tuning.7: Fix typo.
[dragonfly.git] / sys / netinet / tcp_input.c
blob582294f12ce07f45eaf8bae7177c0221765f28e5
1 /*
2 * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2002, 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
62 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
63 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
70 #include "opt_tcp_input.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h> /* for proc0 declaration */
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/syslog.h>
83 #include <sys/in_cksum.h>
85 #include <sys/socketvar2.h>
87 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
88 #include <machine/stdarg.h>
90 #include <net/if.h>
91 #include <net/route.h>
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
97 #include <netinet/in_var.h>
98 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/ip6.h>
102 #include <netinet/icmp6.h>
103 #include <netinet6/nd6.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/in6_pcb.h>
106 #include <netinet/tcp.h>
107 #include <netinet/tcp_fsm.h>
108 #include <netinet/tcp_seq.h>
109 #include <netinet/tcp_timer.h>
110 #include <netinet/tcp_timer2.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/tcp6_var.h>
113 #include <netinet/tcpip.h>
115 #ifdef TCPDEBUG
116 #include <netinet/tcp_debug.h>
118 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
119 struct tcphdr tcp_savetcp;
120 #endif
122 #ifdef FAST_IPSEC
123 #include <netproto/ipsec/ipsec.h>
124 #include <netproto/ipsec/ipsec6.h>
125 #endif
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netinet6/ipsec6.h>
130 #include <netproto/key/key.h>
131 #endif
134 * Limit burst of new packets during SACK based fast recovery
135 * or extended limited transmit.
137 #define TCP_SACK_MAXBURST 4
139 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
141 static int log_in_vain = 0;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
143 &log_in_vain, 0, "Log all incoming TCP connections");
145 static int blackhole = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
147 &blackhole, 0, "Do not send RST when dropping refused connections");
149 int tcp_delack_enabled = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
151 &tcp_delack_enabled, 0,
152 "Delay ACK to try and piggyback it onto a data packet");
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
157 &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
158 #endif
160 static int tcp_do_limitedtransmit = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
162 &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
164 static int tcp_do_early_retransmit = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
166 &tcp_do_early_retransmit, 0, "Early retransmit");
168 int tcp_aggregate_acks = 1;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
170 &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
172 static int tcp_do_eifel_detect = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
174 &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
176 static int tcp_do_abc = 1;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
178 &tcp_do_abc, 0,
179 "TCP Appropriate Byte Counting (RFC 3465)");
182 * The following value actually takes range [25ms, 250ms],
183 * given that most modern systems use 1ms ~ 10ms as the unit
184 * of timestamp option.
186 static u_int tcp_paws_tolerance = 25;
187 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, paws_tolerance, CTLFLAG_RW,
188 &tcp_paws_tolerance, 0, "RFC1323 PAWS tolerance");
191 * Define as tunable for easy testing with SACK on and off.
192 * Warning: do not change setting in the middle of an existing active TCP flow,
193 * else strange things might happen to that flow.
195 int tcp_do_sack = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
197 &tcp_do_sack, 0, "Enable SACK Algorithms");
199 int tcp_do_smartsack = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
201 &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
203 int tcp_do_rescuesack = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack, CTLFLAG_RW,
205 &tcp_do_rescuesack, 0, "Rescue retransmission for SACK");
207 int tcp_aggressive_rescuesack = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack_agg, CTLFLAG_RW,
209 &tcp_aggressive_rescuesack, 0, "Aggressive rescue retransmission for SACK");
211 static int tcp_force_sackrxt = 1;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, force_sackrxt, CTLFLAG_RW,
213 &tcp_force_sackrxt, 0, "Allowed forced SACK retransmit burst");
215 int tcp_do_rfc6675 = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675, CTLFLAG_RW,
217 &tcp_do_rfc6675, 0, "Enable RFC6675");
219 int tcp_rfc6675_rxt = 0;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_rxt, CTLFLAG_RW,
221 &tcp_rfc6675_rxt, 0, "Enable RFC6675 retransmit");
223 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
224 "TCP Segment Reassembly Queue");
226 int tcp_reass_maxseg = 0;
227 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
228 &tcp_reass_maxseg, 0,
229 "Global maximum number of TCP Segments in Reassembly Queue");
231 int tcp_reass_qsize = 0;
232 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
233 &tcp_reass_qsize, 0,
234 "Global number of TCP Segments currently in Reassembly Queue");
236 static int tcp_reass_overflows = 0;
237 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
238 &tcp_reass_overflows, 0,
239 "Global number of TCP Segment Reassembly Queue Overflows");
241 int tcp_do_autorcvbuf = 1;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
243 &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
245 int tcp_autorcvbuf_inc = 16*1024;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
247 &tcp_autorcvbuf_inc, 0,
248 "Incrementor step size of automatic receive buffer");
250 int tcp_autorcvbuf_max = 2*1024*1024;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
252 &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
254 int tcp_sosend_agglim = 2;
255 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_agglim, CTLFLAG_RW,
256 &tcp_sosend_agglim, 0, "TCP sosend mbuf aggregation limit");
258 int tcp_sosend_async = 1;
259 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_async, CTLFLAG_RW,
260 &tcp_sosend_async, 0, "TCP asynchronized pru_send");
262 int tcp_sosend_jcluster = 1;
263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_jcluster, CTLFLAG_RW,
264 &tcp_sosend_jcluster, 0, "TCP output uses jcluster");
266 static int tcp_ignore_redun_dsack = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ignore_redun_dsack, CTLFLAG_RW,
268 &tcp_ignore_redun_dsack, 0, "Ignore redundant DSACK");
270 static int tcp_reuseport_ext = 1;
271 SYSCTL_INT(_net_inet_tcp, OID_AUTO, reuseport_ext, CTLFLAG_RW,
272 &tcp_reuseport_ext, 0, "SO_REUSEPORT extension");
274 static void tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t,
275 tcp_seq);
276 static void tcp_pulloutofband(struct socket *,
277 struct tcphdr *, struct mbuf *, int);
278 static int tcp_reass(struct tcpcb *, struct tcphdr *, int *,
279 struct mbuf *);
280 static void tcp_xmit_timer(struct tcpcb *, int, tcp_seq);
281 static void tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
282 static void tcp_sack_rexmt(struct tcpcb *, boolean_t);
283 static boolean_t tcp_sack_limitedxmit(struct tcpcb *);
284 static int tcp_rmx_msl(const struct tcpcb *);
285 static void tcp_established(struct tcpcb *);
286 static boolean_t tcp_recv_dupack(struct tcpcb *, tcp_seq, u_int);
288 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
289 #ifdef INET6
290 #define ND6_HINT(tp) \
291 do { \
292 if ((tp) && (tp)->t_inpcb && \
293 INP_ISIPV6((tp)->t_inpcb) && \
294 (tp)->t_inpcb->in6p_route.ro_rt) \
295 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
296 } while (0)
297 #else
298 #define ND6_HINT(tp)
299 #endif
302 * Indicate whether this ack should be delayed. We can delay the ack if
303 * - delayed acks are enabled and
304 * - there is no delayed ack timer in progress and
305 * - our last ack wasn't a 0-sized window. We never want to delay
306 * the ack that opens up a 0-sized window.
308 #define DELAY_ACK(tp) \
309 (tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
310 !(tp->t_flags & TF_RXWIN0SENT))
312 #define acceptable_window_update(tp, th, tiwin) \
313 (SEQ_LT(tp->snd_wl1, th->th_seq) || \
314 (tp->snd_wl1 == th->th_seq && \
315 (SEQ_LT(tp->snd_wl2, th->th_ack) || \
316 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
318 #define iceildiv(n, d) (((n)+(d)-1) / (d))
319 #define need_early_retransmit(tp, ownd) \
320 (tcp_do_early_retransmit && \
321 (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) && \
322 ownd < ((tp->t_rxtthresh + 1) * tp->t_maxseg) && \
323 tp->t_dupacks + 1 >= iceildiv(ownd, tp->t_maxseg) && \
324 (!TCP_DO_SACK(tp) || ownd <= tp->t_maxseg || \
325 tcp_sack_has_sacked(&tp->scb, ownd - tp->t_maxseg)))
328 * Returns TRUE, if this segment can be merged with the last
329 * pending segment in the reassemble queue and this segment
330 * does not overlap with the pending segment immediately
331 * preceeding the last pending segment.
333 static __inline boolean_t
334 tcp_paws_canreasslast(const struct tcpcb *tp, const struct tcphdr *th, int tlen)
336 const struct tseg_qent *last, *prev;
338 last = TAILQ_LAST(&tp->t_segq, tsegqe_head);
339 if (last == NULL)
340 return FALSE;
342 /* This segment comes immediately after the last pending segment */
343 if (last->tqe_th->th_seq + last->tqe_len == th->th_seq) {
344 if (last->tqe_th->th_flags & TH_FIN) {
345 /* No segments should follow segment w/ FIN */
346 return FALSE;
348 return TRUE;
351 if (th->th_seq + tlen != last->tqe_th->th_seq)
352 return FALSE;
353 /* This segment comes immediately before the last pending segment */
355 prev = TAILQ_PREV(last, tsegqe_head, tqe_q);
356 if (prev == NULL) {
358 * No pending preceeding segment, we assume this segment
359 * could be reassembled.
361 return TRUE;
364 /* This segment does not overlap with the preceeding segment */
365 if (SEQ_GEQ(th->th_seq, prev->tqe_th->th_seq + prev->tqe_len))
366 return TRUE;
368 return FALSE;
371 static __inline void
372 tcp_ncr_update_rxtthresh(struct tcpcb *tp)
374 int old_rxtthresh = tp->t_rxtthresh;
375 uint32_t ownd = tp->snd_max - tp->snd_una;
377 tp->t_rxtthresh = min(tcp_ncr_rxtthresh_max,
378 max(tcprexmtthresh, ((ownd / tp->t_maxseg) >> 1)));
379 if (tp->t_rxtthresh != old_rxtthresh) {
380 tcp_sack_update_lostseq(&tp->scb, tp->snd_una,
381 tp->t_maxseg, tp->t_rxtthresh);
385 static int
386 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
388 struct tseg_qent *q;
389 struct tseg_qent *p = NULL;
390 struct tseg_qent *te;
391 struct socket *so = tp->t_inpcb->inp_socket;
392 int flags;
395 * Call with th == NULL after become established to
396 * force pre-ESTABLISHED data up to user socket.
398 if (th == NULL)
399 goto present;
402 * Limit the number of segments in the reassembly queue to prevent
403 * holding on to too many segments (and thus running out of mbufs).
404 * Make sure to let the missing segment through which caused this
405 * queue. Always keep one global queue entry spare to be able to
406 * process the missing segment.
408 if (th->th_seq != tp->rcv_nxt &&
409 tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
410 tcp_reass_overflows++;
411 tcpstat.tcps_rcvmemdrop++;
412 m_freem(m);
413 /* no SACK block to report */
414 tp->reportblk.rblk_start = tp->reportblk.rblk_end;
415 return (0);
418 /* Allocate a new queue entry. */
419 te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
420 if (te == NULL) {
421 tcpstat.tcps_rcvmemdrop++;
422 m_freem(m);
423 /* no SACK block to report */
424 tp->reportblk.rblk_start = tp->reportblk.rblk_end;
425 return (0);
427 atomic_add_int(&tcp_reass_qsize, 1);
429 if (th->th_flags & TH_FIN)
430 tp->t_flags |= TF_QUEDFIN;
433 * Find a segment which begins after this one does.
435 TAILQ_FOREACH(q, &tp->t_segq, tqe_q) {
436 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
437 break;
438 p = q;
442 * If there is a preceding segment, it may provide some of
443 * our data already. If so, drop the data from the incoming
444 * segment. If it provides all of our data, drop us.
446 if (p != NULL) {
447 tcp_seq_diff_t i;
449 /* conversion to int (in i) handles seq wraparound */
450 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
451 if (i > 0) { /* overlaps preceding segment */
452 tp->sack_flags |=
453 (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
454 /* enclosing block starts w/ preceding segment */
455 tp->encloseblk.rblk_start = p->tqe_th->th_seq;
456 if (i >= *tlenp) {
457 if (th->th_flags & TH_FIN)
458 p->tqe_th->th_flags |= TH_FIN;
460 /* preceding encloses incoming segment */
461 tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
462 p->tqe_th->th_seq + p->tqe_len,
463 p->tqe_th->th_flags);
464 tcpstat.tcps_rcvduppack++;
465 tcpstat.tcps_rcvdupbyte += *tlenp;
466 m_freem(m);
467 kfree(te, M_TSEGQ);
468 atomic_add_int(&tcp_reass_qsize, -1);
470 * Try to present any queued data
471 * at the left window edge to the user.
472 * This is needed after the 3-WHS
473 * completes.
475 goto present; /* ??? */
477 m_adj(m, i);
478 *tlenp -= i;
479 th->th_seq += i;
480 /* incoming segment end is enclosing block end */
481 tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
482 th->th_seq + *tlenp, th->th_flags);
483 /* trim end of reported D-SACK block */
484 tp->reportblk.rblk_end = th->th_seq;
487 tcpstat.tcps_rcvoopack++;
488 tcpstat.tcps_rcvoobyte += *tlenp;
491 * While we overlap succeeding segments trim them or,
492 * if they are completely covered, dequeue them.
494 while (q) {
495 tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
496 tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
497 tcp_seq qend_sack = TCP_SACK_BLKEND(qend, q->tqe_th->th_flags);
498 struct tseg_qent *nq;
500 if (i <= 0)
501 break;
502 if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
503 /* first time through */
504 tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
505 tp->encloseblk = tp->reportblk;
506 /* report trailing duplicate D-SACK segment */
507 tp->reportblk.rblk_start = q->tqe_th->th_seq;
509 if ((tp->sack_flags & TSACK_F_ENCLOSESEG) &&
510 SEQ_GT(qend_sack, tp->encloseblk.rblk_end)) {
511 /* extend enclosing block if one exists */
512 tp->encloseblk.rblk_end = qend_sack;
514 if (i < q->tqe_len) {
515 q->tqe_th->th_seq += i;
516 q->tqe_len -= i;
517 m_adj(q->tqe_m, i);
518 break;
521 if (q->tqe_th->th_flags & TH_FIN)
522 th->th_flags |= TH_FIN;
524 nq = TAILQ_NEXT(q, tqe_q);
525 TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
526 m_freem(q->tqe_m);
527 kfree(q, M_TSEGQ);
528 atomic_add_int(&tcp_reass_qsize, -1);
529 q = nq;
532 /* Insert the new segment queue entry into place. */
533 te->tqe_m = m;
534 te->tqe_th = th;
535 te->tqe_len = *tlenp;
537 /* check if can coalesce with following segment */
538 if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
539 tcp_seq tend_sack;
541 te->tqe_len += q->tqe_len;
542 if (q->tqe_th->th_flags & TH_FIN)
543 te->tqe_th->th_flags |= TH_FIN;
544 tend_sack = TCP_SACK_BLKEND(te->tqe_th->th_seq + te->tqe_len,
545 te->tqe_th->th_flags);
547 m_cat(te->tqe_m, q->tqe_m);
548 tp->encloseblk.rblk_end = tend_sack;
550 * When not reporting a duplicate segment, use
551 * the larger enclosing block as the SACK block.
