2 * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2002, 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
63 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
70 #include "opt_tcp_input.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
78 #include <sys/proc.h> /* for proc0 declaration */
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/syslog.h>
83 #include <sys/in_cksum.h>
85 #include <sys/socketvar2.h>
87 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
88 #include <machine/stdarg.h>
91 #include <net/route.h>
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
97 #include <netinet/in_var.h>
98 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/ip6.h>
102 #include <netinet/icmp6.h>
103 #include <netinet6/nd6.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/in6_pcb.h>
106 #include <netinet/tcp.h>
107 #include <netinet/tcp_fsm.h>
108 #include <netinet/tcp_seq.h>
109 #include <netinet/tcp_timer.h>
110 #include <netinet/tcp_timer2.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/tcp6_var.h>
113 #include <netinet/tcpip.h>
116 #include <netinet/tcp_debug.h>
118 u_char tcp_saveipgen
[40]; /* the size must be of max ip header, now IPv6 */
119 struct tcphdr tcp_savetcp
;
123 #include <netproto/ipsec/ipsec.h>
124 #include <netproto/ipsec/ipsec6.h>
128 #include <netinet6/ipsec.h>
129 #include <netinet6/ipsec6.h>
130 #include <netproto/key/key.h>
134 * Limit burst of new packets during SACK based fast recovery
135 * or extended limited transmit.
137 #define TCP_SACK_MAXBURST 4
139 MALLOC_DEFINE(M_TSEGQ
, "tseg_qent", "TCP segment queue entry");
141 static int log_in_vain
= 0;
142 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
,
143 &log_in_vain
, 0, "Log all incoming TCP connections");
145 static int blackhole
= 0;
146 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, blackhole
, CTLFLAG_RW
,
147 &blackhole
, 0, "Do not send RST when dropping refused connections");
149 int tcp_delack_enabled
= 1;
150 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, delayed_ack
, CTLFLAG_RW
,
151 &tcp_delack_enabled
, 0,
152 "Delay ACK to try and piggyback it onto a data packet");
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin
= 0;
156 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, drop_synfin
, CTLFLAG_RW
,
157 &drop_synfin
, 0, "Drop TCP packets with SYN+FIN set");
160 static int tcp_do_limitedtransmit
= 1;
161 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, limitedtransmit
, CTLFLAG_RW
,
162 &tcp_do_limitedtransmit
, 0, "Enable RFC 3042 (Limited Transmit)");
164 static int tcp_do_early_retransmit
= 1;
165 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, earlyretransmit
, CTLFLAG_RW
,
166 &tcp_do_early_retransmit
, 0, "Early retransmit");
168 int tcp_aggregate_acks
= 1;
169 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, aggregate_acks
, CTLFLAG_RW
,
170 &tcp_aggregate_acks
, 0, "Aggregate built-up acks into one ack");
172 static int tcp_do_eifel_detect
= 1;
173 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, eifel
, CTLFLAG_RW
,
174 &tcp_do_eifel_detect
, 0, "Eifel detection algorithm (RFC 3522)");
176 static int tcp_do_abc
= 1;
177 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, abc
, CTLFLAG_RW
,
179 "TCP Appropriate Byte Counting (RFC 3465)");
182 * The following value actually takes range [25ms, 250ms],
183 * given that most modern systems use 1ms ~ 10ms as the unit
184 * of timestamp option.
186 static u_int tcp_paws_tolerance
= 25;
187 SYSCTL_UINT(_net_inet_tcp
, OID_AUTO
, paws_tolerance
, CTLFLAG_RW
,
188 &tcp_paws_tolerance
, 0, "RFC1323 PAWS tolerance");
191 * Define as tunable for easy testing with SACK on and off.
192 * Warning: do not change setting in the middle of an existing active TCP flow,
193 * else strange things might happen to that flow.
196 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack
, CTLFLAG_RW
,
197 &tcp_do_sack
, 0, "Enable SACK Algorithms");
199 int tcp_do_smartsack
= 1;
200 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, smartsack
, CTLFLAG_RW
,
201 &tcp_do_smartsack
, 0, "Enable Smart SACK Algorithms");
203 int tcp_do_rescuesack
= 1;
204 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, rescuesack
, CTLFLAG_RW
,
205 &tcp_do_rescuesack
, 0, "Rescue retransmission for SACK");
207 int tcp_aggressive_rescuesack
= 0;
208 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, rescuesack_agg
, CTLFLAG_RW
,
209 &tcp_aggressive_rescuesack
, 0, "Aggressive rescue retransmission for SACK");
211 static int tcp_force_sackrxt
= 1;
212 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, force_sackrxt
, CTLFLAG_RW
,
213 &tcp_force_sackrxt
, 0, "Allowed forced SACK retransmit burst");
215 int tcp_do_rfc6675
= 1;
216 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, rfc6675
, CTLFLAG_RW
,
217 &tcp_do_rfc6675
, 0, "Enable RFC6675");
219 int tcp_rfc6675_rxt
= 0;
220 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, rfc6675_rxt
, CTLFLAG_RW
,
221 &tcp_rfc6675_rxt
, 0, "Enable RFC6675 retransmit");
223 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, reass
, CTLFLAG_RW
, 0,
224 "TCP Segment Reassembly Queue");
226 int tcp_reass_maxseg
= 0;
227 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, maxsegments
, CTLFLAG_RD
,
228 &tcp_reass_maxseg
, 0,
229 "Global maximum number of TCP Segments in Reassembly Queue");
231 int tcp_reass_qsize
= 0;
232 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, cursegments
, CTLFLAG_RD
,
234 "Global number of TCP Segments currently in Reassembly Queue");
236 static int tcp_reass_overflows
= 0;
237 SYSCTL_INT(_net_inet_tcp_reass
, OID_AUTO
, overflows
, CTLFLAG_RD
,
238 &tcp_reass_overflows
, 0,
239 "Global number of TCP Segment Reassembly Queue Overflows");
241 int tcp_do_autorcvbuf
= 1;
242 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, recvbuf_auto
, CTLFLAG_RW
,
243 &tcp_do_autorcvbuf
, 0, "Enable automatic receive buffer sizing");
245 int tcp_autorcvbuf_inc
= 16*1024;
246 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, recvbuf_inc
, CTLFLAG_RW
,
247 &tcp_autorcvbuf_inc
, 0,
248 "Incrementor step size of automatic receive buffer");
250 int tcp_autorcvbuf_max
= 2*1024*1024;
251 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, recvbuf_max
, CTLFLAG_RW
,
252 &tcp_autorcvbuf_max
, 0, "Max size of automatic receive buffer");
254 int tcp_sosend_agglim
= 2;
255 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sosend_agglim
, CTLFLAG_RW
,
256 &tcp_sosend_agglim
, 0, "TCP sosend mbuf aggregation limit");
258 int tcp_sosend_async
= 1;
259 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sosend_async
, CTLFLAG_RW
,
260 &tcp_sosend_async
, 0, "TCP asynchronized pru_send");
262 int tcp_sosend_jcluster
= 1;
263 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sosend_jcluster
, CTLFLAG_RW
,
264 &tcp_sosend_jcluster
, 0, "TCP output uses jcluster");
266 static int tcp_ignore_redun_dsack
= 1;
267 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, ignore_redun_dsack
, CTLFLAG_RW
,
268 &tcp_ignore_redun_dsack
, 0, "Ignore redundant DSACK");
270 static int tcp_reuseport_ext
= 1;
271 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, reuseport_ext
, CTLFLAG_RW
,
272 &tcp_reuseport_ext
, 0, "SO_REUSEPORT extension");
274 static void tcp_dooptions(struct tcpopt
*, u_char
*, int, boolean_t
,
276 static void tcp_pulloutofband(struct socket
*,
277 struct tcphdr
*, struct mbuf
*, int);
278 static int tcp_reass(struct tcpcb
*, struct tcphdr
*, int *,
280 static void tcp_xmit_timer(struct tcpcb
*, int, tcp_seq
);
281 static void tcp_newreno_partial_ack(struct tcpcb
*, struct tcphdr
*, int);
282 static void tcp_sack_rexmt(struct tcpcb
*, boolean_t
);
283 static boolean_t
tcp_sack_limitedxmit(struct tcpcb
*);
284 static int tcp_rmx_msl(const struct tcpcb
*);
285 static void tcp_established(struct tcpcb
*);
286 static boolean_t
tcp_recv_dupack(struct tcpcb
*, tcp_seq
, u_int
);
288 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
290 #define ND6_HINT(tp) \
292 if ((tp) && (tp)->t_inpcb && \
293 INP_ISIPV6((tp)->t_inpcb) && \
294 (tp)->t_inpcb->in6p_route.ro_rt) \
295 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
302 * Indicate whether this ack should be delayed. We can delay the ack if
303 * - delayed acks are enabled and
304 * - there is no delayed ack timer in progress and
305 * - our last ack wasn't a 0-sized window. We never want to delay
306 * the ack that opens up a 0-sized window.
308 #define DELAY_ACK(tp) \
309 (tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
310 !(tp->t_flags & TF_RXWIN0SENT))
312 #define acceptable_window_update(tp, th, tiwin) \
313 (SEQ_LT(tp->snd_wl1, th->th_seq) || \
314 (tp->snd_wl1 == th->th_seq && \
315 (SEQ_LT(tp->snd_wl2, th->th_ack) || \
316 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
318 #define iceildiv(n, d) (((n)+(d)-1) / (d))
319 #define need_early_retransmit(tp, ownd) \
320 (tcp_do_early_retransmit && \
321 (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) && \
322 ownd < ((tp->t_rxtthresh + 1) * tp->t_maxseg) && \
323 tp->t_dupacks + 1 >= iceildiv(ownd, tp->t_maxseg) && \
324 (!TCP_DO_SACK(tp) || ownd <= tp->t_maxseg || \
325 tcp_sack_has_sacked(&tp->scb, ownd - tp->t_maxseg)))
328 * Returns TRUE, if this segment can be merged with the last
329 * pending segment in the reassemble queue and this segment
330 * does not overlap with the pending segment immediately
331 * preceeding the last pending segment.
333 static __inline boolean_t
334 tcp_paws_canreasslast(const struct tcpcb
*tp
, const struct tcphdr
*th
, int tlen
)
336 const struct tseg_qent
*last
, *prev
;
338 last
= TAILQ_LAST(&tp
->t_segq
, tsegqe_head
);
342 /* This segment comes immediately after the last pending segment */
343 if (last
->tqe_th
->th_seq
+ last
->tqe_len
== th
->th_seq
) {
344 if (last
->tqe_th
->th_flags
& TH_FIN
) {
345 /* No segments should follow segment w/ FIN */
351 if (th
->th_seq
+ tlen
!= last
->tqe_th
->th_seq
)
353 /* This segment comes immediately before the last pending segment */
355 prev
= TAILQ_PREV(last
, tsegqe_head
, tqe_q
);
358 * No pending preceeding segment, we assume this segment
359 * could be reassembled.
364 /* This segment does not overlap with the preceeding segment */
365 if (SEQ_GEQ(th
->th_seq
, prev
->tqe_th
->th_seq
+ prev
->tqe_len
))
372 tcp_ncr_update_rxtthresh(struct tcpcb
*tp
)
374 int old_rxtthresh
= tp
->t_rxtthresh
;
375 uint32_t ownd
= tp
->snd_max
- tp
->snd_una
;
377 tp
->t_rxtthresh
= min(tcp_ncr_rxtthresh_max
,
378 max(tcprexmtthresh
, ((ownd
/ tp
->t_maxseg
) >> 1)));
379 if (tp
->t_rxtthresh
!= old_rxtthresh
) {
380 tcp_sack_update_lostseq(&tp
->scb
, tp
->snd_una
,
381 tp
->t_maxseg
, tp
->t_rxtthresh
);
386 tcp_reass(struct tcpcb
*tp
, struct tcphdr
*th
, int *tlenp
, struct mbuf
*m
)
389 struct tseg_qent
*p
= NULL
;
390 struct tseg_qent
*te
;
391 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
395 * Call with th == NULL after become established to
396 * force pre-ESTABLISHED data up to user socket.
402 * Limit the number of segments in the reassembly queue to prevent
403 * holding on to too many segments (and thus running out of mbufs).
404 * Make sure to let the missing segment through which caused this
405 * queue. Always keep one global queue entry spare to be able to
406 * process the missing segment.
408 if (th
->th_seq
!= tp
->rcv_nxt
&&
409 tcp_reass_qsize
+ 1 >= tcp_reass_maxseg
) {
410 tcp_reass_overflows
++;
411 tcpstat
.tcps_rcvmemdrop
++;
413 /* no SACK block to report */
414 tp
->reportblk
.rblk_start
= tp
->reportblk
.rblk_end
;
418 /* Allocate a new queue entry. */
419 te
= kmalloc(sizeof(struct tseg_qent
), M_TSEGQ
, M_INTWAIT
| M_NULLOK
);
421 tcpstat
.tcps_rcvmemdrop
++;
423 /* no SACK block to report */
424 tp
->reportblk
.rblk_start
= tp
->reportblk
.rblk_end
;
427 atomic_add_int(&tcp_reass_qsize
, 1);
429 if (th
->th_flags
& TH_FIN
)
430 tp
->t_flags
|= TF_QUEDFIN
;
433 * Find a segment which begins after this one does.
435 TAILQ_FOREACH(q
, &tp
->t_segq
, tqe_q
) {
436 if (SEQ_GT(q
->tqe_th
->th_seq
, th
->th_seq
))
442 * If there is a preceding segment, it may provide some of
443 * our data already. If so, drop the data from the incoming
444 * segment. If it provides all of our data, drop us.
449 /* conversion to int (in i) handles seq wraparound */
450 i
= p
->tqe_th
->th_seq
+ p
->tqe_len
- th
->th_seq
;
451 if (i
> 0) { /* overlaps preceding segment */
453 (TSACK_F_DUPSEG
| TSACK_F_ENCLOSESEG
);
454 /* enclosing block starts w/ preceding segment */
455 tp
->encloseblk
.rblk_start
= p
->tqe_th
->th_seq
;
457 if (th
->th_flags
& TH_FIN
)
458 p
->tqe_th
->th_flags
|= TH_FIN
;
460 /* preceding encloses incoming segment */
461 tp
->encloseblk
.rblk_end
= TCP_SACK_BLKEND(
462 p
->tqe_th
->th_seq
+ p
->tqe_len
,
463 p
->tqe_th
->th_flags
);
464 tcpstat
.tcps_rcvduppack
++;
465 tcpstat
.tcps_rcvdupbyte
+= *tlenp
;
468 atomic_add_int(&tcp_reass_qsize
, -1);
470 * Try to present any queued data
471 * at the left window edge to the user.
472 * This is needed after the 3-WHS
475 goto present
; /* ??? */
480 /* incoming segment end is enclosing block end */
481 tp
->encloseblk
.rblk_end
= TCP_SACK_BLKEND(
482 th
->th_seq
+ *tlenp
, th
->th_flags
);
483 /* trim end of reported D-SACK block */
484 tp
->reportblk
.rblk_end
= th
->th_seq
;
487 tcpstat
.tcps_rcvoopack
++;
488 tcpstat
.tcps_rcvoobyte
+= *tlenp
;
491 * While we overlap succeeding segments trim them or,
492 * if they are completely covered, dequeue them.
