2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
85 #include <sys/proc.h> /* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 #include <net/netisr2.h>
96 #include <net/route.h>
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
120 #include <netinet6/ipsec.h>
122 #include <netinet6/ipsec6.h>
124 #include <netproto/key/key.h>
128 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/ipsec6.h>
132 #include <netproto/ipsec/key.h>
134 #endif /*FAST_IPSEC*/
136 static int tcp_syncookies
= 1;
137 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, syncookies
, CTLFLAG_RW
,
139 "Use TCP SYN cookies if the syncache overflows");
141 static void syncache_drop(struct syncache
*, struct syncache_head
*);
142 static void syncache_free(struct syncache
*);
143 static void syncache_insert(struct syncache
*, struct syncache_head
*);
144 struct syncache
*syncache_lookup(struct in_conninfo
*, struct syncache_head
**);
145 static int syncache_respond(struct syncache
*, struct mbuf
*);
146 static struct socket
*syncache_socket(struct syncache
*, struct socket
*,
148 static void syncache_timer(void *);
149 static u_int32_t
syncookie_generate(struct syncache
*);
150 static struct syncache
*syncookie_lookup(struct in_conninfo
*,
151 struct tcphdr
*, struct socket
*);
154 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155 * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
156 * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
157 * the user has given up attempting to connect by then.
159 #define SYNCACHE_MAXREXMTS 4
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE 512
163 #define TCP_SYNCACHE_BUCKETLIMIT 30
165 struct netmsg_sc_timer
{
166 struct netmsg_base base
;
167 struct msgrec
*nm_mrec
; /* back pointer to containing msgrec */
171 struct netmsg_sc_timer msg
;
172 lwkt_port_t port
; /* constant after init */
173 int slot
; /* constant after init */
176 static void syncache_timer_handler(netmsg_t
);
178 struct tcp_syncache
{
186 static struct tcp_syncache tcp_syncache
;
188 TAILQ_HEAD(syncache_list
, syncache
);
190 struct tcp_syncache_percpu
{
191 struct syncache_head
*hashbase
;
193 struct syncache_list timerq
[SYNCACHE_MAXREXMTS
+ 1];
194 struct callout tt_timerq
[SYNCACHE_MAXREXMTS
+ 1];
195 struct msgrec mrec
[SYNCACHE_MAXREXMTS
+ 1];
197 static struct tcp_syncache_percpu tcp_syncache_percpu
[MAXCPU
];
199 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, syncache
, CTLFLAG_RW
, 0, "TCP SYN cache");
201 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, bucketlimit
, CTLFLAG_RD
,
202 &tcp_syncache
.bucket_limit
, 0, "Per-bucket hash limit for syncache");
204 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, cachelimit
, CTLFLAG_RD
,
205 &tcp_syncache
.cache_limit
, 0, "Overall entry limit for syncache");
209 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, count
, CTLFLAG_RD
,
210 &tcp_syncache
.cache_count
, 0, "Current number of entries in syncache");
213 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, hashsize
, CTLFLAG_RD
,
214 &tcp_syncache
.hashsize
, 0, "Size of TCP syncache hashtable");
216 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, rexmtlimit
, CTLFLAG_RW
,
217 &tcp_syncache
.rexmt_limit
, 0, "Limit on SYN/ACK retransmissions");
219 static MALLOC_DEFINE(M_SYNCACHE
, "syncache", "TCP syncache");
221 #define SYNCACHE_HASH(inc, mask) \
222 ((tcp_syncache.hash_secret ^ \
223 (inc)->inc_faddr.s_addr ^ \
224 ((inc)->inc_faddr.s_addr >> 16) ^ \
225 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227 #define SYNCACHE_HASH6(inc, mask) \
228 ((tcp_syncache.hash_secret ^ \
229 (inc)->inc6_faddr.s6_addr32[0] ^ \
230 (inc)->inc6_faddr.s6_addr32[3] ^ \
231 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233 #define ENDPTS_EQ(a, b) ( \
234 (a)->ie_fport == (b)->ie_fport && \
235 (a)->ie_lport == (b)->ie_lport && \
236 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
237 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
240 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
243 syncache_rto(int slot
)
246 return (TCPTV_RTOBASE
* tcp_syn_backoff_low
[slot
]);
248 return (TCPTV_RTOBASE
* tcp_syn_backoff
[slot
]);
252 syncache_timeout(struct tcp_syncache_percpu
*syncache_percpu
,
253 struct syncache
*sc
, int slot
)
259 * Record the time that we spent in SYN|ACK
262 * Needed by RFC3390 and RFC6298.
264 sc
->sc_rxtused
+= syncache_rto(slot
- 1);
266 sc
->sc_rxtslot
= slot
;
268 rto
= syncache_rto(slot
);
269 sc
->sc_rxttime
= ticks
+ rto
;
271 TAILQ_INSERT_TAIL(&syncache_percpu
->timerq
[slot
], sc
, sc_timerq
);
272 if (!callout_active(&syncache_percpu
->tt_timerq
[slot
])) {
273 callout_reset(&syncache_percpu
->tt_timerq
[slot
], rto
,
274 syncache_timer
, &syncache_percpu
->mrec
[slot
]);
279 syncache_free(struct syncache
*sc
)
283 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
285 const boolean_t isipv6
= FALSE
;
289 m_free(sc
->sc_ipopts
);
291 rt
= isipv6
? sc
->sc_route6
.ro_rt
: sc
->sc_route
.ro_rt
;
294 * If this is the only reference to a protocol-cloned
295 * route, remove it immediately.