553 if (!(tp->sack_flags & TSACK_F_DUPSEG))
554 tp->reportblk.rblk_end = tend_sack;
555 TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
556 kfree(q, M_TSEGQ);
557 atomic_add_int(&tcp_reass_qsize, -1);
560 if (p == NULL) {
561 TAILQ_INSERT_HEAD(&tp->t_segq, te, tqe_q);
562 } else {
563 /* check if can coalesce with preceding segment */
564 if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
565 if (te->tqe_th->th_flags & TH_FIN)
566 p->tqe_th->th_flags |= TH_FIN;
567 p->tqe_len += te->tqe_len;
568 m_cat(p->tqe_m, te->tqe_m);
569 tp->encloseblk.rblk_start = p->tqe_th->th_seq;
571 * When not reporting a duplicate segment, use
572 * the larger enclosing block as the SACK block.
574 if (!(tp->sack_flags & TSACK_F_DUPSEG))
575 tp->reportblk.rblk_start = p->tqe_th->th_seq;
576 kfree(te, M_TSEGQ);
577 atomic_add_int(&tcp_reass_qsize, -1);
578 } else {
579 TAILQ_INSERT_AFTER(&tp->t_segq, p, te, tqe_q);
583 present:
585 * Present data to user, advancing rcv_nxt through
586 * completed sequence space.
588 if (!TCPS_HAVEESTABLISHED(tp->t_state))
589 return (0);
590 q = TAILQ_FIRST(&tp->t_segq);
591 if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
592 return (0);
593 tp->rcv_nxt += q->tqe_len;
594 if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
595 /* no SACK block to report since ACK advanced */
596 tp->reportblk.rblk_start = tp->reportblk.rblk_end;
598 /* no enclosing block to report since ACK advanced */
599 tp->sack_flags &= ~TSACK_F_ENCLOSESEG;
600 flags = q->tqe_th->th_flags & TH_FIN;
601 TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
602 KASSERT(TAILQ_EMPTY(&tp->t_segq) ||
603 TAILQ_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
604 ("segment not coalesced"));
605 if (so->so_state & SS_CANTRCVMORE) {
606 m_freem(q->tqe_m);
607 } else {
608 lwkt_gettoken(&so->so_rcv.ssb_token);
609 ssb_appendstream(&so->so_rcv, q->tqe_m);
610 lwkt_reltoken(&so->so_rcv.ssb_token);
612 kfree(q, M_TSEGQ);
613 atomic_add_int(&tcp_reass_qsize, -1);
614 ND6_HINT(tp);
615 sorwakeup(so);
616 return (flags);
620 * TCP input routine, follows pages 65-76 of the
621 * protocol specification dated September, 1981 very closely.
623 #ifdef INET6
625 tcp6_input(struct mbuf **mp, int *offp, int proto)
627 struct mbuf *m = *mp;
628 struct in6_ifaddr *ia6;
630 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
633 * draft-itojun-ipv6-tcp-to-anycast
634 * better place to put this in?
636 ia6 = ip6_getdstifaddr(m);
637 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
638 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
639 offsetof(struct ip6_hdr, ip6_dst));
640 return (IPPROTO_DONE);
643 tcp_input(mp, offp, proto);
644 return (IPPROTO_DONE);
646 #endif
649 tcp_input(struct mbuf **mp, int *offp, int proto)
651 int off0;
652 struct tcphdr *th;
653 struct ip *ip = NULL;
654 struct ipovly *ipov;
655 struct inpcb *inp = NULL;
656 u_char *optp = NULL;
657 int optlen = 0;
658 int tlen, off;
659 int len = 0;
660 int drop_hdrlen;
661 struct tcpcb *tp = NULL;
662 int thflags;
663 struct socket *so = NULL;
664 int todrop, acked;
665 boolean_t ourfinisacked, needoutput = FALSE, delayed_dupack = FALSE;
666 tcp_seq th_dupack = 0; /* XXX gcc warning */
667 u_int to_flags = 0; /* XXX gcc warning */
668 u_long tiwin;
669 int recvwin;
670 struct tcpopt to; /* options in this segment */
671 struct sockaddr_in *next_hop = NULL;
672 int rstreason; /* For badport_bandlim accounting purposes */
673 int cpu;
674 struct ip6_hdr *ip6 = NULL;
675 struct mbuf *m;
676 #ifdef INET6
677 boolean_t isipv6;
678 #else
679 const boolean_t isipv6 = FALSE;
680 #endif
681 #ifdef TCPDEBUG
682 short ostate = 0;
683 #endif
685 off0 = *offp;
686 m = *mp;
687 *mp = NULL;
689 tcpstat.tcps_rcvtotal++;
691 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
692 struct m_tag *mtag;
694 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
695 KKASSERT(mtag != NULL);
696 next_hop = m_tag_data(mtag);
699 #ifdef INET6
700 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
701 #endif
703 if (isipv6) {
704 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
705 ip6 = mtod(m, struct ip6_hdr *);
706 tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
707 if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
708 tcpstat.tcps_rcvbadsum++;
709 goto drop;
711 th = (struct tcphdr *)((caddr_t)ip6 + off0);
714 * Be proactive about unspecified IPv6 address in source.
715 * As we use all-zero to indicate unbounded/unconnected pcb,
716 * unspecified IPv6 address can be used to confuse us.
718 * Note that packets with unspecified IPv6 destination is
719 * already dropped in ip6_input.
721 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
722 /* XXX stat */
723 goto drop;
725 } else {
727 * Get IP and TCP header together in first mbuf.
728 * Note: IP leaves IP header in first mbuf.
730 if (off0 > sizeof(struct ip)) {
731 ip_stripoptions(m);
732 off0 = sizeof(struct ip);
734 /* already checked and pulled up in ip_demux() */
735 KASSERT(m->m_len >= sizeof(struct tcpiphdr),
736 ("TCP header not in one mbuf: m->m_len %d", m->m_len));
737 ip = mtod(m, struct ip *);
738 ipov = (struct ipovly *)ip;
739 th = (struct tcphdr *)((caddr_t)ip + off0);
740 tlen = ip->ip_len;
742 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
743 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
744 th->th_sum = m->m_pkthdr.csum_data;
745 else
746 th->th_sum = in_pseudo(ip->ip_src.s_addr,
747 ip->ip_dst.s_addr,
748 htonl(m->m_pkthdr.csum_data +
749 ip->ip_len +
750 IPPROTO_TCP));
751 th->th_sum ^= 0xffff;
752 } else {
754 * Checksum extended TCP header and data.
756 len = sizeof(struct ip) + tlen;
757 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
758 ipov->ih_len = (u_short)tlen;
759 ipov->ih_len = htons(ipov->ih_len);
760 th->th_sum = in_cksum(m, len);
762 if (th->th_sum) {
763 tcpstat.tcps_rcvbadsum++;
764 goto drop;
766 #ifdef INET6
767 /* Re-initialization for later version check */
768 ip->ip_v = IPVERSION;
769 #endif
773 * Check that TCP offset makes sense,
774 * pull out TCP options and adjust length. XXX
776 off = th->th_off << 2;
777 /* already checked and pulled up in ip_demux() */
778 KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
779 ("bad TCP data offset %d (tlen %d)", off, tlen));
780 tlen -= off; /* tlen is used instead of ti->ti_len */
781 if (off > sizeof(struct tcphdr)) {
782 if (isipv6) {
783 IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
784 ip6 = mtod(m, struct ip6_hdr *);
785 th = (struct tcphdr *)((caddr_t)ip6 + off0);
786 } else {
787 /* already pulled up in ip_demux() */
788 KASSERT(m->m_len >= sizeof(struct ip) + off,
789 ("TCP header and options not in one mbuf: "
790 "m_len %d, off %d", m->m_len, off));
792 optlen = off - sizeof(struct tcphdr);
793 optp = (u_char *)(th + 1);
795 thflags = th->th_flags;
797 #ifdef TCP_DROP_SYNFIN
799 * If the drop_synfin option is enabled, drop all packets with
800 * both the SYN and FIN bits set. This prevents e.g. nmap from
801 * identifying the TCP/IP stack.
803 * This is a violation of the TCP specification.
805 if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
806 goto drop;
807 #endif
810 * Convert TCP protocol specific fields to host format.
812 th->th_seq = ntohl(th->th_seq);
813 th->th_ack = ntohl(th->th_ack);
814 th->th_win = ntohs(th->th_win);
815 th->th_urp = ntohs(th->th_urp);
818 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
819 * until after ip6_savecontrol() is called and before other functions
820 * which don't want those proto headers.
821 * Because ip6_savecontrol() is going to parse the mbuf to
822 * search for data to be passed up to user-land, it wants mbuf
823 * parameters to be unchanged.
824 * XXX: the call of ip6_savecontrol() has been obsoleted based on
825 * latest version of the advanced API (20020110).
827 drop_hdrlen = off0 + off;
830 * Locate pcb for segment.
832 findpcb:
833 /* IPFIREWALL_FORWARD section */
834 if (next_hop != NULL && !isipv6) { /* IPv6 support is not there yet */
836 * Transparently forwarded. Pretend to be the destination.
837 * already got one like this?
839 cpu = mycpu->gd_cpuid;
840 inp = in_pcblookup_hash(&tcbinfo[cpu],
841 ip->ip_src, th->th_sport,
842 ip->ip_dst, th->th_dport,
843 0, m->m_pkthdr.rcvif);
844 if (!inp) {
846 * It's new. Try to find the ambushing socket.
850 * The rest of the ipfw code stores the port in
851 * host order. XXX
852 * (The IP address is still in network order.)
854 in_port_t dport = next_hop->sin_port ?
855 htons(next_hop->sin_port) :
856 th->th_dport;
858 cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
859 next_hop->sin_addr.s_addr, dport);
860 inp = in_pcblookup_hash(&tcbinfo[cpu],
861 ip->ip_src, th->th_sport,
862 next_hop->sin_addr, dport,
863 1, m->m_pkthdr.rcvif);
865 } else {
866 if (isipv6) {
867 inp = in6_pcblookup_hash(&tcbinfo[0],
868 &ip6->ip6_src, th->th_sport,
869 &ip6->ip6_dst, th->th_dport,
870 1, m->m_pkthdr.rcvif);
871 } else {
872 cpu = mycpu->gd_cpuid;
873 inp = in_pcblookup_pkthash(&tcbinfo[cpu],
874 ip->ip_src, th->th_sport,
875 ip->ip_dst, th->th_dport,
876 1, m->m_pkthdr.rcvif,
877 tcp_reuseport_ext ? m : NULL);
882 * If the state is CLOSED (i.e., TCB does not exist) then
883 * all data in the incoming segment is discarded.
884 * If the TCB exists but is in CLOSED state, it is embryonic,
885 * but should either do a listen or a connect soon.
887 if (inp == NULL) {
888 if (log_in_vain) {
889 #ifdef INET6
890 char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
891 #else
892 char dbuf[INET_ADDRSTRLEN], sbuf[INET_ADDRSTRLEN];
893 #endif
894 if (isipv6) {
895 strcpy(dbuf, "[");
896 strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
897 strcat(dbuf, "]");
898 strcpy(sbuf, "[");
899 strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
900 strcat(sbuf, "]");
901 } else {
902 kinet_ntoa(ip->ip_dst, dbuf);
903 kinet_ntoa(ip->ip_src, sbuf);
905 switch (log_in_vain) {
906 case 1:
907 if (!(thflags & TH_SYN))
908 break;
909 case 2:
910 log(LOG_INFO,
911 "Connection attempt to TCP %s:%d "
912 "from %s:%d flags:0x%02x\n",
913 dbuf, ntohs(th->th_dport), sbuf,
914 ntohs(th->th_sport), thflags);
915 break;
916 default:
917 break;
920 if (blackhole) {
921 switch (blackhole) {
922 case 1:
923 if (thflags & TH_SYN)
924 goto drop;
925 break;
926 case 2:
927 goto drop;
928 default:
929 goto drop;
932 rstreason = BANDLIM_RST_CLOSEDPORT;
933 goto dropwithreset;
936 #ifdef IPSEC
937 if (isipv6) {
938 if (ipsec6_in_reject_so(m, inp->inp_socket)) {
939 ipsec6stat.in_polvio++;
940 goto drop;
942 } else {
943 if (ipsec4_in_reject_so(m, inp->inp_socket)) {
944 ipsecstat.in_polvio++;
945 goto drop;
948 #endif
949 #ifdef FAST_IPSEC
950 if (isipv6) {
951 if (ipsec6_in_reject(m, inp))
952 goto drop;
953 } else {
954 if (ipsec4_in_reject(m, inp))
955 goto drop;
957 #endif
958 /* Check the minimum TTL for socket. */
959 #ifdef INET6
960 if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
961 goto drop;
962 #endif
964 tp = intotcpcb(inp);
965 KASSERT(tp != NULL, ("tcp_input: tp is NULL"));
966 if (tp->t_state <= TCPS_CLOSED)
967 goto drop;
969 so = inp->inp_socket;
971 #ifdef TCPDEBUG
972 if (so->so_options & SO_DEBUG) {
973 ostate = tp->t_state;
974 if (isipv6)
975 bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
976 else
977 bcopy(ip, tcp_saveipgen, sizeof(*ip));
978 tcp_savetcp = *th;
980 #endif
982 bzero(&to, sizeof to);
984 if (so->so_options & SO_ACCEPTCONN) {
985 struct in_conninfo inc;
987 #ifdef INET6
988 inc.inc_isipv6 = (isipv6 == TRUE);
989 #endif
990 if (isipv6) {
991 inc.inc6_faddr = ip6->ip6_src;
992 inc.inc6_laddr = ip6->ip6_dst;
993 inc.inc6_route.ro_rt = NULL; /* XXX */
994 } else {
995 inc.inc_faddr = ip->ip_src;
996 inc.inc_laddr = ip->ip_dst;
997 inc.inc_route.ro_rt = NULL; /* XXX */
999 inc.inc_fport = th->th_sport;
1000 inc.inc_lport = th->th_dport;
1003 * If the state is LISTEN then ignore segment if it contains
1004 * a RST. If the segment contains an ACK then it is bad and
1005 * send a RST. If it does not contain a SYN then it is not
1006 * interesting; drop it.
1008 * If the state is SYN_RECEIVED (syncache) and seg contains
1009 * an ACK, but not for our SYN/ACK, send a RST. If the seg
1010 * contains a RST, check the sequence number to see if it
1011 * is a valid reset segment.
1013 if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
1014 if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
1015 if (!syncache_expand(&inc, th, &so, m)) {
1017 * No syncache entry, or ACK was not
1018 * for our SYN/ACK. Send a RST.
1020 tcpstat.tcps_badsyn++;
1021 rstreason = BANDLIM_RST_OPENPORT;
1022 goto dropwithreset;
1026 * Could not complete 3-way handshake,
1027 * connection is being closed down, and
1028 * syncache will free mbuf.