495 tcp_seq_diff_t i
= (th
->th_seq
+ *tlenp
) - q
->tqe_th
->th_seq
;
496 tcp_seq qend
= q
->tqe_th
->th_seq
+ q
->tqe_len
;
497 tcp_seq qend_sack
= TCP_SACK_BLKEND(qend
, q
->tqe_th
->th_flags
);
498 struct tseg_qent
*nq
;
502 if (!(tp
->sack_flags
& TSACK_F_DUPSEG
)) {
503 /* first time through */
504 tp
->sack_flags
|= (TSACK_F_DUPSEG
| TSACK_F_ENCLOSESEG
);
505 tp
->encloseblk
= tp
->reportblk
;
506 /* report trailing duplicate D-SACK segment */
507 tp
->reportblk
.rblk_start
= q
->tqe_th
->th_seq
;
509 if ((tp
->sack_flags
& TSACK_F_ENCLOSESEG
) &&
510 SEQ_GT(qend_sack
, tp
->encloseblk
.rblk_end
)) {
511 /* extend enclosing block if one exists */
512 tp
->encloseblk
.rblk_end
= qend_sack
;
514 if (i
< q
->tqe_len
) {
515 q
->tqe_th
->th_seq
+= i
;
521 if (q
->tqe_th
->th_flags
& TH_FIN
)
522 th
->th_flags
|= TH_FIN
;
524 nq
= TAILQ_NEXT(q
, tqe_q
);
525 TAILQ_REMOVE(&tp
->t_segq
, q
, tqe_q
);
528 atomic_add_int(&tcp_reass_qsize
, -1);
532 /* Insert the new segment queue entry into place. */
535 te
->tqe_len
= *tlenp
;
537 /* check if can coalesce with following segment */
538 if (q
!= NULL
&& (th
->th_seq
+ *tlenp
== q
->tqe_th
->th_seq
)) {
541 te
->tqe_len
+= q
->tqe_len
;
542 if (q
->tqe_th
->th_flags
& TH_FIN
)
543 te
->tqe_th
->th_flags
|= TH_FIN
;
544 tend_sack
= TCP_SACK_BLKEND(te
->tqe_th
->th_seq
+ te
->tqe_len
,
545 te
->tqe_th
->th_flags
);
547 m_cat(te
->tqe_m
, q
->tqe_m
);
548 tp
->encloseblk
.rblk_end
= tend_sack
;
550 * When not reporting a duplicate segment, use
551 * the larger enclosing block as the SACK block.
553 if (!(tp
->sack_flags
& TSACK_F_DUPSEG
))
554 tp
->reportblk
.rblk_end
= tend_sack
;
555 TAILQ_REMOVE(&tp
->t_segq
, q
, tqe_q
);
557 atomic_add_int(&tcp_reass_qsize
, -1);
561 TAILQ_INSERT_HEAD(&tp
->t_segq
, te
, tqe_q
);
563 /* check if can coalesce with preceding segment */
564 if (p
->tqe_th
->th_seq
+ p
->tqe_len
== th
->th_seq
) {
565 if (te
->tqe_th
->th_flags
& TH_FIN
)
566 p
->tqe_th
->th_flags
|= TH_FIN
;
567 p
->tqe_len
+= te
->tqe_len
;
568 m_cat(p
->tqe_m
, te
->tqe_m
);
569 tp
->encloseblk
.rblk_start
= p
->tqe_th
->th_seq
;
571 * When not reporting a duplicate segment, use
572 * the larger enclosing block as the SACK block.
574 if (!(tp
->sack_flags
& TSACK_F_DUPSEG
))
575 tp
->reportblk
.rblk_start
= p
->tqe_th
->th_seq
;
577 atomic_add_int(&tcp_reass_qsize
, -1);
579 TAILQ_INSERT_AFTER(&tp
->t_segq
, p
, te
, tqe_q
);
585 * Present data to user, advancing rcv_nxt through
586 * completed sequence space.
588 if (!TCPS_HAVEESTABLISHED(tp
->t_state
))
590 q
= TAILQ_FIRST(&tp
->t_segq
);
591 if (q
== NULL
|| q
->tqe_th
->th_seq
!= tp
->rcv_nxt
)
593 tp
->rcv_nxt
+= q
->tqe_len
;
594 if (!(tp
->sack_flags
& TSACK_F_DUPSEG
)) {
595 /* no SACK block to report since ACK advanced */
596 tp
->reportblk
.rblk_start
= tp
->reportblk
.rblk_end
;
598 /* no enclosing block to report since ACK advanced */
599 tp
->sack_flags
&= ~TSACK_F_ENCLOSESEG
;
600 flags
= q
->tqe_th
->th_flags
& TH_FIN
;
601 TAILQ_REMOVE(&tp
->t_segq
, q
, tqe_q
);
602 KASSERT(TAILQ_EMPTY(&tp
->t_segq
) ||
603 TAILQ_FIRST(&tp
->t_segq
)->tqe_th
->th_seq
!= tp
->rcv_nxt
,
604 ("segment not coalesced"));
605 if (so
->so_state
& SS_CANTRCVMORE
) {
608 lwkt_gettoken(&so
->so_rcv
.ssb_token
);
609 ssb_appendstream(&so
->so_rcv
, q
->tqe_m
);
610 lwkt_reltoken(&so
->so_rcv
.ssb_token
);
613 atomic_add_int(&tcp_reass_qsize
, -1);
620 * TCP input routine, follows pages 65-76 of the
621 * protocol specification dated September, 1981 very closely.
625 tcp6_input(struct mbuf
**mp
, int *offp
, int proto
)
627 struct mbuf
*m
= *mp
;
628 struct in6_ifaddr
*ia6
;
630 IP6_EXTHDR_CHECK(m
, *offp
, sizeof(struct tcphdr
), IPPROTO_DONE
);
633 * draft-itojun-ipv6-tcp-to-anycast
634 * better place to put this in?
636 ia6
= ip6_getdstifaddr(m
);
637 if (ia6
&& (ia6
->ia6_flags
& IN6_IFF_ANYCAST
)) {
638 icmp6_error(m
, ICMP6_DST_UNREACH
, ICMP6_DST_UNREACH_ADDR
,
639 offsetof(struct ip6_hdr
, ip6_dst
));
640 return (IPPROTO_DONE
);
643 tcp_input(mp
, offp
, proto
);
644 return (IPPROTO_DONE
);
649 tcp_input(struct mbuf
**mp
, int *offp
, int proto
)
653 struct ip
*ip
= NULL
;
655 struct inpcb
*inp
= NULL
;
661 struct tcpcb
*tp
= NULL
;
663 struct socket
*so
= NULL
;
665 boolean_t ourfinisacked
, needoutput
= FALSE
, delayed_dupack
= FALSE
;
666 tcp_seq th_dupack
= 0; /* XXX gcc warning */
667 u_int to_flags
= 0; /* XXX gcc warning */
670 struct tcpopt to
; /* options in this segment */
671 struct sockaddr_in
*next_hop
= NULL
;
672 int rstreason
; /* For badport_bandlim accounting purposes */
674 struct ip6_hdr
*ip6
= NULL
;
679 const boolean_t isipv6
= FALSE
;
689 tcpstat
.tcps_rcvtotal
++;
691 if (m
->m_pkthdr
.fw_flags
& IPFORWARD_MBUF_TAGGED
) {
694 mtag
= m_tag_find(m
, PACKET_TAG_IPFORWARD
, NULL
);
695 KKASSERT(mtag
!= NULL
);
696 next_hop
= m_tag_data(mtag
);
700 isipv6
= (mtod(m
, struct ip
*)->ip_v
== 6) ? TRUE
: FALSE
;
704 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
705 ip6
= mtod(m
, struct ip6_hdr
*);
706 tlen
= (sizeof *ip6
) + ntohs(ip6
->ip6_plen
) - off0
;
707 if (in6_cksum(m
, IPPROTO_TCP
, off0
, tlen
)) {
708 tcpstat
.tcps_rcvbadsum
++;
711 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
714 * Be proactive about unspecified IPv6 address in source.
715 * As we use all-zero to indicate unbounded/unconnected pcb,
716 * unspecified IPv6 address can be used to confuse us.
718 * Note that packets with unspecified IPv6 destination is
719 * already dropped in ip6_input.
721 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
)) {
727 * Get IP and TCP header together in first mbuf.
728 * Note: IP leaves IP header in first mbuf.
730 if (off0
> sizeof(struct ip
)) {
732 off0
= sizeof(struct ip
);
734 /* already checked and pulled up in ip_demux() */
735 KASSERT(m
->m_len
>= sizeof(struct tcpiphdr
),
736 ("TCP header not in one mbuf: m->m_len %d", m
->m_len
));
737 ip
= mtod(m
, struct ip
*);
738 ipov
= (struct ipovly
*)ip
;
739 th
= (struct tcphdr
*)((caddr_t
)ip
+ off0
);
742 if (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
) {
743 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
)
744 th
->th_sum
= m
->m_pkthdr
.csum_data
;
746 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
,
748 htonl(m
->m_pkthdr
.csum_data
+
751 th
->th_sum
^= 0xffff;
754 * Checksum extended TCP header and data.
756 len
= sizeof(struct ip
) + tlen
;
757 bzero(ipov
->ih_x1
, sizeof ipov
->ih_x1
);
758 ipov
->ih_len
= (u_short
)tlen
;
759 ipov
->ih_len
= htons(ipov
->ih_len
);
760 th
->th_sum
= in_cksum(m
, len
);
763 tcpstat
.tcps_rcvbadsum
++;
767 /* Re-initialization for later version check */
768 ip
->ip_v
= IPVERSION
;
773 * Check that TCP offset makes sense,
774 * pull out TCP options and adjust length. XXX
776 off
= th
->th_off
<< 2;
777 /* already checked and pulled up in ip_demux() */
778 KASSERT(off
>= sizeof(struct tcphdr
) && off
<= tlen
,
779 ("bad TCP data offset %d (tlen %d)", off
, tlen
));
780 tlen
-= off
; /* tlen is used instead of ti->ti_len */
781 if (off
> sizeof(struct tcphdr
)) {
783 IP6_EXTHDR_CHECK(m
, off0
, off
, IPPROTO_DONE
);
784 ip6
= mtod(m
, struct ip6_hdr
*);
785 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
787 /* already pulled up in ip_demux() */
788 KASSERT(m
->m_len
>= sizeof(struct ip
) + off
,
789 ("TCP header and options not in one mbuf: "
790 "m_len %d, off %d", m
->m_len
, off
));
792 optlen
= off
- sizeof(struct tcphdr
);
793 optp
= (u_char
*)(th
+ 1);
795 thflags
= th
->th_flags
;
797 #ifdef TCP_DROP_SYNFIN
799 * If the drop_synfin option is enabled, drop all packets with
800 * both the SYN and FIN bits set. This prevents e.g. nmap from
801 * identifying the TCP/IP stack.
803 * This is a violation of the TCP specification.
805 if (drop_synfin
&& (thflags
& (TH_SYN
| TH_FIN
)) == (TH_SYN
| TH_FIN
))
810 * Convert TCP protocol specific fields to host format.
812 th
->th_seq
= ntohl(th
->th_seq
);
813 th
->th_ack
= ntohl(th
->th_ack
);
814 th
->th_win
= ntohs(th
->th_win
);
815 th
->th_urp
= ntohs(th
->th_urp
);
818 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
819 * until after ip6_savecontrol() is called and before other functions
820 * which don't want those proto headers.
821 * Because ip6_savecontrol() is going to parse the mbuf to
822 * search for data to be passed up to user-land, it wants mbuf
823 * parameters to be unchanged.
824 * XXX: the call of ip6_savecontrol() has been obsoleted based on
825 * latest version of the advanced API (20020110).
827 drop_hdrlen
= off0
+ off
;
830 * Locate pcb for segment.
833 /* IPFIREWALL_FORWARD section */
834 if (next_hop
!= NULL
&& !isipv6
) { /* IPv6 support is not there yet */
836 * Transparently forwarded. Pretend to be the destination.
837 * already got one like this?
839 cpu
= mycpu
->gd_cpuid
;
840 inp
= in_pcblookup_hash(&tcbinfo
[cpu
],
841 ip
->ip_src
, th
->th_sport
,
842 ip
->ip_dst
, th
->th_dport
,
843 0, m
->m_pkthdr
.rcvif
);
846 * It's new. Try to find the ambushing socket.
850 * The rest of the ipfw code stores the port in
852 * (The IP address is still in network order.)
854 in_port_t dport
= next_hop
->sin_port
?
855 htons(next_hop
->sin_port
) :
858 cpu
= tcp_addrcpu(ip
->ip_src
.s_addr
, th
->th_sport
,
859 next_hop
->sin_addr
.s_addr
, dport
);
860 inp
= in_pcblookup_hash(&tcbinfo
[cpu
],
861 ip
->ip_src
, th
->th_sport
,
862 next_hop
->sin_addr
, dport
,
863 1, m
->m_pkthdr
.rcvif
);
867 inp
= in6_pcblookup_hash(&tcbinfo
[0],
868 &ip6
->ip6_src
, th
->th_sport
,
869 &ip6
->ip6_dst
, th
->th_dport
,
870 1, m
->m_pkthdr
.rcvif
);
872 cpu
= mycpu
->gd_cpuid
;
873 inp
= in_pcblookup_pkthash(&tcbinfo
[cpu
],
874 ip
->ip_src
, th
->th_sport
,
875 ip
->ip_dst
, th
->th_dport
,
876 1, m
->m_pkthdr
.rcvif
,
877 tcp_reuseport_ext
? m
: NULL
);
882 * If the state is CLOSED (i.e., TCB does not exist) then
883 * all data in the incoming segment is discarded.
884 * If the TCB exists but is in CLOSED state, it is embryonic,
885 * but should either do a listen or a connect soon.
890 char dbuf
[INET6_ADDRSTRLEN
+2], sbuf
[INET6_ADDRSTRLEN
+2];
892 char dbuf
[INET_ADDRSTRLEN
], sbuf
[INET_ADDRSTRLEN
];
896 strcat(dbuf
, ip6_sprintf(&ip6
->ip6_dst
));
899 strcat(sbuf
, ip6_sprintf(&ip6
->ip6_src
));
902 kinet_ntoa(ip
->ip_dst
, dbuf
);
903 kinet_ntoa(ip
->ip_src
, sbuf
);
905 switch (log_in_vain
) {
907 if (!(thflags
& TH_SYN
))
911 "Connection attempt to TCP %s:%d "
912 "from %s:%d flags:0x%02x\n",
913 dbuf
, ntohs(th
->th_dport
), sbuf
,
914 ntohs(th
->th_sport
), thflags
);
923 if (thflags
& TH_SYN
)
932 rstreason
= BANDLIM_RST_CLOSEDPORT
;
938 if (ipsec6_in_reject_so(m
, inp
->inp_socket
)) {
939 ipsec6stat
.in_polvio
++;
943 if (ipsec4_in_reject_so(m
, inp
->inp_socket
)) {
944 ipsecstat
.in_polvio
++;
951 if (ipsec6_in_reject(m
, inp
))
954 if (ipsec4_in_reject(m
, inp
))
958 /* Check the minimum TTL for socket. */
960 if ((isipv6
? ip6
->ip6_hlim
: ip
->ip_ttl
) < inp
->inp_ip_minttl
)
965 KASSERT(tp
!= NULL
, ("tcp_input: tp is NULL"));
966 if (tp
->t_state
<= TCPS_CLOSED
)
969 so
= inp
->inp_socket
;
972 if (so
->so_options
& SO_DEBUG
) {
973 ostate
= tp
->t_state
;
975 bcopy(ip6
, tcp_saveipgen
, sizeof(*ip6
));
977 bcopy(ip
, tcp_saveipgen
, sizeof(*ip
));
982 bzero(&to
, sizeof to
);
984 if (so
->so_options
& SO_ACCEPTCONN
) {
985 struct in_conninfo inc
;
988 inc
.inc_isipv6
= (isipv6
== TRUE
);
991 inc
.inc6_faddr
= ip6
->ip6_src
;
992 inc
.inc6_laddr
= ip6
->ip6_dst
;
993 inc
.inc6_route
.ro_rt
= NULL
; /* XXX */
995 inc
.inc_faddr
= ip
->ip_src
;
996 inc
.inc_laddr
= ip
->ip_dst
;
997 inc
.inc_route
.ro_rt
= NULL
; /* XXX */
999 inc
.inc_fport
= th
->th_sport
;
1000 inc
.inc_lport
= th
->th_dport
;
1003 * If the state is LISTEN then ignore segment if it contains
1004 * a RST. If the segment contains an ACK then it is bad and
1005 * send a RST. If it does not contain a SYN then it is not
1006 * interesting; drop it.