297 if ((rt
->rt_flags
& (RTF_WASCLONED
| RTF_LLINFO
)) ==
298 RTF_WASCLONED
&& rt
->rt_refcnt
== 1) {
299 rtrequest(RTM_DELETE
, rt_key(rt
), rt
->rt_gateway
,
300 rt_mask(rt
), rt
->rt_flags
, NULL
);
304 kfree(sc
, M_SYNCACHE
);
312 tcp_syncache
.hashsize
= TCP_SYNCACHE_HASHSIZE
;
313 tcp_syncache
.bucket_limit
= TCP_SYNCACHE_BUCKETLIMIT
;
314 tcp_syncache
.cache_limit
=
315 tcp_syncache
.hashsize
* tcp_syncache
.bucket_limit
;
316 tcp_syncache
.rexmt_limit
= SYNCACHE_MAXREXMTS
;
317 tcp_syncache
.hash_secret
= karc4random();
319 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
320 &tcp_syncache
.hashsize
);
321 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
322 &tcp_syncache
.cache_limit
);
323 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
324 &tcp_syncache
.bucket_limit
);
325 if (!powerof2(tcp_syncache
.hashsize
)) {
326 kprintf("WARNING: syncache hash size is not a power of 2.\n");
327 tcp_syncache
.hashsize
= 512; /* safe default */
329 tcp_syncache
.hashmask
= tcp_syncache
.hashsize
- 1;
331 for (cpu
= 0; cpu
< netisr_ncpus
; cpu
++) {
332 struct tcp_syncache_percpu
*syncache_percpu
;
334 syncache_percpu
= &tcp_syncache_percpu
[cpu
];
335 /* Allocate the hash table. */
336 syncache_percpu
->hashbase
= kmalloc_cachealign(
337 tcp_syncache
.hashsize
* sizeof(struct syncache_head
),
338 M_SYNCACHE
, M_WAITOK
);
340 /* Initialize the hash buckets. */
341 for (i
= 0; i
< tcp_syncache
.hashsize
; i
++) {
342 struct syncache_head
*bucket
;
344 bucket
= &syncache_percpu
->hashbase
[i
];
345 TAILQ_INIT(&bucket
->sch_bucket
);
346 bucket
->sch_length
= 0;
349 for (i
= 0; i
<= SYNCACHE_MAXREXMTS
; i
++) {
350 /* Initialize the timer queues. */
351 TAILQ_INIT(&syncache_percpu
->timerq
[i
]);
352 callout_init_mp(&syncache_percpu
->tt_timerq
[i
]);
354 syncache_percpu
->mrec
[i
].slot
= i
;
355 syncache_percpu
->mrec
[i
].port
= netisr_cpuport(cpu
);
356 syncache_percpu
->mrec
[i
].msg
.nm_mrec
=
357 &syncache_percpu
->mrec
[i
];
358 netmsg_init(&syncache_percpu
->mrec
[i
].msg
.base
,
359 NULL
, &netisr_adone_rport
,
360 MSGF_PRIORITY
, syncache_timer_handler
);
366 syncache_insert(struct syncache
*sc
, struct syncache_head
*sch
)
368 struct tcp_syncache_percpu
*syncache_percpu
;
369 struct syncache
*sc2
;
372 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
375 * Make sure that we don't overflow the per-bucket
376 * limit or the total cache size limit.
378 if (sch
->sch_length
>= tcp_syncache
.bucket_limit
) {
380 * The bucket is full, toss the oldest element.
382 sc2
= TAILQ_FIRST(&sch
->sch_bucket
);
383 if (sc2
->sc_tp
!= NULL
)
384 sc2
->sc_tp
->ts_recent
= ticks
;
385 syncache_drop(sc2
, sch
);
386 tcpstat
.tcps_sc_bucketoverflow
++;
387 } else if (syncache_percpu
->cache_count
>= tcp_syncache
.cache_limit
) {
389 * The cache is full. Toss the oldest entry in the
390 * entire cache. This is the front entry in the
391 * first non-empty timer queue with the largest
394 for (i
= SYNCACHE_MAXREXMTS
; i
>= 0; i
--) {
395 sc2
= TAILQ_FIRST(&syncache_percpu
->timerq
[i
]);
396 while (sc2
&& (sc2
->sc_flags
& SCF_MARKER
))
397 sc2
= TAILQ_NEXT(sc2
, sc_timerq
);
401 if (sc2
->sc_tp
!= NULL
)
402 sc2
->sc_tp
->ts_recent
= ticks
;
403 syncache_drop(sc2
, NULL
);
404 tcpstat
.tcps_sc_cacheoverflow
++;
407 /* Initialize the entry's timer. */
408 syncache_timeout(syncache_percpu
, sc
, 0);
410 /* Put it into the bucket. */
411 TAILQ_INSERT_TAIL(&sch
->sch_bucket
, sc
, sc_hash
);
413 syncache_percpu
->cache_count
++;
414 tcpstat
.tcps_sc_added
++;
418 syncache_destroy(struct tcpcb
*tp
, struct tcpcb
*tp_inh
)
420 struct tcp_syncache_percpu
*syncache_percpu
;
421 struct syncache_head
*bucket
;
425 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
428 for (i
= 0; i
< tcp_syncache
.hashsize
; i
++) {
429 bucket
= &syncache_percpu
->hashbase
[i
];
430 TAILQ_FOREACH(sc
, &bucket
->sch_bucket
, sc_hash
) {
438 syncache_drop(struct syncache
*sc
, struct syncache_head
*sch
)
440 struct tcp_syncache_percpu
*syncache_percpu
;
442 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
444 const boolean_t isipv6
= FALSE
;
447 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
451 sch
= &syncache_percpu
->hashbase
[
452 SYNCACHE_HASH6(&sc
->sc_inc
, tcp_syncache
.hashmask
)];
454 sch
= &syncache_percpu
->hashbase
[
455 SYNCACHE_HASH(&sc
->sc_inc
, tcp_syncache
.hashmask
)];
459 TAILQ_REMOVE(&sch
->sch_bucket
, sc
, sc_hash
);
461 syncache_percpu
->cache_count
--;
469 * Remove the entry from the syncache timer/timeout queue. Note
470 * that we do not try to stop any running timer since we do not know
471 * whether the timer's message is in-transit or not. Since timeouts
472 * are fairly long, taking an unneeded callout does not detrimentally
473 * effect performance.
475 TAILQ_REMOVE(&syncache_percpu
->timerq
[sc
->sc_rxtslot
], sc
, sc_timerq
);
481 * Place a timeout message on the TCP thread's message queue.
482 * This routine runs in soft interrupt context.
484 * An invariant is for this routine to be called, the callout must
485 * have been active. Note that the callout is not deactivated until
486 * after the message has been processed in syncache_timer_handler() below.