1030 if (so == NULL)
1031 return(IPPROTO_DONE);
1034 * We must be in the correct protocol thread
1035 * for this connection.
1037 KKASSERT(so->so_port == &curthread->td_msgport);
1040 * Socket is created in state SYN_RECEIVED.
1041 * Continue processing segment.
1043 inp = so->so_pcb;
1044 tp = intotcpcb(inp);
1046 * This is what would have happened in
1047 * tcp_output() when the SYN,ACK was sent.
1049 tp->snd_up = tp->snd_una;
1050 tp->snd_max = tp->snd_nxt = tp->iss + 1;
1051 tp->last_ack_sent = tp->rcv_nxt;
1053 goto after_listen;
1055 if (thflags & TH_RST) {
1056 syncache_chkrst(&inc, th);
1057 goto drop;
1059 if (thflags & TH_ACK) {
1060 syncache_badack(&inc);
1061 tcpstat.tcps_badsyn++;
1062 rstreason = BANDLIM_RST_OPENPORT;
1063 goto dropwithreset;
1065 goto drop;
1069 * Segment's flags are (SYN) or (SYN | FIN).
1071 #ifdef INET6
1073 * If deprecated address is forbidden,
1074 * we do not accept SYN to deprecated interface
1075 * address to prevent any new inbound connection from
1076 * getting established.
1077 * When we do not accept SYN, we send a TCP RST,
1078 * with deprecated source address (instead of dropping
1079 * it). We compromise it as it is much better for peer
1080 * to send a RST, and RST will be the final packet
1081 * for the exchange.
1083 * If we do not forbid deprecated addresses, we accept
1084 * the SYN packet. RFC2462 does not suggest dropping
1085 * SYN in this case.
1086 * If we decipher RFC2462 5.5.4, it says like this:
1087 * 1. use of deprecated addr with existing
1088 * communication is okay - "SHOULD continue to be
1089 * used"
1090 * 2. use of it with new communication:
1091 * (2a) "SHOULD NOT be used if alternate address
1092 * with sufficient scope is available"
1093 * (2b) nothing mentioned otherwise.
1094 * Here we fall into (2b) case as we have no choice in
1095 * our source address selection - we must obey the peer.
1097 * The wording in RFC2462 is confusing, and there are
1098 * multiple description text for deprecated address
1099 * handling - worse, they are not exactly the same.
1100 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1102 if (isipv6 && !ip6_use_deprecated) {
1103 struct in6_ifaddr *ia6;
1105 if ((ia6 = ip6_getdstifaddr(m)) &&
1106 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1107 tp = NULL;
1108 rstreason = BANDLIM_RST_OPENPORT;
1109 goto dropwithreset;
1112 #endif
1114 * If it is from this socket, drop it, it must be forged.
1115 * Don't bother responding if the destination was a broadcast.
1117 if (th->th_dport == th->th_sport) {
1118 if (isipv6) {
1119 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1120 &ip6->ip6_src))
1121 goto drop;
1122 } else {
1123 if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1124 goto drop;
1128 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1130 * Note that it is quite possible to receive unicast
1131 * link-layer packets with a broadcast IP address. Use
1132 * in_broadcast() to find them.
1134 if (m->m_flags & (M_BCAST | M_MCAST))
1135 goto drop;
1136 if (isipv6) {
1137 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1138 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1139 goto drop;
1140 } else {
1141 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1142 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1143 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1144 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1145 goto drop;
1148 * SYN appears to be valid; create compressed TCP state
1149 * for syncache, or perform t/tcp connection.
1151 if (so->so_qlen <= so->so_qlimit) {
1152 tcp_dooptions(&to, optp, optlen, TRUE, th->th_ack);
1153 if (!syncache_add(&inc, &to, th, so, m))
1154 goto drop;
1157 * Entry added to syncache, mbuf used to
1158 * send SYN,ACK packet.
1160 return(IPPROTO_DONE);
1162 goto drop;
1165 after_listen:
1167 * Should not happen - syncache should pick up these connections.
1169 * Once we are past handling listen sockets we must be in the
1170 * correct protocol processing thread.
1172 KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1173 KKASSERT(so->so_port == &curthread->td_msgport);
1175 /* Unscale the window into a 32-bit value. */
1176 if (!(thflags & TH_SYN))
1177 tiwin = th->th_win << tp->snd_scale;
1178 else
1179 tiwin = th->th_win;
1182 * This is the second part of the MSS DoS prevention code (after
1183 * minmss on the sending side) and it deals with too many too small
1184 * tcp packets in a too short timeframe (1 second).
1186 * XXX Removed. This code was crap. It does not scale to network
1187 * speed, and default values break NFS. Gone.
1189 /* REMOVED */
1192 * Segment received on connection.
1194 * Reset idle time and keep-alive timer. Don't waste time if less
1195 * then a second has elapsed.
1197 if ((int)(ticks - tp->t_rcvtime) > hz)
1198 tcp_timer_keep_activity(tp, thflags);
1201 * Process options.
1202 * XXX this is tradtitional behavior, may need to be cleaned up.
1204 tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0, th->th_ack);
1205 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1206 if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) {
1207 tp->t_flags |= TF_RCVD_SCALE;
1208 tp->snd_scale = to.to_requested_s_scale;
1212 * Initial send window; will be updated upon next ACK
1214 tp->snd_wnd = th->th_win;
1216 if (to.to_flags & TOF_TS) {
1217 tp->t_flags |= TF_RCVD_TSTMP;
1218 tp->ts_recent = to.to_tsval;
1219 tp->ts_recent_age = ticks;
1221 if (!(to.to_flags & TOF_MSS))
1222 to.to_mss = 0;
1223 tcp_mss(tp, to.to_mss);
1225 * Only set the TF_SACK_PERMITTED per-connection flag
1226 * if we got a SACK_PERMITTED option from the other side
1227 * and the global tcp_do_sack variable is true.
1229 if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1230 tp->t_flags |= TF_SACK_PERMITTED;
1234 * Header prediction: check for the two common cases
1235 * of a uni-directional data xfer. If the packet has
1236 * no control flags, is in-sequence, the window didn't
1237 * change and we're not retransmitting, it's a
1238 * candidate. If the length is zero and the ack moved
1239 * forward, we're the sender side of the xfer. Just
1240 * free the data acked & wake any higher level process
1241 * that was blocked waiting for space. If the length
1242 * is non-zero and the ack didn't move, we're the
1243 * receiver side. If we're getting packets in-order
1244 * (the reassembly queue is empty), add the data to
1245 * the socket buffer and note that we need a delayed ack.
1246 * Make sure that the hidden state-flags are also off.
1247 * Since we check for TCPS_ESTABLISHED above, it can only
1248 * be TH_NEEDSYN.
1250 if (tp->t_state == TCPS_ESTABLISHED &&
1251 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1252 !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1253 (!(to.to_flags & TOF_TS) ||
1254 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1255 th->th_seq == tp->rcv_nxt &&
1256 tp->snd_nxt == tp->snd_max) {
1259 * If last ACK falls within this segment's sequence numbers,
1260 * record the timestamp.
1261 * NOTE that the test is modified according to the latest
1262 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1264 if ((to.to_flags & TOF_TS) &&
1265 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1266 tp->ts_recent_age = ticks;
1267 tp->ts_recent = to.to_tsval;
1270 if (tlen == 0) {
1271 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1272 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1273 tp->snd_cwnd >= tp->snd_wnd &&
1274 !IN_FASTRECOVERY(tp)) {
1276 * This is a pure ack for outstanding data.
1278 ++tcpstat.tcps_predack;
1280 * "bad retransmit" recovery
1282 * If Eifel detection applies, then
1283 * it is deterministic, so use it
1284 * unconditionally over the old heuristic.
1285 * Otherwise, fall back to the old heuristic.
1287 if (tcp_do_eifel_detect &&
1288 (to.to_flags & TOF_TS) && to.to_tsecr &&
1289 (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
1290 /* Eifel detection applicable. */
1291 if (to.to_tsecr < tp->t_rexmtTS) {
1292 tcp_revert_congestion_state(tp);
1293 ++tcpstat.tcps_eifeldetected;
1294 if (tp->t_rxtshift != 1 ||
1295 ticks >= tp->t_badrxtwin)
1296 ++tcpstat.tcps_rttcantdetect;
1298 } else if (tp->t_rxtshift == 1 &&
1299 ticks < tp->t_badrxtwin) {
1300 tcp_revert_congestion_state(tp);
1301 ++tcpstat.tcps_rttdetected;
1303 tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
1304 TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
1306 * Recalculate the retransmit timer / rtt.
1308 * Some machines (certain windows boxes)
1309 * send broken timestamp replies during the
1310 * SYN+ACK phase, ignore timestamps of 0.
1312 if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1313 tcp_xmit_timer(tp,
1314 ticks - to.to_tsecr + 1,
1315 th->th_ack);
1316 } else if (tp->t_rtttime &&
1317 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1318 tcp_xmit_timer(tp,
1319 ticks - tp->t_rtttime + 1,
1320 th->th_ack);
1322 tcp_xmit_bandwidth_limit(tp, th->th_ack);
1323 acked = th->th_ack - tp->snd_una;
1324 tcpstat.tcps_rcvackpack++;
1325 tcpstat.tcps_rcvackbyte += acked;
1326 sbdrop(&so->so_snd.sb, acked);
1327 tp->snd_recover = th->th_ack - 1;
1328 tp->snd_una = th->th_ack;
1329 tp->t_dupacks = 0;
1331 * Update window information.
1333 if (tiwin != tp->snd_wnd &&
1334 acceptable_window_update(tp, th, tiwin)) {
1335 /* keep track of pure window updates */
1336 if (tp->snd_wl2 == th->th_ack &&
1337 tiwin > tp->snd_wnd)
1338 tcpstat.tcps_rcvwinupd++;
1339 tp->snd_wnd = tiwin;
1340 tp->snd_wl1 = th->th_seq;
1341 tp->snd_wl2 = th->th_ack;
1342 if (tp->snd_wnd > tp->max_sndwnd)
1343 tp->max_sndwnd = tp->snd_wnd;
1345 m_freem(m);
1346 ND6_HINT(tp); /* some progress has been done */
1348 * If all outstanding data are acked, stop
1349 * retransmit timer, otherwise restart timer
1350 * using current (possibly backed-off) value.
1351 * If process is waiting for space,
1352 * wakeup/selwakeup/signal. If data
1353 * are ready to send, let tcp_output
1354 * decide between more output or persist.
1356 if (tp->snd_una == tp->snd_max) {
1357 tcp_callout_stop(tp, tp->tt_rexmt);
1358 } else if (!tcp_callout_active(tp,
1359 tp->tt_persist)) {
1360 tcp_callout_reset(tp, tp->tt_rexmt,
1361 tp->t_rxtcur, tcp_timer_rexmt);
1363 sowwakeup(so);
1364 if (so->so_snd.ssb_cc > 0 &&
1365 !tcp_output_pending(tp))
1366 tcp_output_fair(tp);
1367 return(IPPROTO_DONE);
1369 } else if (tiwin == tp->snd_wnd &&
1370 th->th_ack == tp->snd_una &&
1371 TAILQ_EMPTY(&tp->t_segq) &&
1372 tlen <= ssb_space(&so->so_rcv)) {
1373 u_long newsize = 0; /* automatic sockbuf scaling */
1375 * This is a pure, in-sequence data packet
1376 * with nothing on the reassembly queue and
1377 * we have enough buffer space to take it.
1379 ++tcpstat.tcps_preddat;
1380 tp->rcv_nxt += tlen;
1381 tcpstat.tcps_rcvpack++;
1382 tcpstat.tcps_rcvbyte += tlen;
1383 ND6_HINT(tp); /* some progress has been done */
1385 * Automatic sizing of receive socket buffer. Often the send
1386 * buffer size is not optimally adjusted to the actual network
1387 * conditions at hand (delay bandwidth product). Setting the
1388 * buffer size too small limits throughput on links with high
1389 * bandwidth and high delay (eg. trans-continental/oceanic links).
1391 * On the receive side the socket buffer memory is only rarely
1392 * used to any significant extent. This allows us to be much
1393 * more aggressive in scaling the receive socket buffer. For
1394 * the case that the buffer space is actually used to a large
1395 * extent and we run out of kernel memory we can simply drop
1396 * the new segments; TCP on the sender will just retransmit it
1397 * later. Setting the buffer size too big may only consume too
1398 * much kernel memory if the application doesn't read() from
1399 * the socket or packet loss or reordering makes use of the
1400 * reassembly queue.
1402 * The criteria to step up the receive buffer one notch are:
1403 * 1. the number of bytes received during the time it takes
1404 * one timestamp to be reflected back to us (the RTT);
1405 * 2. received bytes per RTT is within seven eighth of the
1406 * current socket buffer size;
1407 * 3. receive buffer size has not hit maximal automatic size;
1409 * This algorithm does one step per RTT at most and only if
1410 * we receive a bulk stream w/o packet losses or reorderings.
1411 * Shrinking the buffer during idle times is not necessary as
1412 * it doesn't consume any memory when idle.
1414 * TODO: Only step up if the application is actually serving
1415 * the buffer to better manage the socket buffer resources.
1417 if (tcp_do_autorcvbuf &&
1418 to.to_tsecr &&
1419 (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1420 if (to.to_tsecr > tp->rfbuf_ts &&
1421 to.to_tsecr - tp->rfbuf_ts < hz) {
1422 if (tp->rfbuf_cnt >
1423 (so->so_rcv.ssb_hiwat / 8 * 7) &&
1424 so->so_rcv.ssb_hiwat <
1425 tcp_autorcvbuf_max) {
1426 newsize =
1427 ulmin(so->so_rcv.ssb_hiwat +
1428 tcp_autorcvbuf_inc,
1429 tcp_autorcvbuf_max);
1431 /* Start over with next RTT. */
1432 tp->rfbuf_ts = 0;
1433 tp->rfbuf_cnt = 0;
1434 } else
1435 tp->rfbuf_cnt += tlen; /* add up */
1438 * Add data to socket buffer.
1440 if (so->so_state & SS_CANTRCVMORE) {
1441 m_freem(m);
1442 } else {
1444 * Set new socket buffer size, give up when
1445 * limit is reached.
1447 * Adjusting the size can mess up ACK
1448 * sequencing when pure window updates are
1449 * being avoided (which is the default),
1450 * so force an ack.
1452 lwkt_gettoken(&so->so_rcv.ssb_token);
1453 if (newsize) {
1454 tp->t_flags |= TF_RXRESIZED;
1455 if (!ssb_reserve(&so->so_rcv, newsize,
1456 so, NULL)) {
1457 atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1459 if (newsize >=
1460 (TCP_MAXWIN << tp->rcv_scale)) {
1461 atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1464 m_adj(m, drop_hdrlen); /* delayed header drop */
1465 ssb_appendstream(&so->so_rcv, m);
1466 lwkt_reltoken(&so->so_rcv.ssb_token);
1468 sorwakeup(so);
1470 * This code is responsible for most of the ACKs
1471 * the TCP stack sends back after receiving a data
1472 * packet. Note that the DELAY_ACK check fails if
1473 * the delack timer is already running, which results
1474 * in an ack being sent every other packet (which is
1475 * what we want).
