first_free
== prev_entry
) &&
1021 (prev_entry
->end
== new_entry
->start
)) {
1022 map
->first_free
= new_entry
;
1027 * Temporarily removed to avoid MAP_STACK panic, due to
1028 * MAP_STACK being a huge hack. Will be added back in
1029 * when MAP_STACK (and the user stack mapping) is fixed.
1032 * It may be possible to simplify the entry
1034 vm_map_simplify_entry(map
, new_entry
, countp
);
1038 * Try to pre-populate the page table. Mappings governed by virtual
1039 * page tables cannot be prepopulated without a lot of work, so
1042 if ((cow
& (MAP_PREFAULT
|MAP_PREFAULT_PARTIAL
)) &&
1043 maptype
!= VM_MAPTYPE_VPAGETABLE
) {
1044 pmap_object_init_pt(map
->pmap
, start
, prot
,
1045 object
, OFF_TO_IDX(offset
), end
- start
,
1046 cow
& MAP_PREFAULT_PARTIAL
);
1049 return (KERN_SUCCESS
);
1053 * Find sufficient space for `length' bytes in the given map, starting at
1054 * `start'. Returns 0 on success, 1 on no space.
1056 * This function will returned an arbitrarily aligned pointer. If no
1057 * particular alignment is required you should pass align as 1. Note that
1058 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1059 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1062 * 'align' should be a power of 2 but is not required to be.
1064 * The map must be exclusively locked.
1065 * No other requirements.
1068 vm_map_findspace(vm_map_t map
, vm_offset_t start
, vm_size_t length
,
1069 vm_size_t align
, int flags
, vm_offset_t
*addr
)
1071 vm_map_entry_t entry
, next
;
1073 vm_offset_t align_mask
;
1075 if (start
< map
->min_offset
)
1076 start
= map
->min_offset
;
1077 if (start
> map
->max_offset
)
1081 * If the alignment is not a power of 2 we will have to use
1082 * a mod/division, set align_mask to a special value.
1084 if ((align
| (align
- 1)) + 1 != (align
<< 1))
1085 align_mask
= (vm_offset_t
)-1;
1087 align_mask
= align
- 1;
1090 * Look for the first possible address; if there's already something
1091 * at this address, we have to start after it.
1093 if (start
== map
->min_offset
) {
1094 if ((entry
= map
->first_free
) != &map
->header
)
1099 if (vm_map_lookup_entry(map
, start
, &tmp
))
1105 * Look through the rest of the map, trying to fit a new region in the
1106 * gap between existing regions, or after the very last region.
1108 for (;; start
= (entry
= next
)->end
) {
1110 * Adjust the proposed start by the requested alignment,
1111 * be sure that we didn't wrap the address.
1113 if (align_mask
== (vm_offset_t
)-1)
1114 end
= ((start
+ align
- 1) / align
) * align
;
1116 end
= (start
+ align_mask
) & ~align_mask
;
1121 * Find the end of the proposed new region. Be sure we didn't
1122 * go beyond the end of the map, or wrap around the address.
1123 * Then check to see if this is the last entry or if the
1124 * proposed end fits in the gap between this and the next
1127 end
= start
+ length
;
1128 if (end
> map
->max_offset
|| end
< start
)
1133 * If the next entry's start address is beyond the desired
1134 * end address we may have found a good entry.
1136 * If the next entry is a stack mapping we do not map into
1137 * the stack's reserved space.
1139 * XXX continue to allow mapping into the stack's reserved
1140 * space if doing a MAP_STACK mapping inside a MAP_STACK
1141 * mapping, for backwards compatibility. But the caller
1142 * really should use MAP_STACK | MAP_TRYFIXED if they
1145 if (next
== &map
->header
)
1147 if (next
->start
>= end
) {
1148 if ((next
->eflags
& MAP_ENTRY_STACK
) == 0)
1150 if (flags
& MAP_STACK
)
1152 if (next
->start
- next
->aux
.avail_ssize
>= end
)
1159 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1160 * if it fails. The kernel_map is locked and nothing can steal
1161 * our address space if pmap_growkernel() blocks.
1163 * NOTE: This may be unconditionally called for kldload areas on
1164 * x86_64 because these do not bump kernel_vm_end (which would
1165 * fill 128G worth of page tables!). Therefore we must not
1168 if (map
== &kernel_map
) {
1171 kstop
= round_page(start
+ length
);
1172 if (kstop
> kernel_vm_end
)
1173 pmap_growkernel(start
, kstop
);
1180 * vm_map_find finds an unallocated region in the target address map with
1181 * the given length. The search is defined to be first-fit from the
1182 * specified address; the region found is returned in the same parameter.
1184 * If object is non-NULL, ref count must be bumped by caller
1185 * prior to making call to account for the new entry.
1187 * No requirements. This function will lock the map temporarily.
1190 vm_map_find(vm_map_t map
, vm_object_t object
, vm_ooffset_t offset
,
1191 vm_offset_t
*addr
, vm_size_t length
, vm_size_t align
,
1193 vm_maptype_t maptype
,
1194 vm_prot_t prot
, vm_prot_t max
,
1203 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1206 if (vm_map_findspace(map
, start
, length
, align
, 0, addr
)) {
1208 vm_map_entry_release(count
);
1209 return (KERN_NO_SPACE
);
1213 result
= vm_map_insert(map
, &count
, object
, offset
,
1214 start
, start
+ length
,
1219 vm_map_entry_release(count
);
1225 * Simplify the given map entry by merging with either neighbor. This
1226 * routine also has the ability to merge with both neighbors.
1228 * This routine guarentees that the passed entry remains valid (though
1229 * possibly extended). When merging, this routine may delete one or
1230 * both neighbors. No action is taken on entries which have their
1231 * in-transition flag set.
1233 * The map must be exclusively locked.
1236 vm_map_simplify_entry(vm_map_t map
, vm_map_entry_t entry
, int *countp
)
1238 vm_map_entry_t next
, prev
;
1239 vm_size_t prevsize
, esize
;
1241 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
1242 ++mycpu
->gd_cnt
.v_intrans_coll
;
1246 if (entry
->maptype
== VM_MAPTYPE_SUBMAP
)
1250 if (prev
!= &map
->header
) {
1251 prevsize
= prev
->end
- prev
->start
;
1252 if ( (prev
->end
== entry
->start
) &&
1253 (prev
->maptype
== entry
->maptype
) &&
1254 (prev
->object
.vm_object
== entry
->object
.vm_object
) &&
1255 (!prev
->object
.vm_object
||
1256 (prev
->offset
+ prevsize
== entry
->offset
)) &&
1257 (prev
->eflags
== entry
->eflags
) &&
1258 (prev
->protection
== entry
->protection
) &&
1259 (prev
->max_protection
== entry
->max_protection
) &&
1260 (prev
->inheritance
== entry
->inheritance
) &&
1261 (prev
->wired_count
== entry
->wired_count
)) {
1262 if (map
->first_free
== prev
)
1263 map
->first_free
= entry
;
1264 if (map
->hint
== prev
)
1266 vm_map_entry_unlink(map
, prev
);
1267 entry
->start
= prev
->start
;
1268 entry
->offset
= prev
->offset
;
1269 if (prev
->object
.vm_object
)
1270 vm_object_deallocate(prev
->object
.vm_object
);
1271 vm_map_entry_dispose(map
, prev
, countp
);
1276 if (next
!= &map
->header
) {
1277 esize
= entry
->end
- entry
->start
;
1278 if ((entry
->end
== next
->start
) &&
1279 (next
->maptype
== entry
->maptype
) &&
1280 (next
->object
.vm_object
== entry
->object
.vm_object
) &&
1281 (!entry
->object
.vm_object
||
1282 (entry
->offset
+ esize
== next
->offset
)) &&
1283 (next
->eflags
== entry
->eflags
) &&
1284 (next
->protection
== entry
->protection
) &&
1285 (next
->max_protection
== entry
->max_protection
) &&
1286 (next
->inheritance
== entry
->inheritance
) &&
1287 (next
->wired_count
== entry
->wired_count
)) {
1288 if (map
->first_free
== next
)
1289 map
->first_free
= entry
;
1290 if (map
->hint
== next
)
1292 vm_map_entry_unlink(map
, next
);
1293 entry
->end
= next
->end
;
1294 if (next
->object
.vm_object
)
1295 vm_object_deallocate(next
->object
.vm_object
);
1296 vm_map_entry_dispose(map
, next
, countp
);
1302 * Asserts that the given entry begins at or after the specified address.
1303 * If necessary, it splits the entry into two.
1305 #define vm_map_clip_start(map, entry, startaddr, countp) \
1307 if (startaddr > entry->start) \
1308 _vm_map_clip_start(map, entry, startaddr, countp); \
1312 * This routine is called only when it is known that the entry must be split.
1314 * The map must be exclusively locked.
1317 _vm_map_clip_start(vm_map_t map
, vm_map_entry_t entry
, vm_offset_t start
,
1320 vm_map_entry_t new_entry
;
1323 * Split off the front portion -- note that we must insert the new
1324 * entry BEFORE this one, so that this entry has the specified
1328 vm_map_simplify_entry(map
, entry
, countp
);
1331 * If there is no object backing this entry, we might as well create
1332 * one now. If we defer it, an object can get created after the map
1333 * is clipped, and individual objects will be created for the split-up
1334 * map. This is a bit of a hack, but is also about the best place to
1335 * put this improvement.
1337 if (entry
->object
.vm_object
== NULL
&& !map
->system_map
) {
1338 vm_map_entry_allocate_object(entry
);
1341 new_entry
= vm_map_entry_create(map
, countp
);
1342 *new_entry
= *entry
;
1344 new_entry
->end
= start
;
1345 entry
->offset
+= (start
- entry
->start
);
1346 entry
->start
= start
;
1348 vm_map_entry_link(map
, entry
->prev
, new_entry
);
1350 switch(entry
->maptype
) {
1351 case VM_MAPTYPE_NORMAL
:
1352 case VM_MAPTYPE_VPAGETABLE
:
1353 vm_object_reference(new_entry
->object
.vm_object
);
1361 * Asserts that the given entry ends at or before the specified address.
1362 * If necessary, it splits the entry into two.
1364 * The map must be exclusively locked.