489 syncache_timer(void *p
)
491 struct netmsg_sc_timer
*msg
= p
;
493 lwkt_sendmsg_oncpu(msg
->nm_mrec
->port
, &msg
->base
.lmsg
);
497 * Service a timer message queued by timer expiration.
498 * This routine runs in the TCP protocol thread.
500 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
501 * If we have retransmitted an entry the maximum number of times, expire it.
503 * When we finish processing timed-out entries, we restart the timer if there
504 * are any entries still on the queue and deactivate it otherwise. Only after
505 * a timer has been deactivated here can it be restarted by syncache_timeout().
508 syncache_timer_handler(netmsg_t msg
)
510 struct tcp_syncache_percpu
*syncache_percpu
;
512 struct syncache marker
;
513 struct syncache_list
*list
;
517 slot
= ((struct netmsg_sc_timer
*)msg
)->nm_mrec
->slot
;
518 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
520 list
= &syncache_percpu
->timerq
[slot
];
523 * Use a marker to keep our place in the scan. syncache_drop()
524 * can block and cause any next pointer we cache to become stale.
526 marker
.sc_flags
= SCF_MARKER
;
527 TAILQ_INSERT_HEAD(list
, &marker
, sc_timerq
);
529 while ((sc
= TAILQ_NEXT(&marker
, sc_timerq
)) != NULL
) {
533 TAILQ_REMOVE(list
, &marker
, sc_timerq
);
534 TAILQ_INSERT_AFTER(list
, sc
, &marker
, sc_timerq
);
536 if (sc
->sc_flags
& SCF_MARKER
)
539 if (ticks
< sc
->sc_rxttime
)
540 break; /* finished because timerq sorted by time */
541 if (sc
->sc_tp
== NULL
) {
542 syncache_drop(sc
, NULL
);
543 tcpstat
.tcps_sc_stale
++;
546 inp
= sc
->sc_tp
->t_inpcb
;
547 if (slot
== SYNCACHE_MAXREXMTS
||
548 slot
>= tcp_syncache
.rexmt_limit
||
550 inp
->inp_gencnt
!= sc
->sc_inp_gencnt
) {
551 syncache_drop(sc
, NULL
);
552 tcpstat
.tcps_sc_stale
++;
556 * syncache_respond() may call back into the syncache to
557 * to modify another entry, so do not obtain the next
558 * entry on the timer chain until it has completed.
560 syncache_respond(sc
, NULL
);
561 tcpstat
.tcps_sc_retransmitted
++;
562 TAILQ_REMOVE(list
, sc
, sc_timerq
);
563 syncache_timeout(syncache_percpu
, sc
, slot
+ 1);
565 TAILQ_REMOVE(list
, &marker
, sc_timerq
);
568 callout_reset(&syncache_percpu
->tt_timerq
[slot
],
569 sc
->sc_rxttime
- ticks
, syncache_timer
,
570 &syncache_percpu
->mrec
[slot
]);
572 callout_deactivate(&syncache_percpu
->tt_timerq
[slot
]);
574 lwkt_replymsg(&msg
->base
.lmsg
, 0);
578 * Find an entry in the syncache.
581 syncache_lookup(struct in_conninfo
*inc
, struct syncache_head
**schp
)
583 struct tcp_syncache_percpu
*syncache_percpu
;
585 struct syncache_head
*sch
;
587 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
589 if (inc
->inc_isipv6
) {
590 sch
= &syncache_percpu
->hashbase
[
591 SYNCACHE_HASH6(inc
, tcp_syncache
.hashmask
)];
593 TAILQ_FOREACH(sc
, &sch
->sch_bucket
, sc_hash
)
594 if (ENDPTS6_EQ(&inc
->inc_ie
, &sc
->sc_inc
.inc_ie
))
599 sch
= &syncache_percpu
->hashbase
[
600 SYNCACHE_HASH(inc
, tcp_syncache
.hashmask
)];
602 TAILQ_FOREACH(sc
, &sch
->sch_bucket
, sc_hash
) {
604 if (sc
->sc_inc
.inc_isipv6
)
607 if (ENDPTS_EQ(&inc
->inc_ie
, &sc
->sc_inc
.inc_ie
))
615 * This function is called when we get a RST for a
616 * non-existent connection, so that we can see if the
617 * connection is in the syn cache. If it is, zap it.
620 syncache_chkrst(struct in_conninfo
*inc
, struct tcphdr
*th
)
623 struct syncache_head
*sch
;
625 sc
= syncache_lookup(inc
, &sch
);
630 * If the RST bit is set, check the sequence number to see
631 * if this is a valid reset segment.
633 * In all states except SYN-SENT, all reset (RST) segments
634 * are validated by checking their SEQ-fields. A reset is
635 * valid if its sequence number is in the window.
637 * The sequence number in the reset segment is normally an
638 * echo of our outgoing acknowlegement numbers, but some hosts
639 * send a reset with the sequence number at the rightmost edge
640 * of our receive window, and we have to handle this case.
642 if (SEQ_GEQ(th
->th_seq
, sc
->sc_irs
) &&
643 SEQ_LEQ(th
->th_seq
, sc
->sc_irs
+ sc
->sc_wnd
)) {
644 syncache_drop(sc
, sch
);
645 tcpstat
.tcps_sc_reset
++;
650 syncache_badack(struct in_conninfo
*inc
)
653 struct syncache_head
*sch
;
655 sc
= syncache_lookup(inc
, &sch
);
657 syncache_drop(sc
, sch
);
658 tcpstat
.tcps_sc_badack
++;
663 syncache_unreach(struct in_conninfo
*inc
, const struct tcphdr
*th
)
666 struct syncache_head
*sch
;
668 /* we are called at splnet() here */
669 sc
= syncache_lookup(inc
, &sch
);
673 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
674 if (ntohl(th
->th_seq
) != sc
->sc_iss
)
678 * If we've rertransmitted 3 times and this is our second error,
679 * we remove the entry. Otherwise, we allow it to continue on.
680 * This prevents us from incorrectly nuking an entry during a
681 * spurious network outage.