1008 * If the state is SYN_RECEIVED (syncache) and seg contains
1009 * an ACK, but not for our SYN/ACK, send a RST. If the seg
1010 * contains a RST, check the sequence number to see if it
1011 * is a valid reset segment.
1013 if ((thflags
& (TH_RST
| TH_ACK
| TH_SYN
)) != TH_SYN
) {
1014 if ((thflags
& (TH_RST
| TH_ACK
| TH_SYN
)) == TH_ACK
) {
1015 if (!syncache_expand(&inc
, th
, &so
, m
)) {
1017 * No syncache entry, or ACK was not
1018 * for our SYN/ACK. Send a RST.
1020 tcpstat
.tcps_badsyn
++;
1021 rstreason
= BANDLIM_RST_OPENPORT
;
1026 * Could not complete 3-way handshake,
1027 * connection is being closed down, and
1028 * syncache will free mbuf.
1031 return(IPPROTO_DONE
);
1034 * We must be in the correct protocol thread
1035 * for this connection.
1037 KKASSERT(so
->so_port
== &curthread
->td_msgport
);
1040 * Socket is created in state SYN_RECEIVED.
1041 * Continue processing segment.
1044 tp
= intotcpcb(inp
);
1046 * This is what would have happened in
1047 * tcp_output() when the SYN,ACK was sent.
1049 tp
->snd_up
= tp
->snd_una
;
1050 tp
->snd_max
= tp
->snd_nxt
= tp
->iss
+ 1;
1051 tp
->last_ack_sent
= tp
->rcv_nxt
;
1055 if (thflags
& TH_RST
) {
1056 syncache_chkrst(&inc
, th
);
1059 if (thflags
& TH_ACK
) {
1060 syncache_badack(&inc
);
1061 tcpstat
.tcps_badsyn
++;
1062 rstreason
= BANDLIM_RST_OPENPORT
;
1069 * Segment's flags are (SYN) or (SYN | FIN).
1073 * If deprecated address is forbidden,
1074 * we do not accept SYN to deprecated interface
1075 * address to prevent any new inbound connection from
1076 * getting established.
1077 * When we do not accept SYN, we send a TCP RST,
1078 * with deprecated source address (instead of dropping
1079 * it). We compromise it as it is much better for peer
1080 * to send a RST, and RST will be the final packet
1083 * If we do not forbid deprecated addresses, we accept
1084 * the SYN packet. RFC2462 does not suggest dropping
1086 * If we decipher RFC2462 5.5.4, it says like this:
1087 * 1. use of deprecated addr with existing
1088 * communication is okay - "SHOULD continue to be
1090 * 2. use of it with new communication:
1091 * (2a) "SHOULD NOT be used if alternate address
1092 * with sufficient scope is available"
1093 * (2b) nothing mentioned otherwise.
1094 * Here we fall into (2b) case as we have no choice in
1095 * our source address selection - we must obey the peer.
1097 * The wording in RFC2462 is confusing, and there are
1098 * multiple description text for deprecated address
1099 * handling - worse, they are not exactly the same.
1100 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1102 if (isipv6
&& !ip6_use_deprecated
) {
1103 struct in6_ifaddr
*ia6
;
1105 if ((ia6
= ip6_getdstifaddr(m
)) &&
1106 (ia6
->ia6_flags
& IN6_IFF_DEPRECATED
)) {
1108 rstreason
= BANDLIM_RST_OPENPORT
;
1114 * If it is from this socket, drop it, it must be forged.
1115 * Don't bother responding if the destination was a broadcast.
1117 if (th
->th_dport
== th
->th_sport
) {
1119 if (IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
,
1123 if (ip
->ip_dst
.s_addr
== ip
->ip_src
.s_addr
)
1128 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1130 * Note that it is quite possible to receive unicast
1131 * link-layer packets with a broadcast IP address. Use
1132 * in_broadcast() to find them.
1134 if (m
->m_flags
& (M_BCAST
| M_MCAST
))
1137 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
1138 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
1141 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
1142 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
1143 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
1144 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
1148 * SYN appears to be valid; create compressed TCP state
1149 * for syncache, or perform t/tcp connection.
1151 if (so
->so_qlen
<= so
->so_qlimit
) {
1152 tcp_dooptions(&to
, optp
, optlen
, TRUE
, th
->th_ack
);
1153 if (!syncache_add(&inc
, &to
, th
, so
, m
))
1157 * Entry added to syncache, mbuf used to
1158 * send SYN,ACK packet.
1160 return(IPPROTO_DONE
);
1167 * Should not happen - syncache should pick up these connections.
1169 * Once we are past handling listen sockets we must be in the
1170 * correct protocol processing thread.
1172 KASSERT(tp
->t_state
!= TCPS_LISTEN
, ("tcp_input: TCPS_LISTEN state"));
1173 KKASSERT(so
->so_port
== &curthread
->td_msgport
);
1175 /* Unscale the window into a 32-bit value. */
1176 if (!(thflags
& TH_SYN
))
1177 tiwin
= th
->th_win
<< tp
->snd_scale
;
1182 * This is the second part of the MSS DoS prevention code (after
1183 * minmss on the sending side) and it deals with too many too small
1184 * tcp packets in a too short timeframe (1 second).
1186 * XXX Removed. This code was crap. It does not scale to network
1187 * speed, and default values break NFS. Gone.
1192 * Segment received on connection.
1194 * Reset idle time and keep-alive timer. Don't waste time if less
1195 * then a second has elapsed.
1197 if ((int)(ticks
- tp
->t_rcvtime
) > hz
)
1198 tcp_timer_keep_activity(tp
, thflags
);
1202 * XXX this is tradtitional behavior, may need to be cleaned up.
1204 tcp_dooptions(&to
, optp
, optlen
, (thflags
& TH_SYN
) != 0, th
->th_ack
);
1205 if (tp
->t_state
== TCPS_SYN_SENT
&& (thflags
& TH_SYN
)) {
1206 if ((to
.to_flags
& TOF_SCALE
) && (tp
->t_flags
& TF_REQ_SCALE
)) {
1207 tp
->t_flags
|= TF_RCVD_SCALE
;
1208 tp
->snd_scale
= to
.to_requested_s_scale
;
1212 * Initial send window; will be updated upon next ACK
1214 tp
->snd_wnd
= th
->th_win
;
1216 if (to
.to_flags
& TOF_TS
) {
1217 tp
->t_flags
|= TF_RCVD_TSTMP
;
1218 tp
->ts_recent
= to
.to_tsval
;
1219 tp
->ts_recent_age
= ticks
;
1221 if (!(to
.to_flags
& TOF_MSS
))
1223 tcp_mss(tp
, to
.to_mss
);
1225 * Only set the TF_SACK_PERMITTED per-connection flag
1226 * if we got a SACK_PERMITTED option from the other side
1227 * and the global tcp_do_sack variable is true.
1229 if (tcp_do_sack
&& (to
.to_flags
& TOF_SACK_PERMITTED
))
1230 tp
->t_flags
|= TF_SACK_PERMITTED
;
1234 * Header prediction: check for the two common cases
1235 * of a uni-directional data xfer. If the packet has
1236 * no control flags, is in-sequence, the window didn't
1237 * change and we're not retransmitting, it's a
1238 * candidate. If the length is zero and the ack moved
1239 * forward, we're the sender side of the xfer. Just
1240 * free the data acked & wake any higher level process
1241 * that was blocked waiting for space. If the length
1242 * is non-zero and the ack didn't move, we're the
1243 * receiver side. If we're getting packets in-order
1244 * (the reassembly queue is empty), add the data to
1245 * the socket buffer and note that we need a delayed ack.
1246 * Make sure that the hidden state-flags are also off.
1247 * Since we check for TCPS_ESTABLISHED above, it can only
1250 if (tp
->t_state
== TCPS_ESTABLISHED
&&
1251 (thflags
& (TH_SYN
|TH_FIN
|TH_RST
|TH_URG
|TH_ACK
)) == TH_ACK
&&
1252 !(tp
->t_flags
& (TF_NEEDSYN
| TF_NEEDFIN
)) &&
1253 (!(to
.to_flags
& TOF_TS
) ||
1254 TSTMP_GEQ(to
.to_tsval
, tp
->ts_recent
)) &&
1255 th
->th_seq
== tp
->rcv_nxt
&&
1256 tp
->snd_nxt
== tp
->snd_max
) {
1259 * If last ACK falls within this segment's sequence numbers,
1260 * record the timestamp.
1261 * NOTE that the test is modified according to the latest
1262 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1264 if ((to
.to_flags
& TOF_TS
) &&
1265 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
)) {
1266 tp
->ts_recent_age
= ticks
;
1267 tp
->ts_recent
= to
.to_tsval
;
1271 if (SEQ_GT(th
->th_ack
, tp
->snd_una
) &&
1272 SEQ_LEQ(th
->th_ack
, tp
->snd_max
) &&
1273 tp
->snd_cwnd
>= tp
->snd_wnd
&&
1274 !IN_FASTRECOVERY(tp
)) {
1276 * This is a pure ack for outstanding data.
1278 ++tcpstat
.tcps_predack
;
1280 * "bad retransmit" recovery
1282 * If Eifel detection applies, then
1283 * it is deterministic, so use it
1284 * unconditionally over the old heuristic.
1285 * Otherwise, fall back to the old heuristic.
1287 if (tcp_do_eifel_detect
&&
1288 (to
.to_flags
& TOF_TS
) && to
.to_tsecr
&&
1289 (tp
->rxt_flags
& TRXT_F_FIRSTACCACK
)) {
1290 /* Eifel detection applicable. */
1291 if (to
.to_tsecr
< tp
->t_rexmtTS
) {
1292 tcp_revert_congestion_state(tp
);
1293 ++tcpstat
.tcps_eifeldetected
;
1294 if (tp
->t_rxtshift
!= 1 ||
1295 ticks
>= tp
->t_badrxtwin
)
1296 ++tcpstat
.tcps_rttcantdetect
;
1298 } else if (tp
->t_rxtshift
== 1 &&
1299 ticks
< tp
->t_badrxtwin
) {
1300 tcp_revert_congestion_state(tp
);
1301 ++tcpstat
.tcps_rttdetected
;
1303 tp
->rxt_flags
&= ~(TRXT_F_FIRSTACCACK
|
1304 TRXT_F_FASTREXMT
| TRXT_F_EARLYREXMT
);
1306 * Recalculate the retransmit timer / rtt.
1308 * Some machines (certain windows boxes)
1309 * send broken timestamp replies during the
1310 * SYN+ACK phase, ignore timestamps of 0.
1312 if ((to
.to_flags
& TOF_TS
) && to
.to_tsecr
) {
1314 ticks
- to
.to_tsecr
+ 1,
1316 } else if (tp
->t_rtttime
&&
1317 SEQ_GT(th
->th_ack
, tp
->t_rtseq
)) {
1319 ticks
- tp
->t_rtttime
+ 1,
1322 tcp_xmit_bandwidth_limit(tp
, th
->th_ack
);
1323 acked
= th
->th_ack
- tp
->snd_una
;
1324 tcpstat
.tcps_rcvackpack
++;
1325 tcpstat
.tcps_rcvackbyte
+= acked
;
1326 sbdrop(&so
->so_snd
.sb
, acked
);
1327 tp
->snd_recover
= th
->th_ack
- 1;
1328 tp
->snd_una
= th
->th_ack
;
1331 * Update window information.
1333 if (tiwin
!= tp
->snd_wnd
&&
1334 acceptable_window_update(tp
, th
, tiwin
)) {
1335 /* keep track of pure window updates */
1336 if (tp
->snd_wl2
== th
->th_ack
&&
1337 tiwin
> tp
->snd_wnd
)
1338 tcpstat
.tcps_rcvwinupd
++;
1339 tp
->snd_wnd
= tiwin
;
1340 tp
->snd_wl1
= th
->th_seq
;
1341 tp
->snd_wl2
= th
->th_ack
;
1342 if (tp
->snd_wnd
> tp
->max_sndwnd
)
1343 tp
->max_sndwnd
= tp
->snd_wnd
;
1346 ND6_HINT(tp
); /* some progress has been done */
1348 * If all outstanding data are acked, stop
1349 * retransmit timer, otherwise restart timer
1350 * using current (possibly backed-off) value.
1351 * If process is waiting for space,
1352 * wakeup/selwakeup/signal. If data
1353 * are ready to send, let tcp_output
1354 * decide between more output or persist.
1356 if (tp
->snd_una
== tp
->snd_max
) {
1357 tcp_callout_stop(tp
, tp
->tt_rexmt
);
1358 } else if (!tcp_callout_active(tp
,
1360 tcp_callout_reset(tp
, tp
->tt_rexmt
,
1361 tp
->t_rxtcur
, tcp_timer_rexmt
);
1364 if (so
->so_snd
.ssb_cc
> 0 &&
1365 !tcp_output_pending(tp
))
1366 tcp_output_fair(tp
);
1367 return(IPPROTO_DONE
);
1369 } else if (tiwin
== tp
->snd_wnd
&&
1370 th
->th_ack
== tp
->snd_una
&&
1371 TAILQ_EMPTY(&tp
->t_segq
) &&
1372 tlen
<= ssb_space(&so
->so_rcv
)) {
1373 u_long newsize
= 0; /* automatic sockbuf scaling */
1375 * This is a pure, in-sequence data packet
1376 * with nothing on the reassembly queue and
1377 * we have enough buffer space to take it.
1379 ++tcpstat
.tcps_preddat
;
1380 tp
->rcv_nxt
+= tlen
;
1381 tcpstat
.tcps_rcvpack
++;
1382 tcpstat
.tcps_rcvbyte
+= tlen
;
1383 ND6_HINT(tp
); /* some progress has been done */
1385 * Automatic sizing of receive socket buffer. Often the send
1386 * buffer size is not optimally adjusted to the actual network
1387 * conditions at hand (delay bandwidth product). Setting the
1388 * buffer size too small limits throughput on links with high
1389 * bandwidth and high delay (eg. trans-continental/oceanic links).
1391 * On the receive side the socket buffer memory is only rarely
1392 * used to any significant extent. This allows us to be much
1393 * more aggressive in scaling the receive socket buffer. For
1394 * the case that the buffer space is actually used to a large
1395 * extent and we run out of kernel memory we can simply drop
1396 * the new segments; TCP on the sender will just retransmit it
1397 * later. Setting the buffer size too big may only consume too
1398 * much kernel memory if the application doesn't read() from
1399 * the socket or packet loss or reordering makes use of the
1402 * The criteria to step up the receive buffer one notch are:
1403 * 1. the number of bytes received during the time it takes
1404 * one timestamp to be reflected back to us (the RTT);
1405 * 2. received bytes per RTT is within seven eighth of the
1406 * current socket buffer size;
1407 * 3. receive buffer size has not hit maximal automatic size;
1409 * This algorithm does one step per RTT at most and only if
1410 * we receive a bulk stream w/o packet losses or reorderings.
1411 * Shrinking the buffer during idle times is not necessary as
1412 * it doesn't consume any memory when idle.
1414 * TODO: Only step up if the application is actually serving
1415 * the buffer to better manage the socket buffer resources.
1417 if (tcp_do_autorcvbuf
&&
1419 (so
->so_rcv
.ssb_flags
& SSB_AUTOSIZE
)) {
1420 if (to
.to_tsecr
> tp
->rfbuf_ts
&&
1421 to
.to_tsecr
- tp
->rfbuf_ts
< hz
) {
1423 (so
->so_rcv
.ssb_hiwat
/ 8 * 7) &&
1424 so
->so_rcv
.ssb_hiwat
<
1425 tcp_autorcvbuf_max
) {
1427 ulmin(so
->so_rcv
.ssb_hiwat
+
1429 tcp_autorcvbuf_max
);
1431 /* Start over with next RTT. */
1435 tp
->rfbuf_cnt
+= tlen
; /* add up */
1438 * Add data to socket buffer.