1477 * We then further aggregate acks by not actually
1478 * sending one until the protocol thread has completed
1479 * processing the current backlog of packets. This
1480 * does not delay the ack any further, but allows us
1481 * to take advantage of the packet aggregation that
1482 * high speed NICs do (usually blocks of 8-10 packets)
1483 * to send a single ack rather then four or five acks,
1484 * greatly reducing the ack rate, the return channel
1485 * bandwidth, and the protocol overhead on both ends.
1487 * Since this also has the effect of slowing down
1488 * the exponential slow-start ramp-up, systems with
1489 * very large bandwidth-delay products might want
1490 * to turn the feature off.
1492 if (DELAY_ACK(tp)) {
1493 tcp_callout_reset(tp, tp->tt_delack,
1494 tcp_delacktime, tcp_timer_delack);
1495 } else if (tcp_aggregate_acks) {
1496 tp->t_flags |= TF_ACKNOW;
1497 if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1498 tp->t_flags |= TF_ONOUTPUTQ;
1499 tp->tt_cpu = mycpu->gd_cpuid;
1500 TAILQ_INSERT_TAIL(
1501 &tcpcbackq[tp->tt_cpu],
1502 tp, t_outputq);
1504 } else {
1505 tp->t_flags |= TF_ACKNOW;
1506 tcp_output(tp);
1508 return(IPPROTO_DONE);
1513 * Calculate amount of space in receive window,
1514 * and then do TCP input processing.
1515 * Receive window is amount of space in rcv queue,
1516 * but not less than advertised window.
1518 recvwin = ssb_space(&so->so_rcv);
1519 if (recvwin < 0)
1520 recvwin = 0;
1521 tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1523 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1524 tp->rfbuf_ts = 0;
1525 tp->rfbuf_cnt = 0;
1527 switch (tp->t_state) {
1529 * If the state is SYN_RECEIVED:
1530 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1532 case TCPS_SYN_RECEIVED:
1533 if ((thflags & TH_ACK) &&
1534 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1535 SEQ_GT(th->th_ack, tp->snd_max))) {
1536 rstreason = BANDLIM_RST_OPENPORT;
1537 goto dropwithreset;
1539 break;
1542 * If the state is SYN_SENT:
1543 * if seg contains an ACK, but not for our SYN, drop the input.
1544 * if seg contains a RST, then drop the connection.
1545 * if seg does not contain SYN, then drop it.
1546 * Otherwise this is an acceptable SYN segment
1547 * initialize tp->rcv_nxt and tp->irs
1548 * if seg contains ack then advance tp->snd_una
1549 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1550 * arrange for segment to be acked (eventually)
1551 * continue processing rest of data/controls, beginning with URG
1553 case TCPS_SYN_SENT:
1554 if ((thflags & TH_ACK) &&
1555 (SEQ_LEQ(th->th_ack, tp->iss) ||
1556 SEQ_GT(th->th_ack, tp->snd_max))) {
1557 rstreason = BANDLIM_UNLIMITED;
1558 goto dropwithreset;
1560 if (thflags & TH_RST) {
1561 if (thflags & TH_ACK)
1562 tp = tcp_drop(tp, ECONNREFUSED);
1563 goto drop;
1565 if (!(thflags & TH_SYN))
1566 goto drop;
1568 tp->irs = th->th_seq;
1569 tcp_rcvseqinit(tp);
1570 if (thflags & TH_ACK) {
1571 /* Our SYN was acked. */
1572 tcpstat.tcps_connects++;
1573 soisconnected(so);
1574 /* Do window scaling on this connection? */
1575 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1576 (TF_RCVD_SCALE | TF_REQ_SCALE))
1577 tp->rcv_scale = tp->request_r_scale;
1578 tp->rcv_adv += tp->rcv_wnd;
1579 tp->snd_una++; /* SYN is acked */
1580 tcp_callout_stop(tp, tp->tt_rexmt);
1582 * If there's data, delay ACK; if there's also a FIN
1583 * ACKNOW will be turned on later.
1585 if (DELAY_ACK(tp) && tlen != 0) {
1586 tcp_callout_reset(tp, tp->tt_delack,
1587 tcp_delacktime, tcp_timer_delack);
1588 } else {
1589 tp->t_flags |= TF_ACKNOW;
1592 * Received <SYN,ACK> in SYN_SENT[*] state.
1593 * Transitions:
1594 * SYN_SENT --> ESTABLISHED
1595 * SYN_SENT* --> FIN_WAIT_1
1597 tp->t_starttime = ticks;
1598 if (tp->t_flags & TF_NEEDFIN) {
1599 TCP_STATE_CHANGE(tp, TCPS_FIN_WAIT_1);
1600 tp->t_flags &= ~TF_NEEDFIN;
1601 thflags &= ~TH_SYN;
1602 } else {
1603 tcp_established(tp);
1605 } else {
1607 * Received initial SYN in SYN-SENT[*] state =>
1608 * simultaneous open.
1609 * Do 3-way handshake:
1610 * SYN-SENT -> SYN-RECEIVED
1611 * SYN-SENT* -> SYN-RECEIVED*
1613 tp->t_flags |= TF_ACKNOW;
1614 tcp_callout_stop(tp, tp->tt_rexmt);
1615 TCP_STATE_CHANGE(tp, TCPS_SYN_RECEIVED);
1619 * Advance th->th_seq to correspond to first data byte.
1620 * If data, trim to stay within window,
1621 * dropping FIN if necessary.
1623 th->th_seq++;
1624 if (tlen > tp->rcv_wnd) {
1625 todrop = tlen - tp->rcv_wnd;
1626 m_adj(m, -todrop);
1627 tlen = tp->rcv_wnd;
1628 thflags &= ~TH_FIN;
1629 tcpstat.tcps_rcvpackafterwin++;
1630 tcpstat.tcps_rcvbyteafterwin += todrop;
1632 tp->snd_wl1 = th->th_seq - 1;
1633 tp->rcv_up = th->th_seq;
1635 * Client side of transaction: already sent SYN and data.
1636 * If the remote host used T/TCP to validate the SYN,
1637 * our data will be ACK'd; if so, enter normal data segment
1638 * processing in the middle of step 5, ack processing.
1639 * Otherwise, goto step 6.
1641 if (thflags & TH_ACK)
1642 goto process_ACK;
1644 goto step6;
1647 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1648 * do normal processing (we no longer bother with T/TCP).
1650 case TCPS_LAST_ACK:
1651 case TCPS_CLOSING:
1652 case TCPS_TIME_WAIT:
1653 break; /* continue normal processing */
1657 * States other than LISTEN or SYN_SENT.
1658 * First check the RST flag and sequence number since reset segments
1659 * are exempt from the timestamp and connection count tests. This
1660 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1661 * below which allowed reset segments in half the sequence space
1662 * to fall though and be processed (which gives forged reset
1663 * segments with a random sequence number a 50 percent chance of
1664 * killing a connection).
1665 * Then check timestamp, if present.
1666 * Then check the connection count, if present.
1667 * Then check that at least some bytes of segment are within
1668 * receive window. If segment begins before rcv_nxt,
1669 * drop leading data (and SYN); if nothing left, just ack.
1672 * If the RST bit is set, check the sequence number to see
1673 * if this is a valid reset segment.
1674 * RFC 793 page 37:
1675 * In all states except SYN-SENT, all reset (RST) segments
1676 * are validated by checking their SEQ-fields. A reset is
1677 * valid if its sequence number is in the window.
1678 * Note: this does not take into account delayed ACKs, so
1679 * we should test against last_ack_sent instead of rcv_nxt.
1680 * The sequence number in the reset segment is normally an
1681 * echo of our outgoing acknowledgement numbers, but some hosts
1682 * send a reset with the sequence number at the rightmost edge
1683 * of our receive window, and we have to handle this case.
1684 * If we have multiple segments in flight, the intial reset
1685 * segment sequence numbers will be to the left of last_ack_sent,
1686 * but they will eventually catch up.
1687 * In any case, it never made sense to trim reset segments to
1688 * fit the receive window since RFC 1122 says:
1689 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
1691 * A TCP SHOULD allow a received RST segment to include data.
1693 * DISCUSSION
1694 * It has been suggested that a RST segment could contain
1695 * ASCII text that encoded and explained the cause of the
1696 * RST. No standard has yet been established for such
1697 * data.
1699 * If the reset segment passes the sequence number test examine
1700 * the state:
1701 * SYN_RECEIVED STATE:
1702 * If passive open, return to LISTEN state.
1703 * If active open, inform user that connection was refused.
1704 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1705 * Inform user that connection was reset, and close tcb.
1706 * CLOSING, LAST_ACK STATES:
1707 * Close the tcb.
1708 * TIME_WAIT STATE:
1709 * Drop the segment - see Stevens, vol. 2, p. 964 and
1710 * RFC 1337.
1712 if (thflags & TH_RST) {
1713 if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1714 SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1715 switch (tp->t_state) {
1717 case TCPS_SYN_RECEIVED:
1718 so->so_error = ECONNREFUSED;
1719 goto close;
1721 case TCPS_ESTABLISHED:
1722 case TCPS_FIN_WAIT_1:
1723 case TCPS_FIN_WAIT_2:
1724 case TCPS_CLOSE_WAIT:
1725 so->so_error = ECONNRESET;
1726 close:
1727 TCP_STATE_CHANGE(tp, TCPS_CLOSED);
1728 tcpstat.tcps_drops++;
1729 tp = tcp_close(tp);
1730 break;
1732 case TCPS_CLOSING:
1733 case TCPS_LAST_ACK:
1734 tp = tcp_close(tp);
1735 break;
1737 case TCPS_TIME_WAIT:
1738 break;
1741 goto drop;
1745 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1746 * and it's less than ts_recent, drop it.
1748 if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1749 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1750 /* Check to see if ts_recent is over 24 days old. */
1751 if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1753 * Invalidate ts_recent. If this segment updates
1754 * ts_recent, the age will be reset later and ts_recent
1755 * will get a valid value. If it does not, setting
1756 * ts_recent to zero will at least satisfy the
1757 * requirement that zero be placed in the timestamp
1758 * echo reply when ts_recent isn't valid. The
1759 * age isn't reset until we get a valid ts_recent
1760 * because we don't want out-of-order segments to be
1761 * dropped when ts_recent is old.
1763 tp->ts_recent = 0;
1764 } else if (tcp_paws_tolerance && tlen != 0 &&
1765 tp->t_state == TCPS_ESTABLISHED &&
1766 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK&&
1767 !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1768 th->th_ack == tp->snd_una &&
1769 tiwin == tp->snd_wnd &&
1770 TSTMP_GEQ(to.to_tsval + tcp_paws_tolerance, tp->ts_recent)&&
1771 (th->th_seq == tp->rcv_nxt ||
1772 (SEQ_GT(th->th_seq, tp->rcv_nxt) &&
1773 tcp_paws_canreasslast(tp, th, tlen)))) {
1775 * This tends to prevent valid new segments from being
1776 * dropped by the reordered segments sent by the fast
1777 * retransmission algorithm on the sending side, i.e.
1778 * the fast retransmitted segment w/ larger timestamp
1779 * arrives earlier than the previously sent new segments
1780 * w/ smaller timestamp.
1782 * If following conditions are met, the segment is
1783 * accepted:
1784 * - The segment contains data
1785 * - The connection is established
1786 * - The header does not contain important flags
1787 * - SYN or FIN is not needed
1788 * - It does not acknowledge new data
1789 * - Receive window is not changed
1790 * - The timestamp is within "acceptable" range
1791 * - The new segment is what we are expecting or
1792 * the new segment could be merged w/ the last
1793 * pending segment on the reassemble queue
1795 tcpstat.tcps_pawsaccept++;
1796 tcpstat.tcps_pawsdrop++;
1797 } else {
1798 tcpstat.tcps_rcvduppack++;
1799 tcpstat.tcps_rcvdupbyte += tlen;
1800 tcpstat.tcps_pawsdrop++;
1801 if (tlen)
1802 goto dropafterack;
1803 goto drop;
1808 * In the SYN-RECEIVED state, validate that the packet belongs to
1809 * this connection before trimming the data to fit the receive
1810 * window. Check the sequence number versus IRS since we know
1811 * the sequence numbers haven't wrapped. This is a partial fix
1812 * for the "LAND" DoS attack.
1814 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1815 rstreason = BANDLIM_RST_OPENPORT;
1816 goto dropwithreset;
1819 todrop = tp->rcv_nxt - th->th_seq;
1820 if (todrop > 0) {
1821 if (TCP_DO_SACK(tp)) {
1822 /* Report duplicate segment at head of packet. */
1823 tp->reportblk.rblk_start = th->th_seq;
1824 tp->reportblk.rblk_end = TCP_SACK_BLKEND(
1825 th->th_seq + tlen, thflags);
1826 if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1827 tp->reportblk.rblk_end = tp->rcv_nxt;
1828 tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_SACKLEFT);
1829 tp->t_flags |= TF_ACKNOW;
1831 if (thflags & TH_SYN) {
1832 thflags &= ~TH_SYN;
1833 th->th_seq++;
1834 if (th->th_urp > 1)
1835 th->th_urp--;
1836 else
1837 thflags &= ~TH_URG;
1838 todrop--;
1841 * Following if statement from Stevens, vol. 2, p. 960.
1843 if (todrop > tlen ||
1844 (todrop == tlen && !(thflags & TH_FIN))) {
1846 * Any valid FIN must be to the left of the window.
1847 * At this point the FIN must be a duplicate or out
1848 * of sequence; drop it.
1850 thflags &= ~TH_FIN;
1853 * Send an ACK to resynchronize and drop any data.
1854 * But keep on processing for RST or ACK.
1856 tp->t_flags |= TF_ACKNOW;
1857 todrop = tlen;
1858 tcpstat.tcps_rcvduppack++;
1859 tcpstat.tcps_rcvdupbyte += todrop;
1860 } else {
1861 tcpstat.tcps_rcvpartduppack++;
1862 tcpstat.tcps_rcvpartdupbyte += todrop;
1864 drop_hdrlen += todrop; /* drop from the top afterwards */
1865 th->th_seq += todrop;
1866 tlen -= todrop;
1867 if (th->th_urp > todrop)
1868 th->th_urp -= todrop;
1869 else {
1870 thflags &= ~TH_URG;
1871 th->th_urp = 0;
1876 * If new data are received on a connection after the
1877 * user processes are gone, then RST the other end.
1879 if ((so->so_state & SS_NOFDREF) &&
1880 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1881 tp = tcp_close(tp);
1882 tcpstat.tcps_rcvafterclose++;
1883 rstreason = BANDLIM_UNLIMITED;
1884 goto dropwithreset;
1888 * If segment ends after window, drop trailing data
1889 * (and PUSH and FIN); if nothing left, just ACK.