685 if ((sc
->sc_flags
& SCF_UNREACH
) == 0 || sc
->sc_rxtslot
< 3) {
686 sc
->sc_flags
|= SCF_UNREACH
;
689 syncache_drop(sc
, sch
);
690 tcpstat
.tcps_sc_unreach
++;
694 * Build a new TCP socket structure from a syncache entry.
696 * This is called from the context of the SYN+ACK
698 static struct socket
*
699 syncache_socket(struct syncache
*sc
, struct socket
*lso
, struct mbuf
*m
)
701 struct inpcb
*inp
= NULL
, *linp
;
703 struct tcpcb
*tp
, *ltp
;
706 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
708 const boolean_t isipv6
= FALSE
;
710 struct sockaddr_in sin_faddr
;
711 struct sockaddr_in6 sin6_faddr
;
712 struct sockaddr
*faddr
;
714 KASSERT(m
->m_flags
& M_HASH
, ("mbuf has no hash"));
717 faddr
= (struct sockaddr
*)&sin6_faddr
;
718 sin6_faddr
.sin6_family
= AF_INET6
;
719 sin6_faddr
.sin6_len
= sizeof(sin6_faddr
);
720 sin6_faddr
.sin6_addr
= sc
->sc_inc
.inc6_faddr
;
721 sin6_faddr
.sin6_port
= sc
->sc_inc
.inc_fport
;
722 sin6_faddr
.sin6_flowinfo
= sin6_faddr
.sin6_scope_id
= 0;
724 faddr
= (struct sockaddr
*)&sin_faddr
;
725 sin_faddr
.sin_family
= AF_INET
;
726 sin_faddr
.sin_len
= sizeof(sin_faddr
);
727 sin_faddr
.sin_addr
= sc
->sc_inc
.inc_faddr
;
728 sin_faddr
.sin_port
= sc
->sc_inc
.inc_fport
;
729 bzero(sin_faddr
.sin_zero
, sizeof(sin_faddr
.sin_zero
));
733 * Ok, create the full blown connection, and set things up
734 * as they would have been set up if we had created the
735 * connection when the SYN arrived. If we can't create
736 * the connection, abort it.
738 * Set the protocol processing port for the socket to the current
739 * port (that the connection came in on).
742 * We don't keep a reference on the new socket, since its
743 * destruction will run in this thread (netisrN); there is no
746 so
= sonewconn_faddr(lso
, SS_ISCONNECTED
, faddr
,
747 FALSE
/* don't ref */);
750 * Drop the connection; we will send a RST if the peer
751 * retransmits the ACK,
753 tcpstat
.tcps_listendrop
++;
758 * Insert new socket into hash list.
761 inp
->inp_inc
.inc_isipv6
= sc
->sc_inc
.inc_isipv6
;
763 inp
->in6p_laddr
= sc
->sc_inc
.inc6_laddr
;
765 KASSERT(INP_ISIPV4(inp
), ("not inet pcb"));
766 inp
->inp_laddr
= sc
->sc_inc
.inc_laddr
;
768 inp
->inp_lport
= sc
->sc_inc
.inc_lport
;
771 ltp
= intotcpcb(linp
);
773 tcp_pcbport_insert(ltp
, inp
);
776 /* copy old policy into new socket's */
777 if (ipsec_copy_policy(linp
->inp_sp
, inp
->inp_sp
))
778 kprintf("syncache_expand: could not copy policy\n");
781 struct in6_addr laddr6
;
783 * Inherit socket options from the listening socket.
784 * Note that in6p_inputopts are not (and should not be)
785 * copied, since it stores previously received options and is
786 * used to detect if each new option is different than the
787 * previous one and hence should be passed to a user.
788 * If we copied in6p_inputopts, a user would not be able to
789 * receive options just after calling the accept system call.
791 inp
->inp_flags
|= linp
->inp_flags
& INP_CONTROLOPTS
;
792 if (linp
->in6p_outputopts
)
793 inp
->in6p_outputopts
=
794 ip6_copypktopts(linp
->in6p_outputopts
, M_INTWAIT
);
795 inp
->in6p_route
= sc
->sc_route6
;
796 sc
->sc_route6
.ro_rt
= NULL
;
798 laddr6
= inp
->in6p_laddr
;
799 if (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
))
800 inp
->in6p_laddr
= sc
->sc_inc
.inc6_laddr
;
801 if (in6_pcbconnect(inp
, faddr
, &thread0
)) {
802 inp
->in6p_laddr
= laddr6
;
805 port
= tcp6_addrport();
807 struct in_addr laddr
;
809 inp
->inp_options
= ip_srcroute(m
);
810 if (inp
->inp_options
== NULL
) {
811 inp
->inp_options
= sc
->sc_ipopts
;
812 sc
->sc_ipopts
= NULL
;
814 inp
->inp_route
= sc
->sc_route
;
815 sc
->sc_route
.ro_rt
= NULL
;
817 laddr
= inp
->inp_laddr
;
818 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
)
819 inp
->inp_laddr
= sc
->sc_inc
.inc_laddr
;
820 if (in_pcbconnect(inp
, faddr
, &thread0
)) {
821 inp
->inp_laddr
= laddr
;
825 inp
->inp_flags
|= INP_HASH
;
826 inp
->inp_hashval
= m
->m_pkthdr
.hash
;
827 port
= netisr_hashport(inp
->inp_hashval
);
831 * The current port should be in the context of the SYN+ACK and
832 * so should match the tcp address port.