1440 if (so
->so_state
& SS_CANTRCVMORE
) {
1444 * Set new socket buffer size, give up when
1447 * Adjusting the size can mess up ACK
1448 * sequencing when pure window updates are
1449 * being avoided (which is the default),
1452 lwkt_gettoken(&so
->so_rcv
.ssb_token
);
1454 tp
->t_flags
|= TF_RXRESIZED
;
1455 if (!ssb_reserve(&so
->so_rcv
, newsize
,
1457 atomic_clear_int(&so
->so_rcv
.ssb_flags
, SSB_AUTOSIZE
);
1460 (TCP_MAXWIN
<< tp
->rcv_scale
)) {
1461 atomic_clear_int(&so
->so_rcv
.ssb_flags
, SSB_AUTOSIZE
);
1464 m_adj(m
, drop_hdrlen
); /* delayed header drop */
1465 ssb_appendstream(&so
->so_rcv
, m
);
1466 lwkt_reltoken(&so
->so_rcv
.ssb_token
);
1470 * This code is responsible for most of the ACKs
1471 * the TCP stack sends back after receiving a data
1472 * packet. Note that the DELAY_ACK check fails if
1473 * the delack timer is already running, which results
1474 * in an ack being sent every other packet (which is
1477 * We then further aggregate acks by not actually
1478 * sending one until the protocol thread has completed
1479 * processing the current backlog of packets. This
1480 * does not delay the ack any further, but allows us
1481 * to take advantage of the packet aggregation that
1482 * high speed NICs do (usually blocks of 8-10 packets)
1483 * to send a single ack rather then four or five acks,
1484 * greatly reducing the ack rate, the return channel
1485 * bandwidth, and the protocol overhead on both ends.
1487 * Since this also has the effect of slowing down
1488 * the exponential slow-start ramp-up, systems with
1489 * very large bandwidth-delay products might want
1490 * to turn the feature off.
1492 if (DELAY_ACK(tp
)) {
1493 tcp_callout_reset(tp
, tp
->tt_delack
,
1494 tcp_delacktime
, tcp_timer_delack
);
1495 } else if (tcp_aggregate_acks
) {
1496 tp
->t_flags
|= TF_ACKNOW
;
1497 if (!(tp
->t_flags
& TF_ONOUTPUTQ
)) {
1498 tp
->t_flags
|= TF_ONOUTPUTQ
;
1499 tp
->tt_cpu
= mycpu
->gd_cpuid
;
1501 &tcpcbackq
[tp
->tt_cpu
],
1505 tp
->t_flags
|= TF_ACKNOW
;
1508 return(IPPROTO_DONE
);
1513 * Calculate amount of space in receive window,
1514 * and then do TCP input processing.
1515 * Receive window is amount of space in rcv queue,
1516 * but not less than advertised window.
1518 recvwin
= ssb_space(&so
->so_rcv
);
1521 tp
->rcv_wnd
= imax(recvwin
, (int)(tp
->rcv_adv
- tp
->rcv_nxt
));
1523 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1527 switch (tp
->t_state
) {
1529 * If the state is SYN_RECEIVED:
1530 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1532 case TCPS_SYN_RECEIVED
:
1533 if ((thflags
& TH_ACK
) &&
1534 (SEQ_LEQ(th
->th_ack
, tp
->snd_una
) ||
1535 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1536 rstreason
= BANDLIM_RST_OPENPORT
;
1542 * If the state is SYN_SENT:
1543 * if seg contains an ACK, but not for our SYN, drop the input.
1544 * if seg contains a RST, then drop the connection.
1545 * if seg does not contain SYN, then drop it.
1546 * Otherwise this is an acceptable SYN segment
1547 * initialize tp->rcv_nxt and tp->irs
1548 * if seg contains ack then advance tp->snd_una
1549 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1550 * arrange for segment to be acked (eventually)
1551 * continue processing rest of data/controls, beginning with URG
1554 if ((thflags
& TH_ACK
) &&
1555 (SEQ_LEQ(th
->th_ack
, tp
->iss
) ||
1556 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1557 rstreason
= BANDLIM_UNLIMITED
;
1560 if (thflags
& TH_RST
) {
1561 if (thflags
& TH_ACK
)
1562 tp
= tcp_drop(tp
, ECONNREFUSED
);
1565 if (!(thflags
& TH_SYN
))
1568 tp
->irs
= th
->th_seq
;
1570 if (thflags
& TH_ACK
) {
1571 /* Our SYN was acked. */
1572 tcpstat
.tcps_connects
++;
1574 /* Do window scaling on this connection? */
1575 if ((tp
->t_flags
& (TF_RCVD_SCALE
| TF_REQ_SCALE
)) ==
1576 (TF_RCVD_SCALE
| TF_REQ_SCALE
))
1577 tp
->rcv_scale
= tp
->request_r_scale
;
1578 tp
->rcv_adv
+= tp
->rcv_wnd
;
1579 tp
->snd_una
++; /* SYN is acked */
1580 tcp_callout_stop(tp
, tp
->tt_rexmt
);
1582 * If there's data, delay ACK; if there's also a FIN
1583 * ACKNOW will be turned on later.
1585 if (DELAY_ACK(tp
) && tlen
!= 0) {
1586 tcp_callout_reset(tp
, tp
->tt_delack
,
1587 tcp_delacktime
, tcp_timer_delack
);
1589 tp
->t_flags
|= TF_ACKNOW
;
1592 * Received <SYN,ACK> in SYN_SENT[*] state.
1594 * SYN_SENT --> ESTABLISHED
1595 * SYN_SENT* --> FIN_WAIT_1
1597 tp
->t_starttime
= ticks
;
1598 if (tp
->t_flags
& TF_NEEDFIN
) {
1599 TCP_STATE_CHANGE(tp
, TCPS_FIN_WAIT_1
);
1600 tp
->t_flags
&= ~TF_NEEDFIN
;
1603 tcp_established(tp
);
1607 * Received initial SYN in SYN-SENT[*] state =>
1608 * simultaneous open.
1609 * Do 3-way handshake:
1610 * SYN-SENT -> SYN-RECEIVED
1611 * SYN-SENT* -> SYN-RECEIVED*
1613 tp
->t_flags
|= TF_ACKNOW
;
1614 tcp_callout_stop(tp
, tp
->tt_rexmt
);
1615 TCP_STATE_CHANGE(tp
, TCPS_SYN_RECEIVED
);
1619 * Advance th->th_seq to correspond to first data byte.
1620 * If data, trim to stay within window,
1621 * dropping FIN if necessary.
1624 if (tlen
> tp
->rcv_wnd
) {
1625 todrop
= tlen
- tp
->rcv_wnd
;
1629 tcpstat
.tcps_rcvpackafterwin
++;
1630 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1632 tp
->snd_wl1
= th
->th_seq
- 1;
1633 tp
->rcv_up
= th
->th_seq
;
1635 * Client side of transaction: already sent SYN and data.
1636 * If the remote host used T/TCP to validate the SYN,
1637 * our data will be ACK'd; if so, enter normal data segment
1638 * processing in the middle of step 5, ack processing.
1639 * Otherwise, goto step 6.
1641 if (thflags
& TH_ACK
)
1647 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1648 * do normal processing (we no longer bother with T/TCP).
1652 case TCPS_TIME_WAIT
:
1653 break; /* continue normal processing */
1657 * States other than LISTEN or SYN_SENT.
1658 * First check the RST flag and sequence number since reset segments
1659 * are exempt from the timestamp and connection count tests. This
1660 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1661 * below which allowed reset segments in half the sequence space
1662 * to fall though and be processed (which gives forged reset
1663 * segments with a random sequence number a 50 percent chance of
1664 * killing a connection).
1665 * Then check timestamp, if present.
1666 * Then check the connection count, if present.
1667 * Then check that at least some bytes of segment are within
1668 * receive window. If segment begins before rcv_nxt,
1669 * drop leading data (and SYN); if nothing left, just ack.
1672 * If the RST bit is set, check the sequence number to see
1673 * if this is a valid reset segment.
1675 * In all states except SYN-SENT, all reset (RST) segments
1676 * are validated by checking their SEQ-fields. A reset is
1677 * valid if its sequence number is in the window.
1678 * Note: this does not take into account delayed ACKs, so
1679 * we should test against last_ack_sent instead of rcv_nxt.
1680 * The sequence number in the reset segment is normally an
1681 * echo of our outgoing acknowledgement numbers, but some hosts
1682 * send a reset with the sequence number at the rightmost edge
1683 * of our receive window, and we have to handle this case.
1684 * If we have multiple segments in flight, the intial reset
1685 * segment sequence numbers will be to the left of last_ack_sent,
1686 * but they will eventually catch up.
1687 * In any case, it never made sense to trim reset segments to
1688 * fit the receive window since RFC 1122 says:
1689 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
1691 * A TCP SHOULD allow a received RST segment to include data.
1694 * It has been suggested that a RST segment could contain
1695 * ASCII text that encoded and explained the cause of the
1696 * RST. No standard has yet been established for such
1699 * If the reset segment passes the sequence number test examine
1701 * SYN_RECEIVED STATE:
1702 * If passive open, return to LISTEN state.
1703 * If active open, inform user that connection was refused.
1704 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1705 * Inform user that connection was reset, and close tcb.
1706 * CLOSING, LAST_ACK STATES:
1709 * Drop the segment - see Stevens, vol. 2, p. 964 and
1712 if (thflags
& TH_RST
) {
1713 if (SEQ_GEQ(th
->th_seq
, tp
->last_ack_sent
) &&
1714 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
+ tp
->rcv_wnd
)) {
1715 switch (tp
->t_state
) {
1717 case TCPS_SYN_RECEIVED
:
1718 so
->so_error
= ECONNREFUSED
;
1721 case TCPS_ESTABLISHED
:
1722 case TCPS_FIN_WAIT_1
:
1723 case TCPS_FIN_WAIT_2
:
1724 case TCPS_CLOSE_WAIT
:
1725 so
->so_error
= ECONNRESET
;
1727 TCP_STATE_CHANGE(tp
, TCPS_CLOSED
);
1728 tcpstat
.tcps_drops
++;
1737 case TCPS_TIME_WAIT
:
1745 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1746 * and it's less than ts_recent, drop it.
1748 if ((to
.to_flags
& TOF_TS
) && tp
->ts_recent
!= 0 &&
1749 TSTMP_LT(to
.to_tsval
, tp
->ts_recent
)) {
1750 /* Check to see if ts_recent is over 24 days old. */
1751 if ((int)(ticks
- tp
->ts_recent_age
) > TCP_PAWS_IDLE
) {
1753 * Invalidate ts_recent. If this segment updates
1754 * ts_recent, the age will be reset later and ts_recent
1755 * will get a valid value. If it does not, setting
1756 * ts_recent to zero will at least satisfy the
1757 * requirement that zero be placed in the timestamp
1758 * echo reply when ts_recent isn't valid. The
1759 * age isn't reset until we get a valid ts_recent
1760 * because we don't want out-of-order segments to be
1761 * dropped when ts_recent is old.
1764 } else if (tcp_paws_tolerance
&& tlen
!= 0 &&
1765 tp
->t_state
== TCPS_ESTABLISHED
&&
1766 (thflags
& (TH_SYN
|TH_FIN
|TH_RST
|TH_URG
|TH_ACK
)) == TH_ACK
&&
1767 !(tp
->t_flags
& (TF_NEEDSYN
| TF_NEEDFIN
)) &&
1768 th
->th_ack
== tp
->snd_una
&&
1769 tiwin
== tp
->snd_wnd
&&
1770 TSTMP_GEQ(to
.to_tsval
+ tcp_paws_tolerance
, tp
->ts_recent
)&&
1771 (th
->th_seq
== tp
->rcv_nxt
||
1772 (SEQ_GT(th
->th_seq
, tp
->rcv_nxt
) &&
1773 tcp_paws_canreasslast(tp
, th
, tlen
)))) {
1775 * This tends to prevent valid new segments from being
1776 * dropped by the reordered segments sent by the fast
1777 * retransmission algorithm on the sending side, i.e.
1778 * the fast retransmitted segment w/ larger timestamp
1779 * arrives earlier than the previously sent new segments
1780 * w/ smaller timestamp.
1782 * If following conditions are met, the segment is
1784 * - The segment contains data
1785 * - The connection is established
1786 * - The header does not contain important flags
1787 * - SYN or FIN is not needed
1788 * - It does not acknowledge new data
1789 * - Receive window is not changed
1790 * - The timestamp is within "acceptable" range
1791 * - The new segment is what we are expecting or
1792 * the new segment could be merged w/ the last
1793 * pending segment on the reassemble queue
1795 tcpstat
.tcps_pawsaccept
++;
1796 tcpstat
.tcps_pawsdrop
++;
1798 tcpstat
.tcps_rcvduppack
++;
1799 tcpstat
.tcps_rcvdupbyte
+= tlen
;
1800 tcpstat
.tcps_pawsdrop
++;
1808 * In the SYN-RECEIVED state, validate that the packet belongs to
1809 * this connection before trimming the data to fit the receive
1810 * window. Check the sequence number versus IRS since we know
1811 * the sequence numbers haven't wrapped. This is a partial fix
1812 * for the "LAND" DoS attack.
1814 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& SEQ_LT(th
->th_seq
, tp
->irs
)) {
1815 rstreason
= BANDLIM_RST_OPENPORT
;
1819 todrop
= tp
->rcv_nxt
- th
->th_seq
;
1821 if (TCP_DO_SACK(tp
)) {
1822 /* Report duplicate segment at head of packet. */
1823 tp
->reportblk
.rblk_start
= th
->th_seq
;
1824 tp
->reportblk
.rblk_end
= TCP_SACK_BLKEND(
1825 th
->th_seq
+ tlen
, thflags
);
1826 if (SEQ_GT(tp
->reportblk
.rblk_end
, tp
->rcv_nxt
))
1827 tp
->reportblk
.rblk_end
= tp
->rcv_nxt
;
1828 tp
->sack_flags
|= (TSACK_F_DUPSEG
| TSACK_F_SACKLEFT
);
1829 tp
->t_flags
|= TF_ACKNOW
;
1831 if (thflags
& TH_SYN
) {
1841 * Following if statement from Stevens, vol. 2, p. 960.
1843 if (todrop
> tlen
||
1844 (todrop
== tlen
&& !(thflags
& TH_FIN
))) {
1846 * Any valid FIN must be to the left of the window.
1847 * At this point the FIN must be a duplicate or out
1848 * of sequence; drop it.
1853 * Send an ACK to resynchronize and drop any data.
1854 * But keep on processing for RST or ACK.
1856 tp
->t_flags
|= TF_ACKNOW
;
1858 tcpstat
.tcps_rcvduppack
++;
1859 tcpstat
.tcps_rcvdupbyte
+= todrop
;
1861 tcpstat
.tcps_rcvpartduppack
++;
1862 tcpstat
.tcps_rcvpartdupbyte
+= todrop
;
1864 drop_hdrlen
+= todrop
; /* drop from the top afterwards */
1865 th
->th_seq
+= todrop
;
1867 if (th
->th_urp
> todrop
)
1868 th
->th_urp
-= todrop
;
1876 * If new data are received on a connection after the
1877 * user processes are gone, then RST the other end.
1879 if ((so
->so_state
& SS_NOFDREF
) &&
1880 tp
->t_state
> TCPS_CLOSE_WAIT
&& tlen
) {
1882 tcpstat
.tcps_rcvafterclose
++;
1883 rstreason
= BANDLIM_UNLIMITED
;
1888 * If segment ends after window, drop trailing data
1889 * (and PUSH and FIN); if nothing left, just ACK.