1891 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1892 if (todrop > 0) {
1893 tcpstat.tcps_rcvpackafterwin++;
1894 if (todrop >= tlen) {
1895 tcpstat.tcps_rcvbyteafterwin += tlen;
1897 * If a new connection request is received
1898 * while in TIME_WAIT, drop the old connection
1899 * and start over if the sequence numbers
1900 * are above the previous ones.
1902 if (thflags & TH_SYN &&
1903 tp->t_state == TCPS_TIME_WAIT &&
1904 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1905 tp = tcp_close(tp);
1906 goto findpcb;
1909 * If window is closed can only take segments at
1910 * window edge, and have to drop data and PUSH from
1911 * incoming segments. Continue processing, but
1912 * remember to ack. Otherwise, drop segment
1913 * and ack.
1915 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1916 tp->t_flags |= TF_ACKNOW;
1917 tcpstat.tcps_rcvwinprobe++;
1918 } else
1919 goto dropafterack;
1920 } else
1921 tcpstat.tcps_rcvbyteafterwin += todrop;
1922 m_adj(m, -todrop);
1923 tlen -= todrop;
1924 thflags &= ~(TH_PUSH | TH_FIN);
1928 * If last ACK falls within this segment's sequence numbers,
1929 * record its timestamp.
1930 * NOTE:
1931 * 1) That the test incorporates suggestions from the latest
1932 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1933 * 2) That updating only on newer timestamps interferes with
1934 * our earlier PAWS tests, so this check should be solely
1935 * predicated on the sequence space of this segment.
1936 * 3) That we modify the segment boundary check to be
1937 * Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1938 * instead of RFC1323's
1939 * Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1940 * This modified check allows us to overcome RFC1323's
1941 * limitations as described in Stevens TCP/IP Illustrated
1942 * Vol. 2 p.869. In such cases, we can still calculate the
1943 * RTT correctly when RCV.NXT == Last.ACK.Sent.
1945 if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1946 SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1947 + ((thflags & TH_SYN) != 0)
1948 + ((thflags & TH_FIN) != 0)))) {
1949 tp->ts_recent_age = ticks;
1950 tp->ts_recent = to.to_tsval;
1954 * If a SYN is in the window, then this is an
1955 * error and we send an RST and drop the connection.
1957 if (thflags & TH_SYN) {
1958 tp = tcp_drop(tp, ECONNRESET);
1959 rstreason = BANDLIM_UNLIMITED;
1960 goto dropwithreset;
1964 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
1965 * flag is on (half-synchronized state), then queue data for
1966 * later processing; else drop segment and return.
1968 if (!(thflags & TH_ACK)) {
1969 if (tp->t_state == TCPS_SYN_RECEIVED ||
1970 (tp->t_flags & TF_NEEDSYN))
1971 goto step6;
1972 else
1973 goto drop;
1977 * Ack processing.
1979 switch (tp->t_state) {
1981 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1982 * ESTABLISHED state and continue processing.
1983 * The ACK was checked above.
1985 case TCPS_SYN_RECEIVED:
1987 tcpstat.tcps_connects++;
1988 soisconnected(so);
1989 /* Do window scaling? */
1990 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1991 (TF_RCVD_SCALE | TF_REQ_SCALE))
1992 tp->rcv_scale = tp->request_r_scale;
1994 * Make transitions:
1995 * SYN-RECEIVED -> ESTABLISHED
1996 * SYN-RECEIVED* -> FIN-WAIT-1
1998 tp->t_starttime = ticks;
1999 if (tp->t_flags & TF_NEEDFIN) {
2000 TCP_STATE_CHANGE(tp, TCPS_FIN_WAIT_1);
2001 tp->t_flags &= ~TF_NEEDFIN;
2002 } else {
2003 tcp_established(tp);
2006 * If segment contains data or ACK, will call tcp_reass()
2007 * later; if not, do so now to pass queued data to user.
2009 if (tlen == 0 && !(thflags & TH_FIN))
2010 tcp_reass(tp, NULL, NULL, NULL);
2011 /* fall into ... */
2014 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2015 * ACKs. If the ack is in the range
2016 * tp->snd_una < th->th_ack <= tp->snd_max
2017 * then advance tp->snd_una to th->th_ack and drop
2018 * data from the retransmission queue. If this ACK reflects
2019 * more up to date window information we update our window information.
2021 case TCPS_ESTABLISHED:
2022 case TCPS_FIN_WAIT_1:
2023 case TCPS_FIN_WAIT_2:
2024 case TCPS_CLOSE_WAIT:
2025 case TCPS_CLOSING:
2026 case TCPS_LAST_ACK:
2027 case TCPS_TIME_WAIT:
2029 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2030 boolean_t maynotdup = FALSE;
2032 if (TCP_DO_SACK(tp))
2033 tcp_sack_update_scoreboard(tp, &to);
2035 if (tlen != 0 || tiwin != tp->snd_wnd ||
2036 ((thflags & TH_FIN) && !(tp->t_flags & TF_SAWFIN)))
2037 maynotdup = TRUE;
2039 if (!tcp_callout_active(tp, tp->tt_rexmt) ||
2040 th->th_ack != tp->snd_una) {
2041 if (!maynotdup)
2042 tcpstat.tcps_rcvdupack++;
2043 tp->t_dupacks = 0;
2044 break;
2047 #define DELAY_DUPACK \
2048 do { \
2049 delayed_dupack = TRUE; \
2050 th_dupack = th->th_ack; \
2051 to_flags = to.to_flags; \
2052 } while (0)
2053 if (maynotdup) {
2054 if (!tcp_do_rfc6675 ||
2055 !TCP_DO_SACK(tp) ||
2056 (to.to_flags &
2057 (TOF_SACK | TOF_SACK_REDUNDANT))
2058 != TOF_SACK) {
2059 tp->t_dupacks = 0;
2060 } else {
2061 DELAY_DUPACK;
2063 break;
2065 if ((thflags & TH_FIN) && !(tp->t_flags & TF_QUEDFIN)) {
2067 * This could happen, if the reassemable
2068 * queue overflew or was drained. Don't
2069 * drop this FIN here; defer the duplicated
2070 * ACK processing until this FIN gets queued.
2072 DELAY_DUPACK;
2073 break;
2075 #undef DELAY_DUPACK
2077 if (tcp_recv_dupack(tp, th->th_ack, to.to_flags))
2078 goto drop;
2079 else
2080 break;
2083 KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2084 tp->t_dupacks = 0;
2085 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2087 * Detected optimistic ACK attack.
2088 * Force slow-start to de-synchronize attack.
2090 tp->snd_cwnd = tp->t_maxseg;
2091 tp->snd_wacked = 0;
2093 tcpstat.tcps_rcvacktoomuch++;
2094 goto dropafterack;
2097 * If we reach this point, ACK is not a duplicate,
2098 * i.e., it ACKs something we sent.
2100 if (tp->t_flags & TF_NEEDSYN) {
2102 * T/TCP: Connection was half-synchronized, and our
2103 * SYN has been ACK'd (so connection is now fully
2104 * synchronized). Go to non-starred state,
2105 * increment snd_una for ACK of SYN, and check if
2106 * we can do window scaling.
2108 tp->t_flags &= ~TF_NEEDSYN;
2109 tp->snd_una++;
2110 /* Do window scaling? */
2111 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2112 (TF_RCVD_SCALE | TF_REQ_SCALE))
2113 tp->rcv_scale = tp->request_r_scale;
2116 process_ACK:
2117 acked = th->th_ack - tp->snd_una;
2118 tcpstat.tcps_rcvackpack++;
2119 tcpstat.tcps_rcvackbyte += acked;
2121 if (tcp_do_eifel_detect && acked > 0 &&
2122 (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2123 (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
2124 /* Eifel detection applicable. */
2125 if (to.to_tsecr < tp->t_rexmtTS) {
2126 ++tcpstat.tcps_eifeldetected;
2127 tcp_revert_congestion_state(tp);
2128 if (tp->t_rxtshift != 1 ||
2129 ticks >= tp->t_badrxtwin)
2130 ++tcpstat.tcps_rttcantdetect;
2132 } else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2134 * If we just performed our first retransmit,
2135 * and the ACK arrives within our recovery window,
2136 * then it was a mistake to do the retransmit
2137 * in the first place. Recover our original cwnd
2138 * and ssthresh, and proceed to transmit where we
2139 * left off.
2141 tcp_revert_congestion_state(tp);
2142 ++tcpstat.tcps_rttdetected;
2146 * If we have a timestamp reply, update smoothed
2147 * round trip time. If no timestamp is present but
2148 * transmit timer is running and timed sequence
2149 * number was acked, update smoothed round trip time.
2150 * Since we now have an rtt measurement, cancel the
2151 * timer backoff (cf., Phil Karn's retransmit alg.).
2152 * Recompute the initial retransmit timer.
2154 * Some machines (certain windows boxes) send broken
2155 * timestamp replies during the SYN+ACK phase, ignore
2156 * timestamps of 0.
2158 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2159 tcp_xmit_timer(tp, ticks - to.to_tsecr + 1,
2160 th->th_ack);
2161 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2162 tcp_xmit_timer(tp, ticks - tp->t_rtttime + 1,
2163 th->th_ack);
2164 tcp_xmit_bandwidth_limit(tp, th->th_ack);
2167 * If no data (only SYN) was ACK'd,
2168 * skip rest of ACK processing.
2170 if (acked == 0)
2171 goto step6;
2173 /* Stop looking for an acceptable ACK since one was received. */
2174 tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
2175 TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
2177 if (acked > so->so_snd.ssb_cc) {
2178 tp->snd_wnd -= so->so_snd.ssb_cc;
2179 sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2180 ourfinisacked = TRUE;
2181 } else {
2182 sbdrop(&so->so_snd.sb, acked);
2183 tp->snd_wnd -= acked;
2184 ourfinisacked = FALSE;
2186 sowwakeup(so);
2189 * Update window information.
2191 if (acceptable_window_update(tp, th, tiwin)) {
2192 /* keep track of pure window updates */
2193 if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2194 tiwin > tp->snd_wnd)
2195 tcpstat.tcps_rcvwinupd++;
2196 tp->snd_wnd = tiwin;
2197 tp->snd_wl1 = th->th_seq;
2198 tp->snd_wl2 = th->th_ack;
2199 if (tp->snd_wnd > tp->max_sndwnd)
2200 tp->max_sndwnd = tp->snd_wnd;
2201 needoutput = TRUE;
2204 tp->snd_una = th->th_ack;
2205 if (TCP_DO_SACK(tp))
2206 tcp_sack_update_scoreboard(tp, &to);
2207 if (IN_FASTRECOVERY(tp)) {
2208 if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2209 EXIT_FASTRECOVERY(tp);
2210 needoutput = TRUE;
2212 * If the congestion window was inflated
2213 * to account for the other side's
2214 * cached packets, retract it.
2216 if (!TCP_DO_SACK(tp))
2217 tp->snd_cwnd = tp->snd_ssthresh;
2220 * Window inflation should have left us
2221 * with approximately snd_ssthresh outstanding
2222 * data. But, in case we would be inclined
2223 * to send a burst, better do it using
2224 * slow start.
2226 if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2227 tp->snd_max + 2 * tp->t_maxseg))
2228 tp->snd_cwnd =
2229 (tp->snd_max - tp->snd_una) +
2230 2 * tp->t_maxseg;
2232 tp->snd_wacked = 0;
2233 } else {
2234 if (TCP_DO_SACK(tp)) {
2235 tp->snd_max_rexmt = tp->snd_max;
2236 tcp_sack_rexmt(tp,
2237 tp->snd_una == tp->rexmt_high);
2238 } else {
2239 tcp_newreno_partial_ack(tp, th, acked);
2241 needoutput = FALSE;
2243 } else {
2245 * Open the congestion window. When in slow-start,
2246 * open exponentially: maxseg per packet. Otherwise,
2247 * open linearly: maxseg per window.
2249 if (tp->snd_cwnd <= tp->snd_ssthresh) {
2250 u_int abc_sslimit =
2251 (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2252 tp->t_maxseg : 2 * tp->t_maxseg);
2254 /* slow-start */
2255 tp->snd_cwnd += tcp_do_abc ?
2256 min(acked, abc_sslimit) : tp->t_maxseg;
2257 } else {
2258 /* linear increase */
2259 tp->snd_wacked += tcp_do_abc ? acked :
2260 tp->t_maxseg;
2261 if (tp->snd_wacked >= tp->snd_cwnd) {
2262 tp->snd_wacked -= tp->snd_cwnd;
2263 tp->snd_cwnd += tp->t_maxseg;
2266 tp->snd_cwnd = min(tp->snd_cwnd,
2267 TCP_MAXWIN << tp->snd_scale);
2268 tp->snd_recover = th->th_ack - 1;
2270 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2271 tp->snd_nxt = tp->snd_una;
2274 * If all outstanding data is acked, stop retransmit
2275 * timer and remember to restart (more output or persist).
2276 * If there is more data to be acked, restart retransmit
2277 * timer, using current (possibly backed-off) value.
2279 if (th->th_ack == tp->snd_max) {
2280 tcp_callout_stop(tp, tp->tt_rexmt);
2281 needoutput = TRUE;
2282 } else if (!tcp_callout_active(tp, tp->tt_persist)) {
2283 tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2284 tcp_timer_rexmt);
2287 switch (tp->t_state) {
2289 * In FIN_WAIT_1 STATE in addition to the processing
2290 * for the ESTABLISHED state if our FIN is now acknowledged
2291 * then enter FIN_WAIT_2.
2293 case TCPS_FIN_WAIT_1:
2294 if (ourfinisacked) {
2296 * If we can't receive any more
2297 * data, then closing user can proceed.
2298 * Starting the timer is contrary to the
2299 * specification, but if we don't get a FIN
2300 * we'll hang forever.
2302 if (so->so_state & SS_CANTRCVMORE) {
2303 soisdisconnected(so);
2304 tcp_callout_reset(tp, tp->tt_2msl,
2305 tp->t_maxidle, tcp_timer_2msl);
2307 TCP_STATE_CHANGE(tp, TCPS_FIN_WAIT_2);
2309 break;
2312 * In CLOSING STATE in addition to the processing for
2313 * the ESTABLISHED state if the ACK acknowledges our FIN
2314 * then enter the TIME-WAIT state, otherwise ignore
2315 * the segment.
2317 case TCPS_CLOSING:
2318 if (ourfinisacked) {
2319 TCP_STATE_CHANGE(tp, TCPS_TIME_WAIT);
2320 tcp_canceltimers(tp);
2321 tcp_callout_reset(tp, tp->tt_2msl,
2322 2 * tcp_rmx_msl(tp),
2323 tcp_timer_2msl);
2324 soisdisconnected(so);
2326 break;
2329 * In LAST_ACK, we may still be waiting for data to drain
2330 * and/or to be acked, as well as for the ack of our FIN.
2331 * If our FIN is now acknowledged, delete the TCB,
2332 * enter the closed state and return.
2334 case TCPS_LAST_ACK:
2335 if (ourfinisacked) {
2336 tp = tcp_close(tp);
2337 goto drop;
2339 break;
2342 * In TIME_WAIT state the only thing that should arrive
2343 * is a retransmission of the remote FIN. Acknowledge
2344 * it and restart the finack timer.