834 KASSERT(port
== &curthread
->td_msgport
,
835 ("TCP PORT MISMATCH %p vs %p\n", port
, &curthread
->td_msgport
));
838 TCP_STATE_CHANGE(tp
, TCPS_SYN_RECEIVED
);
839 tp
->iss
= sc
->sc_iss
;
840 tp
->irs
= sc
->sc_irs
;
843 tp
->snd_wnd
= sc
->sc_sndwnd
;
844 tp
->snd_wl1
= sc
->sc_irs
;
845 tp
->rcv_up
= sc
->sc_irs
+ 1;
846 tp
->rcv_wnd
= sc
->sc_wnd
;
847 tp
->rcv_adv
+= tp
->rcv_wnd
;
849 tp
->t_flags
= sototcpcb(lso
)->t_flags
& (TF_NOPUSH
| TF_NODELAY
);
850 if (sc
->sc_flags
& SCF_NOOPT
)
851 tp
->t_flags
|= TF_NOOPT
;
852 if (sc
->sc_flags
& SCF_WINSCALE
) {
853 tp
->t_flags
|= TF_REQ_SCALE
| TF_RCVD_SCALE
;
854 tp
->snd_scale
= sc
->sc_requested_s_scale
;
855 tp
->request_r_scale
= sc
->sc_request_r_scale
;
857 if (sc
->sc_flags
& SCF_TIMESTAMP
) {
858 tp
->t_flags
|= TF_REQ_TSTMP
| TF_RCVD_TSTMP
;
859 tp
->ts_recent
= sc
->sc_tsrecent
;
860 tp
->ts_recent_age
= ticks
;
862 if (sc
->sc_flags
& SCF_SACK_PERMITTED
)
863 tp
->t_flags
|= TF_SACK_PERMITTED
;
866 if (sc
->sc_flags
& SCF_SIGNATURE
)
867 tp
->t_flags
|= TF_SIGNATURE
;
868 #endif /* TCP_SIGNATURE */
870 tp
->t_rxtsyn
= sc
->sc_rxtused
;
871 tcp_mss(tp
, sc
->sc_peer_mss
);
874 * Inherit some properties from the listen socket
876 tp
->t_keepinit
= ltp
->t_keepinit
;
877 tp
->t_keepidle
= ltp
->t_keepidle
;
878 tp
->t_keepintvl
= ltp
->t_keepintvl
;
879 tp
->t_keepcnt
= ltp
->t_keepcnt
;
880 tp
->t_maxidle
= ltp
->t_maxidle
;
882 tcp_create_timermsg(tp
, port
);
883 tcp_callout_reset(tp
, tp
->tt_keep
, tp
->t_keepinit
, tcp_timer_keep
);
885 tcpstat
.tcps_accepts
++;
895 * This function gets called when we receive an ACK for a
896 * socket in the LISTEN state. We look up the connection
897 * in the syncache, and if its there, we pull it out of
898 * the cache and turn it into a full-blown connection in
899 * the SYN-RECEIVED state.
902 syncache_expand(struct in_conninfo
*inc
, struct tcphdr
*th
, struct socket
**sop
,
906 struct syncache_head
*sch
;
909 sc
= syncache_lookup(inc
, &sch
);
912 * There is no syncache entry, so see if this ACK is
913 * a returning syncookie. To do this, first:
914 * A. See if this socket has had a syncache entry dropped in
915 * the past. We don't want to accept a bogus syncookie
916 * if we've never received a SYN.
917 * B. check that the syncookie is valid. If it is, then
918 * cobble up a fake syncache entry, and return.
922 sc
= syncookie_lookup(inc
, th
, *sop
);
926 tcpstat
.tcps_sc_recvcookie
++;
930 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
932 if (th
->th_ack
!= sc
->sc_iss
+ 1)
935 so
= syncache_socket(sc
, *sop
, m
);
939 /* XXXjlemon check this - is this correct? */
940 tcp_respond(NULL
, m
, m
, th
,
941 th
->th_seq
+ tlen
, (tcp_seq
)0, TH_RST
| TH_ACK
);
943 m_freem(m
); /* XXX only needed for above */
944 tcpstat
.tcps_sc_aborted
++;
946 tcpstat
.tcps_sc_completed
++;
951 syncache_drop(sc
, sch
);
957 * Given a LISTEN socket and an inbound SYN request, add
958 * this to the syn cache, and send back a segment:
959 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
962 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
963 * Doing so would require that we hold onto the data and deliver it
964 * to the application. However, if we are the target of a SYN-flood
965 * DoS attack, an attacker could send data which would eventually
966 * consume all available buffer space if it were ACKed. By not ACKing
967 * the data, we avoid this DoS scenario.
970 syncache_add(struct in_conninfo
*inc
, struct tcpopt
*to
, struct tcphdr
*th
,
971 struct socket
*so
, struct mbuf
*m
)
973 struct tcp_syncache_percpu
*syncache_percpu
;
975 struct syncache
*sc
= NULL
;
976 struct syncache_head
*sch
;
977 struct mbuf
*ipopts
= NULL
;
980 KASSERT(m
->m_flags
& M_HASH
, ("mbuf has no hash"));
982 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
986 * Remember the IP options, if any.
989 if (!inc
->inc_isipv6
)
991 ipopts
= ip_srcroute(m
);
994 * See if we already have an entry for this connection.
995 * If we do, resend the SYN,ACK, and reset the retransmit timer.
998 * The syncache should be re-initialized with the contents
999 * of the new SYN which may have different options.
1001 sc
= syncache_lookup(inc
, &sch
);
1003 KASSERT(sc
->sc_flags
& SCF_HASH
, ("syncache has no hash"));
1004 KASSERT(sc
->sc_hashval
== m
->m_pkthdr
.hash
,
1005 ("syncache/mbuf hash mismatches"));
1007 tcpstat
.tcps_sc_dupsyn
++;
1010 * If we were remembering a previous source route,
1011 * forget it and use the new one we've been given.
1014 m_free(sc
->sc_ipopts
);
1015 sc
->sc_ipopts
= ipopts
;
1018 * Update timestamp if present.
1020 if (sc
->sc_flags
& SCF_TIMESTAMP
)
1021 sc
->sc_tsrecent
= to
->to_tsval
;
1023 /* Just update the TOF_SACK_PERMITTED for now. */
1024 if (tcp_do_sack
&& (to
->to_flags
& TOF_SACK_PERMITTED
))
1025 sc
->sc_flags
|= SCF_SACK_PERMITTED
;
1027 sc
->sc_flags
&= ~SCF_SACK_PERMITTED
;
1029 /* Update initial send window */
1030 sc
->sc_sndwnd
= th
->th_win
;
1033 * PCB may have changed, pick up new values.