1891 todrop
= (th
->th_seq
+ tlen
) - (tp
->rcv_nxt
+ tp
->rcv_wnd
);
1893 tcpstat
.tcps_rcvpackafterwin
++;
1894 if (todrop
>= tlen
) {
1895 tcpstat
.tcps_rcvbyteafterwin
+= tlen
;
1897 * If a new connection request is received
1898 * while in TIME_WAIT, drop the old connection
1899 * and start over if the sequence numbers
1900 * are above the previous ones.
1902 if (thflags
& TH_SYN
&&
1903 tp
->t_state
== TCPS_TIME_WAIT
&&
1904 SEQ_GT(th
->th_seq
, tp
->rcv_nxt
)) {
1909 * If window is closed can only take segments at
1910 * window edge, and have to drop data and PUSH from
1911 * incoming segments. Continue processing, but
1912 * remember to ack. Otherwise, drop segment
1915 if (tp
->rcv_wnd
== 0 && th
->th_seq
== tp
->rcv_nxt
) {
1916 tp
->t_flags
|= TF_ACKNOW
;
1917 tcpstat
.tcps_rcvwinprobe
++;
1921 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1924 thflags
&= ~(TH_PUSH
| TH_FIN
);
1928 * If last ACK falls within this segment's sequence numbers,
1929 * record its timestamp.
1931 * 1) That the test incorporates suggestions from the latest
1932 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1933 * 2) That updating only on newer timestamps interferes with
1934 * our earlier PAWS tests, so this check should be solely
1935 * predicated on the sequence space of this segment.
1936 * 3) That we modify the segment boundary check to be
1937 * Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1938 * instead of RFC1323's
1939 * Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1940 * This modified check allows us to overcome RFC1323's
1941 * limitations as described in Stevens TCP/IP Illustrated
1942 * Vol. 2 p.869. In such cases, we can still calculate the
1943 * RTT correctly when RCV.NXT == Last.ACK.Sent.
1945 if ((to
.to_flags
& TOF_TS
) && SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
) &&
1946 SEQ_LEQ(tp
->last_ack_sent
, (th
->th_seq
+ tlen
1947 + ((thflags
& TH_SYN
) != 0)
1948 + ((thflags
& TH_FIN
) != 0)))) {
1949 tp
->ts_recent_age
= ticks
;
1950 tp
->ts_recent
= to
.to_tsval
;
1954 * If a SYN is in the window, then this is an
1955 * error and we send an RST and drop the connection.
1957 if (thflags
& TH_SYN
) {
1958 tp
= tcp_drop(tp
, ECONNRESET
);
1959 rstreason
= BANDLIM_UNLIMITED
;
1964 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
1965 * flag is on (half-synchronized state), then queue data for
1966 * later processing; else drop segment and return.
1968 if (!(thflags
& TH_ACK
)) {
1969 if (tp
->t_state
== TCPS_SYN_RECEIVED
||
1970 (tp
->t_flags
& TF_NEEDSYN
))
1979 switch (tp
->t_state
) {
1981 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1982 * ESTABLISHED state and continue processing.
1983 * The ACK was checked above.
1985 case TCPS_SYN_RECEIVED
:
1987 tcpstat
.tcps_connects
++;
1989 /* Do window scaling? */
1990 if ((tp
->t_flags
& (TF_RCVD_SCALE
| TF_REQ_SCALE
)) ==
1991 (TF_RCVD_SCALE
| TF_REQ_SCALE
))
1992 tp
->rcv_scale
= tp
->request_r_scale
;
1995 * SYN-RECEIVED -> ESTABLISHED
1996 * SYN-RECEIVED* -> FIN-WAIT-1
1998 tp
->t_starttime
= ticks
;
1999 if (tp
->t_flags
& TF_NEEDFIN
) {
2000 TCP_STATE_CHANGE(tp
, TCPS_FIN_WAIT_1
);
2001 tp
->t_flags
&= ~TF_NEEDFIN
;
2003 tcp_established(tp
);
2006 * If segment contains data or ACK, will call tcp_reass()
2007 * later; if not, do so now to pass queued data to user.
2009 if (tlen
== 0 && !(thflags
& TH_FIN
))
2010 tcp_reass(tp
, NULL
, NULL
, NULL
);
2014 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2015 * ACKs. If the ack is in the range
2016 * tp->snd_una < th->th_ack <= tp->snd_max
2017 * then advance tp->snd_una to th->th_ack and drop
2018 * data from the retransmission queue. If this ACK reflects
2019 * more up to date window information we update our window information.
2021 case TCPS_ESTABLISHED
:
2022 case TCPS_FIN_WAIT_1
:
2023 case TCPS_FIN_WAIT_2
:
2024 case TCPS_CLOSE_WAIT
:
2027 case TCPS_TIME_WAIT
:
2029 if (SEQ_LEQ(th
->th_ack
, tp
->snd_una
)) {
2030 boolean_t maynotdup
= FALSE
;
2032 if (TCP_DO_SACK(tp
))
2033 tcp_sack_update_scoreboard(tp
, &to
);
2035 if (tlen
!= 0 || tiwin
!= tp
->snd_wnd
||
2036 ((thflags
& TH_FIN
) && !(tp
->t_flags
& TF_SAWFIN
)))
2039 if (!tcp_callout_active(tp
, tp
->tt_rexmt
) ||
2040 th
->th_ack
!= tp
->snd_una
) {
2042 tcpstat
.tcps_rcvdupack
++;
2047 #define DELAY_DUPACK \
2049 delayed_dupack = TRUE; \
2050 th_dupack = th->th_ack; \
2051 to_flags = to.to_flags; \
2054 if (!tcp_do_rfc6675
||
2057 (TOF_SACK
| TOF_SACK_REDUNDANT
))
2065 if ((thflags
& TH_FIN
) && !(tp
->t_flags
& TF_QUEDFIN
)) {
2067 * This could happen, if the reassemable
2068 * queue overflew or was drained. Don't
2069 * drop this FIN here; defer the duplicated
2070 * ACK processing until this FIN gets queued.
2077 if (tcp_recv_dupack(tp
, th
->th_ack
, to
.to_flags
))
2083 KASSERT(SEQ_GT(th
->th_ack
, tp
->snd_una
), ("th_ack <= snd_una"));
2085 if (SEQ_GT(th
->th_ack
, tp
->snd_max
)) {
2087 * Detected optimistic ACK attack.
2088 * Force slow-start to de-synchronize attack.
2090 tp
->snd_cwnd
= tp
->t_maxseg
;
2093 tcpstat
.tcps_rcvacktoomuch
++;
2097 * If we reach this point, ACK is not a duplicate,
2098 * i.e., it ACKs something we sent.
2100 if (tp
->t_flags
& TF_NEEDSYN
) {
2102 * T/TCP: Connection was half-synchronized, and our
2103 * SYN has been ACK'd (so connection is now fully
2104 * synchronized). Go to non-starred state,
2105 * increment snd_una for ACK of SYN, and check if
2106 * we can do window scaling.
2108 tp
->t_flags
&= ~TF_NEEDSYN
;
2110 /* Do window scaling? */
2111 if ((tp
->t_flags
& (TF_RCVD_SCALE
| TF_REQ_SCALE
)) ==
2112 (TF_RCVD_SCALE
| TF_REQ_SCALE
))
2113 tp
->rcv_scale
= tp
->request_r_scale
;
2117 acked
= th
->th_ack
- tp
->snd_una
;
2118 tcpstat
.tcps_rcvackpack
++;
2119 tcpstat
.tcps_rcvackbyte
+= acked
;
2121 if (tcp_do_eifel_detect
&& acked
> 0 &&
2122 (to
.to_flags
& TOF_TS
) && (to
.to_tsecr
!= 0) &&
2123 (tp
->rxt_flags
& TRXT_F_FIRSTACCACK
)) {
2124 /* Eifel detection applicable. */
2125 if (to
.to_tsecr
< tp
->t_rexmtTS
) {
2126 ++tcpstat
.tcps_eifeldetected
;
2127 tcp_revert_congestion_state(tp
);
2128 if (tp
->t_rxtshift
!= 1 ||
2129 ticks
>= tp
->t_badrxtwin
)
2130 ++tcpstat
.tcps_rttcantdetect
;
2132 } else if (tp
->t_rxtshift
== 1 && ticks
< tp
->t_badrxtwin
) {
2134 * If we just performed our first retransmit,
2135 * and the ACK arrives within our recovery window,
2136 * then it was a mistake to do the retransmit
2137 * in the first place. Recover our original cwnd
2138 * and ssthresh, and proceed to transmit where we
2141 tcp_revert_congestion_state(tp
);
2142 ++tcpstat
.tcps_rttdetected
;
2146 * If we have a timestamp reply, update smoothed
2147 * round trip time. If no timestamp is present but
2148 * transmit timer is running and timed sequence
2149 * number was acked, update smoothed round trip time.
2150 * Since we now have an rtt measurement, cancel the
2151 * timer backoff (cf., Phil Karn's retransmit alg.).
2152 * Recompute the initial retransmit timer.
2154 * Some machines (certain windows boxes) send broken
2155 * timestamp replies during the SYN+ACK phase, ignore
2158 if ((to
.to_flags
& TOF_TS
) && (to
.to_tsecr
!= 0))
2159 tcp_xmit_timer(tp
, ticks
- to
.to_tsecr
+ 1,
2161 else if (tp
->t_rtttime
&& SEQ_GT(th
->th_ack
, tp
->t_rtseq
))
2162 tcp_xmit_timer(tp
, ticks
- tp
->t_rtttime
+ 1,
2164 tcp_xmit_bandwidth_limit(tp
, th
->th_ack
);
2167 * If no data (only SYN) was ACK'd,
2168 * skip rest of ACK processing.
2173 /* Stop looking for an acceptable ACK since one was received. */
2174 tp
->rxt_flags
&= ~(TRXT_F_FIRSTACCACK
|
2175 TRXT_F_FASTREXMT
| TRXT_F_EARLYREXMT
);
2177 if (acked
> so
->so_snd
.ssb_cc
) {
2178 tp
->snd_wnd
-= so
->so_snd
.ssb_cc
;
2179 sbdrop(&so
->so_snd
.sb
, (int)so
->so_snd
.ssb_cc
);
2180 ourfinisacked
= TRUE
;
2182 sbdrop(&so
->so_snd
.sb
, acked
);
2183 tp
->snd_wnd
-= acked
;
2184 ourfinisacked
= FALSE
;
2189 * Update window information.
2191 if (acceptable_window_update(tp
, th
, tiwin
)) {
2192 /* keep track of pure window updates */
2193 if (tlen
== 0 && tp
->snd_wl2
== th
->th_ack
&&
2194 tiwin
> tp
->snd_wnd
)
2195 tcpstat
.tcps_rcvwinupd
++;
2196 tp
->snd_wnd
= tiwin
;
2197 tp
->snd_wl1
= th
->th_seq
;
2198 tp
->snd_wl2
= th
->th_ack
;
2199 if (tp
->snd_wnd
> tp
->max_sndwnd
)
2200 tp
->max_sndwnd
= tp
->snd_wnd
;
2204 tp
->snd_una
= th
->th_ack
;
2205 if (TCP_DO_SACK(tp
))
2206 tcp_sack_update_scoreboard(tp
, &to
);
2207 if (IN_FASTRECOVERY(tp
)) {
2208 if (SEQ_GEQ(th
->th_ack
, tp
->snd_recover
)) {
2209 EXIT_FASTRECOVERY(tp
);
2212 * If the congestion window was inflated
2213 * to account for the other side's
2214 * cached packets, retract it.
2216 if (!TCP_DO_SACK(tp
))
2217 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2220 * Window inflation should have left us
2221 * with approximately snd_ssthresh outstanding
2222 * data. But, in case we would be inclined
2223 * to send a burst, better do it using
2226 if (SEQ_GT(th
->th_ack
+ tp
->snd_cwnd
,
2227 tp
->snd_max
+ 2 * tp
->t_maxseg
))
2229 (tp
->snd_max
- tp
->snd_una
) +
2234 if (TCP_DO_SACK(tp
)) {
2235 tp
->snd_max_rexmt
= tp
->snd_max
;
2237 tp
->snd_una
== tp
->rexmt_high
);
2239 tcp_newreno_partial_ack(tp
, th
, acked
);
2245 * Open the congestion window. When in slow-start,
2246 * open exponentially: maxseg per packet. Otherwise,
2247 * open linearly: maxseg per window.
2249 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
) {
2251 (SEQ_LT(tp
->snd_nxt
, tp
->snd_max
) ?
2252 tp
->t_maxseg
: 2 * tp
->t_maxseg
);
2255 tp
->snd_cwnd
+= tcp_do_abc
?
2256 min(acked
, abc_sslimit
) : tp
->t_maxseg
;
2258 /* linear increase */
2259 tp
->snd_wacked
+= tcp_do_abc
? acked
:
2261 if (tp
->snd_wacked
>= tp
->snd_cwnd
) {
2262 tp
->snd_wacked
-= tp
->snd_cwnd
;
2263 tp
->snd_cwnd
+= tp
->t_maxseg
;
2266 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2267 TCP_MAXWIN
<< tp
->snd_scale
);
2268 tp
->snd_recover
= th
->th_ack
- 1;
2270 if (SEQ_LT(tp
->snd_nxt
, tp
->snd_una
))
2271 tp
->snd_nxt
= tp
->snd_una
;
2274 * If all outstanding data is acked, stop retransmit
2275 * timer and remember to restart (more output or persist).
2276 * If there is more data to be acked, restart retransmit
2277 * timer, using current (possibly backed-off) value.
2279 if (th
->th_ack
== tp
->snd_max
) {
2280 tcp_callout_stop(tp
, tp
->tt_rexmt
);
2282 } else if (!tcp_callout_active(tp
, tp
->tt_persist
)) {
2283 tcp_callout_reset(tp
, tp
->tt_rexmt
, tp
->t_rxtcur
,
2287 switch (tp
->t_state
) {
2289 * In FIN_WAIT_1 STATE in addition to the processing
2290 * for the ESTABLISHED state if our FIN is now acknowledged
2291 * then enter FIN_WAIT_2.
2293 case TCPS_FIN_WAIT_1
:
2294 if (ourfinisacked
) {
2296 * If we can't receive any more
2297 * data, then closing user can proceed.
2298 * Starting the timer is contrary to the
2299 * specification, but if we don't get a FIN
2300 * we'll hang forever.
2302 if (so
->so_state
& SS_CANTRCVMORE
) {
2303 soisdisconnected(so
);
2304 tcp_callout_reset(tp
, tp
->tt_2msl
,
2305 tp
->t_maxidle
, tcp_timer_2msl
);
2307 TCP_STATE_CHANGE(tp
, TCPS_FIN_WAIT_2
);
2312 * In CLOSING STATE in addition to the processing for
2313 * the ESTABLISHED state if the ACK acknowledges our FIN
2314 * then enter the TIME-WAIT state, otherwise ignore
2318 if (ourfinisacked
) {
2319 TCP_STATE_CHANGE(tp
, TCPS_TIME_WAIT
);
2320 tcp_canceltimers(tp
);
2321 tcp_callout_reset(tp
, tp
->tt_2msl
,
2322 2 * tcp_rmx_msl(tp
),
2324 soisdisconnected(so
);
2329 * In LAST_ACK, we may still be waiting for data to drain
2330 * and/or to be acked, as well as for the ack of our FIN.
2331 * If our FIN is now acknowledged, delete the TCB,
2332 * enter the closed state and return.
2335 if (ourfinisacked
) {
2342 * In TIME_WAIT state the only thing that should arrive
2343 * is a retransmission of the remote FIN. Acknowledge
2344 * it and restart the finack timer.
2346 case TCPS_TIME_WAIT
:
2347 tcp_callout_reset(tp
, tp
->tt_2msl
, 2 * tcp_rmx_msl(tp
),
2355 * Update window information.