2346 case TCPS_TIME_WAIT:
2347 tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2348 tcp_timer_2msl);
2349 goto dropafterack;
2353 step6:
2355 * Update window information.
2356 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2358 if ((thflags & TH_ACK) &&
2359 acceptable_window_update(tp, th, tiwin)) {
2360 /* keep track of pure window updates */
2361 if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2362 tiwin > tp->snd_wnd)
2363 tcpstat.tcps_rcvwinupd++;
2364 tp->snd_wnd = tiwin;
2365 tp->snd_wl1 = th->th_seq;
2366 tp->snd_wl2 = th->th_ack;
2367 if (tp->snd_wnd > tp->max_sndwnd)
2368 tp->max_sndwnd = tp->snd_wnd;
2369 needoutput = TRUE;
2373 * Process segments with URG.
2375 if ((thflags & TH_URG) && th->th_urp &&
2376 !TCPS_HAVERCVDFIN(tp->t_state)) {
2378 * This is a kludge, but if we receive and accept
2379 * random urgent pointers, we'll crash in
2380 * soreceive. It's hard to imagine someone
2381 * actually wanting to send this much urgent data.
2383 if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2384 th->th_urp = 0; /* XXX */
2385 thflags &= ~TH_URG; /* XXX */
2386 goto dodata; /* XXX */
2389 * If this segment advances the known urgent pointer,
2390 * then mark the data stream. This should not happen
2391 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2392 * a FIN has been received from the remote side.
2393 * In these states we ignore the URG.
2395 * According to RFC961 (Assigned Protocols),
2396 * the urgent pointer points to the last octet
2397 * of urgent data. We continue, however,
2398 * to consider it to indicate the first octet
2399 * of data past the urgent section as the original
2400 * spec states (in one of two places).
2402 if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2403 tp->rcv_up = th->th_seq + th->th_urp;
2404 so->so_oobmark = so->so_rcv.ssb_cc +
2405 (tp->rcv_up - tp->rcv_nxt) - 1;
2406 if (so->so_oobmark == 0)
2407 sosetstate(so, SS_RCVATMARK);
2408 sohasoutofband(so);
2409 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2412 * Remove out of band data so doesn't get presented to user.
2413 * This can happen independent of advancing the URG pointer,
2414 * but if two URG's are pending at once, some out-of-band
2415 * data may creep in... ick.
2417 if (th->th_urp <= (u_long)tlen &&
2418 !(so->so_options & SO_OOBINLINE)) {
2419 /* hdr drop is delayed */
2420 tcp_pulloutofband(so, th, m, drop_hdrlen);
2422 } else {
2424 * If no out of band data is expected,
2425 * pull receive urgent pointer along
2426 * with the receive window.
2428 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2429 tp->rcv_up = tp->rcv_nxt;
2432 dodata: /* XXX */
2434 * Process the segment text, merging it into the TCP sequencing queue,
2435 * and arranging for acknowledgment of receipt if necessary.
2436 * This process logically involves adjusting tp->rcv_wnd as data
2437 * is presented to the user (this happens in tcp_usrreq.c,
2438 * case PRU_RCVD). If a FIN has already been received on this
2439 * connection then we just ignore the text.
2441 if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2442 if (thflags & TH_FIN)
2443 tp->t_flags |= TF_SAWFIN;
2444 m_adj(m, drop_hdrlen); /* delayed header drop */
2446 * Insert segment which includes th into TCP reassembly queue
2447 * with control block tp. Set thflags to whether reassembly now
2448 * includes a segment with FIN. This handles the common case
2449 * inline (segment is the next to be received on an established
2450 * connection, and the queue is empty), avoiding linkage into
2451 * and removal from the queue and repetition of various
2452 * conversions.
2453 * Set DELACK for segments received in order, but ack
2454 * immediately when segments are out of order (so
2455 * fast retransmit can work).
2457 if (th->th_seq == tp->rcv_nxt &&
2458 TAILQ_EMPTY(&tp->t_segq) &&
2459 TCPS_HAVEESTABLISHED(tp->t_state)) {
2460 if (thflags & TH_FIN)
2461 tp->t_flags |= TF_QUEDFIN;
2462 if (DELAY_ACK(tp)) {
2463 tcp_callout_reset(tp, tp->tt_delack,
2464 tcp_delacktime, tcp_timer_delack);
2465 } else {
2466 tp->t_flags |= TF_ACKNOW;
2468 tp->rcv_nxt += tlen;
2469 thflags = th->th_flags & TH_FIN;
2470 tcpstat.tcps_rcvpack++;
2471 tcpstat.tcps_rcvbyte += tlen;
2472 ND6_HINT(tp);
2473 if (so->so_state & SS_CANTRCVMORE) {
2474 m_freem(m);
2475 } else {
2476 lwkt_gettoken(&so->so_rcv.ssb_token);
2477 ssb_appendstream(&so->so_rcv, m);
2478 lwkt_reltoken(&so->so_rcv.ssb_token);
2480 sorwakeup(so);
2481 } else {
2482 if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
2483 /* Initialize SACK report block. */
2484 tp->reportblk.rblk_start = th->th_seq;
2485 tp->reportblk.rblk_end = TCP_SACK_BLKEND(
2486 th->th_seq + tlen, thflags);
2488 thflags = tcp_reass(tp, th, &tlen, m);
2489 tp->t_flags |= TF_ACKNOW;
2493 * Note the amount of data that peer has sent into
2494 * our window, in order to estimate the sender's
2495 * buffer size.
2497 len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2498 } else {
2499 m_freem(m);
2500 thflags &= ~TH_FIN;
2504 * If FIN is received ACK the FIN and let the user know
2505 * that the connection is closing.
2507 if (thflags & TH_FIN) {
2508 if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2509 socantrcvmore(so);
2511 * If connection is half-synchronized
2512 * (ie NEEDSYN flag on) then delay ACK,
2513 * so it may be piggybacked when SYN is sent.
2514 * Otherwise, since we received a FIN then no
2515 * more input can be expected, send ACK now.
2517 if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2518 tcp_callout_reset(tp, tp->tt_delack,
2519 tcp_delacktime, tcp_timer_delack);
2520 } else {
2521 tp->t_flags |= TF_ACKNOW;
2523 tp->rcv_nxt++;
2526 switch (tp->t_state) {
2528 * In SYN_RECEIVED and ESTABLISHED STATES
2529 * enter the CLOSE_WAIT state.
2531 case TCPS_SYN_RECEIVED:
2532 tp->t_starttime = ticks;
2533 /*FALLTHROUGH*/
2534 case TCPS_ESTABLISHED:
2535 TCP_STATE_CHANGE(tp, TCPS_CLOSE_WAIT);
2536 break;
2539 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2540 * enter the CLOSING state.
2542 case TCPS_FIN_WAIT_1:
2543 TCP_STATE_CHANGE(tp, TCPS_CLOSING);
2544 break;
2547 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2548 * starting the time-wait timer, turning off the other
2549 * standard timers.
2551 case TCPS_FIN_WAIT_2:
2552 TCP_STATE_CHANGE(tp, TCPS_TIME_WAIT);
2553 tcp_canceltimers(tp);
2554 tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2555 tcp_timer_2msl);
2556 soisdisconnected(so);
2557 break;
2560 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2562 case TCPS_TIME_WAIT:
2563 tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2564 tcp_timer_2msl);
2565 break;
2569 #ifdef TCPDEBUG
2570 if (so->so_options & SO_DEBUG)
2571 tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2572 #endif
2575 * Delayed duplicated ACK processing
2577 if (delayed_dupack && tcp_recv_dupack(tp, th_dupack, to_flags))
2578 needoutput = FALSE;
2581 * Return any desired output.
2583 if ((tp->t_flags & TF_ACKNOW) ||
2584 (needoutput && tcp_sack_report_needed(tp))) {
2585 tcp_output_cancel(tp);
2586 tcp_output_fair(tp);
2587 } else if (needoutput && !tcp_output_pending(tp)) {
2588 tcp_output_fair(tp);
2590 tcp_sack_report_cleanup(tp);
2591 return(IPPROTO_DONE);
2593 dropafterack:
2595 * Generate an ACK dropping incoming segment if it occupies
2596 * sequence space, where the ACK reflects our state.
2598 * We can now skip the test for the RST flag since all
2599 * paths to this code happen after packets containing
2600 * RST have been dropped.
2602 * In the SYN-RECEIVED state, don't send an ACK unless the
2603 * segment we received passes the SYN-RECEIVED ACK test.
2604 * If it fails send a RST. This breaks the loop in the
2605 * "LAND" DoS attack, and also prevents an ACK storm
2606 * between two listening ports that have been sent forged
2607 * SYN segments, each with the source address of the other.
2609 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2610 (SEQ_GT(tp->snd_una, th->th_ack) ||
2611 SEQ_GT(th->th_ack, tp->snd_max)) ) {
2612 rstreason = BANDLIM_RST_OPENPORT;
2613 goto dropwithreset;
2615 #ifdef TCPDEBUG
2616 if (so->so_options & SO_DEBUG)
2617 tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2618 #endif
2619 m_freem(m);
2620 tp->t_flags |= TF_ACKNOW;
2621 tcp_output(tp);
2622 tcp_sack_report_cleanup(tp);
2623 return(IPPROTO_DONE);
2625 dropwithreset:
2627 * Generate a RST, dropping incoming segment.
2628 * Make ACK acceptable to originator of segment.
2629 * Don't bother to respond if destination was broadcast/multicast.
2631 if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2632 goto drop;
2633 if (isipv6) {
2634 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2635 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2636 goto drop;
2637 } else {
2638 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2639 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2640 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2641 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2642 goto drop;
2644 /* IPv6 anycast check is done at tcp6_input() */
2647 * Perform bandwidth limiting.
2649 #ifdef ICMP_BANDLIM
2650 if (badport_bandlim(rstreason) < 0)
2651 goto drop;
2652 #endif
2654 #ifdef TCPDEBUG
2655 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2656 tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2657 #endif
2658 if (thflags & TH_ACK)
2659 /* mtod() below is safe as long as hdr dropping is delayed */
2660 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2661 TH_RST);
2662 else {
2663 if (thflags & TH_SYN)
2664 tlen++;
2665 /* mtod() below is safe as long as hdr dropping is delayed */
2666 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2667 (tcp_seq)0, TH_RST | TH_ACK);
2669 if (tp != NULL)
2670 tcp_sack_report_cleanup(tp);
2671 return(IPPROTO_DONE);
2673 drop:
2675 * Drop space held by incoming segment and return.
2677 #ifdef TCPDEBUG
2678 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2679 tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2680 #endif
2681 m_freem(m);
2682 if (tp != NULL)
2683 tcp_sack_report_cleanup(tp);
2684 return(IPPROTO_DONE);
2688 * Parse TCP options and place in tcpopt.
2690 static void
2691 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn,
2692 tcp_seq ack)
2694 int opt, optlen, i;
2696 to->to_flags = 0;
2697 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2698 opt = cp[0];
2699 if (opt == TCPOPT_EOL)
2700 break;
2701 if (opt == TCPOPT_NOP)
2702 optlen = 1;
2703 else {
2704 if (cnt < 2)
2705 break;
2706 optlen = cp[1];
2707 if (optlen < 2 || optlen > cnt)
2708 break;
2710 switch (opt) {
2711 case TCPOPT_MAXSEG:
2712 if (optlen != TCPOLEN_MAXSEG)
2713 continue;
2714 if (!is_syn)
2715 continue;
2716 to->to_flags |= TOF_MSS;
2717 bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2718 to->to_mss = ntohs(to->to_mss);
2719 break;
2720 case TCPOPT_WINDOW:
2721 if (optlen != TCPOLEN_WINDOW)
2722 continue;
2723 if (!is_syn)
2724 continue;
2725 to->to_flags |= TOF_SCALE;
2726 to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2727 break;
2728 case TCPOPT_TIMESTAMP:
2729 if (optlen != TCPOLEN_TIMESTAMP)
2730 continue;
2731 to->to_flags |= TOF_TS;
2732 bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2733 to->to_tsval = ntohl(to->to_tsval);
2734 bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2735 to->to_tsecr = ntohl(to->to_tsecr);
2737 * If echoed timestamp is later than the current time,
2738 * fall back to non RFC1323 RTT calculation.
2740 if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2741 to->to_tsecr = 0;
2742 break;
2743 case TCPOPT_SACK_PERMITTED:
2744 if (optlen != TCPOLEN_SACK_PERMITTED)
2745 continue;
2746 if (!is_syn)
2747 continue;
2748 to->to_flags |= TOF_SACK_PERMITTED;
2749 break;
2750 case TCPOPT_SACK:
2751 if ((optlen - 2) & 0x07) /* not multiple of 8 */
2752 continue;
2753 to->to_nsackblocks = (optlen - 2) / 8;
2754 to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2755 to->to_flags |= TOF_SACK;
2756 for (i = 0; i < to->to_nsackblocks; i++) {
2757 struct raw_sackblock *r = &to->to_sackblocks[i];
2759 r->rblk_start = ntohl(r->rblk_start);
2760 r->rblk_end = ntohl(r->rblk_end);
2762 if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2764 * Invalid SACK block; discard all
2765 * SACK blocks
2767 tcpstat.tcps_rcvbadsackopt++;
2768 to->to_nsackblocks = 0;
2769 to->to_sackblocks = NULL;
2770 to->to_flags &= ~TOF_SACK;
2771 break;
2774 if ((to->to_flags & TOF_SACK) &&
2775 tcp_sack_ndsack_blocks(to->to_sackblocks,
2776 to->to_nsackblocks, ack))
2777 to->to_flags |= TOF_DSACK;
2778 break;
2779 #ifdef TCP_SIGNATURE
2781 * XXX In order to reply to a host which has set the
2782 * TCP_SIGNATURE option in its initial SYN, we have to
2783 * record the fact that the option was observed here
2784 * for the syncache code to perform the correct response.
2786 case TCPOPT_SIGNATURE:
2787 if (optlen != TCPOLEN_SIGNATURE)
2788 continue;
2789 to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2790 break;
2791 #endif /* TCP_SIGNATURE */
2792 default:
2793 continue;
2799 * Pull out of band byte out of a segment so
2800 * it doesn't appear in the user's data queue.
2801 * It is still reflected in the segment length for
2802 * sequencing purposes.
2803 * "off" is the delayed to be dropped hdrlen.
2805 static void
2806 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2808 int cnt = off + th->th_urp - 1;
2810 while (cnt >= 0) {
2811 if (m->m_len > cnt) {
2812 char *cp = mtod(m, caddr_t) + cnt;
2813 struct tcpcb *tp = sototcpcb(so);
2815 tp->t_iobc = *cp;
2816 tp->t_oobflags |= TCPOOB_HAVEDATA;
2817 bcopy(cp + 1, cp, m->m_len - cnt - 1);
2818 m->m_len--;
2819 if (m->m_flags & M_PKTHDR)
2820 m->m_pkthdr.len--;
2821 return;
2823 cnt -= m->m_len;
2824 m = m->m_next;
2825 if (m == NULL)
2826 break;
2828 panic("tcp_pulloutofband");
2832 * Collect new round-trip time estimate and update averages and current
2833 * timeout.