1366 #define vm_map_clip_end(map, entry, endaddr, countp) \
1368 if (endaddr < entry->end) \
1369 _vm_map_clip_end(map, entry, endaddr, countp); \
1373 * This routine is called only when it is known that the entry must be split.
1375 * The map must be exclusively locked.
1378 _vm_map_clip_end(vm_map_t map
, vm_map_entry_t entry
, vm_offset_t end
,
1381 vm_map_entry_t new_entry
;
1384 * If there is no object backing this entry, we might as well create
1385 * one now. If we defer it, an object can get created after the map
1386 * is clipped, and individual objects will be created for the split-up
1387 * map. This is a bit of a hack, but is also about the best place to
1388 * put this improvement.
1391 if (entry
->object
.vm_object
== NULL
&& !map
->system_map
) {
1392 vm_map_entry_allocate_object(entry
);
1396 * Create a new entry and insert it AFTER the specified entry
1399 new_entry
= vm_map_entry_create(map
, countp
);
1400 *new_entry
= *entry
;
1402 new_entry
->start
= entry
->end
= end
;
1403 new_entry
->offset
+= (end
- entry
->start
);
1405 vm_map_entry_link(map
, entry
, new_entry
);
1407 switch(entry
->maptype
) {
1408 case VM_MAPTYPE_NORMAL
:
1409 case VM_MAPTYPE_VPAGETABLE
:
1410 vm_object_reference(new_entry
->object
.vm_object
);
1418 * Asserts that the starting and ending region addresses fall within the
1419 * valid range for the map.
1421 #define VM_MAP_RANGE_CHECK(map, start, end) \
1423 if (start < vm_map_min(map)) \
1424 start = vm_map_min(map); \
1425 if (end > vm_map_max(map)) \
1426 end = vm_map_max(map); \
1432 * Used to block when an in-transition collison occurs. The map
1433 * is unlocked for the sleep and relocked before the return.
1436 vm_map_transition_wait(vm_map_t map
)
1438 tsleep_interlock(map
, 0);
1440 tsleep(map
, PINTERLOCKED
, "vment", 0);
1445 * When we do blocking operations with the map lock held it is
1446 * possible that a clip might have occured on our in-transit entry,
1447 * requiring an adjustment to the entry in our loop. These macros
1448 * help the pageable and clip_range code deal with the case. The
1449 * conditional costs virtually nothing if no clipping has occured.
1452 #define CLIP_CHECK_BACK(entry, save_start) \
1454 while (entry->start != save_start) { \
1455 entry = entry->prev; \
1456 KASSERT(entry != &map->header, ("bad entry clip")); \
1460 #define CLIP_CHECK_FWD(entry, save_end) \
1462 while (entry->end != save_end) { \
1463 entry = entry->next; \
1464 KASSERT(entry != &map->header, ("bad entry clip")); \
1470 * Clip the specified range and return the base entry. The
1471 * range may cover several entries starting at the returned base
1472 * and the first and last entry in the covering sequence will be
1473 * properly clipped to the requested start and end address.
1475 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1478 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1479 * covered by the requested range.
1481 * The map must be exclusively locked on entry and will remain locked
1482 * on return. If no range exists or the range contains holes and you
1483 * specified that no holes were allowed, NULL will be returned. This
1484 * routine may temporarily unlock the map in order avoid a deadlock when
1489 vm_map_clip_range(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1490 int *countp
, int flags
)
1492 vm_map_entry_t start_entry
;
1493 vm_map_entry_t entry
;
1496 * Locate the entry and effect initial clipping. The in-transition
1497 * case does not occur very often so do not try to optimize it.
1500 if (vm_map_lookup_entry(map
, start
, &start_entry
) == FALSE
)
1502 entry
= start_entry
;
1503 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
1504 entry
->eflags
|= MAP_ENTRY_NEEDS_WAKEUP
;
1505 ++mycpu
->gd_cnt
.v_intrans_coll
;
1506 ++mycpu
->gd_cnt
.v_intrans_wait
;
1507 vm_map_transition_wait(map
);
1509 * entry and/or start_entry may have been clipped while
1510 * we slept, or may have gone away entirely. We have
1511 * to restart from the lookup.
1517 * Since we hold an exclusive map lock we do not have to restart
1518 * after clipping, even though clipping may block in zalloc.
1520 vm_map_clip_start(map
, entry
, start
, countp
);
1521 vm_map_clip_end(map
, entry
, end
, countp
);
1522 entry
->eflags
|= MAP_ENTRY_IN_TRANSITION
;
1525 * Scan entries covered by the range. When working on the next
1526 * entry a restart need only re-loop on the current entry which
1527 * we have already locked, since 'next' may have changed. Also,
1528 * even though entry is safe, it may have been clipped so we
1529 * have to iterate forwards through the clip after sleeping.
1531 while (entry
->next
!= &map
->header
&& entry
->next
->start
< end
) {
1532 vm_map_entry_t next
= entry
->next
;
1534 if (flags
& MAP_CLIP_NO_HOLES
) {
1535 if (next
->start
> entry
->end
) {
1536 vm_map_unclip_range(map
, start_entry
,
1537 start
, entry
->end
, countp
, flags
);
1542 if (next
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
1543 vm_offset_t save_end
= entry
->end
;
1544 next
->eflags
|= MAP_ENTRY_NEEDS_WAKEUP
;
1545 ++mycpu
->gd_cnt
.v_intrans_coll
;
1546 ++mycpu
->gd_cnt
.v_intrans_wait
;
1547 vm_map_transition_wait(map
);
1550 * clips might have occured while we blocked.
1552 CLIP_CHECK_FWD(entry
, save_end
);
1553 CLIP_CHECK_BACK(start_entry
, start
);
1557 * No restart necessary even though clip_end may block, we
1558 * are holding the map lock.
1560 vm_map_clip_end(map
, next
, end
, countp
);
1561 next
->eflags
|= MAP_ENTRY_IN_TRANSITION
;
1564 if (flags
& MAP_CLIP_NO_HOLES
) {
1565 if (entry
->end
!= end
) {
1566 vm_map_unclip_range(map
, start_entry
,
1567 start
, entry
->end
, countp
, flags
);
1571 return(start_entry
);
1575 * Undo the effect of vm_map_clip_range(). You should pass the same
1576 * flags and the same range that you passed to vm_map_clip_range().
1577 * This code will clear the in-transition flag on the entries and
1578 * wake up anyone waiting. This code will also simplify the sequence
1579 * and attempt to merge it with entries before and after the sequence.
1581 * The map must be locked on entry and will remain locked on return.
1583 * Note that you should also pass the start_entry returned by
1584 * vm_map_clip_range(). However, if you block between the two calls
1585 * with the map unlocked please be aware that the start_entry may
1586 * have been clipped and you may need to scan it backwards to find
1587 * the entry corresponding with the original start address. You are
1588 * responsible for this, vm_map_unclip_range() expects the correct
1589 * start_entry to be passed to it and will KASSERT otherwise.
1593 vm_map_unclip_range(vm_map_t map
, vm_map_entry_t start_entry
,
1594 vm_offset_t start
, vm_offset_t end
,
1595 int *countp
, int flags
)
1597 vm_map_entry_t entry
;
1599 entry
= start_entry
;
1601 KASSERT(entry
->start
== start
, ("unclip_range: illegal base entry"));
1602 while (entry
!= &map
->header
&& entry
->start
< end
) {
1603 KASSERT(entry
->eflags
& MAP_ENTRY_IN_TRANSITION
,
1604 ("in-transition flag not set during unclip on: %p",
1606 KASSERT(entry
->end
<= end
,
1607 ("unclip_range: tail wasn't clipped"));
1608 entry
->eflags
&= ~MAP_ENTRY_IN_TRANSITION
;
1609 if (entry
->eflags
& MAP_ENTRY_NEEDS_WAKEUP
) {
1610 entry
->eflags
&= ~MAP_ENTRY_NEEDS_WAKEUP
;
1613 entry
= entry
->next
;
1617 * Simplification does not block so there is no restart case.
1619 entry
= start_entry
;
1620 while (entry
!= &map
->header
&& entry
->start
< end
) {
1621 vm_map_simplify_entry(map
, entry
, countp
);
1622 entry
= entry
->next
;
1627 * Mark the given range as handled by a subordinate map.
1629 * This range must have been created with vm_map_find(), and no other
1630 * operations may have been performed on this range prior to calling
1633 * Submappings cannot be removed.
1638 vm_map_submap(vm_map_t map
, vm_offset_t start
, vm_offset_t end
, vm_map_t submap
)
1640 vm_map_entry_t entry
;
1641 int result
= KERN_INVALID_ARGUMENT
;
1644 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1647 VM_MAP_RANGE_CHECK(map
, start
, end
);
1649 if (vm_map_lookup_entry(map
, start
, &entry
)) {
1650 vm_map_clip_start(map
, entry
, start
, &count
);
1652 entry
= entry
->next
;
1655 vm_map_clip_end(map
, entry
, end
, &count
);
1657 if ((entry
->start
== start
) && (entry
->end
== end
) &&
1658 ((entry
->eflags
& MAP_ENTRY_COW
) == 0) &&
1659 (entry
->object
.vm_object
== NULL
)) {
1660 entry
->object
.sub_map
= submap
;
1661 entry
->maptype
= VM_MAPTYPE_SUBMAP
;
1662 result
= KERN_SUCCESS
;
1665 vm_map_entry_release(count
);
1671 * Sets the protection of the specified address region in the target map.
1672 * If "set_max" is specified, the maximum protection is to be set;
1673 * otherwise, only the current protection is affected.
1675 * The protection is not applicable to submaps, but is applicable to normal
1676 * maps and maps governed by virtual page tables. For example, when operating
1677 * on a virtual page table our protection basically controls how COW occurs
1678 * on the backing object, whereas the virtual page table abstraction itself
1679 * is an abstraction for userland.
1684 vm_map_protect(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1685 vm_prot_t new_prot
, boolean_t set_max
)
1687 vm_map_entry_t current
;
1688 vm_map_entry_t entry
;
1691 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1694 VM_MAP_RANGE_CHECK(map
, start
, end
);
1696 if (vm_map_lookup_entry(map
, start
, &entry
)) {
1697 vm_map_clip_start(map
, entry
, start
, &count
);
1699 entry
= entry
->next
;
1703 * Make a first pass to check for protection violations.