2356 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2358 if ((thflags
& TH_ACK
) &&
2359 acceptable_window_update(tp
, th
, tiwin
)) {
2360 /* keep track of pure window updates */
2361 if (tlen
== 0 && tp
->snd_wl2
== th
->th_ack
&&
2362 tiwin
> tp
->snd_wnd
)
2363 tcpstat
.tcps_rcvwinupd
++;
2364 tp
->snd_wnd
= tiwin
;
2365 tp
->snd_wl1
= th
->th_seq
;
2366 tp
->snd_wl2
= th
->th_ack
;
2367 if (tp
->snd_wnd
> tp
->max_sndwnd
)
2368 tp
->max_sndwnd
= tp
->snd_wnd
;
2373 * Process segments with URG.
2375 if ((thflags
& TH_URG
) && th
->th_urp
&&
2376 !TCPS_HAVERCVDFIN(tp
->t_state
)) {
2378 * This is a kludge, but if we receive and accept
2379 * random urgent pointers, we'll crash in
2380 * soreceive. It's hard to imagine someone
2381 * actually wanting to send this much urgent data.
2383 if (th
->th_urp
+ so
->so_rcv
.ssb_cc
> sb_max
) {
2384 th
->th_urp
= 0; /* XXX */
2385 thflags
&= ~TH_URG
; /* XXX */
2386 goto dodata
; /* XXX */
2389 * If this segment advances the known urgent pointer,
2390 * then mark the data stream. This should not happen
2391 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2392 * a FIN has been received from the remote side.
2393 * In these states we ignore the URG.
2395 * According to RFC961 (Assigned Protocols),
2396 * the urgent pointer points to the last octet
2397 * of urgent data. We continue, however,
2398 * to consider it to indicate the first octet
2399 * of data past the urgent section as the original
2400 * spec states (in one of two places).
2402 if (SEQ_GT(th
->th_seq
+ th
->th_urp
, tp
->rcv_up
)) {
2403 tp
->rcv_up
= th
->th_seq
+ th
->th_urp
;
2404 so
->so_oobmark
= so
->so_rcv
.ssb_cc
+
2405 (tp
->rcv_up
- tp
->rcv_nxt
) - 1;
2406 if (so
->so_oobmark
== 0)
2407 sosetstate(so
, SS_RCVATMARK
);
2409 tp
->t_oobflags
&= ~(TCPOOB_HAVEDATA
| TCPOOB_HADDATA
);
2412 * Remove out of band data so doesn't get presented to user.
2413 * This can happen independent of advancing the URG pointer,
2414 * but if two URG's are pending at once, some out-of-band
2415 * data may creep in... ick.
2417 if (th
->th_urp
<= (u_long
)tlen
&&
2418 !(so
->so_options
& SO_OOBINLINE
)) {
2419 /* hdr drop is delayed */
2420 tcp_pulloutofband(so
, th
, m
, drop_hdrlen
);
2424 * If no out of band data is expected,
2425 * pull receive urgent pointer along
2426 * with the receive window.
2428 if (SEQ_GT(tp
->rcv_nxt
, tp
->rcv_up
))
2429 tp
->rcv_up
= tp
->rcv_nxt
;
2434 * Process the segment text, merging it into the TCP sequencing queue,
2435 * and arranging for acknowledgment of receipt if necessary.
2436 * This process logically involves adjusting tp->rcv_wnd as data
2437 * is presented to the user (this happens in tcp_usrreq.c,
2438 * case PRU_RCVD). If a FIN has already been received on this
2439 * connection then we just ignore the text.
2441 if ((tlen
|| (thflags
& TH_FIN
)) && !TCPS_HAVERCVDFIN(tp
->t_state
)) {
2442 if (thflags
& TH_FIN
)
2443 tp
->t_flags
|= TF_SAWFIN
;
2444 m_adj(m
, drop_hdrlen
); /* delayed header drop */
2446 * Insert segment which includes th into TCP reassembly queue
2447 * with control block tp. Set thflags to whether reassembly now
2448 * includes a segment with FIN. This handles the common case
2449 * inline (segment is the next to be received on an established
2450 * connection, and the queue is empty), avoiding linkage into
2451 * and removal from the queue and repetition of various
2453 * Set DELACK for segments received in order, but ack
2454 * immediately when segments are out of order (so
2455 * fast retransmit can work).
2457 if (th
->th_seq
== tp
->rcv_nxt
&&
2458 TAILQ_EMPTY(&tp
->t_segq
) &&
2459 TCPS_HAVEESTABLISHED(tp
->t_state
)) {
2460 if (thflags
& TH_FIN
)
2461 tp
->t_flags
|= TF_QUEDFIN
;
2462 if (DELAY_ACK(tp
)) {
2463 tcp_callout_reset(tp
, tp
->tt_delack
,
2464 tcp_delacktime
, tcp_timer_delack
);
2466 tp
->t_flags
|= TF_ACKNOW
;
2468 tp
->rcv_nxt
+= tlen
;
2469 thflags
= th
->th_flags
& TH_FIN
;
2470 tcpstat
.tcps_rcvpack
++;
2471 tcpstat
.tcps_rcvbyte
+= tlen
;
2473 if (so
->so_state
& SS_CANTRCVMORE
) {
2476 lwkt_gettoken(&so
->so_rcv
.ssb_token
);
2477 ssb_appendstream(&so
->so_rcv
, m
);
2478 lwkt_reltoken(&so
->so_rcv
.ssb_token
);
2482 if (!(tp
->sack_flags
& TSACK_F_DUPSEG
)) {
2483 /* Initialize SACK report block. */
2484 tp
->reportblk
.rblk_start
= th
->th_seq
;
2485 tp
->reportblk
.rblk_end
= TCP_SACK_BLKEND(
2486 th
->th_seq
+ tlen
, thflags
);
2488 thflags
= tcp_reass(tp
, th
, &tlen
, m
);
2489 tp
->t_flags
|= TF_ACKNOW
;
2493 * Note the amount of data that peer has sent into
2494 * our window, in order to estimate the sender's
2497 len
= so
->so_rcv
.ssb_hiwat
- (tp
->rcv_adv
- tp
->rcv_nxt
);
2504 * If FIN is received ACK the FIN and let the user know
2505 * that the connection is closing.
2507 if (thflags
& TH_FIN
) {
2508 if (!TCPS_HAVERCVDFIN(tp
->t_state
)) {
2511 * If connection is half-synchronized
2512 * (ie NEEDSYN flag on) then delay ACK,
2513 * so it may be piggybacked when SYN is sent.
2514 * Otherwise, since we received a FIN then no
2515 * more input can be expected, send ACK now.
2517 if (DELAY_ACK(tp
) && (tp
->t_flags
& TF_NEEDSYN
)) {
2518 tcp_callout_reset(tp
, tp
->tt_delack
,
2519 tcp_delacktime
, tcp_timer_delack
);
2521 tp
->t_flags
|= TF_ACKNOW
;
2526 switch (tp
->t_state
) {
2528 * In SYN_RECEIVED and ESTABLISHED STATES
2529 * enter the CLOSE_WAIT state.
2531 case TCPS_SYN_RECEIVED
:
2532 tp
->t_starttime
= ticks
;
2534 case TCPS_ESTABLISHED
:
2535 TCP_STATE_CHANGE(tp
, TCPS_CLOSE_WAIT
);
2539 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2540 * enter the CLOSING state.
2542 case TCPS_FIN_WAIT_1
:
2543 TCP_STATE_CHANGE(tp
, TCPS_CLOSING
);
2547 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2548 * starting the time-wait timer, turning off the other
2551 case TCPS_FIN_WAIT_2
:
2552 TCP_STATE_CHANGE(tp
, TCPS_TIME_WAIT
);
2553 tcp_canceltimers(tp
);
2554 tcp_callout_reset(tp
, tp
->tt_2msl
, 2 * tcp_rmx_msl(tp
),
2556 soisdisconnected(so
);
2560 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2562 case TCPS_TIME_WAIT
:
2563 tcp_callout_reset(tp
, tp
->tt_2msl
, 2 * tcp_rmx_msl(tp
),
2570 if (so
->so_options
& SO_DEBUG
)
2571 tcp_trace(TA_INPUT
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2575 * Delayed duplicated ACK processing
2577 if (delayed_dupack
&& tcp_recv_dupack(tp
, th_dupack
, to_flags
))
2581 * Return any desired output.
2583 if ((tp
->t_flags
& TF_ACKNOW
) ||
2584 (needoutput
&& tcp_sack_report_needed(tp
))) {
2585 tcp_output_cancel(tp
);
2586 tcp_output_fair(tp
);
2587 } else if (needoutput
&& !tcp_output_pending(tp
)) {
2588 tcp_output_fair(tp
);
2590 tcp_sack_report_cleanup(tp
);
2591 return(IPPROTO_DONE
);
2595 * Generate an ACK dropping incoming segment if it occupies
2596 * sequence space, where the ACK reflects our state.
2598 * We can now skip the test for the RST flag since all
2599 * paths to this code happen after packets containing
2600 * RST have been dropped.
2602 * In the SYN-RECEIVED state, don't send an ACK unless the
2603 * segment we received passes the SYN-RECEIVED ACK test.
2604 * If it fails send a RST. This breaks the loop in the
2605 * "LAND" DoS attack, and also prevents an ACK storm
2606 * between two listening ports that have been sent forged
2607 * SYN segments, each with the source address of the other.
2609 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& (thflags
& TH_ACK
) &&
2610 (SEQ_GT(tp
->snd_una
, th
->th_ack
) ||
2611 SEQ_GT(th
->th_ack
, tp
->snd_max
)) ) {
2612 rstreason
= BANDLIM_RST_OPENPORT
;
2616 if (so
->so_options
& SO_DEBUG
)
2617 tcp_trace(TA_DROP
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2620 tp
->t_flags
|= TF_ACKNOW
;
2622 tcp_sack_report_cleanup(tp
);
2623 return(IPPROTO_DONE
);
2627 * Generate a RST, dropping incoming segment.
2628 * Make ACK acceptable to originator of segment.
2629 * Don't bother to respond if destination was broadcast/multicast.
2631 if ((thflags
& TH_RST
) || m
->m_flags
& (M_BCAST
| M_MCAST
))
2634 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
2635 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
2638 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
2639 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
2640 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
2641 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
2644 /* IPv6 anycast check is done at tcp6_input() */
2647 * Perform bandwidth limiting.
2650 if (badport_bandlim(rstreason
) < 0)
2655 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2656 tcp_trace(TA_DROP
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2658 if (thflags
& TH_ACK
)
2659 /* mtod() below is safe as long as hdr dropping is delayed */
2660 tcp_respond(tp
, mtod(m
, void *), th
, m
, (tcp_seq
)0, th
->th_ack
,
2663 if (thflags
& TH_SYN
)
2665 /* mtod() below is safe as long as hdr dropping is delayed */
2666 tcp_respond(tp
, mtod(m
, void *), th
, m
, th
->th_seq
+ tlen
,
2667 (tcp_seq
)0, TH_RST
| TH_ACK
);
2670 tcp_sack_report_cleanup(tp
);
2671 return(IPPROTO_DONE
);
2675 * Drop space held by incoming segment and return.
2678 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2679 tcp_trace(TA_DROP
, ostate
, tp
, tcp_saveipgen
, &tcp_savetcp
, 0);
2683 tcp_sack_report_cleanup(tp
);
2684 return(IPPROTO_DONE
);
2688 * Parse TCP options and place in tcpopt.
2691 tcp_dooptions(struct tcpopt
*to
, u_char
*cp
, int cnt
, boolean_t is_syn
,
2697 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2699 if (opt
== TCPOPT_EOL
)
2701 if (opt
== TCPOPT_NOP
)
2707 if (optlen
< 2 || optlen
> cnt
)
2712 if (optlen
!= TCPOLEN_MAXSEG
)
2716 to
->to_flags
|= TOF_MSS
;
2717 bcopy(cp
+ 2, &to
->to_mss
, sizeof to
->to_mss
);
2718 to
->to_mss
= ntohs(to
->to_mss
);
2721 if (optlen
!= TCPOLEN_WINDOW
)
2725 to
->to_flags
|= TOF_SCALE
;
2726 to
->to_requested_s_scale
= min(cp
[2], TCP_MAX_WINSHIFT
);
2728 case TCPOPT_TIMESTAMP
:
2729 if (optlen
!= TCPOLEN_TIMESTAMP
)
2731 to
->to_flags
|= TOF_TS
;
2732 bcopy(cp
+ 2, &to
->to_tsval
, sizeof to
->to_tsval
);
2733 to
->to_tsval
= ntohl(to
->to_tsval
);
2734 bcopy(cp
+ 6, &to
->to_tsecr
, sizeof to
->to_tsecr
);
2735 to
->to_tsecr
= ntohl(to
->to_tsecr
);
2737 * If echoed timestamp is later than the current time,
2738 * fall back to non RFC1323 RTT calculation.
2740 if (to
->to_tsecr
!= 0 && TSTMP_GT(to
->to_tsecr
, ticks
))
2743 case TCPOPT_SACK_PERMITTED
:
2744 if (optlen
!= TCPOLEN_SACK_PERMITTED
)
2748 to
->to_flags
|= TOF_SACK_PERMITTED
;
2751 if ((optlen
- 2) & 0x07) /* not multiple of 8 */
2753 to
->to_nsackblocks
= (optlen
- 2) / 8;
2754 to
->to_sackblocks
= (struct raw_sackblock
*) (cp
+ 2);
2755 to
->to_flags
|= TOF_SACK
;
2756 for (i
= 0; i
< to
->to_nsackblocks
; i
++) {
2757 struct raw_sackblock
*r
= &to
->to_sackblocks
[i
];
2759 r
->rblk_start
= ntohl(r
->rblk_start
);
2760 r
->rblk_end
= ntohl(r
->rblk_end
);
2762 if (SEQ_LEQ(r
->rblk_end
, r
->rblk_start
)) {
2764 * Invalid SACK block; discard all
2767 tcpstat
.tcps_rcvbadsackopt
++;
2768 to
->to_nsackblocks
= 0;
2769 to
->to_sackblocks
= NULL
;
2770 to
->to_flags
&= ~TOF_SACK
;
2774 if ((to
->to_flags
& TOF_SACK
) &&
2775 tcp_sack_ndsack_blocks(to
->to_sackblocks
,
2776 to
->to_nsackblocks
, ack
))
2777 to
->to_flags
|= TOF_DSACK
;
2779 #ifdef TCP_SIGNATURE
2781 * XXX In order to reply to a host which has set the
2782 * TCP_SIGNATURE option in its initial SYN, we have to
2783 * record the fact that the option was observed here
2784 * for the syncache code to perform the correct response.
2786 case TCPOPT_SIGNATURE
:
2787 if (optlen
!= TCPOLEN_SIGNATURE
)
2789 to
->to_flags
|= (TOF_SIGNATURE
| TOF_SIGLEN
);
2791 #endif /* TCP_SIGNATURE */
2799 * Pull out of band byte out of a segment so
2800 * it doesn't appear in the user's data queue.
2801 * It is still reflected in the segment length for
2802 * sequencing purposes.
2803 * "off" is the delayed to be dropped hdrlen.