2835 static void
2836 tcp_xmit_timer(struct tcpcb *tp, int rtt, tcp_seq ack)
2838 int rebaserto = 0;
2840 tcpstat.tcps_rttupdated++;
2841 tp->t_rttupdated++;
2842 if ((tp->rxt_flags & TRXT_F_REBASERTO) &&
2843 SEQ_GT(ack, tp->snd_max_prev)) {
2844 #ifdef DEBUG_EIFEL_RESPONSE
2845 kprintf("srtt/rttvar, prev %d/%d, cur %d/%d, ",
2846 tp->t_srtt_prev, tp->t_rttvar_prev,
2847 tp->t_srtt, tp->t_rttvar);
2848 #endif
2850 tcpstat.tcps_eifelresponse++;
2851 rebaserto = 1;
2852 tp->rxt_flags &= ~TRXT_F_REBASERTO;
2853 tp->t_srtt = max(tp->t_srtt_prev, (rtt << TCP_RTT_SHIFT));
2854 tp->t_rttvar = max(tp->t_rttvar_prev,
2855 (rtt << (TCP_RTTVAR_SHIFT - 1)));
2856 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2857 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2859 #ifdef DEBUG_EIFEL_RESPONSE
2860 kprintf("new %d/%d ", tp->t_srtt, tp->t_rttvar);
2861 #endif
2862 } else if (tp->t_srtt != 0) {
2863 int delta;
2866 * srtt is stored as fixed point with 5 bits after the
2867 * binary point (i.e., scaled by 32). The following magic
2868 * is equivalent to the smoothing algorithm in rfc793 with
2869 * an alpha of .875 (srtt = rtt/32 + srtt*31/32 in fixed
2870 * point). Adjust rtt to origin 0.
2872 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2873 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2875 if ((tp->t_srtt += delta) <= 0)
2876 tp->t_srtt = 1;
2879 * We accumulate a smoothed rtt variance (actually, a
2880 * smoothed mean difference), then set the retransmit
2881 * timer to smoothed rtt + 4 times the smoothed variance.
2882 * rttvar is stored as fixed point with 4 bits after the
2883 * binary point (scaled by 16). The following is
2884 * equivalent to rfc793 smoothing with an alpha of .75
2885 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2886 * rfc793's wired-in beta.
2888 if (delta < 0)
2889 delta = -delta;
2890 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2891 if ((tp->t_rttvar += delta) <= 0)
2892 tp->t_rttvar = 1;
2893 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2894 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2895 } else {
2897 * No rtt measurement yet - use the unsmoothed rtt.
2898 * Set the variance to half the rtt (so our first
2899 * retransmit happens at 3*rtt).
2901 tp->t_srtt = rtt << TCP_RTT_SHIFT;
2902 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2903 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2905 tp->t_rtttime = 0;
2906 tp->t_rxtshift = 0;
2908 #ifdef DEBUG_EIFEL_RESPONSE
2909 if (rebaserto) {
2910 kprintf("| rxtcur prev %d, old %d, ",
2911 tp->t_rxtcur_prev, tp->t_rxtcur);
2913 #endif
2916 * the retransmit should happen at rtt + 4 * rttvar.
2917 * Because of the way we do the smoothing, srtt and rttvar
2918 * will each average +1/2 tick of bias. When we compute
2919 * the retransmit timer, we want 1/2 tick of rounding and
2920 * 1 extra tick because of +-1/2 tick uncertainty in the
2921 * firing of the timer. The bias will give us exactly the
2922 * 1.5 tick we need. But, because the bias is
2923 * statistical, we have to test that we don't drop below
2924 * the minimum feasible timer (which is 2 ticks).
2926 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2927 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2929 if (rebaserto) {
2930 if (tp->t_rxtcur < tp->t_rxtcur_prev + tcp_eifel_rtoinc) {
2932 * RFC4015 requires that the new RTO is at least
2933 * 2*G (tcp_eifel_rtoinc) greater then the RTO
2934 * (t_rxtcur_prev) when the spurious retransmit
2935 * timeout happens.
2937 * The above condition could be true, if the SRTT
2938 * and RTTVAR used to calculate t_rxtcur_prev
2939 * resulted in a value less than t_rttmin. So
2940 * simply increasing SRTT by tcp_eifel_rtoinc when
2941 * preparing for the Eifel response could not ensure
2942 * that the new RTO will be tcp_eifel_rtoinc greater
2943 * t_rxtcur_prev.
2945 tp->t_rxtcur = tp->t_rxtcur_prev + tcp_eifel_rtoinc;
2947 #ifdef DEBUG_EIFEL_RESPONSE
2948 kprintf("new %d\n", tp->t_rxtcur);
2949 #endif
2953 * We received an ack for a packet that wasn't retransmitted;
2954 * it is probably safe to discard any error indications we've
2955 * received recently. This isn't quite right, but close enough
2956 * for now (a route might have failed after we sent a segment,
2957 * and the return path might not be symmetrical).
2959 tp->t_softerror = 0;
2963 * Determine a reasonable value for maxseg size.
2964 * If the route is known, check route for mtu.
2965 * If none, use an mss that can be handled on the outgoing
2966 * interface without forcing IP to fragment; if bigger than
2967 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2968 * to utilize large mbufs. If no route is found, route has no mtu,
2969 * or the destination isn't local, use a default, hopefully conservative
2970 * size (usually 512 or the default IP max size, but no more than the mtu
2971 * of the interface), as we can't discover anything about intervening
2972 * gateways or networks. We also initialize the congestion/slow start
2973 * window to be a single segment if the destination isn't local.
2974 * While looking at the routing entry, we also initialize other path-dependent
2975 * parameters from pre-set or cached values in the routing entry.
2977 * Also take into account the space needed for options that we
2978 * send regularly. Make maxseg shorter by that amount to assure
2979 * that we can send maxseg amount of data even when the options
2980 * are present. Store the upper limit of the length of options plus
2981 * data in maxopd.
2983 * NOTE that this routine is only called when we process an incoming
2984 * segment, for outgoing segments only tcp_mssopt is called.
2986 void
2987 tcp_mss(struct tcpcb *tp, int offer)
2989 struct rtentry *rt;
2990 struct ifnet *ifp;
2991 int rtt, mss;
2992 u_long bufsize;
2993 struct inpcb *inp = tp->t_inpcb;
2994 struct socket *so;
2995 #ifdef INET6
2996 boolean_t isipv6 = INP_ISIPV6(inp);
2997 size_t min_protoh = isipv6 ?
2998 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2999 sizeof(struct tcpiphdr);
3000 #else
3001 const boolean_t isipv6 = FALSE;
3002 const size_t min_protoh = sizeof(struct tcpiphdr);
3003 #endif
3005 if (isipv6)
3006 rt = tcp_rtlookup6(&inp->inp_inc);
3007 else
3008 rt = tcp_rtlookup(&inp->inp_inc);
3009 if (rt == NULL) {
3010 tp->t_maxopd = tp->t_maxseg =
3011 (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3012 return;
3014 ifp = rt->rt_ifp;
3015 so = inp->inp_socket;
3018 * Offer == 0 means that there was no MSS on the SYN segment,
3019 * in this case we use either the interface mtu or tcp_mssdflt.
3021 * An offer which is too large will be cut down later.
3023 if (offer == 0) {
3024 if (isipv6) {
3025 if (in6_localaddr(&inp->in6p_faddr))
3026 offer = IN6_LINKMTU(rt->rt_ifp) - min_protoh;
3027 else
3028 offer = tcp_v6mssdflt;
3029 } else {
3030 if (in_localaddr(inp->inp_faddr))
3031 offer = ifp->if_mtu - min_protoh;
3032 else
3033 offer = tcp_mssdflt;
3038 * Prevent DoS attack with too small MSS. Round up
3039 * to at least minmss.
3041 * Sanity check: make sure that maxopd will be large
3042 * enough to allow some data on segments even is the
3043 * all the option space is used (40bytes). Otherwise
3044 * funny things may happen in tcp_output.
3046 offer = max(offer, tcp_minmss);
3047 offer = max(offer, 64);
3049 rt->rt_rmx.rmx_mssopt = offer;
3052 * While we're here, check if there's an initial rtt
3053 * or rttvar. Convert from the route-table units
3054 * to scaled multiples of the slow timeout timer.
3056 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3058 * XXX the lock bit for RTT indicates that the value
3059 * is also a minimum value; this is subject to time.
3061 if (rt->rt_rmx.rmx_locks & RTV_RTT)
3062 tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
3063 tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
3064 tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3065 tcpstat.tcps_usedrtt++;
3066 if (rt->rt_rmx.rmx_rttvar) {
3067 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3068 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
3069 tcpstat.tcps_usedrttvar++;
3070 } else {
3071 /* default variation is +- 1 rtt */
3072 tp->t_rttvar =
3073 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3075 TCPT_RANGESET(tp->t_rxtcur,
3076 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3077 tp->t_rttmin, TCPTV_REXMTMAX);
3081 * if there's an mtu associated with the route, use it
3082 * else, use the link mtu. Take the smaller of mss or offer
3083 * as our final mss.
3085 if (rt->rt_rmx.rmx_mtu) {
3086 mss = rt->rt_rmx.rmx_mtu;
3087 } else {
3088 if (isipv6)
3089 mss = IN6_LINKMTU(rt->rt_ifp);
3090 else
3091 mss = ifp->if_mtu;
3093 mss -= min_protoh;
3094 mss = min(mss, offer);
3097 * maxopd stores the maximum length of data AND options
3098 * in a segment; maxseg is the amount of data in a normal
3099 * segment. We need to store this value (maxopd) apart
3100 * from maxseg, because now every segment carries options
3101 * and thus we normally have somewhat less data in segments.
3103 tp->t_maxopd = mss;
3105 if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3106 ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3107 mss -= TCPOLEN_TSTAMP_APPA;
3109 #if (MCLBYTES & (MCLBYTES - 1)) == 0
3110 if (mss > MCLBYTES)
3111 mss &= ~(MCLBYTES-1);
3112 #else
3113 if (mss > MCLBYTES)
3114 mss = mss / MCLBYTES * MCLBYTES;
3115 #endif
3117 * If there's a pipesize, change the socket buffer
3118 * to that size. Make the socket buffers an integral
3119 * number of mss units; if the mss is larger than
3120 * the socket buffer, decrease the mss.
3122 #ifdef RTV_SPIPE
3123 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3124 #endif
3125 bufsize = so->so_snd.ssb_hiwat;
3126 if (bufsize < mss)
3127 mss = bufsize;
3128 else {
3129 bufsize = roundup(bufsize, mss);
3130 if (bufsize > sb_max)
3131 bufsize = sb_max;
3132 if (bufsize > so->so_snd.ssb_hiwat)
3133 ssb_reserve(&so->so_snd, bufsize, so, NULL);
3135 tp->t_maxseg = mss;
3137 #ifdef RTV_RPIPE
3138 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3139 #endif
3140 bufsize = so->so_rcv.ssb_hiwat;
3141 if (bufsize > mss) {
3142 bufsize = roundup(bufsize, mss);
3143 if (bufsize > sb_max)
3144 bufsize = sb_max;
3145 if (bufsize > so->so_rcv.ssb_hiwat) {
3146 lwkt_gettoken(&so->so_rcv.ssb_token);
3147 ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3148 lwkt_reltoken(&so->so_rcv.ssb_token);
3153 * Set the slow-start flight size
3155 * NOTE: t_maxseg must have been configured!
3157 tp->snd_cwnd = tcp_initial_window(tp);
3159 if (rt->rt_rmx.rmx_ssthresh) {
3161 * There's some sort of gateway or interface
3162 * buffer limit on the path. Use this to set
3163 * the slow start threshhold, but set the
3164 * threshold to no less than 2*mss.
3166 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3167 tcpstat.tcps_usedssthresh++;
3172 * Determine the MSS option to send on an outgoing SYN.
3175 tcp_mssopt(struct tcpcb *tp)
3177 struct rtentry *rt;
3178 #ifdef INET6
3179 boolean_t isipv6 = INP_ISIPV6(tp->t_inpcb);
3180 int min_protoh = isipv6 ?
3181 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3182 sizeof(struct tcpiphdr);
3183 #else
3184 const boolean_t isipv6 = FALSE;
3185 const size_t min_protoh = sizeof(struct tcpiphdr);
3186 #endif
3188 if (isipv6)
3189 rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3190 else
3191 rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3192 if (rt == NULL)
3193 return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3195 #ifdef INET6
3196 return ((isipv6 ? IN6_LINKMTU(rt->rt_ifp) : rt->rt_ifp->if_mtu) -
3197 min_protoh);
3198 #else
3199 return (rt->rt_ifp->if_mtu - min_protoh);
3200 #endif
3204 * When a partial ack arrives, force the retransmission of the
3205 * next unacknowledged segment. Do not exit Fast Recovery.
3207 * Implement the Slow-but-Steady variant of NewReno by restarting the
3208 * the retransmission timer. Turn it off here so it can be restarted
3209 * later in tcp_output().
3211 static void
3212 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3214 tcp_seq old_snd_nxt = tp->snd_nxt;
3215 u_long ocwnd = tp->snd_cwnd;
3217 tcp_callout_stop(tp, tp->tt_rexmt);
3218 tp->t_rtttime = 0;
3219 tp->snd_nxt = th->th_ack;
3220 /* Set snd_cwnd to one segment beyond acknowledged offset. */
3221 tp->snd_cwnd = tp->t_maxseg;
3222 tp->t_flags |= TF_ACKNOW;
3223 tcp_output(tp);
3224 if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3225 tp->snd_nxt = old_snd_nxt;
3226 /* partial window deflation */
3227 if (ocwnd > acked)
3228 tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3229 else
3230 tp->snd_cwnd = tp->t_maxseg;
3234 * In contrast to the Slow-but-Steady NewReno variant,
3235 * we do not reset the retransmission timer for SACK retransmissions,
3236 * except when retransmitting snd_una.
3238 static void
3239 tcp_sack_rexmt(struct tcpcb *tp, boolean_t force)
3241 tcp_seq old_snd_nxt = tp->snd_nxt;
3242 u_long ocwnd = tp->snd_cwnd;
3243 uint32_t pipe;
3244 int nseg = 0; /* consecutive new segments */
3245 int nseg_rexmt = 0; /* retransmitted segments */
3246 int maxrexmt = 0;
3248 if (force) {
3249 uint32_t unsacked = tcp_sack_first_unsacked_len(tp);
3252 * Try to fill the first hole in the receiver's
3253 * reassemble queue.