1706 while ((current
!= &map
->header
) && (current
->start
< end
)) {
1707 if (current
->maptype
== VM_MAPTYPE_SUBMAP
) {
1709 vm_map_entry_release(count
);
1710 return (KERN_INVALID_ARGUMENT
);
1712 if ((new_prot
& current
->max_protection
) != new_prot
) {
1714 vm_map_entry_release(count
);
1715 return (KERN_PROTECTION_FAILURE
);
1717 current
= current
->next
;
1721 * Go back and fix up protections. [Note that clipping is not
1722 * necessary the second time.]
1726 while ((current
!= &map
->header
) && (current
->start
< end
)) {
1729 vm_map_clip_end(map
, current
, end
, &count
);
1731 old_prot
= current
->protection
;
1733 current
->protection
=
1734 (current
->max_protection
= new_prot
) &
1737 current
->protection
= new_prot
;
1741 * Update physical map if necessary. Worry about copy-on-write
1742 * here -- CHECK THIS XXX
1745 if (current
->protection
!= old_prot
) {
1746 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1749 pmap_protect(map
->pmap
, current
->start
,
1751 current
->protection
& MASK(current
));
1755 vm_map_simplify_entry(map
, current
, &count
);
1757 current
= current
->next
;
1761 vm_map_entry_release(count
);
1762 return (KERN_SUCCESS
);
1766 * This routine traverses a processes map handling the madvise
1767 * system call. Advisories are classified as either those effecting
1768 * the vm_map_entry structure, or those effecting the underlying
1771 * The <value> argument is used for extended madvise calls.
1776 vm_map_madvise(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1777 int behav
, off_t value
)
1779 vm_map_entry_t current
, entry
;
1785 * Some madvise calls directly modify the vm_map_entry, in which case
1786 * we need to use an exclusive lock on the map and we need to perform
1787 * various clipping operations. Otherwise we only need a read-lock
1791 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1795 case MADV_SEQUENTIAL
:
1809 vm_map_lock_read(map
);
1812 vm_map_entry_release(count
);
1817 * Locate starting entry and clip if necessary.
1820 VM_MAP_RANGE_CHECK(map
, start
, end
);
1822 if (vm_map_lookup_entry(map
, start
, &entry
)) {
1824 vm_map_clip_start(map
, entry
, start
, &count
);
1826 entry
= entry
->next
;
1831 * madvise behaviors that are implemented in the vm_map_entry.
1833 * We clip the vm_map_entry so that behavioral changes are
1834 * limited to the specified address range.
1836 for (current
= entry
;
1837 (current
!= &map
->header
) && (current
->start
< end
);
1838 current
= current
->next
1840 if (current
->maptype
== VM_MAPTYPE_SUBMAP
)
1843 vm_map_clip_end(map
, current
, end
, &count
);
1847 vm_map_entry_set_behavior(current
, MAP_ENTRY_BEHAV_NORMAL
);
1849 case MADV_SEQUENTIAL
:
1850 vm_map_entry_set_behavior(current
, MAP_ENTRY_BEHAV_SEQUENTIAL
);
1853 vm_map_entry_set_behavior(current
, MAP_ENTRY_BEHAV_RANDOM
);
1856 current
->eflags
|= MAP_ENTRY_NOSYNC
;
1859 current
->eflags
&= ~MAP_ENTRY_NOSYNC
;
1862 current
->eflags
|= MAP_ENTRY_NOCOREDUMP
;
1865 current
->eflags
&= ~MAP_ENTRY_NOCOREDUMP
;
1869 * Invalidate the related pmap entries, used
1870 * to flush portions of the real kernel's
1871 * pmap when the caller has removed or
1872 * modified existing mappings in a virtual
1875 pmap_remove(map
->pmap
,
1876 current
->start
, current
->end
);
1880 * Set the page directory page for a map
1881 * governed by a virtual page table. Mark
1882 * the entry as being governed by a virtual
1883 * page table if it is not.
1885 * XXX the page directory page is stored
1886 * in the avail_ssize field if the map_entry.
1888 * XXX the map simplification code does not
1889 * compare this field so weird things may
1890 * happen if you do not apply this function
1891 * to the entire mapping governed by the
1892 * virtual page table.
1894 if (current
->maptype
!= VM_MAPTYPE_VPAGETABLE
) {
1898 current
->aux
.master_pde
= value
;
1899 pmap_remove(map
->pmap
,
1900 current
->start
, current
->end
);
1906 vm_map_simplify_entry(map
, current
, &count
);
1914 * madvise behaviors that are implemented in the underlying
1917 * Since we don't clip the vm_map_entry, we have to clip
1918 * the vm_object pindex and count.
1920 * NOTE! We currently do not support these functions on
1921 * virtual page tables.
1923 for (current
= entry
;
1924 (current
!= &map
->header
) && (current
->start
< end
);
1925 current
= current
->next
1927 vm_offset_t useStart
;
1929 if (current
->maptype
!= VM_MAPTYPE_NORMAL
)
1932 pindex
= OFF_TO_IDX(current
->offset
);
1933 count
= atop(current
->end
- current
->start
);
1934 useStart
= current
->start
;
1936 if (current
->start
< start
) {
1937 pindex
+= atop(start
- current
->start
);
1938 count
-= atop(start
- current
->start
);
1941 if (current
->end
> end
)
1942 count
-= atop(current
->end
- end
);
1947 vm_object_madvise(current
->object
.vm_object
,
1948 pindex
, count
, behav
);
1951 * Try to populate the page table. Mappings governed
1952 * by virtual page tables cannot be pre-populated
1953 * without a lot of work so don't try.
1955 if (behav
== MADV_WILLNEED
&&
1956 current
->maptype
!= VM_MAPTYPE_VPAGETABLE
) {
1957 pmap_object_init_pt(
1960 current
->protection
,
1961 current
->object
.vm_object
,
1963 (count
<< PAGE_SHIFT
),
1964 MAP_PREFAULT_MADVISE
1968 vm_map_unlock_read(map
);
1970 vm_map_entry_release(count
);
1976 * Sets the inheritance of the specified address range in the target map.
1977 * Inheritance affects how the map will be shared with child maps at the
1978 * time of vm_map_fork.
1981 vm_map_inherit(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
1982 vm_inherit_t new_inheritance
)
1984 vm_map_entry_t entry
;
1985 vm_map_entry_t temp_entry
;
1988 switch (new_inheritance
) {
1989 case VM_INHERIT_NONE
:
1990 case VM_INHERIT_COPY
:
1991 case VM_INHERIT_SHARE
:
1994 return (KERN_INVALID_ARGUMENT
);
1997 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2000 VM_MAP_RANGE_CHECK(map
, start
, end
);
2002 if (vm_map_lookup_entry(map
, start
, &temp_entry
)) {
2004 vm_map_clip_start(map
, entry
, start
, &count
);
2006 entry
= temp_entry
->next
;
2008 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2009 vm_map_clip_end(map
, entry
, end
, &count
);
2011 entry
->inheritance
= new_inheritance
;
2013 vm_map_simplify_entry(map
, entry
, &count
);
2015 entry
= entry
->next
;
2018 vm_map_entry_release(count
);
2019 return (KERN_SUCCESS
);
2023 * Implement the semantics of mlock
2026 vm_map_unwire(vm_map_t map
, vm_offset_t start
, vm_offset_t real_end
,
2027 boolean_t new_pageable
)
2029 vm_map_entry_t entry
;
2030 vm_map_entry_t start_entry
;
2032 int rv
= KERN_SUCCESS
;
2035 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2037 VM_MAP_RANGE_CHECK(map
, start
, real_end
);
2040 start_entry
= vm_map_clip_range(map
, start
, end
, &count
,
2042 if (start_entry
== NULL
) {
2044 vm_map_entry_release(count
);
2045 return (KERN_INVALID_ADDRESS
);
2048 if (new_pageable
== 0) {
2049 entry
= start_entry
;
2050 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2051 vm_offset_t save_start
;
2052 vm_offset_t save_end
;
2055 * Already user wired or hard wired (trivial cases)
2057 if (entry
->eflags
& MAP_ENTRY_USER_WIRED
) {
2058 entry
= entry
->next
;
2061 if (entry
->wired_count
!= 0) {
2062 entry
->wired_count
++;
2063 entry
->eflags
|= MAP_ENTRY_USER_WIRED
;
2064 entry
= entry
->next
;
2069 * A new wiring requires instantiation of appropriate
2070 * management structures and the faulting in of the
2073 if (entry
->maptype
!= VM_MAPTYPE_SUBMAP
) {
2074 int copyflag
= entry
->eflags
&
2075 MAP_ENTRY_NEEDS_COPY
;
2076 if (copyflag
&& ((entry
->protection
&
2077 VM_PROT_WRITE
) != 0)) {
2078 vm_map_entry_shadow(entry
);
2079 } else if (entry
->object
.vm_object
== NULL
&&
2081 vm_map_entry_allocate_object(entry
);
2084 entry
->wired_count
++;
2085 entry
->eflags
|= MAP_ENTRY_USER_WIRED
;
2088 * Now fault in the area. Note that vm_fault_wire()
2089 * may release the map lock temporarily, it will be
2090 * relocked on return. The in-transition
2091 * flag protects the entries.
2093 save_start
= entry
->start
;
2094 save_end
= entry
->end
;
2095 rv
= vm_fault_wire(map
, entry
, TRUE
);
2097 CLIP_CHECK_BACK(entry
, save_start
);
2099 KASSERT(entry
->wired_count
== 1, ("bad wired_count on entry"));
2100 entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
2101 entry
->wired_count
= 0;
2102 if (entry
->end
== save_end
)
2104 entry
= entry
->next
;
2105 KASSERT(entry
!= &map
->header
, ("bad entry clip during backout"));
2107 end
= save_start
; /* unwire the rest */
2111 * note that even though the entry might have been
2112 * clipped, the USER_WIRED flag we set prevents
2113 * duplication so we do not have to do a
2116 entry
= entry
->next
;
2120 * If we failed fall through to the unwiring section to
2121 * unwire what we had wired so far. 'end' has already
2128 * start_entry might have been clipped if we unlocked the
2129 * map and blocked. No matter how clipped it has gotten
2130 * there should be a fragment that is on our start boundary.