1036 sc
->sc_inp_gencnt
= tp
->t_inpcb
->inp_gencnt
;
1037 if (syncache_respond(sc
, m
) == 0) {
1038 TAILQ_REMOVE(&syncache_percpu
->timerq
[sc
->sc_rxtslot
],
1040 syncache_timeout(syncache_percpu
, sc
, sc
->sc_rxtslot
);
1041 tcpstat
.tcps_sndacks
++;
1042 tcpstat
.tcps_sndtotal
++;
1048 * Fill in the syncache values.
1050 sc
= kmalloc(sizeof(struct syncache
), M_SYNCACHE
, M_WAITOK
|M_ZERO
);
1051 sc
->sc_inp_gencnt
= tp
->t_inpcb
->inp_gencnt
;
1052 sc
->sc_ipopts
= ipopts
;
1053 sc
->sc_inc
.inc_fport
= inc
->inc_fport
;
1054 sc
->sc_inc
.inc_lport
= inc
->inc_lport
;
1057 sc
->sc_inc
.inc_isipv6
= inc
->inc_isipv6
;
1058 if (inc
->inc_isipv6
) {
1059 sc
->sc_inc
.inc6_faddr
= inc
->inc6_faddr
;
1060 sc
->sc_inc
.inc6_laddr
= inc
->inc6_laddr
;
1061 sc
->sc_route6
.ro_rt
= NULL
;
1065 sc
->sc_inc
.inc_faddr
= inc
->inc_faddr
;
1066 sc
->sc_inc
.inc_laddr
= inc
->inc_laddr
;
1067 sc
->sc_route
.ro_rt
= NULL
;
1069 sc
->sc_irs
= th
->th_seq
;
1070 sc
->sc_flags
= SCF_HASH
;
1071 sc
->sc_hashval
= m
->m_pkthdr
.hash
;
1072 sc
->sc_peer_mss
= to
->to_flags
& TOF_MSS
? to
->to_mss
: 0;
1074 sc
->sc_iss
= syncookie_generate(sc
);
1076 sc
->sc_iss
= karc4random();
1078 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1079 win
= ssb_space(&so
->so_rcv
);
1081 win
= imin(win
, TCP_MAXWIN
);
1084 if (tcp_do_rfc1323
) {
1086 * A timestamp received in a SYN makes
1087 * it ok to send timestamp requests and replies.
1089 if (to
->to_flags
& TOF_TS
) {
1090 sc
->sc_tsrecent
= to
->to_tsval
;
1091 sc
->sc_flags
|= SCF_TIMESTAMP
;
1093 if (to
->to_flags
& TOF_SCALE
) {
1094 int wscale
= TCP_MIN_WINSHIFT
;
1096 /* Compute proper scaling value from buffer space */
1097 while (wscale
< TCP_MAX_WINSHIFT
&&
1098 (TCP_MAXWIN
<< wscale
) < so
->so_rcv
.ssb_hiwat
) {
1101 sc
->sc_request_r_scale
= wscale
;
1102 sc
->sc_requested_s_scale
= to
->to_requested_s_scale
;
1103 sc
->sc_flags
|= SCF_WINSCALE
;
1106 if (tcp_do_sack
&& (to
->to_flags
& TOF_SACK_PERMITTED
))
1107 sc
->sc_flags
|= SCF_SACK_PERMITTED
;
1108 if (tp
->t_flags
& TF_NOOPT
)
1109 sc
->sc_flags
= SCF_NOOPT
;
1110 #ifdef TCP_SIGNATURE
1112 * If listening socket requested TCP digests, and received SYN
1113 * contains the option, flag this in the syncache so that
1114 * syncache_respond() will do the right thing with the SYN+ACK.
1115 * XXX Currently we always record the option by default and will
1116 * attempt to use it in syncache_respond().
1118 if (to
->to_flags
& TOF_SIGNATURE
)
1119 sc
->sc_flags
= SCF_SIGNATURE
;
1120 #endif /* TCP_SIGNATURE */
1121 sc
->sc_sndwnd
= th
->th_win
;
1123 if (syncache_respond(sc
, m
) == 0) {
1124 syncache_insert(sc
, sch
);
1125 tcpstat
.tcps_sndacks
++;
1126 tcpstat
.tcps_sndtotal
++;
1129 tcpstat
.tcps_sc_dropped
++;
1135 syncache_respond(struct syncache
*sc
, struct mbuf
*m
)
1139 u_int16_t tlen
, hlen
, mssopt
;
1140 struct ip
*ip
= NULL
;
1143 struct ip6_hdr
*ip6
= NULL
;
1145 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
1147 const boolean_t isipv6
= FALSE
;
1151 rt
= tcp_rtlookup6(&sc
->sc_inc
);
1153 mssopt
= rt
->rt_ifp
->if_mtu
-
1154 (sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
));
1156 mssopt
= tcp_v6mssdflt
;
1157 hlen
= sizeof(struct ip6_hdr
);
1159 rt
= tcp_rtlookup(&sc
->sc_inc
);
1161 mssopt
= rt
->rt_ifp
->if_mtu
-
1162 (sizeof(struct ip
) + sizeof(struct tcphdr
));
1164 mssopt
= tcp_mssdflt
;
1165 hlen
= sizeof(struct ip
);
1168 /* Compute the size of the TCP options. */
1169 if (sc
->sc_flags
& SCF_NOOPT
) {
1172 optlen
= TCPOLEN_MAXSEG
+
1173 ((sc
->sc_flags
& SCF_WINSCALE
) ? 4 : 0) +
1174 ((sc
->sc_flags
& SCF_TIMESTAMP
) ? TCPOLEN_TSTAMP_APPA
: 0) +
1175 ((sc
->sc_flags
& SCF_SACK_PERMITTED
) ?
1176 TCPOLEN_SACK_PERMITTED_ALIGNED
: 0);
1177 #ifdef TCP_SIGNATURE
1178 optlen
+= ((sc
->sc_flags
& SCF_SIGNATURE
) ?
1179 (TCPOLEN_SIGNATURE
+ 2) : 0);
1180 #endif /* TCP_SIGNATURE */
1182 tlen
= hlen
+ sizeof(struct tcphdr
) + optlen
;
1186 * assume that the entire packet will fit in a header mbuf
1188 KASSERT(max_linkhdr
+ tlen
<= MHLEN
, ("syncache: mbuf too small"));
1191 * XXX shouldn't this reuse the mbuf if possible ?