3255 maxrexmt = howmany(unsacked, tp->t_maxseg);
3256 if (maxrexmt > tcp_force_sackrxt)
3257 maxrexmt = tcp_force_sackrxt;
3260 tp->t_rtttime = 0;
3261 pipe = tcp_sack_compute_pipe(tp);
3262 while (((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg
3263 || (force && nseg_rexmt < maxrexmt && nseg == 0)) &&
3264 (!tcp_do_smartsack || nseg < TCP_SACK_MAXBURST)) {
3265 tcp_seq old_snd_max, old_rexmt_high, nextrexmt;
3266 uint32_t sent, seglen;
3267 boolean_t rescue;
3268 int error;
3270 old_rexmt_high = tp->rexmt_high;
3271 if (!tcp_sack_nextseg(tp, &nextrexmt, &seglen, &rescue)) {
3272 tp->rexmt_high = old_rexmt_high;
3273 break;
3277 * If the next tranmission is a rescue retranmission,
3278 * we check whether we have already sent some data
3279 * (either new segments or retransmitted segments)
3280 * into the the network or not. Since the idea of rescue
3281 * retransmission is to sustain ACK clock, as long as
3282 * some segments are in the network, ACK clock will be
3283 * kept ticking.
3285 if (rescue && (nseg_rexmt > 0 || nseg > 0)) {
3286 tp->rexmt_high = old_rexmt_high;
3287 break;
3290 if (nextrexmt == tp->snd_max)
3291 ++nseg;
3292 else
3293 ++nseg_rexmt;
3294 tp->snd_nxt = nextrexmt;
3295 tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3296 old_snd_max = tp->snd_max;
3297 if (nextrexmt == tp->snd_una)
3298 tcp_callout_stop(tp, tp->tt_rexmt);
3299 tp->t_flags |= TF_XMITNOW;
3300 error = tcp_output(tp);
3301 if (error != 0) {
3302 tp->rexmt_high = old_rexmt_high;
3303 break;
3305 sent = tp->snd_nxt - nextrexmt;
3306 if (sent <= 0) {
3307 tp->rexmt_high = old_rexmt_high;
3308 break;
3310 pipe += sent;
3311 tcpstat.tcps_sndsackpack++;
3312 tcpstat.tcps_sndsackbyte += sent;
3314 if (rescue) {
3315 tcpstat.tcps_sackrescue++;
3316 tp->rexmt_rescue = tp->snd_nxt;
3317 tp->sack_flags |= TSACK_F_SACKRESCUED;
3318 break;
3320 if (SEQ_LT(nextrexmt, old_snd_max) &&
3321 SEQ_LT(tp->rexmt_high, tp->snd_nxt)) {
3322 tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3323 if (tcp_aggressive_rescuesack &&
3324 (tp->sack_flags & TSACK_F_SACKRESCUED) &&
3325 SEQ_LT(tp->rexmt_rescue, tp->rexmt_high)) {
3326 /* Drag RescueRxt along with HighRxt */
3327 tp->rexmt_rescue = tp->rexmt_high;
3331 if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3332 tp->snd_nxt = old_snd_nxt;
3333 tp->snd_cwnd = ocwnd;
3337 * Return TRUE, if some new segments are sent
3339 static boolean_t
3340 tcp_sack_limitedxmit(struct tcpcb *tp)
3342 tcp_seq oldsndnxt = tp->snd_nxt;
3343 tcp_seq oldsndmax = tp->snd_max;
3344 u_long ocwnd = tp->snd_cwnd;
3345 uint32_t pipe, sent;
3346 boolean_t ret = FALSE;
3347 tcp_seq_diff_t cwnd_left;
3348 tcp_seq next;
3350 tp->rexmt_high = tp->snd_una - 1;
3351 pipe = tcp_sack_compute_pipe(tp);
3352 cwnd_left = (tcp_seq_diff_t)(ocwnd - pipe);
3353 if (cwnd_left < (tcp_seq_diff_t)tp->t_maxseg)
3354 return FALSE;
3356 if (tcp_do_smartsack)
3357 cwnd_left = ulmin(cwnd_left, tp->t_maxseg * TCP_SACK_MAXBURST);
3359 next = tp->snd_nxt = tp->snd_max;
3360 tp->snd_cwnd = tp->snd_nxt - tp->snd_una +
3361 rounddown(cwnd_left, tp->t_maxseg);
3363 tp->t_flags |= TF_XMITNOW;
3364 tcp_output(tp);
3366 sent = tp->snd_nxt - next;
3367 if (sent > 0) {
3368 tcpstat.tcps_sndlimited += howmany(sent, tp->t_maxseg);
3369 ret = TRUE;
3372 if (SEQ_LT(oldsndnxt, oldsndmax)) {
3373 KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
3374 ("snd_una moved in other threads"));
3375 tp->snd_nxt = oldsndnxt;
3377 tp->snd_cwnd = ocwnd;
3379 if (ret && TCP_DO_NCR(tp))
3380 tcp_ncr_update_rxtthresh(tp);
3382 return ret;
3386 * Reset idle time and keep-alive timer, typically called when a valid
3387 * tcp packet is received but may also be called when FASTKEEP is set
3388 * to prevent the previous long-timeout from calculating to a drop.
3390 * Only update t_rcvtime for non-SYN packets.
3392 * Handle the case where one side thinks the connection is established
3393 * but the other side has, say, rebooted without cleaning out the
3394 * connection. The SYNs could be construed as an attack and wind
3395 * up ignored, but in case it isn't an attack we can validate the
3396 * connection by forcing a keepalive.
3398 void
3399 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3401 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3402 if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3403 tp->t_flags |= TF_KEEPALIVE;
3404 tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3405 tcp_timer_keep);
3406 } else {
3407 tp->t_rcvtime = ticks;
3408 tp->t_flags &= ~TF_KEEPALIVE;
3409 tcp_callout_reset(tp, tp->tt_keep,
3410 tp->t_keepidle,
3411 tcp_timer_keep);
3416 static int
3417 tcp_rmx_msl(const struct tcpcb *tp)
3419 struct rtentry *rt;
3420 struct inpcb *inp = tp->t_inpcb;
3421 int msl;
3422 #ifdef INET6
3423 boolean_t isipv6 = INP_ISIPV6(inp);
3424 #else
3425 const boolean_t isipv6 = FALSE;
3426 #endif
3428 if (isipv6)
3429 rt = tcp_rtlookup6(&inp->inp_inc);
3430 else
3431 rt = tcp_rtlookup(&inp->inp_inc);
3432 if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3433 return tcp_msl;
3435 msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3436 if (msl == 0)
3437 msl = 1;
3439 return msl;
3442 static void
3443 tcp_established(struct tcpcb *tp)
3445 TCP_STATE_CHANGE(tp, TCPS_ESTABLISHED);
3446 tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep);
3448 if (tp->t_rxtsyn > 0) {
3450 * RFC6298:
3451 * "If the timer expires awaiting the ACK of a SYN segment
3452 * and the TCP implementation is using an RTO less than 3
3453 * seconds, the RTO MUST be re-initialized to 3 seconds
3454 * when data transmission begins"
3456 if (tp->t_rxtcur < TCPTV_RTOBASE3)
3457 tp->t_rxtcur = TCPTV_RTOBASE3;
3462 * Returns TRUE, if the ACK should be dropped
3464 static boolean_t
3465 tcp_recv_dupack(struct tcpcb *tp, tcp_seq th_ack, u_int to_flags)
3467 boolean_t fast_sack_rexmt = TRUE;
3469 tcpstat.tcps_rcvdupack++;
3472 * We have outstanding data (other than a window probe),
3473 * this is a completely duplicate ack (ie, window info
3474 * didn't change), the ack is the biggest we've seen and
3475 * we've seen exactly our rexmt threshhold of them, so
3476 * assume a packet has been dropped and retransmit it.
3477 * Kludge snd_nxt & the congestion window so we send only
3478 * this one packet.
3480 if (IN_FASTRECOVERY(tp)) {
3481 if (TCP_DO_SACK(tp)) {
3482 boolean_t force = FALSE;
3484 if (tp->snd_una == tp->rexmt_high &&
3485 (to_flags & (TOF_SACK | TOF_SACK_REDUNDANT)) ==
3486 TOF_SACK) {
3488 * New segments got SACKed and
3489 * no retransmit yet.
3491 force = TRUE;
3494 /* No artifical cwnd inflation. */
3495 tcp_sack_rexmt(tp, force);
3496 } else {
3498 * Dup acks mean that packets have left
3499 * the network (they're now cached at the
3500 * receiver) so bump cwnd by the amount in
3501 * the receiver to keep a constant cwnd
3502 * packets in the network.
3504 tp->snd_cwnd += tp->t_maxseg;
3505 tcp_output(tp);
3507 return TRUE;
3508 } else if (SEQ_LT(th_ack, tp->snd_recover)) {
3509 tp->t_dupacks = 0;
3510 return FALSE;
3511 } else if (tcp_ignore_redun_dsack && TCP_DO_SACK(tp) &&
3512 (to_flags & (TOF_DSACK | TOF_SACK_REDUNDANT)) ==
3513 (TOF_DSACK | TOF_SACK_REDUNDANT)) {
3515 * If the ACK carries DSACK and other SACK blocks
3516 * carry information that we have already known,
3517 * don't count this ACK as duplicate ACK. This
3518 * prevents spurious early retransmit and fast
3519 * retransmit. This also meets the requirement of
3520 * RFC3042 that new segments should not be sent if
3521 * the SACK blocks do not contain new information
3522 * (XXX we actually loosen the requirment that only
3523 * DSACK is checked here).
3525 * This kind of ACKs are usually sent after spurious
3526 * retransmit.
3528 /* Do nothing; don't change t_dupacks */
3529 return TRUE;
3530 } else if (tp->t_dupacks == 0 && TCP_DO_NCR(tp)) {
3531 tcp_ncr_update_rxtthresh(tp);
3534 if (++tp->t_dupacks == tp->t_rxtthresh) {
3535 tcp_seq old_snd_nxt;
3536 u_int win;
3538 fastretransmit:
3539 if (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) {
3540 tcp_save_congestion_state(tp);
3541 tp->rxt_flags |= TRXT_F_FASTREXMT;
3544 * We know we're losing at the current window size,
3545 * so do congestion avoidance: set ssthresh to half
3546 * the current window and pull our congestion window
3547 * back to the new ssthresh.
3549 win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;
3550 if (win < 2)
3551 win = 2;
3552 tp->snd_ssthresh = win * tp->t_maxseg;
3553 ENTER_FASTRECOVERY(tp);
3554 tp->snd_recover = tp->snd_max;
3555 tcp_callout_stop(tp, tp->tt_rexmt);
3556 tp->t_rtttime = 0;
3557 old_snd_nxt = tp->snd_nxt;
3558 tp->snd_nxt = th_ack;
3559 if (TCP_DO_SACK(tp)) {
3560 uint32_t rxtlen;
3562 rxtlen = tcp_sack_first_unsacked_len(tp);
3563 if (rxtlen > tp->t_maxseg)
3564 rxtlen = tp->t_maxseg;
3565 tp->snd_cwnd = rxtlen;
3566 } else {
3567 tp->snd_cwnd = tp->t_maxseg;
3569 tcp_output(tp);
3570 ++tcpstat.tcps_sndfastrexmit;
3571 tp->snd_cwnd = tp->snd_ssthresh;
3572 tp->rexmt_high = tp->snd_nxt;
3573 tp->sack_flags &= ~TSACK_F_SACKRESCUED;
3574 if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3575 tp->snd_nxt = old_snd_nxt;
3576 KASSERT(tp->snd_limited <= 2, ("tp->snd_limited too big"));
3577 if (TCP_DO_SACK(tp)) {
3578 if (fast_sack_rexmt)
3579 tcp_sack_rexmt(tp, FALSE);
3580 } else {
3581 tp->snd_cwnd += tp->t_maxseg *
3582 (tp->t_dupacks - tp->snd_limited);
3584 } else if ((tcp_do_rfc6675 && TCP_DO_SACK(tp)) || TCP_DO_NCR(tp)) {
3586 * The RFC6675 recommends to reduce the byte threshold,
3587 * and enter fast retransmit if IsLost(snd_una). However,
3588 * if we use IsLost(snd_una) based fast retransmit here,
3589 * segments reordering will cause spurious retransmit. So
3590 * we defer the IsLost(snd_una) based fast retransmit until
3591 * the extended limited transmit can't send any segments and
3592 * early retransmit can't be done.
3594 if (tcp_rfc6675_rxt && tcp_do_rfc6675 &&
3595 tcp_sack_islost(&tp->scb, tp->snd_una))
3596 goto fastretransmit;
3598 if (tcp_do_limitedtransmit || TCP_DO_NCR(tp)) {
3599 if (!tcp_sack_limitedxmit(tp)) {
3600 /* outstanding data */
3601 uint32_t ownd = tp->snd_max - tp->snd_una;
3603 if (need_early_retransmit(tp, ownd)) {
3604 ++tcpstat.tcps_sndearlyrexmit;
3605 tp->rxt_flags |= TRXT_F_EARLYREXMT;
3606 goto fastretransmit;
3607 } else if (tcp_do_rfc6675 &&
3608 tcp_sack_islost(&tp->scb, tp->snd_una)) {
3609 fast_sack_rexmt = FALSE;
3610 goto fastretransmit;
3614 } else if (tcp_do_limitedtransmit) {
3615 u_long oldcwnd = tp->snd_cwnd;
3616 tcp_seq oldsndmax = tp->snd_max;
3617 tcp_seq oldsndnxt = tp->snd_nxt;
3618 /* outstanding data */
3619 uint32_t ownd = tp->snd_max - tp->snd_una;
3620 u_int sent;
3622 KASSERT(tp->t_dupacks == 1 || tp->t_dupacks == 2,
3623 ("dupacks not 1 or 2"));
3624 if (tp->t_dupacks == 1)
3625 tp->snd_limited = 0;
3626 tp->snd_nxt = tp->snd_max;
3627 tp->snd_cwnd = ownd +
3628 (tp->t_dupacks - tp->snd_limited) * tp->t_maxseg;
3629 tp->t_flags |= TF_XMITNOW;
3630 tcp_output(tp);
3632 if (SEQ_LT(oldsndnxt, oldsndmax)) {
3633 KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
3634 ("snd_una moved in other threads"));
3635 tp->snd_nxt = oldsndnxt;
3637 tp->snd_cwnd = oldcwnd;
3638 sent = tp->snd_max - oldsndmax;
3639 if (sent > tp->t_maxseg) {
3640 KASSERT((tp->t_dupacks == 2 && tp->snd_limited == 0) ||
3641 (sent == tp->t_maxseg + 1 &&
3642 (tp->t_flags & TF_SENTFIN)),
3643 ("sent too much"));
3644 KASSERT(sent <= tp->t_maxseg * 2,
3645 ("sent too many segments"));
3646 tp->snd_limited = 2;
3647 tcpstat.tcps_sndlimited += 2;
3648 } else if (sent > 0) {
3649 ++tp->snd_limited;
3650 ++tcpstat.tcps_sndlimited;
3651 } else if (need_early_retransmit(tp, ownd)) {
3652 ++tcpstat.tcps_sndearlyrexmit;
3653 tp->rxt_flags |= TRXT_F_EARLYREXMT;
3654 goto fastretransmit;
3657 return TRUE;