2132 CLIP_CHECK_BACK(start_entry
, start
);
2136 * Deal with the unwiring case.
2140 * This is the unwiring case. We must first ensure that the
2141 * range to be unwired is really wired down. We know there
2144 entry
= start_entry
;
2145 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2146 if ((entry
->eflags
& MAP_ENTRY_USER_WIRED
) == 0) {
2147 rv
= KERN_INVALID_ARGUMENT
;
2150 KASSERT(entry
->wired_count
!= 0, ("wired count was 0 with USER_WIRED set! %p", entry
));
2151 entry
= entry
->next
;
2155 * Now decrement the wiring count for each region. If a region
2156 * becomes completely unwired, unwire its physical pages and
2160 * The map entries are processed in a loop, checking to
2161 * make sure the entry is wired and asserting it has a wired
2162 * count. However, another loop was inserted more-or-less in
2163 * the middle of the unwiring path. This loop picks up the
2164 * "entry" loop variable from the first loop without first
2165 * setting it to start_entry. Naturally, the secound loop
2166 * is never entered and the pages backing the entries are
2167 * never unwired. This can lead to a leak of wired pages.
2169 entry
= start_entry
;
2170 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2171 KASSERT(entry
->eflags
& MAP_ENTRY_USER_WIRED
,
2172 ("expected USER_WIRED on entry %p", entry
));
2173 entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
2174 entry
->wired_count
--;
2175 if (entry
->wired_count
== 0)
2176 vm_fault_unwire(map
, entry
);
2177 entry
= entry
->next
;
2181 vm_map_unclip_range(map
, start_entry
, start
, real_end
, &count
,
2185 vm_map_entry_release(count
);
2190 * Sets the pageability of the specified address range in the target map.
2191 * Regions specified as not pageable require locked-down physical
2192 * memory and physical page maps.
2194 * The map must not be locked, but a reference must remain to the map
2195 * throughout the call.
2197 * This function may be called via the zalloc path and must properly
2198 * reserve map entries for kernel_map.
2203 vm_map_wire(vm_map_t map
, vm_offset_t start
, vm_offset_t real_end
, int kmflags
)
2205 vm_map_entry_t entry
;
2206 vm_map_entry_t start_entry
;
2208 int rv
= KERN_SUCCESS
;
2211 if (kmflags
& KM_KRESERVE
)
2212 count
= vm_map_entry_kreserve(MAP_RESERVE_COUNT
);
2214 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2216 VM_MAP_RANGE_CHECK(map
, start
, real_end
);
2219 start_entry
= vm_map_clip_range(map
, start
, end
, &count
,
2221 if (start_entry
== NULL
) {
2223 rv
= KERN_INVALID_ADDRESS
;
2226 if ((kmflags
& KM_PAGEABLE
) == 0) {
2230 * 1. Holding the write lock, we create any shadow or zero-fill
2231 * objects that need to be created. Then we clip each map
2232 * entry to the region to be wired and increment its wiring
2233 * count. We create objects before clipping the map entries
2234 * to avoid object proliferation.
2236 * 2. We downgrade to a read lock, and call vm_fault_wire to
2237 * fault in the pages for any newly wired area (wired_count is
2240 * Downgrading to a read lock for vm_fault_wire avoids a
2241 * possible deadlock with another process that may have faulted
2242 * on one of the pages to be wired (it would mark the page busy,
2243 * blocking us, then in turn block on the map lock that we
2244 * hold). Because of problems in the recursive lock package,
2245 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2246 * any actions that require the write lock must be done
2247 * beforehand. Because we keep the read lock on the map, the
2248 * copy-on-write status of the entries we modify here cannot
2251 entry
= start_entry
;
2252 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2254 * Trivial case if the entry is already wired
2256 if (entry
->wired_count
) {
2257 entry
->wired_count
++;
2258 entry
= entry
->next
;
2263 * The entry is being newly wired, we have to setup
2264 * appropriate management structures. A shadow
2265 * object is required for a copy-on-write region,
2266 * or a normal object for a zero-fill region. We
2267 * do not have to do this for entries that point to sub
2268 * maps because we won't hold the lock on the sub map.
2270 if (entry
->maptype
!= VM_MAPTYPE_SUBMAP
) {
2271 int copyflag
= entry
->eflags
&
2272 MAP_ENTRY_NEEDS_COPY
;
2273 if (copyflag
&& ((entry
->protection
&
2274 VM_PROT_WRITE
) != 0)) {
2275 vm_map_entry_shadow(entry
);
2276 } else if (entry
->object
.vm_object
== NULL
&&
2278 vm_map_entry_allocate_object(entry
);
2282 entry
->wired_count
++;
2283 entry
= entry
->next
;
2291 * HACK HACK HACK HACK
2293 * vm_fault_wire() temporarily unlocks the map to avoid
2294 * deadlocks. The in-transition flag from vm_map_clip_range
2295 * call should protect us from changes while the map is
2298 * NOTE: Previously this comment stated that clipping might
2299 * still occur while the entry is unlocked, but from
2300 * what I can tell it actually cannot.
2302 * It is unclear whether the CLIP_CHECK_*() calls
2303 * are still needed but we keep them in anyway.
2305 * HACK HACK HACK HACK
2308 entry
= start_entry
;
2309 while (entry
!= &map
->header
&& entry
->start
< end
) {
2311 * If vm_fault_wire fails for any page we need to undo
2312 * what has been done. We decrement the wiring count
2313 * for those pages which have not yet been wired (now)
2314 * and unwire those that have (later).
2316 vm_offset_t save_start
= entry
->start
;
2317 vm_offset_t save_end
= entry
->end
;
2319 if (entry
->wired_count
== 1)
2320 rv
= vm_fault_wire(map
, entry
, FALSE
);
2322 CLIP_CHECK_BACK(entry
, save_start
);
2324 KASSERT(entry
->wired_count
== 1, ("wired_count changed unexpectedly"));
2325 entry
->wired_count
= 0;
2326 if (entry
->end
== save_end
)
2328 entry
= entry
->next
;
2329 KASSERT(entry
!= &map
->header
, ("bad entry clip during backout"));
2334 CLIP_CHECK_FWD(entry
, save_end
);
2335 entry
= entry
->next
;
2339 * If a failure occured undo everything by falling through
2340 * to the unwiring code. 'end' has already been adjusted
2344 kmflags
|= KM_PAGEABLE
;
2347 * start_entry is still IN_TRANSITION but may have been
2348 * clipped since vm_fault_wire() unlocks and relocks the
2349 * map. No matter how clipped it has gotten there should
2350 * be a fragment that is on our start boundary.
2352 CLIP_CHECK_BACK(start_entry
, start
);
2355 if (kmflags
& KM_PAGEABLE
) {
2357 * This is the unwiring case. We must first ensure that the
2358 * range to be unwired is really wired down. We know there
2361 entry
= start_entry
;
2362 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2363 if (entry
->wired_count
== 0) {
2364 rv
= KERN_INVALID_ARGUMENT
;
2367 entry
= entry
->next
;
2371 * Now decrement the wiring count for each region. If a region
2372 * becomes completely unwired, unwire its physical pages and
2375 entry
= start_entry
;
2376 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2377 entry
->wired_count
--;
2378 if (entry
->wired_count
== 0)
2379 vm_fault_unwire(map
, entry
);
2380 entry
= entry
->next
;
2384 vm_map_unclip_range(map
, start_entry
, start
, real_end
,
2385 &count
, MAP_CLIP_NO_HOLES
);
2389 if (kmflags
& KM_KRESERVE
)
2390 vm_map_entry_krelease(count
);
2392 vm_map_entry_release(count
);
2397 * Mark a newly allocated address range as wired but do not fault in
2398 * the pages. The caller is expected to load the pages into the object.
2400 * The map must be locked on entry and will remain locked on return.
2401 * No other requirements.
2404 vm_map_set_wired_quick(vm_map_t map
, vm_offset_t addr
, vm_size_t size
,
2407 vm_map_entry_t scan
;
2408 vm_map_entry_t entry
;
2410 entry
= vm_map_clip_range(map
, addr
, addr
+ size
,
2411 countp
, MAP_CLIP_NO_HOLES
);
2413 scan
!= &map
->header
&& scan
->start
< addr
+ size
;
2414 scan
= scan
->next
) {
2415 KKASSERT(entry
->wired_count
== 0);
2416 entry
->wired_count
= 1;
2418 vm_map_unclip_range(map
, entry
, addr
, addr
+ size
,
2419 countp
, MAP_CLIP_NO_HOLES
);
2423 * Push any dirty cached pages in the address range to their pager.
2424 * If syncio is TRUE, dirty pages are written synchronously.
2425 * If invalidate is TRUE, any cached pages are freed as well.
2427 * This routine is called by sys_msync()
2429 * Returns an error if any part of the specified range is not mapped.
2434 vm_map_clean(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
2435 boolean_t syncio
, boolean_t invalidate
)
2437 vm_map_entry_t current
;
2438 vm_map_entry_t entry
;
2441 vm_ooffset_t offset
;
2443 vm_map_lock_read(map
);
2444 VM_MAP_RANGE_CHECK(map
, start
, end
);
2445 if (!vm_map_lookup_entry(map
, start
, &entry
)) {
2446 vm_map_unlock_read(map
);
2447 return (KERN_INVALID_ADDRESS
);
2450 * Make a first pass to check for holes.