1192 * Create the IP+TCP header from scratch.
1197 m
= m_gethdr(M_NOWAIT
, MT_HEADER
);
1200 m
->m_data
+= max_linkhdr
;
1202 m
->m_pkthdr
.len
= tlen
;
1203 m
->m_pkthdr
.rcvif
= NULL
;
1204 if (tcp_prio_synack
)
1205 m
->m_flags
|= M_PRIO
;
1208 ip6
= mtod(m
, struct ip6_hdr
*);
1209 ip6
->ip6_vfc
= IPV6_VERSION
;
1210 ip6
->ip6_nxt
= IPPROTO_TCP
;
1211 ip6
->ip6_src
= sc
->sc_inc
.inc6_laddr
;
1212 ip6
->ip6_dst
= sc
->sc_inc
.inc6_faddr
;
1213 ip6
->ip6_plen
= htons(tlen
- hlen
);
1214 /* ip6_hlim is set after checksum */
1215 /* ip6_flow = ??? */
1217 th
= (struct tcphdr
*)(ip6
+ 1);
1219 ip
= mtod(m
, struct ip
*);
1220 ip
->ip_v
= IPVERSION
;
1221 ip
->ip_hl
= sizeof(struct ip
) >> 2;
1226 ip
->ip_p
= IPPROTO_TCP
;
1227 ip
->ip_src
= sc
->sc_inc
.inc_laddr
;
1228 ip
->ip_dst
= sc
->sc_inc
.inc_faddr
;
1229 ip
->ip_ttl
= sc
->sc_tp
->t_inpcb
->inp_ip_ttl
; /* XXX */
1230 ip
->ip_tos
= sc
->sc_tp
->t_inpcb
->inp_ip_tos
; /* XXX */
1233 * See if we should do MTU discovery. Route lookups are
1234 * expensive, so we will only unset the DF bit if:
1236 * 1) path_mtu_discovery is disabled
1237 * 2) the SCF_UNREACH flag has been set
1239 if (path_mtu_discovery
1240 && ((sc
->sc_flags
& SCF_UNREACH
) == 0)) {
1241 ip
->ip_off
|= IP_DF
;
1244 th
= (struct tcphdr
*)(ip
+ 1);
1246 th
->th_sport
= sc
->sc_inc
.inc_lport
;
1247 th
->th_dport
= sc
->sc_inc
.inc_fport
;
1249 th
->th_seq
= htonl(sc
->sc_iss
);
1250 th
->th_ack
= htonl(sc
->sc_irs
+ 1);
1251 th
->th_off
= (sizeof(struct tcphdr
) + optlen
) >> 2;
1253 th
->th_flags
= TH_SYN
| TH_ACK
;
1254 th
->th_win
= htons(sc
->sc_wnd
);
1257 /* Tack on the TCP options. */
1260 optp
= (u_int8_t
*)(th
+ 1);
1261 *optp
++ = TCPOPT_MAXSEG
;
1262 *optp
++ = TCPOLEN_MAXSEG
;
1263 *optp
++ = (mssopt
>> 8) & 0xff;
1264 *optp
++ = mssopt
& 0xff;
1266 if (sc
->sc_flags
& SCF_WINSCALE
) {
1267 *((u_int32_t
*)optp
) = htonl(TCPOPT_NOP
<< 24 |
1268 TCPOPT_WINDOW
<< 16 | TCPOLEN_WINDOW
<< 8 |
1269 sc
->sc_request_r_scale
);
1273 if (sc
->sc_flags
& SCF_TIMESTAMP
) {
1274 u_int32_t
*lp
= (u_int32_t
*)(optp
);
1276 /* Form timestamp option as shown in appendix A of RFC 1323. */
1277 *lp
++ = htonl(TCPOPT_TSTAMP_HDR
);
1278 *lp
++ = htonl(ticks
);
1279 *lp
= htonl(sc
->sc_tsrecent
);
1280 optp
+= TCPOLEN_TSTAMP_APPA
;
1283 #ifdef TCP_SIGNATURE
1285 * Handle TCP-MD5 passive opener response.
1287 if (sc
->sc_flags
& SCF_SIGNATURE
) {
1288 u_int8_t
*bp
= optp
;
1291 *bp
++ = TCPOPT_SIGNATURE
;
1292 *bp
++ = TCPOLEN_SIGNATURE
;
1293 for (i
= 0; i
< TCP_SIGLEN
; i
++)
1295 tcpsignature_compute(m
, 0, optlen
,
1296 optp
+ 2, IPSEC_DIR_OUTBOUND
);
1299 optp
+= TCPOLEN_SIGNATURE
+ 2;
1301 #endif /* TCP_SIGNATURE */
1303 if (sc
->sc_flags
& SCF_SACK_PERMITTED
) {
1304 *((u_int32_t
*)optp
) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED
);
1305 optp
+= TCPOLEN_SACK_PERMITTED_ALIGNED
;
1310 struct route_in6
*ro6
= &sc
->sc_route6
;
1313 th
->th_sum
= in6_cksum(m
, IPPROTO_TCP
, hlen
, tlen
- hlen
);
1314 ip6
->ip6_hlim
= in6_selecthlim(NULL
,
1315 ro6
->ro_rt
? ro6
->ro_rt
->rt_ifp
: NULL
);
1316 error
= ip6_output(m
, NULL
, ro6
, 0, NULL
, NULL
,
1317 sc
->sc_tp
->t_inpcb
);
1319 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
1320 htons(tlen
- hlen
+ IPPROTO_TCP
));
1321 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
1322 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
1323 m
->m_pkthdr
.csum_thlen
= sizeof(struct tcphdr
) + optlen
;
1324 KASSERT(sc
->sc_flags
& SCF_HASH
, ("syncache has no hash"));
1325 m_sethash(m
, sc
->sc_hashval
);
1326 error
= ip_output(m
, sc
->sc_ipopts
, &sc
->sc_route
,
1327 IP_DEBUGROUTE
, NULL
, sc
->sc_tp
->t_inpcb
);
1335 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1337 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1339 * (A): peer mss index
1343 * The values below are chosen to minimize the size of the tcp_secret
1344 * table, as well as providing roughly a 16 second lifetime for the cookie.