2806 tcp_pulloutofband(struct socket
*so
, struct tcphdr
*th
, struct mbuf
*m
, int off
)
2808 int cnt
= off
+ th
->th_urp
- 1;
2811 if (m
->m_len
> cnt
) {
2812 char *cp
= mtod(m
, caddr_t
) + cnt
;
2813 struct tcpcb
*tp
= sototcpcb(so
);
2816 tp
->t_oobflags
|= TCPOOB_HAVEDATA
;
2817 bcopy(cp
+ 1, cp
, m
->m_len
- cnt
- 1);
2819 if (m
->m_flags
& M_PKTHDR
)
2828 panic("tcp_pulloutofband");
2832 * Collect new round-trip time estimate and update averages and current
2836 tcp_xmit_timer(struct tcpcb
*tp
, int rtt
, tcp_seq ack
)
2840 tcpstat
.tcps_rttupdated
++;
2842 if ((tp
->rxt_flags
& TRXT_F_REBASERTO
) &&
2843 SEQ_GT(ack
, tp
->snd_max_prev
)) {
2844 #ifdef DEBUG_EIFEL_RESPONSE
2845 kprintf("srtt/rttvar, prev %d/%d, cur %d/%d, ",
2846 tp
->t_srtt_prev
, tp
->t_rttvar_prev
,
2847 tp
->t_srtt
, tp
->t_rttvar
);
2850 tcpstat
.tcps_eifelresponse
++;
2852 tp
->rxt_flags
&= ~TRXT_F_REBASERTO
;
2853 tp
->t_srtt
= max(tp
->t_srtt_prev
, (rtt
<< TCP_RTT_SHIFT
));
2854 tp
->t_rttvar
= max(tp
->t_rttvar_prev
,
2855 (rtt
<< (TCP_RTTVAR_SHIFT
- 1)));
2856 if (tp
->t_rttbest
> tp
->t_srtt
+ tp
->t_rttvar
)
2857 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
2859 #ifdef DEBUG_EIFEL_RESPONSE
2860 kprintf("new %d/%d ", tp
->t_srtt
, tp
->t_rttvar
);
2862 } else if (tp
->t_srtt
!= 0) {
2866 * srtt is stored as fixed point with 5 bits after the
2867 * binary point (i.e., scaled by 32). The following magic
2868 * is equivalent to the smoothing algorithm in rfc793 with
2869 * an alpha of .875 (srtt = rtt/32 + srtt*31/32 in fixed
2870 * point). Adjust rtt to origin 0.
2872 delta
= ((rtt
- 1) << TCP_DELTA_SHIFT
)
2873 - (tp
->t_srtt
>> (TCP_RTT_SHIFT
- TCP_DELTA_SHIFT
));
2875 if ((tp
->t_srtt
+= delta
) <= 0)
2879 * We accumulate a smoothed rtt variance (actually, a
2880 * smoothed mean difference), then set the retransmit
2881 * timer to smoothed rtt + 4 times the smoothed variance.
2882 * rttvar is stored as fixed point with 4 bits after the
2883 * binary point (scaled by 16). The following is
2884 * equivalent to rfc793 smoothing with an alpha of .75
2885 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2886 * rfc793's wired-in beta.
2890 delta
-= tp
->t_rttvar
>> (TCP_RTTVAR_SHIFT
- TCP_DELTA_SHIFT
);
2891 if ((tp
->t_rttvar
+= delta
) <= 0)
2893 if (tp
->t_rttbest
> tp
->t_srtt
+ tp
->t_rttvar
)
2894 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
2897 * No rtt measurement yet - use the unsmoothed rtt.
2898 * Set the variance to half the rtt (so our first
2899 * retransmit happens at 3*rtt).
2901 tp
->t_srtt
= rtt
<< TCP_RTT_SHIFT
;
2902 tp
->t_rttvar
= rtt
<< (TCP_RTTVAR_SHIFT
- 1);
2903 tp
->t_rttbest
= tp
->t_srtt
+ tp
->t_rttvar
;
2908 #ifdef DEBUG_EIFEL_RESPONSE
2910 kprintf("| rxtcur prev %d, old %d, ",
2911 tp
->t_rxtcur_prev
, tp
->t_rxtcur
);
2916 * the retransmit should happen at rtt + 4 * rttvar.
2917 * Because of the way we do the smoothing, srtt and rttvar
2918 * will each average +1/2 tick of bias. When we compute
2919 * the retransmit timer, we want 1/2 tick of rounding and
2920 * 1 extra tick because of +-1/2 tick uncertainty in the
2921 * firing of the timer. The bias will give us exactly the
2922 * 1.5 tick we need. But, because the bias is
2923 * statistical, we have to test that we don't drop below
2924 * the minimum feasible timer (which is 2 ticks).
2926 TCPT_RANGESET(tp
->t_rxtcur
, TCP_REXMTVAL(tp
),
2927 max(tp
->t_rttmin
, rtt
+ 2), TCPTV_REXMTMAX
);
2930 if (tp
->t_rxtcur
< tp
->t_rxtcur_prev
+ tcp_eifel_rtoinc
) {
2932 * RFC4015 requires that the new RTO is at least
2933 * 2*G (tcp_eifel_rtoinc) greater then the RTO
2934 * (t_rxtcur_prev) when the spurious retransmit
2937 * The above condition could be true, if the SRTT
2938 * and RTTVAR used to calculate t_rxtcur_prev
2939 * resulted in a value less than t_rttmin. So
2940 * simply increasing SRTT by tcp_eifel_rtoinc when
2941 * preparing for the Eifel response could not ensure
2942 * that the new RTO will be tcp_eifel_rtoinc greater
2945 tp
->t_rxtcur
= tp
->t_rxtcur_prev
+ tcp_eifel_rtoinc
;
2947 #ifdef DEBUG_EIFEL_RESPONSE
2948 kprintf("new %d\n", tp
->t_rxtcur
);
2953 * We received an ack for a packet that wasn't retransmitted;
2954 * it is probably safe to discard any error indications we've
2955 * received recently. This isn't quite right, but close enough
2956 * for now (a route might have failed after we sent a segment,
2957 * and the return path might not be symmetrical).
2959 tp
->t_softerror
= 0;
2963 * Determine a reasonable value for maxseg size.
2964 * If the route is known, check route for mtu.
2965 * If none, use an mss that can be handled on the outgoing
2966 * interface without forcing IP to fragment; if bigger than
2967 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2968 * to utilize large mbufs. If no route is found, route has no mtu,
2969 * or the destination isn't local, use a default, hopefully conservative
2970 * size (usually 512 or the default IP max size, but no more than the mtu
2971 * of the interface), as we can't discover anything about intervening
2972 * gateways or networks. We also initialize the congestion/slow start
2973 * window to be a single segment if the destination isn't local.
2974 * While looking at the routing entry, we also initialize other path-dependent
2975 * parameters from pre-set or cached values in the routing entry.
2977 * Also take into account the space needed for options that we
2978 * send regularly. Make maxseg shorter by that amount to assure
2979 * that we can send maxseg amount of data even when the options
2980 * are present. Store the upper limit of the length of options plus
2983 * NOTE that this routine is only called when we process an incoming
2984 * segment, for outgoing segments only tcp_mssopt is called.
2987 tcp_mss(struct tcpcb
*tp
, int offer
)
2993 struct inpcb
*inp
= tp
->t_inpcb
;
2996 boolean_t isipv6
= INP_ISIPV6(inp
);
2997 size_t min_protoh
= isipv6
?
2998 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
2999 sizeof(struct tcpiphdr
);
3001 const boolean_t isipv6
= FALSE
;
3002 const size_t min_protoh
= sizeof(struct tcpiphdr
);
3006 rt
= tcp_rtlookup6(&inp
->inp_inc
);
3008 rt
= tcp_rtlookup(&inp
->inp_inc
);
3010 tp
->t_maxopd
= tp
->t_maxseg
=
3011 (isipv6
? tcp_v6mssdflt
: tcp_mssdflt
);
3015 so
= inp
->inp_socket
;
3018 * Offer == 0 means that there was no MSS on the SYN segment,
3019 * in this case we use either the interface mtu or tcp_mssdflt.
3021 * An offer which is too large will be cut down later.
3025 if (in6_localaddr(&inp
->in6p_faddr
))
3026 offer
= IN6_LINKMTU(rt
->rt_ifp
) - min_protoh
;
3028 offer
= tcp_v6mssdflt
;
3030 if (in_localaddr(inp
->inp_faddr
))
3031 offer
= ifp
->if_mtu
- min_protoh
;
3033 offer
= tcp_mssdflt
;
3038 * Prevent DoS attack with too small MSS. Round up
3039 * to at least minmss.
3041 * Sanity check: make sure that maxopd will be large
3042 * enough to allow some data on segments even is the
3043 * all the option space is used (40bytes). Otherwise
3044 * funny things may happen in tcp_output.
3046 offer
= max(offer
, tcp_minmss
);
3047 offer
= max(offer
, 64);
3049 rt
->rt_rmx
.rmx_mssopt
= offer
;
3052 * While we're here, check if there's an initial rtt
3053 * or rttvar. Convert from the route-table units
3054 * to scaled multiples of the slow timeout timer.
3056 if (tp
->t_srtt
== 0 && (rtt
= rt
->rt_rmx
.rmx_rtt
)) {
3058 * XXX the lock bit for RTT indicates that the value
3059 * is also a minimum value; this is subject to time.
3061 if (rt
->rt_rmx
.rmx_locks
& RTV_RTT
)
3062 tp
->t_rttmin
= rtt
/ (RTM_RTTUNIT
/ hz
);
3063 tp
->t_srtt
= rtt
/ (RTM_RTTUNIT
/ (hz
* TCP_RTT_SCALE
));
3064 tp
->t_rttbest
= tp
->t_srtt
+ TCP_RTT_SCALE
;
3065 tcpstat
.tcps_usedrtt
++;
3066 if (rt
->rt_rmx
.rmx_rttvar
) {
3067 tp
->t_rttvar
= rt
->rt_rmx
.rmx_rttvar
/
3068 (RTM_RTTUNIT
/ (hz
* TCP_RTTVAR_SCALE
));
3069 tcpstat
.tcps_usedrttvar
++;
3071 /* default variation is +- 1 rtt */
3073 tp
->t_srtt
* TCP_RTTVAR_SCALE
/ TCP_RTT_SCALE
;
3075 TCPT_RANGESET(tp
->t_rxtcur
,
3076 ((tp
->t_srtt
>> 2) + tp
->t_rttvar
) >> 1,
3077 tp
->t_rttmin
, TCPTV_REXMTMAX
);
3081 * if there's an mtu associated with the route, use it
3082 * else, use the link mtu. Take the smaller of mss or offer
3085 if (rt
->rt_rmx
.rmx_mtu
) {
3086 mss
= rt
->rt_rmx
.rmx_mtu
;
3089 mss
= IN6_LINKMTU(rt
->rt_ifp
);
3094 mss
= min(mss
, offer
);
3097 * maxopd stores the maximum length of data AND options
3098 * in a segment; maxseg is the amount of data in a normal
3099 * segment. We need to store this value (maxopd) apart
3100 * from maxseg, because now every segment carries options
3101 * and thus we normally have somewhat less data in segments.
3105 if ((tp
->t_flags
& (TF_REQ_TSTMP
| TF_NOOPT
)) == TF_REQ_TSTMP
&&
3106 ((tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
))
3107 mss
-= TCPOLEN_TSTAMP_APPA
;
3109 #if (MCLBYTES & (MCLBYTES - 1)) == 0
3111 mss
&= ~(MCLBYTES
-1);
3114 mss
= mss
/ MCLBYTES
* MCLBYTES
;
3117 * If there's a pipesize, change the socket buffer
3118 * to that size. Make the socket buffers an integral
3119 * number of mss units; if the mss is larger than
3120 * the socket buffer, decrease the mss.
3123 if ((bufsize
= rt
->rt_rmx
.rmx_sendpipe
) == 0)
3125 bufsize
= so
->so_snd
.ssb_hiwat
;
3129 bufsize
= roundup(bufsize
, mss
);
3130 if (bufsize
> sb_max
)
3132 if (bufsize
> so
->so_snd
.ssb_hiwat
)
3133 ssb_reserve(&so
->so_snd
, bufsize
, so
, NULL
);
3138 if ((bufsize
= rt
->rt_rmx
.rmx_recvpipe
) == 0)
3140 bufsize
= so
->so_rcv
.ssb_hiwat
;
3141 if (bufsize
> mss
) {
3142 bufsize
= roundup(bufsize
, mss
);
3143 if (bufsize
> sb_max
)
3145 if (bufsize
> so
->so_rcv
.ssb_hiwat
) {
3146 lwkt_gettoken(&so
->so_rcv
.ssb_token
);
3147 ssb_reserve(&so
->so_rcv
, bufsize
, so
, NULL
);
3148 lwkt_reltoken(&so
->so_rcv
.ssb_token
);
3153 * Set the slow-start flight size
3155 * NOTE: t_maxseg must have been configured!
3157 tp
->snd_cwnd
= tcp_initial_window(tp
);
3159 if (rt
->rt_rmx
.rmx_ssthresh
) {
3161 * There's some sort of gateway or interface
3162 * buffer limit on the path. Use this to set
3163 * the slow start threshhold, but set the
3164 * threshold to no less than 2*mss.
3166 tp
->snd_ssthresh
= max(2 * mss
, rt
->rt_rmx
.rmx_ssthresh
);
3167 tcpstat
.tcps_usedssthresh
++;
3172 * Determine the MSS option to send on an outgoing SYN.
3175 tcp_mssopt(struct tcpcb
*tp
)
3179 boolean_t isipv6
= INP_ISIPV6(tp
->t_inpcb
);
3180 int min_protoh
= isipv6
?
3181 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
3182 sizeof(struct tcpiphdr
);
3184 const boolean_t isipv6
= FALSE
;
3185 const size_t min_protoh
= sizeof(struct tcpiphdr
);
3189 rt
= tcp_rtlookup6(&tp
->t_inpcb
->inp_inc
);
3191 rt
= tcp_rtlookup(&tp
->t_inpcb
->inp_inc
);
3193 return (isipv6
? tcp_v6mssdflt
: tcp_mssdflt
);
3196 return ((isipv6
? IN6_LINKMTU(rt
->rt_ifp
) : rt
->rt_ifp
->if_mtu
) -
3199 return (rt
->rt_ifp
->if_mtu
- min_protoh
);
3204 * When a partial ack arrives, force the retransmission of the
3205 * next unacknowledged segment. Do not exit Fast Recovery.
3207 * Implement the Slow-but-Steady variant of NewReno by restarting the
3208 * the retransmission timer. Turn it off here so it can be restarted
3209 * later in tcp_output().
3212 tcp_newreno_partial_ack(struct tcpcb
*tp
, struct tcphdr
*th
, int acked
)
3214 tcp_seq old_snd_nxt
= tp
->snd_nxt
;
3215 u_long ocwnd
= tp
->snd_cwnd
;
3217 tcp_callout_stop(tp
, tp
->tt_rexmt
);
3219 tp
->snd_nxt
= th
->th_ack
;
3220 /* Set snd_cwnd to one segment beyond acknowledged offset. */
3221 tp
->snd_cwnd
= tp
->t_maxseg
;
3222 tp
->t_flags
|= TF_ACKNOW
;
3224 if (SEQ_GT(old_snd_nxt
, tp
->snd_nxt
))
3225 tp
->snd_nxt
= old_snd_nxt
;
3226 /* partial window deflation */
3228 tp
->snd_cwnd
= ocwnd
- acked
+ tp
->t_maxseg
;
3230 tp
->snd_cwnd
= tp
->t_maxseg
;
3234 * In contrast to the Slow-but-Steady NewReno variant,
3235 * we do not reset the retransmission timer for SACK retransmissions,
3236 * except when retransmitting snd_una.