2452 for (current
= entry
; current
->start
< end
; current
= current
->next
) {
2453 if (current
->maptype
== VM_MAPTYPE_SUBMAP
) {
2454 vm_map_unlock_read(map
);
2455 return (KERN_INVALID_ARGUMENT
);
2457 if (end
> current
->end
&&
2458 (current
->next
== &map
->header
||
2459 current
->end
!= current
->next
->start
)) {
2460 vm_map_unlock_read(map
);
2461 return (KERN_INVALID_ADDRESS
);
2466 pmap_remove(vm_map_pmap(map
), start
, end
);
2469 * Make a second pass, cleaning/uncaching pages from the indicated
2472 * Hold vm_token to avoid blocking in vm_object_reference()
2474 lwkt_gettoken(&vm_token
);
2475 lwkt_gettoken(&vmobj_token
);
2477 for (current
= entry
; current
->start
< end
; current
= current
->next
) {
2478 offset
= current
->offset
+ (start
- current
->start
);
2479 size
= (end
<= current
->end
? end
: current
->end
) - start
;
2480 if (current
->maptype
== VM_MAPTYPE_SUBMAP
) {
2482 vm_map_entry_t tentry
;
2485 smap
= current
->object
.sub_map
;
2486 vm_map_lock_read(smap
);
2487 vm_map_lookup_entry(smap
, offset
, &tentry
);
2488 tsize
= tentry
->end
- offset
;
2491 object
= tentry
->object
.vm_object
;
2492 offset
= tentry
->offset
+ (offset
- tentry
->start
);
2493 vm_map_unlock_read(smap
);
2495 object
= current
->object
.vm_object
;
2498 * Note that there is absolutely no sense in writing out
2499 * anonymous objects, so we track down the vnode object
2501 * We invalidate (remove) all pages from the address space
2502 * anyway, for semantic correctness.
2504 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2505 * may start out with a NULL object.
2507 while (object
&& object
->backing_object
) {
2508 offset
+= object
->backing_object_offset
;
2509 object
= object
->backing_object
;
2510 if (object
->size
< OFF_TO_IDX( offset
+ size
))
2511 size
= IDX_TO_OFF(object
->size
) - offset
;
2513 if (object
&& (object
->type
== OBJT_VNODE
) &&
2514 (current
->protection
& VM_PROT_WRITE
) &&
2515 (object
->flags
& OBJ_NOMSYNC
) == 0) {
2517 * Flush pages if writing is allowed, invalidate them
2518 * if invalidation requested. Pages undergoing I/O
2519 * will be ignored by vm_object_page_remove().
2521 * We cannot lock the vnode and then wait for paging
2522 * to complete without deadlocking against vm_fault.
2523 * Instead we simply call vm_object_page_remove() and
2524 * allow it to block internally on a page-by-page
2525 * basis when it encounters pages undergoing async
2530 vm_object_reference_locked(object
);
2531 vn_lock(object
->handle
, LK_EXCLUSIVE
| LK_RETRY
);
2532 flags
= (syncio
|| invalidate
) ? OBJPC_SYNC
: 0;
2533 flags
|= invalidate
? OBJPC_INVAL
: 0;
2536 * When operating on a virtual page table just
2537 * flush the whole object. XXX we probably ought
2540 switch(current
->maptype
) {
2541 case VM_MAPTYPE_NORMAL
:
2542 vm_object_page_clean(object
,
2544 OFF_TO_IDX(offset
+ size
+ PAGE_MASK
),
2547 case VM_MAPTYPE_VPAGETABLE
:
2548 vm_object_page_clean(object
, 0, 0, flags
);
2551 vn_unlock(((struct vnode
*)object
->handle
));
2552 vm_object_deallocate_locked(object
);
2554 if (object
&& invalidate
&&
2555 ((object
->type
== OBJT_VNODE
) ||
2556 (object
->type
== OBJT_DEVICE
))) {
2558 (object
->type
== OBJT_DEVICE
) ? FALSE
: TRUE
;
2559 vm_object_reference_locked(object
);
2560 switch(current
->maptype
) {
2561 case VM_MAPTYPE_NORMAL
:
2562 vm_object_page_remove(object
,
2564 OFF_TO_IDX(offset
+ size
+ PAGE_MASK
),
2567 case VM_MAPTYPE_VPAGETABLE
:
2568 vm_object_page_remove(object
, 0, 0, clean_only
);
2571 vm_object_deallocate_locked(object
);
2576 lwkt_reltoken(&vmobj_token
);
2577 lwkt_reltoken(&vm_token
);
2578 vm_map_unlock_read(map
);
2580 return (KERN_SUCCESS
);
2584 * Make the region specified by this entry pageable.
2586 * The vm_map must be exclusively locked.
2589 vm_map_entry_unwire(vm_map_t map
, vm_map_entry_t entry
)
2591 entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
2592 entry
->wired_count
= 0;
2593 vm_fault_unwire(map
, entry
);
2597 * Deallocate the given entry from the target map.
2599 * The vm_map must be exclusively locked.
2602 vm_map_entry_delete(vm_map_t map
, vm_map_entry_t entry
, int *countp
)
2604 vm_map_entry_unlink(map
, entry
);
2605 map
->size
-= entry
->end
- entry
->start
;
2607 switch(entry
->maptype
) {
2608 case VM_MAPTYPE_NORMAL
:
2609 case VM_MAPTYPE_VPAGETABLE
:
2610 vm_object_deallocate(entry
->object
.vm_object
);
2616 vm_map_entry_dispose(map
, entry
, countp
);
2620 * Deallocates the given address range from the target map.
2622 * The vm_map must be exclusively locked.
2625 vm_map_delete(vm_map_t map
, vm_offset_t start
, vm_offset_t end
, int *countp
)
2628 vm_map_entry_t entry
;
2629 vm_map_entry_t first_entry
;
2631 ASSERT_VM_MAP_LOCKED(map
);
2634 * Find the start of the region, and clip it. Set entry to point
2635 * at the first record containing the requested address or, if no
2636 * such record exists, the next record with a greater address. The
2637 * loop will run from this point until a record beyond the termination
2638 * address is encountered.
2640 * map->hint must be adjusted to not point to anything we delete,
2641 * so set it to the entry prior to the one being deleted.
2643 * GGG see other GGG comment.
2645 if (vm_map_lookup_entry(map
, start
, &first_entry
)) {
2646 entry
= first_entry
;
2647 vm_map_clip_start(map
, entry
, start
, countp
);
2648 map
->hint
= entry
->prev
; /* possible problem XXX */
2650 map
->hint
= first_entry
; /* possible problem XXX */
2651 entry
= first_entry
->next
;
2655 * If a hole opens up prior to the current first_free then
2656 * adjust first_free. As with map->hint, map->first_free
2657 * cannot be left set to anything we might delete.
2659 if (entry
== &map
->header
) {
2660 map
->first_free
= &map
->header
;
2661 } else if (map
->first_free
->start
>= start
) {
2662 map
->first_free
= entry
->prev
;
2666 * Step through all entries in this region
2668 while ((entry
!= &map
->header
) && (entry
->start
< end
)) {
2669 vm_map_entry_t next
;
2671 vm_pindex_t offidxstart
, offidxend
, count
;
2674 * If we hit an in-transition entry we have to sleep and
2675 * retry. It's easier (and not really slower) to just retry
2676 * since this case occurs so rarely and the hint is already
2677 * pointing at the right place. We have to reset the
2678 * start offset so as not to accidently delete an entry
2679 * another process just created in vacated space.
2681 if (entry
->eflags
& MAP_ENTRY_IN_TRANSITION
) {
2682 entry
->eflags
|= MAP_ENTRY_NEEDS_WAKEUP
;
2683 start
= entry
->start
;
2684 ++mycpu
->gd_cnt
.v_intrans_coll
;
2685 ++mycpu
->gd_cnt
.v_intrans_wait
;
2686 vm_map_transition_wait(map
);
2689 vm_map_clip_end(map
, entry
, end
, countp
);
2695 offidxstart
= OFF_TO_IDX(entry
->offset
);
2696 count
= OFF_TO_IDX(e
- s
);
2697 object
= entry
->object
.vm_object
;
2700 * Unwire before removing addresses from the pmap; otherwise,
2701 * unwiring will put the entries back in the pmap.
2703 if (entry
->wired_count
!= 0)
2704 vm_map_entry_unwire(map
, entry
);
2706 offidxend
= offidxstart
+ count
;
2709 * Hold vm_token when manipulating vm_objects,
2711 * Hold vmobj_token when potentially adding or removing
2712 * objects (collapse requires both).
2714 lwkt_gettoken(&vm_token
);
2715 lwkt_gettoken(&vmobj_token
);
2717 if (object
== &kernel_object
) {
2718 vm_object_page_remove(object
, offidxstart
,
2721 pmap_remove(map
->pmap
, s
, e
);
2723 if (object
!= NULL
&&
2724 object
->ref_count
!= 1 &&
2725 (object
->flags
& (OBJ_NOSPLIT
|OBJ_ONEMAPPING
)) ==
2727 (object
->type
== OBJT_DEFAULT
||
2728 object
->type
== OBJT_SWAP
)) {
2729 vm_object_collapse(object
);
2730 vm_object_page_remove(object
, offidxstart
,
2732 if (object
->type
== OBJT_SWAP
) {
2733 swap_pager_freespace(object
,
2737 if (offidxend
>= object
->size
&&
2738 offidxstart
< object
->size
) {
2739 object
->size
= offidxstart
;
2743 lwkt_reltoken(&vmobj_token
);
2744 lwkt_reltoken(&vm_token
);
2747 * Delete the entry (which may delete the object) only after
2748 * removing all pmap entries pointing to its pages.
2749 * (Otherwise, its page frames may be reallocated, and any
2750 * modify bits will be set in the wrong object!)
2752 vm_map_entry_delete(map
, entry
, countp
);
2755 return (KERN_SUCCESS
);
2759 * Remove the given address range from the target map.
2760 * This is the exported form of vm_map_delete.
2765 vm_map_remove(vm_map_t map
, vm_offset_t start
, vm_offset_t end
)
2770 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2772 VM_MAP_RANGE_CHECK(map
, start
, end
);
2773 result
= vm_map_delete(map
, start
, end
, &count
);
2775 vm_map_entry_release(count
);
2781 * Assert that the target map allows the specified privilege on the
2782 * entire address region given. The entire region must be allocated.
2784 * The caller must specify whether the vm_map is already locked or not.
2787 vm_map_check_protection(vm_map_t map
, vm_offset_t start
, vm_offset_t end
,
2788 vm_prot_t protection
, boolean_t have_lock
)
2790 vm_map_entry_t entry
;
2791 vm_map_entry_t tmp_entry
;
2794 if (have_lock
== FALSE
)
2795 vm_map_lock_read(map
);
2797 if (!vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
2798 if (have_lock
== FALSE
)
2799 vm_map_unlock_read(map
);
2805 while (start
< end
) {
2806 if (entry
== &map
->header
) {
2814 if (start
< entry
->start
) {
2819 * Check protection associated with entry.