1347 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1348 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1350 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1351 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1352 #define SYNCOOKIE_TIMEOUT \
1353 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1354 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1357 u_int32_t ts_secbits
[4];
1359 } tcp_secret
[SYNCOOKIE_NSECRETS
];
1361 static int tcp_msstab
[] = { 0, 536, 1460, 8960 };
1363 static MD5_CTX syn_ctx
;
1365 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1368 u_int32_t laddr
, faddr
;
1369 u_int32_t secbits
[4];
1370 u_int16_t lport
, fport
;
1374 CTASSERT(sizeof(struct md5_add
) == 28);
1378 * Consider the problem of a recreated (and retransmitted) cookie. If the
1379 * original SYN was accepted, the connection is established. The second
1380 * SYN is inflight, and if it arrives with an ISN that falls within the
1381 * receive window, the connection is killed.
1383 * However, since cookies have other problems, this may not be worth
1388 syncookie_generate(struct syncache
*sc
)
1390 u_int32_t md5_buffer
[4];
1395 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
1397 const boolean_t isipv6
= FALSE
;
1400 idx
= ((ticks
<< SYNCOOKIE_TIMESHIFT
) / hz
) & SYNCOOKIE_WNDMASK
;
1401 if (tcp_secret
[idx
].ts_expire
< ticks
) {
1402 for (i
= 0; i
< 4; i
++)
1403 tcp_secret
[idx
].ts_secbits
[i
] = karc4random();
1404 tcp_secret
[idx
].ts_expire
= ticks
+ SYNCOOKIE_TIMEOUT
;
1406 for (data
= NELEM(tcp_msstab
) - 1; data
> 0; data
--)
1407 if (tcp_msstab
[data
] <= sc
->sc_peer_mss
)
1409 data
= (data
<< SYNCOOKIE_WNDBITS
) | idx
;
1410 data
^= sc
->sc_irs
; /* peer's iss */
1413 MD5Add(sc
->sc_inc
.inc6_laddr
);
1414 MD5Add(sc
->sc_inc
.inc6_faddr
);
1418 add
.laddr
= sc
->sc_inc
.inc_laddr
.s_addr
;
1419 add
.faddr
= sc
->sc_inc
.inc_faddr
.s_addr
;
1421 add
.lport
= sc
->sc_inc
.inc_lport
;
1422 add
.fport
= sc
->sc_inc
.inc_fport
;
1423 add
.secbits
[0] = tcp_secret
[idx
].ts_secbits
[0];
1424 add
.secbits
[1] = tcp_secret
[idx
].ts_secbits
[1];
1425 add
.secbits
[2] = tcp_secret
[idx
].ts_secbits
[2];
1426 add
.secbits
[3] = tcp_secret
[idx
].ts_secbits
[3];
1428 MD5Final((u_char
*)&md5_buffer
, &syn_ctx
);
1429 data
^= (md5_buffer
[0] & ~SYNCOOKIE_WNDMASK
);
1433 static struct syncache
*
1434 syncookie_lookup(struct in_conninfo
*inc
, struct tcphdr
*th
, struct socket
*so
)
1436 u_int32_t md5_buffer
[4];
1437 struct syncache
*sc
;
1442 data
= (th
->th_ack
- 1) ^ (th
->th_seq
- 1); /* remove ISS */
1443 idx
= data
& SYNCOOKIE_WNDMASK
;
1444 if (tcp_secret
[idx
].ts_expire
< ticks
||
1445 sototcpcb(so
)->ts_recent
+ SYNCOOKIE_TIMEOUT
< ticks
)
1449 if (inc
->inc_isipv6
) {
1450 MD5Add(inc
->inc6_laddr
);
1451 MD5Add(inc
->inc6_faddr
);
1457 add
.laddr
= inc
->inc_laddr
.s_addr
;
1458 add
.faddr
= inc
->inc_faddr
.s_addr
;
1460 add
.lport
= inc
->inc_lport
;
1461 add
.fport
= inc
->inc_fport
;
1462 add
.secbits
[0] = tcp_secret
[idx
].ts_secbits
[0];
1463 add
.secbits
[1] = tcp_secret
[idx
].ts_secbits
[1];
1464 add
.secbits
[2] = tcp_secret
[idx
].ts_secbits
[2];
1465 add
.secbits
[3] = tcp_secret
[idx
].ts_secbits
[3];
1467 MD5Final((u_char
*)&md5_buffer
, &syn_ctx
);
1468 data
^= md5_buffer
[0];
1469 if (data
& ~SYNCOOKIE_DATAMASK
)
1471 data
= data
>> SYNCOOKIE_WNDBITS
;
1474 * Fill in the syncache values.
1475 * XXX duplicate code from syncache_add
1477 sc
= kmalloc(sizeof(struct syncache
), M_SYNCACHE
, M_WAITOK
|M_ZERO
);
1478 sc
->sc_ipopts
= NULL
;
1479 sc
->sc_inc
.inc_fport
= inc
->inc_fport
;
1480 sc
->sc_inc
.inc_lport
= inc
->inc_lport
;
1482 sc
->sc_inc
.inc_isipv6
= inc
->inc_isipv6
;
1483 if (inc
->inc_isipv6
) {
1484 sc
->sc_inc
.inc6_faddr
= inc
->inc6_faddr
;
1485 sc
->sc_inc
.inc6_laddr
= inc
->inc6_laddr
;
1486 sc
->sc_route6
.ro_rt
= NULL
;
1490 sc
->sc_inc
.inc_faddr
= inc
->inc_faddr
;
1491 sc
->sc_inc
.inc_laddr
= inc
->inc_laddr
;
1492 sc
->sc_route
.ro_rt
= NULL
;
1494 sc
->sc_irs
= th
->th_seq
- 1;
1495 sc
->sc_iss
= th
->th_ack
- 1;
1496 wnd
= ssb_space(&so
->so_rcv
);
1498 wnd
= imin(wnd
, TCP_MAXWIN
);
1502 sc
->sc_peer_mss
= tcp_msstab
[data
];