3239 tcp_sack_rexmt(struct tcpcb
*tp
, boolean_t force
)
3241 tcp_seq old_snd_nxt
= tp
->snd_nxt
;
3242 u_long ocwnd
= tp
->snd_cwnd
;
3244 int nseg
= 0; /* consecutive new segments */
3245 int nseg_rexmt
= 0; /* retransmitted segments */
3249 uint32_t unsacked
= tcp_sack_first_unsacked_len(tp
);
3252 * Try to fill the first hole in the receiver's
3255 maxrexmt
= howmany(unsacked
, tp
->t_maxseg
);
3256 if (maxrexmt
> tcp_force_sackrxt
)
3257 maxrexmt
= tcp_force_sackrxt
;
3261 pipe
= tcp_sack_compute_pipe(tp
);
3262 while (((tcp_seq_diff_t
)(ocwnd
- pipe
) >= (tcp_seq_diff_t
)tp
->t_maxseg
3263 || (force
&& nseg_rexmt
< maxrexmt
&& nseg
== 0)) &&
3264 (!tcp_do_smartsack
|| nseg
< TCP_SACK_MAXBURST
)) {
3265 tcp_seq old_snd_max
, old_rexmt_high
, nextrexmt
;
3266 uint32_t sent
, seglen
;
3270 old_rexmt_high
= tp
->rexmt_high
;
3271 if (!tcp_sack_nextseg(tp
, &nextrexmt
, &seglen
, &rescue
)) {
3272 tp
->rexmt_high
= old_rexmt_high
;
3277 * If the next tranmission is a rescue retranmission,
3278 * we check whether we have already sent some data
3279 * (either new segments or retransmitted segments)
3280 * into the the network or not. Since the idea of rescue
3281 * retransmission is to sustain ACK clock, as long as
3282 * some segments are in the network, ACK clock will be
3285 if (rescue
&& (nseg_rexmt
> 0 || nseg
> 0)) {
3286 tp
->rexmt_high
= old_rexmt_high
;
3290 if (nextrexmt
== tp
->snd_max
)
3294 tp
->snd_nxt
= nextrexmt
;
3295 tp
->snd_cwnd
= nextrexmt
- tp
->snd_una
+ seglen
;
3296 old_snd_max
= tp
->snd_max
;
3297 if (nextrexmt
== tp
->snd_una
)
3298 tcp_callout_stop(tp
, tp
->tt_rexmt
);
3299 tp
->t_flags
|= TF_XMITNOW
;
3300 error
= tcp_output(tp
);
3302 tp
->rexmt_high
= old_rexmt_high
;
3305 sent
= tp
->snd_nxt
- nextrexmt
;
3307 tp
->rexmt_high
= old_rexmt_high
;
3311 tcpstat
.tcps_sndsackpack
++;
3312 tcpstat
.tcps_sndsackbyte
+= sent
;
3315 tcpstat
.tcps_sackrescue
++;
3316 tp
->rexmt_rescue
= tp
->snd_nxt
;
3317 tp
->sack_flags
|= TSACK_F_SACKRESCUED
;
3320 if (SEQ_LT(nextrexmt
, old_snd_max
) &&
3321 SEQ_LT(tp
->rexmt_high
, tp
->snd_nxt
)) {
3322 tp
->rexmt_high
= seq_min(tp
->snd_nxt
, old_snd_max
);
3323 if (tcp_aggressive_rescuesack
&&
3324 (tp
->sack_flags
& TSACK_F_SACKRESCUED
) &&
3325 SEQ_LT(tp
->rexmt_rescue
, tp
->rexmt_high
)) {
3326 /* Drag RescueRxt along with HighRxt */
3327 tp
->rexmt_rescue
= tp
->rexmt_high
;
3331 if (SEQ_GT(old_snd_nxt
, tp
->snd_nxt
))
3332 tp
->snd_nxt
= old_snd_nxt
;
3333 tp
->snd_cwnd
= ocwnd
;
3337 * Return TRUE, if some new segments are sent
3340 tcp_sack_limitedxmit(struct tcpcb
*tp
)
3342 tcp_seq oldsndnxt
= tp
->snd_nxt
;
3343 tcp_seq oldsndmax
= tp
->snd_max
;
3344 u_long ocwnd
= tp
->snd_cwnd
;
3345 uint32_t pipe
, sent
;
3346 boolean_t ret
= FALSE
;
3347 tcp_seq_diff_t cwnd_left
;
3350 tp
->rexmt_high
= tp
->snd_una
- 1;
3351 pipe
= tcp_sack_compute_pipe(tp
);
3352 cwnd_left
= (tcp_seq_diff_t
)(ocwnd
- pipe
);
3353 if (cwnd_left
< (tcp_seq_diff_t
)tp
->t_maxseg
)
3356 if (tcp_do_smartsack
)
3357 cwnd_left
= ulmin(cwnd_left
, tp
->t_maxseg
* TCP_SACK_MAXBURST
);
3359 next
= tp
->snd_nxt
= tp
->snd_max
;
3360 tp
->snd_cwnd
= tp
->snd_nxt
- tp
->snd_una
+
3361 rounddown(cwnd_left
, tp
->t_maxseg
);
3363 tp
->t_flags
|= TF_XMITNOW
;
3366 sent
= tp
->snd_nxt
- next
;
3368 tcpstat
.tcps_sndlimited
+= howmany(sent
, tp
->t_maxseg
);
3372 if (SEQ_LT(oldsndnxt
, oldsndmax
)) {
3373 KASSERT(SEQ_GEQ(oldsndnxt
, tp
->snd_una
),
3374 ("snd_una moved in other threads"));
3375 tp
->snd_nxt
= oldsndnxt
;
3377 tp
->snd_cwnd
= ocwnd
;
3379 if (ret
&& TCP_DO_NCR(tp
))
3380 tcp_ncr_update_rxtthresh(tp
);
3386 * Reset idle time and keep-alive timer, typically called when a valid
3387 * tcp packet is received but may also be called when FASTKEEP is set
3388 * to prevent the previous long-timeout from calculating to a drop.
3390 * Only update t_rcvtime for non-SYN packets.
3392 * Handle the case where one side thinks the connection is established
3393 * but the other side has, say, rebooted without cleaning out the
3394 * connection. The SYNs could be construed as an attack and wind
3395 * up ignored, but in case it isn't an attack we can validate the
3396 * connection by forcing a keepalive.
3399 tcp_timer_keep_activity(struct tcpcb
*tp
, int thflags
)
3401 if (TCPS_HAVEESTABLISHED(tp
->t_state
)) {
3402 if ((thflags
& (TH_SYN
| TH_ACK
)) == TH_SYN
) {
3403 tp
->t_flags
|= TF_KEEPALIVE
;
3404 tcp_callout_reset(tp
, tp
->tt_keep
, hz
/ 2,
3407 tp
->t_rcvtime
= ticks
;
3408 tp
->t_flags
&= ~TF_KEEPALIVE
;
3409 tcp_callout_reset(tp
, tp
->tt_keep
,
3417 tcp_rmx_msl(const struct tcpcb
*tp
)
3420 struct inpcb
*inp
= tp
->t_inpcb
;
3423 boolean_t isipv6
= INP_ISIPV6(inp
);
3425 const boolean_t isipv6
= FALSE
;
3429 rt
= tcp_rtlookup6(&inp
->inp_inc
);
3431 rt
= tcp_rtlookup(&inp
->inp_inc
);
3432 if (rt
== NULL
|| rt
->rt_rmx
.rmx_msl
== 0)
3435 msl
= (rt
->rt_rmx
.rmx_msl
* hz
) / 1000;
3443 tcp_established(struct tcpcb
*tp
)
3445 TCP_STATE_CHANGE(tp
, TCPS_ESTABLISHED
);
3446 tcp_callout_reset(tp
, tp
->tt_keep
, tp
->t_keepidle
, tcp_timer_keep
);
3448 if (tp
->t_rxtsyn
> 0) {
3451 * "If the timer expires awaiting the ACK of a SYN segment
3452 * and the TCP implementation is using an RTO less than 3
3453 * seconds, the RTO MUST be re-initialized to 3 seconds
3454 * when data transmission begins"
3456 if (tp
->t_rxtcur
< TCPTV_RTOBASE3
)
3457 tp
->t_rxtcur
= TCPTV_RTOBASE3
;
3462 * Returns TRUE, if the ACK should be dropped
3465 tcp_recv_dupack(struct tcpcb
*tp
, tcp_seq th_ack
, u_int to_flags
)
3467 boolean_t fast_sack_rexmt
= TRUE
;
3469 tcpstat
.tcps_rcvdupack
++;
3472 * We have outstanding data (other than a window probe),
3473 * this is a completely duplicate ack (ie, window info
3474 * didn't change), the ack is the biggest we've seen and
3475 * we've seen exactly our rexmt threshhold of them, so
3476 * assume a packet has been dropped and retransmit it.
3477 * Kludge snd_nxt & the congestion window so we send only
3480 if (IN_FASTRECOVERY(tp
)) {
3481 if (TCP_DO_SACK(tp
)) {
3482 boolean_t force
= FALSE
;
3484 if (tp
->snd_una
== tp
->rexmt_high
&&
3485 (to_flags
& (TOF_SACK
| TOF_SACK_REDUNDANT
)) ==
3488 * New segments got SACKed and
3489 * no retransmit yet.
3494 /* No artifical cwnd inflation. */
3495 tcp_sack_rexmt(tp
, force
);
3498 * Dup acks mean that packets have left
3499 * the network (they're now cached at the
3500 * receiver) so bump cwnd by the amount in
3501 * the receiver to keep a constant cwnd
3502 * packets in the network.
3504 tp
->snd_cwnd
+= tp
->t_maxseg
;
3508 } else if (SEQ_LT(th_ack
, tp
->snd_recover
)) {
3511 } else if (tcp_ignore_redun_dsack
&& TCP_DO_SACK(tp
) &&
3512 (to_flags
& (TOF_DSACK
| TOF_SACK_REDUNDANT
)) ==
3513 (TOF_DSACK
| TOF_SACK_REDUNDANT
)) {
3515 * If the ACK carries DSACK and other SACK blocks
3516 * carry information that we have already known,
3517 * don't count this ACK as duplicate ACK. This
3518 * prevents spurious early retransmit and fast
3519 * retransmit. This also meets the requirement of
3520 * RFC3042 that new segments should not be sent if
3521 * the SACK blocks do not contain new information
3522 * (XXX we actually loosen the requirment that only
3523 * DSACK is checked here).
3525 * This kind of ACKs are usually sent after spurious
3528 /* Do nothing; don't change t_dupacks */
3530 } else if (tp
->t_dupacks
== 0 && TCP_DO_NCR(tp
)) {
3531 tcp_ncr_update_rxtthresh(tp
);
3534 if (++tp
->t_dupacks
== tp
->t_rxtthresh
) {
3535 tcp_seq old_snd_nxt
;
3539 if (tcp_do_eifel_detect
&& (tp
->t_flags
& TF_RCVD_TSTMP
)) {
3540 tcp_save_congestion_state(tp
);
3541 tp
->rxt_flags
|= TRXT_F_FASTREXMT
;
3544 * We know we're losing at the current window size,
3545 * so do congestion avoidance: set ssthresh to half
3546 * the current window and pull our congestion window
3547 * back to the new ssthresh.
3549 win
= min(tp
->snd_wnd
, tp
->snd_cwnd
) / 2 / tp
->t_maxseg
;
3552 tp
->snd_ssthresh
= win
* tp
->t_maxseg
;
3553 ENTER_FASTRECOVERY(tp
);
3554 tp
->snd_recover
= tp
->snd_max
;
3555 tcp_callout_stop(tp
, tp
->tt_rexmt
);
3557 old_snd_nxt
= tp
->snd_nxt
;
3558 tp
->snd_nxt
= th_ack
;
3559 if (TCP_DO_SACK(tp
)) {
3562 rxtlen
= tcp_sack_first_unsacked_len(tp
);
3563 if (rxtlen
> tp
->t_maxseg
)
3564 rxtlen
= tp
->t_maxseg
;
3565 tp
->snd_cwnd
= rxtlen
;
3567 tp
->snd_cwnd
= tp
->t_maxseg
;
3570 ++tcpstat
.tcps_sndfastrexmit
;
3571 tp
->snd_cwnd
= tp
->snd_ssthresh
;
3572 tp
->rexmt_high
= tp
->snd_nxt
;
3573 tp
->sack_flags
&= ~TSACK_F_SACKRESCUED
;
3574 if (SEQ_GT(old_snd_nxt
, tp
->snd_nxt
))
3575 tp
->snd_nxt
= old_snd_nxt
;
3576 KASSERT(tp
->snd_limited
<= 2, ("tp->snd_limited too big"));
3577 if (TCP_DO_SACK(tp
)) {
3578 if (fast_sack_rexmt
)
3579 tcp_sack_rexmt(tp
, FALSE
);
3581 tp
->snd_cwnd
+= tp
->t_maxseg
*
3582 (tp
->t_dupacks
- tp
->snd_limited
);
3584 } else if ((tcp_do_rfc6675
&& TCP_DO_SACK(tp
)) || TCP_DO_NCR(tp
)) {
3586 * The RFC6675 recommends to reduce the byte threshold,
3587 * and enter fast retransmit if IsLost(snd_una). However,
3588 * if we use IsLost(snd_una) based fast retransmit here,
3589 * segments reordering will cause spurious retransmit. So
3590 * we defer the IsLost(snd_una) based fast retransmit until
3591 * the extended limited transmit can't send any segments and
3592 * early retransmit can't be done.
3594 if (tcp_rfc6675_rxt
&& tcp_do_rfc6675
&&
3595 tcp_sack_islost(&tp
->scb
, tp
->snd_una
))
3596 goto fastretransmit
;
3598 if (tcp_do_limitedtransmit
|| TCP_DO_NCR(tp
)) {
3599 if (!tcp_sack_limitedxmit(tp
)) {
3600 /* outstanding data */
3601 uint32_t ownd
= tp
->snd_max
- tp
->snd_una
;
3603 if (need_early_retransmit(tp
, ownd
)) {
3604 ++tcpstat
.tcps_sndearlyrexmit
;
3605 tp
->rxt_flags
|= TRXT_F_EARLYREXMT
;
3606 goto fastretransmit
;
3607 } else if (tcp_do_rfc6675
&&
3608 tcp_sack_islost(&tp
->scb
, tp
->snd_una
)) {
3609 fast_sack_rexmt
= FALSE
;
3610 goto fastretransmit
;
3614 } else if (tcp_do_limitedtransmit
) {
3615 u_long oldcwnd
= tp
->snd_cwnd
;
3616 tcp_seq oldsndmax
= tp
->snd_max
;
3617 tcp_seq oldsndnxt
= tp
->snd_nxt
;
3618 /* outstanding data */
3619 uint32_t ownd
= tp
->snd_max
- tp
->snd_una
;
3622 KASSERT(tp
->t_dupacks
== 1 || tp
->t_dupacks
== 2,
3623 ("dupacks not 1 or 2"));
3624 if (tp
->t_dupacks
== 1)
3625 tp
->snd_limited
= 0;
3626 tp
->snd_nxt
= tp
->snd_max
;
3627 tp
->snd_cwnd
= ownd
+
3628 (tp
->t_dupacks
- tp
->snd_limited
) * tp
->t_maxseg
;
3629 tp
->t_flags
|= TF_XMITNOW
;
3632 if (SEQ_LT(oldsndnxt
, oldsndmax
)) {
3633 KASSERT(SEQ_GEQ(oldsndnxt
, tp
->snd_una
),
3634 ("snd_una moved in other threads"));
3635 tp
->snd_nxt
= oldsndnxt
;
3637 tp
->snd_cwnd
= oldcwnd
;
3638 sent
= tp
->snd_max
- oldsndmax
;
3639 if (sent
> tp
->t_maxseg
) {
3640 KASSERT((tp
->t_dupacks
== 2 && tp
->snd_limited
== 0) ||
3641 (sent
== tp
->t_maxseg
+ 1 &&
3642 (tp
->t_flags
& TF_SENTFIN
)),
3644 KASSERT(sent
<= tp
->t_maxseg
* 2,
3645 ("sent too many segments"));
3646 tp
->snd_limited
= 2;
3647 tcpstat
.tcps_sndlimited
+= 2;
3648 } else if (sent
> 0) {
3650 ++tcpstat
.tcps_sndlimited
;
3651 } else if (need_early_retransmit(tp
, ownd
)) {
3652 ++tcpstat
.tcps_sndearlyrexmit
;
3653 tp
->rxt_flags
|= TRXT_F_EARLYREXMT
;
3654 goto fastretransmit
;