2822 if ((entry
->protection
& protection
) != protection
) {
2826 /* go to next entry */
2829 entry
= entry
->next
;
2831 if (have_lock
== FALSE
)
2832 vm_map_unlock_read(map
);
2837 * Split the pages in a map entry into a new object. This affords
2838 * easier removal of unused pages, and keeps object inheritance from
2839 * being a negative impact on memory usage.
2841 * The vm_map must be exclusively locked.
2844 vm_map_split(vm_map_entry_t entry
)
2847 vm_object_t orig_object
, new_object
, source
;
2849 vm_pindex_t offidxstart
, offidxend
, idx
;
2851 vm_ooffset_t offset
;
2853 orig_object
= entry
->object
.vm_object
;
2854 if (orig_object
->type
!= OBJT_DEFAULT
&& orig_object
->type
!= OBJT_SWAP
)
2856 if (orig_object
->ref_count
<= 1)
2859 offset
= entry
->offset
;
2863 offidxstart
= OFF_TO_IDX(offset
);
2864 offidxend
= offidxstart
+ OFF_TO_IDX(e
- s
);
2865 size
= offidxend
- offidxstart
;
2867 switch(orig_object
->type
) {
2869 new_object
= default_pager_alloc(NULL
, IDX_TO_OFF(size
),
2873 new_object
= swap_pager_alloc(NULL
, IDX_TO_OFF(size
),
2881 if (new_object
== NULL
)
2885 * vm_token required when manipulating vm_objects.
2887 lwkt_gettoken(&vm_token
);
2888 lwkt_gettoken(&vmobj_token
);
2890 source
= orig_object
->backing_object
;
2891 if (source
!= NULL
) {
2892 /* Referenced by new_object */
2893 vm_object_reference_locked(source
);
2894 LIST_INSERT_HEAD(&source
->shadow_head
,
2895 new_object
, shadow_list
);
2896 vm_object_clear_flag(source
, OBJ_ONEMAPPING
);
2897 new_object
->backing_object_offset
=
2898 orig_object
->backing_object_offset
+
2899 IDX_TO_OFF(offidxstart
);
2900 new_object
->backing_object
= source
;
2901 source
->shadow_count
++;
2902 source
->generation
++;
2905 for (idx
= 0; idx
< size
; idx
++) {
2909 m
= vm_page_lookup(orig_object
, offidxstart
+ idx
);
2914 * We must wait for pending I/O to complete before we can
2917 * We do not have to VM_PROT_NONE the page as mappings should
2918 * not be changed by this operation.
2920 if (vm_page_sleep_busy(m
, TRUE
, "spltwt"))
2923 vm_page_rename(m
, new_object
, idx
);
2924 /* page automatically made dirty by rename and cache handled */
2928 if (orig_object
->type
== OBJT_SWAP
) {
2929 vm_object_pip_add(orig_object
, 1);
2931 * copy orig_object pages into new_object
2932 * and destroy unneeded pages in
2935 swap_pager_copy(orig_object
, new_object
, offidxstart
, 0);
2936 vm_object_pip_wakeup(orig_object
);
2940 * Wakeup the pages we played with. No spl protection is needed
2941 * for a simple wakeup.
2943 for (idx
= 0; idx
< size
; idx
++) {
2944 m
= vm_page_lookup(new_object
, idx
);
2949 entry
->object
.vm_object
= new_object
;
2950 entry
->offset
= 0LL;
2951 vm_object_deallocate_locked(orig_object
);
2952 lwkt_reltoken(&vmobj_token
);
2953 lwkt_reltoken(&vm_token
);
2957 * Copies the contents of the source entry to the destination
2958 * entry. The entries *must* be aligned properly.
2960 * The vm_map must be exclusively locked.
2961 * vm_token must be held
2964 vm_map_copy_entry(vm_map_t src_map
, vm_map_t dst_map
,
2965 vm_map_entry_t src_entry
, vm_map_entry_t dst_entry
)
2967 vm_object_t src_object
;
2969 if (dst_entry
->maptype
== VM_MAPTYPE_SUBMAP
)
2971 if (src_entry
->maptype
== VM_MAPTYPE_SUBMAP
)
2974 ASSERT_LWKT_TOKEN_HELD(&vm_token
);
2975 lwkt_gettoken(&vmobj_token
); /* required for collapse */
2977 if (src_entry
->wired_count
== 0) {
2979 * If the source entry is marked needs_copy, it is already
2982 if ((src_entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) == 0) {
2983 pmap_protect(src_map
->pmap
,
2986 src_entry
->protection
& ~VM_PROT_WRITE
);
2990 * Make a copy of the object.
2992 if ((src_object
= src_entry
->object
.vm_object
) != NULL
) {
2993 if ((src_object
->handle
== NULL
) &&
2994 (src_object
->type
== OBJT_DEFAULT
||
2995 src_object
->type
== OBJT_SWAP
)) {
2996 vm_object_collapse(src_object
);
2997 if ((src_object
->flags
& (OBJ_NOSPLIT
|OBJ_ONEMAPPING
)) == OBJ_ONEMAPPING
) {
2998 vm_map_split(src_entry
);
2999 src_object
= src_entry
->object
.vm_object
;
3003 vm_object_reference_locked(src_object
);
3004 vm_object_clear_flag(src_object
, OBJ_ONEMAPPING
);
3005 dst_entry
->object
.vm_object
= src_object
;
3006 src_entry
->eflags
|= (MAP_ENTRY_COW
|MAP_ENTRY_NEEDS_COPY
);
3007 dst_entry
->eflags
|= (MAP_ENTRY_COW
|MAP_ENTRY_NEEDS_COPY
);
3008 dst_entry
->offset
= src_entry
->offset
;
3010 dst_entry
->object
.vm_object
= NULL
;
3011 dst_entry
->offset
= 0;
3014 pmap_copy(dst_map
->pmap
, src_map
->pmap
, dst_entry
->start
,
3015 dst_entry
->end
- dst_entry
->start
, src_entry
->start
);
3018 * Of course, wired down pages can't be set copy-on-write.
3019 * Cause wired pages to be copied into the new map by
3020 * simulating faults (the new pages are pageable)
3022 vm_fault_copy_entry(dst_map
, src_map
, dst_entry
, src_entry
);
3024 lwkt_reltoken(&vmobj_token
);
3029 * Create a new process vmspace structure and vm_map
3030 * based on those of an existing process. The new map
3031 * is based on the old map, according to the inheritance
3032 * values on the regions in that map.
3034 * The source map must not be locked.
3038 vmspace_fork(struct vmspace
*vm1
)
3040 struct vmspace
*vm2
;
3041 vm_map_t old_map
= &vm1
->vm_map
;
3043 vm_map_entry_t old_entry
;
3044 vm_map_entry_t new_entry
;
3048 lwkt_gettoken(&vm_token
);
3049 lwkt_gettoken(&vmspace_token
);
3050 lwkt_gettoken(&vmobj_token
);
3051 vm_map_lock(old_map
);
3052 old_map
->infork
= 1;
3055 * XXX Note: upcalls are not copied.
3057 vm2
= vmspace_alloc(old_map
->min_offset
, old_map
->max_offset
);
3058 bcopy(&vm1
->vm_startcopy
, &vm2
->vm_startcopy
,
3059 (caddr_t
)&vm1
->vm_endcopy
- (caddr_t
)&vm1
->vm_startcopy
);
3060 new_map
= &vm2
->vm_map
; /* XXX */
3061 new_map
->timestamp
= 1;
3063 vm_map_lock(new_map
);
3066 old_entry
= old_map
->header
.next
;
3067 while (old_entry
!= &old_map
->header
) {
3069 old_entry
= old_entry
->next
;
3072 count
= vm_map_entry_reserve(count
+ MAP_RESERVE_COUNT
);
3074 old_entry
= old_map
->header
.next
;
3075 while (old_entry
!= &old_map
->header
) {
3076 if (old_entry
->maptype
== VM_MAPTYPE_SUBMAP
)
3077 panic("vm_map_fork: encountered a submap");
3079 switch (old_entry
->inheritance
) {
3080 case VM_INHERIT_NONE
:
3082 case VM_INHERIT_SHARE
:
3084 * Clone the entry, creating the shared object if
3087 object
= old_entry
->object
.vm_object
;
3088 if (object
== NULL
) {
3089 vm_map_entry_allocate_object(old_entry
);
3090 object
= old_entry
->object
.vm_object
;
3094 * Add the reference before calling vm_map_entry_shadow
3095 * to insure that a shadow object is created.
3097 vm_object_reference_locked(object
);
3098 if (old_entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) {
3099 vm_map_entry_shadow(old_entry
);
3100 /* Transfer the second reference too. */
3101 vm_object_reference_locked(
3102 old_entry
->object
.vm_object
);
3103 vm_object_deallocate_locked(object
);
3104 object
= old_entry
->object
.vm_object
;
3106 vm_object_clear_flag(object
, OBJ_ONEMAPPING
);
3109 * Clone the entry, referencing the shared object.
3111 new_entry
= vm_map_entry_create(new_map
, &count
);
3112 *new_entry
= *old_entry
;
3113 new_entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
3114 new_entry
->wired_count
= 0;
3117 * Insert the entry into the new map -- we know we're
3118 * inserting at the end of the new map.
3121 vm_map_entry_link(new_map
, new_map
->header
.prev
,
3125 * Update the physical map
3127 pmap_copy(new_map
->pmap
, old_map
->pmap
,
3129 (old_entry
->end
- old_entry
->start
),
3132 case VM_INHERIT_COPY
:
3134 * Clone the entry and link into the map.
3136 new_entry
= vm_map_entry_create(new_map
, &count
);
3137 *new_entry
= *old_entry
;
3138 new_entry
->eflags
&= ~MAP_ENTRY_USER_WIRED
;
3139 new_entry
->wired_count
= 0;
3140 new_entry
->object
.vm_object
= NULL
;
3141 vm_map_entry_link(new_map
, new_map
->header
.prev
,
3143 vm_map_copy_entry(old_map
, new_map
, old_entry
,
3147 old_entry
= old_entry
->next
;
3150 new_map
->size
= old_map
->size
;
3151 old_map
->infork
= 0;
3152 vm_map_unlock(old_map
);
3153 vm_map_unlock(new_map
);
3154 vm_map_entry_release(count
);
3156 lwkt_reltoken(&vmobj_token
);
3157 lwkt_reltoken(&vmspace_token
);
3158 lwkt_reltoken(&vm_token
);
3164 * Create an auto-grow stack entry
3169 vm_map_stack (vm_map_t map
, vm_offset_t addrbos
, vm_size_t max_ssize
,
3170 int flags
, vm_prot_t prot
, vm_prot_t max
, int cow
)
3172 vm_map_entry_t prev_entry
;
3173 vm_map_entry_t new_stack_entry
;
3174 vm_size_t init_ssize
;
3177 vm_offset_t tmpaddr
;
3179 cow
|= MAP_IS_STACK
;
3181 if (max_ssize
< sgrowsiz
)
3182 init_ssize
= max_ssize
;
3184 init_ssize
= sgrowsiz
;
3186 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
3190 * Find space for the mapping
3192 if ((flags
& (MAP_FIXED
| MAP_TRYFIXED
)) == 0) {
3193 if (vm_map_findspace(map
, addrbos
, max_ssize
, 1,
3196 vm_map_entry_release(count
);
3197 return (KERN_NO_SPACE
);
3202 /* If addr is already mapped, no go */
3203 if (vm_map_lookup_entry(map
, addrbos
, &prev_entry
)) {
3205 vm_map_entry_release(count
);
3206 return (KERN_NO_SPACE
);
3210 /* XXX already handled by kern_mmap() */
3211 /* If we would blow our VMEM resource limit, no go */
3212 if (map
->size
+ init_ssize
>
3213 curproc
->p_rlimit
[RLIMIT_VMEM
].rlim_cur
) {
3215 vm_map_entry_release(count
);
3216 return (KERN_NO_SPACE
);
3221 * If we can't accomodate max_ssize in the current mapping,
3222 * no go. However, we need to be aware that subsequent user
3223 * mappings might map into the space we have reserved for
3224 * stack, and currently this space is not protected.
3226 * Hopefully we will at least detect this condition
3227 * when we try to grow the stack.
3229 if ((prev_entry
->next
!= &map
->header
) &&
3230 (prev_entry
->next
->start
< addrbos
+ max_ssize
)) {
3232 vm_map_entry_release(count
);
3233 return (KERN_NO_SPACE
);
3237 * We initially map a stack of only init_ssize. We will
3238 * grow as needed later. Since this is to be a grow
3239 * down stack, we map at the top of the range.
3241 * Note: we would normally expect prot and max to be
3242 * VM_PROT_ALL, and cow to be 0. Possibly we should
3243 * eliminate these as input parameters, and just
3244 * pass these values here in the insert call.
3246 rv
= vm_map_insert(map
, &count
,
3247 NULL
, 0, addrbos
+ max_ssize
- init_ssize
,
3248 addrbos
+ max_ssize
,
3253 /* Now set the avail_ssize amount */
3254 if (rv
== KERN_SUCCESS
) {
3255 if (prev_entry
!= &map
->header
)
3256 vm_map_clip_end(map
, prev_entry
, addrbos
+ max_ssize
- init_ssize
, &count
);
3257 new_stack_entry
= prev_entry
->next
;
3258 if (new_stack_entry
->end
!= addrbos
+ max_ssize
||
3259 new_stack_entry
->start
!= addrbos
+ max_ssize
- init_ssize
)
3260 panic ("Bad entry start/end for new stack entry");
3262 new_stack_entry
->aux
.avail_ssize
= max_ssize
- init_ssize
;
3266 vm_map_entry_release(count
);
3271 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3272 * desired address is already mapped, or if we successfully grow
3273 * the stack. Also returns KERN_SUCCESS if addr is outside the
3274 * stack range (this is strange, but preserves compatibility with
3275 * the grow function in vm_machdep.c).
3280 vm_map_growstack (struct proc
*p
, vm_offset_t addr
)
3282 vm_map_entry_t prev_entry
;
3283 vm_map_entry_t stack_entry
;
3284 vm_map_entry_t new_stack_entry
;
3285 struct vmspace
*vm
= p
->p_vmspace
;
3286 vm_map_t map
= &vm
->vm_map
;
3289 int rv
= KERN_SUCCESS
;
3291 int use_read_lock
= 1;
3294 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
3297 vm_map_lock_read(map
);
3301 /* If addr is already in the entry range, no need to grow.*/
3302 if (vm_map_lookup_entry(map
, addr
, &prev_entry
))
3305 if ((stack_entry
= prev_entry
->next
) == &map
->header
)
3307 if (prev_entry
== &map
->header
)
3308 end
= stack_entry
->start
- stack_entry
->aux
.avail_ssize
;
3310 end
= prev_entry
->end
;
3313 * This next test mimics the old grow function in vm_machdep.c.
3314 * It really doesn't quite make sense, but we do it anyway
3315 * for compatibility.
3317 * If not growable stack, return success. This signals the
3318 * caller to proceed as he would normally with normal vm.
3320 if (stack_entry
->aux
.avail_ssize
< 1 ||
3321 addr
>= stack_entry
->start
||
3322 addr
< stack_entry
->start
- stack_entry
->aux
.avail_ssize
) {
3326 /* Find the minimum grow amount */
3327 grow_amount
= roundup (stack_entry
->start
- addr
, PAGE_SIZE
);
3328 if (grow_amount
> stack_entry
->aux
.avail_ssize
) {
3334 * If there is no longer enough space between the entries
3335 * nogo, and adjust the available space. Note: this
3336 * should only happen if the user has mapped into the
3337 * stack area after the stack was created, and is
3338 * probably an error.
3340 * This also effectively destroys any guard page the user
3341 * might have intended by limiting the stack size.
3343 if (grow_amount
> stack_entry
->start
- end
) {
3344 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
3349 stack_entry
->aux
.avail_ssize
= stack_entry
->start
- end
;
3354 is_procstack
= addr
>= (vm_offset_t
)vm
->vm_maxsaddr
;
3356 /* If this is the main process stack, see if we're over the
3359 if (is_procstack
&& (ctob(vm
->vm_ssize
) + grow_amount
>
3360 p
->p_rlimit
[RLIMIT_STACK
].rlim_cur
)) {
3365 /* Round up the grow amount modulo SGROWSIZ */
3366 grow_amount
= roundup (grow_amount
, sgrowsiz
);
3367 if (grow_amount
> stack_entry
->aux
.avail_ssize
) {
3368 grow_amount
= stack_entry
->aux
.avail_ssize
;
3370 if (is_procstack
&& (ctob(vm
->vm_ssize
) + grow_amount
>
3371 p
->p_rlimit
[RLIMIT_STACK
].rlim_cur
)) {
3372 grow_amount
= p
->p_rlimit
[RLIMIT_STACK
].rlim_cur
-
3376 /* If we would blow our VMEM resource limit, no go */
3377 if (map
->size
+ grow_amount
> p
->p_rlimit
[RLIMIT_VMEM
].rlim_cur
) {
3382 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
3388 /* Get the preliminary new entry start value */
3389 addr
= stack_entry
->start
- grow_amount
;
3391 /* If this puts us into the previous entry, cut back our growth
3392 * to the available space. Also, see the note above.
3395 stack_entry
->aux
.avail_ssize
= stack_entry
->start
- end
;
3399 rv
= vm_map_insert(map
, &count
,
3400 NULL
, 0, addr
, stack_entry
->start
,
3402 VM_PROT_ALL
, VM_PROT_ALL
,
3405 /* Adjust the available stack space by the amount we grew. */
3406 if (rv
== KERN_SUCCESS
) {
3407 if (prev_entry
!= &map
->header
)
3408 vm_map_clip_end(map
, prev_entry
, addr
, &count
);
3409 new_stack_entry
= prev_entry
->next
;
3410 if (new_stack_entry
->end
!= stack_entry
->start
||
3411 new_stack_entry
->start
!= addr
)
3412 panic ("Bad stack grow start/end in new stack entry");
3414 new_stack_entry
->aux
.avail_ssize
=
3415 stack_entry
->aux
.avail_ssize
-
3416 (new_stack_entry
->end
- new_stack_entry
->start
);
3418 vm
->vm_ssize
+= btoc(new_stack_entry
->end
-
3419 new_stack_entry
->start
);
3422 if (map
->flags
& MAP_WIREFUTURE
)
3423 vm_map_unwire(map
, new_stack_entry
->start
,
3424 new_stack_entry
->end
, FALSE
);
3429 vm_map_unlock_read(map
);
3432 vm_map_entry_release(count
);
3437 * Unshare the specified VM space for exec. If other processes are
3438 * mapped to it, then create a new one. The new vmspace is null.
3443 vmspace_exec(struct proc
*p
, struct vmspace
*vmcopy
)
3445 struct vmspace
*oldvmspace
= p
->p_vmspace
;
3446 struct vmspace
*newvmspace
;
3447 vm_map_t map
= &p
->p_vmspace
->vm_map
;
3450 * If we are execing a resident vmspace we fork it, otherwise
3451 * we create a new vmspace. Note that exitingcnt and upcalls
3452 * are not copied to the new vmspace.
3454 lwkt_gettoken(&vmspace_token
);
3456 newvmspace
= vmspace_fork(vmcopy
);
3458 newvmspace
= vmspace_alloc(map
->min_offset
, map
->max_offset
);
3459 bcopy(&oldvmspace
->vm_startcopy
, &newvmspace
->vm_startcopy
,
3460 (caddr_t
)&oldvmspace
->vm_endcopy
-
3461 (caddr_t
)&oldvmspace
->vm_startcopy
);
3465 * Finish initializing the vmspace before assigning it
3466 * to the process. The vmspace will become the current vmspace
3469 pmap_pinit2(vmspace_pmap(newvmspace
));
3470 pmap_replacevm(p
, newvmspace
, 0);
3471 sysref_put(&oldvmspace
->vm_sysref
);
3472 lwkt_reltoken(&vmspace_token
);
3476 * Unshare the specified VM space for forcing COW. This
3477 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3479 * The exitingcnt test is not strictly necessary but has been
3480 * included for code sanity (to make the code a bit more deterministic).
3483 vmspace_unshare(struct proc
*p
)
3485 struct vmspace
*oldvmspace
= p
->p_vmspace
;
3486 struct vmspace
*newvmspace
;
3488 lwkt_gettoken(&vmspace_token
);
3489 if (oldvmspace
->vm_sysref
.refcnt
== 1 && oldvmspace
->vm_exitingcnt
== 0)
3491 newvmspace
= vmspace_fork(oldvmspace
);
3492 pmap_pinit2(vmspace_pmap(newvmspace
));
3493 pmap_replacevm(p
, newvmspace
, 0);
3494 sysref_put(&oldvmspace
->vm_sysref
);
3495 lwkt_reltoken(&vmspace_token
);
3499 * vm_map_hint: return the beginning of the best area suitable for
3500 * creating a new mapping with "prot" protection.
3505 vm_map_hint(struct proc
*p
, vm_offset_t addr
, vm_prot_t prot
)
3507 struct vmspace
*vms
= p
->p_vmspace
;
3509 if (!randomize_mmap
) {
3511 * Set a reasonable start point for the hint if it was
3512 * not specified or if it falls within the heap space.
3513 * Hinted mmap()s do not allocate out of the heap space.
3516 (addr
>= round_page((vm_offset_t
)vms
->vm_taddr
) &&
3517 addr
< round_page((vm_offset_t
)vms
->vm_daddr
+ maxdsiz
))) {
3518 addr
= round_page((vm_offset_t
)vms
->vm_daddr
+ maxdsiz
);
3524 if (addr
!= 0 && addr
>= (vm_offset_t
)vms
->vm_daddr
)
3530 * If executable skip first two pages, otherwise start
3531 * after data + heap region.
3533 if ((prot
& VM_PROT_EXECUTE
) &&
3534 ((vm_offset_t
)vms
->vm_daddr
>= I386_MAX_EXE_ADDR
)) {
3535 addr
= (PAGE_SIZE
* 2) +
3536 (karc4random() & (I386_MAX_EXE_ADDR
/ 2 - 1));
3537 return (round_page(addr
));
3539 #endif /* __i386__ */
3542 addr
= (vm_offset_t
)vms
->vm_daddr
+ MAXDSIZ
;
3543 addr
+= karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ
) - 1);
3545 return (round_page(addr
));
3549 * Finds the VM object, offset, and protection for a given virtual address
3550 * in the specified map, assuming a page fault of the type specified.
3552 * Leaves the map in question locked for read; return values are guaranteed
3553 * until a vm_map_lookup_done call is performed. Note that the map argument
3554 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3556 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3559 * If a lookup is requested with "write protection" specified, the map may
3560 * be changed to perform virtual copying operations, although the data
3561 * referenced will remain the same.
3566 vm_map_lookup(vm_map_t
*var_map
, /* IN/OUT */
3568 vm_prot_t fault_typea
,
3569 vm_map_entry_t
*out_entry
, /* OUT */
3570 vm_object_t
*object
, /* OUT */
3571 vm_pindex_t
*pindex
, /* OUT */
3572 vm_prot_t
*out_prot
, /* OUT */
3573 boolean_t
*wired
) /* OUT */
3575 vm_map_entry_t entry
;
3576 vm_map_t map
= *var_map
;
3578 vm_prot_t fault_type
= fault_typea
;
3579 int use_read_lock
= 1;
3580 int rv
= KERN_SUCCESS
;
3584 vm_map_lock_read(map
);
3589 * If the map has an interesting hint, try it before calling full
3590 * blown lookup routine.
3595 if ((entry
== &map
->header
) ||
3596 (vaddr
< entry
->start
) || (vaddr
>= entry
->end
)) {
3597 vm_map_entry_t tmp_entry
;
3600 * Entry was either not a valid hint, or the vaddr was not
3601 * contained in the entry, so do a full lookup.
3603 if (!vm_map_lookup_entry(map
, vaddr
, &tmp_entry
)) {
3604 rv
= KERN_INVALID_ADDRESS
;
3615 if (entry
->maptype
== VM_MAPTYPE_SUBMAP
) {
3616 vm_map_t old_map
= map
;
3618 *var_map
= map
= entry
->object
.sub_map
;
3620 vm_map_unlock_read(old_map
);
3622 vm_map_unlock(old_map
);
3628 * Check whether this task is allowed to have this page.
3629 * Note the special case for MAP_ENTRY_COW
3630 * pages with an override. This is to implement a forced
3631 * COW for debuggers.
3634 if (fault_type
& VM_PROT_OVERRIDE_WRITE
)
3635 prot
= entry
->max_protection
;
3637 prot
= entry
->protection
;
3639 fault_type
&= (VM_PROT_READ
|VM_PROT_WRITE
|VM_PROT_EXECUTE
);
3640 if ((fault_type
& prot
) != fault_type
) {
3641 rv
= KERN_PROTECTION_FAILURE
;
3645 if ((entry
->eflags
& MAP_ENTRY_USER_WIRED
) &&
3646 (entry
->eflags
& MAP_ENTRY_COW
) &&
3647 (fault_type
& VM_PROT_WRITE
) &&
3648 (fault_typea
& VM_PROT_OVERRIDE_WRITE
) == 0) {
3649 rv
= KERN_PROTECTION_FAILURE
;
3654 * If this page is not pageable, we have to get it for all possible
3657 *wired
= (entry
->wired_count
!= 0);
3659 prot
= fault_type
= entry
->protection
;
3662 * Virtual page tables may need to update the accessed (A) bit
3663 * in a page table entry. Upgrade the fault to a write fault for
3664 * that case if the map will support it. If the map does not support
3665 * it the page table entry simply will not be updated.
3667 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
3668 if (prot
& VM_PROT_WRITE
)
3669 fault_type
|= VM_PROT_WRITE
;
3673 * If the entry was copy-on-write, we either ...
3675 if (entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) {
3677 * If we want to write the page, we may as well handle that
3678 * now since we've got the map locked.
3680 * If we don't need to write the page, we just demote the
3681 * permissions allowed.
3684 if (fault_type
& VM_PROT_WRITE
) {
3686 * Make a new object, and place it in the object
3687 * chain. Note that no new references have appeared
3688 * -- one just moved from the map to the new
3692 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
3698 vm_map_entry_shadow(entry
);
3701 * We're attempting to read a copy-on-write page --
3702 * don't allow writes.
3705 prot
&= ~VM_PROT_WRITE
;
3710 * Create an object if necessary.
3712 if (entry
->object
.vm_object
== NULL
&&
3714 if (use_read_lock
&& vm_map_lock_upgrade(map
)) {
3719 vm_map_entry_allocate_object(entry
);
3723 * Return the object/offset from this entry. If the entry was
3724 * copy-on-write or empty, it has been fixed up.
3727 *pindex
= OFF_TO_IDX((vaddr
- entry
->start
) + entry
->offset
);
3728 *object
= entry
->object
.vm_object
;
3731 * Return whether this is the only map sharing this data. On
3732 * success we return with a read lock held on the map. On failure
3733 * we return with the map unlocked.
3737 if (rv
== KERN_SUCCESS
) {
3738 if (use_read_lock
== 0)
3739 vm_map_lock_downgrade(map
);
3740 } else if (use_read_lock
) {
3741 vm_map_unlock_read(map
);
3749 * Releases locks acquired by a vm_map_lookup()
3750 * (according to the handle returned by that lookup).
3752 * No other requirements.
3755 vm_map_lookup_done(vm_map_t map
, vm_map_entry_t entry
, int count
)
3758 * Unlock the main-level map
3760 vm_map_unlock_read(map
);
3762 vm_map_entry_release(count
);
3765 #include "opt_ddb.h"
3767 #include <sys/kernel.h>
3769 #include <ddb/ddb.h>
3774 DB_SHOW_COMMAND(map
, vm_map_print
)
3777 /* XXX convert args. */
3778 vm_map_t map
= (vm_map_t
)addr
;
3779 boolean_t full
= have_addr
;
3781 vm_map_entry_t entry
;
3783 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3785 (void *)map
->pmap
, map
->nentries
, map
->timestamp
);
3788 if (!full
&& db_indent
)
3792 for (entry
= map
->header
.next
; entry
!= &map
->header
;
3793 entry
= entry
->next
) {
3794 db_iprintf("map entry %p: start=%p, end=%p\n",
3795 (void *)entry
, (void *)entry
->start
, (void *)entry
->end
);
3798 static char *inheritance_name
[4] =
3799 {"share", "copy", "none", "donate_copy"};
3801 db_iprintf(" prot=%x/%x/%s",
3803 entry
->max_protection
,
3804 inheritance_name
[(int)(unsigned char)entry
->inheritance
]);
3805 if (entry
->wired_count
!= 0)
3806 db_printf(", wired");
3808 if (entry
->maptype
== VM_MAPTYPE_SUBMAP
) {
3809 /* XXX no %qd in kernel. Truncate entry->offset. */
3810 db_printf(", share=%p, offset=0x%lx\n",
3811 (void *)entry
->object
.sub_map
,
3812 (long)entry
->offset
);
3814 if ((entry
->prev
== &map
->header
) ||
3815 (entry
->prev
->object
.sub_map
!=
3816 entry
->object
.sub_map
)) {
3818 vm_map_print((db_expr_t
)(intptr_t)
3819 entry
->object
.sub_map
,
3824 /* XXX no %qd in kernel. Truncate entry->offset. */
3825 db_printf(", object=%p, offset=0x%lx",
3826 (void *)entry
->object
.vm_object
,
3827 (long)entry
->offset
);
3828 if (entry
->eflags
& MAP_ENTRY_COW
)
3829 db_printf(", copy (%s)",
3830 (entry
->eflags
& MAP_ENTRY_NEEDS_COPY
) ? "needed" : "done");
3834 if ((entry
->prev
== &map
->header
) ||
3835 (entry
->prev
->object
.vm_object
!=
3836 entry
->object
.vm_object
)) {
3838 vm_object_print((db_expr_t
)(intptr_t)
3839 entry
->object
.vm_object
,
3854 DB_SHOW_COMMAND(procvm
, procvm
)
3859 p
= (struct proc
*) addr
;
3864 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3865 (void *)p
, (void *)p
->p_vmspace
, (void *)&p
->p_vmspace
->vm_map
,
3866 (void *)vmspace_pmap(p
->p_vmspace
));
3868 vm_map_print((db_expr_t
)(intptr_t)&p
->p_vmspace
->vm_map
, 1, 0, NULL
);