2 * Copyright (c) 2004-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 * by Alex Hornung <alex@alexhornung.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions, and the following disclaimer,
14 * without modification, immediately at the beginning of the file.
15 * 2. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * Note: The word "entropy" is often incorrectly used to describe
33 * random data. The word "entropy" originates from the science of
34 * Physics. The correct descriptive definition would be something
35 * along the lines of "seed", "unpredictable numbers" or
36 * "unpredictable data".
38 * Note: Some /dev/[u]random implementations save "seed" between
39 * boots which represents a security hazard since an adversary
40 * could acquire this data (since it is stored in a file). If
41 * the unpredictable data used in the above routines is only
42 * generated during Kernel operation, then an adversary can only
43 * acquire that data through a Kernel security compromise and/or
44 * a cryptographic algorithm failure/cryptanalysis.
46 * Note: On FreeBSD-4.11, interrupts have to be manually enabled
47 * using the rndcontrol(8) command.
49 * --- DESIGN (FreeBSD-4.11 based) ---
51 * The rnddev module automatically initializes itself the first time
52 * it is used (client calls any public rnddev_*() interface routine).
53 * Both CSPRNGs are initially seeded from the precise nano[up]time() routines.
54 * Tests show this method produces good enough results, suitable for intended
55 * use. It is necessary for both CSPRNGs to be completely seeded, initially.
57 * After initialization and during Kernel operation the only suitable
58 * unpredictable data available is:
60 * (1) Keyboard scan-codes.
61 * (2) Nanouptime acquired by a Keyboard/Read-Event.
62 * (3) Suitable interrupt source; hard-disk/ATA-device.
64 * (X) Mouse-event (xyz-data unsuitable); NOT IMPLEMENTED.
66 * This data is added to both CSPRNGs in real-time as it happens/
67 * becomes-available. Additionally, unpredictable (?) data may be
68 * acquired from a true-random number generator if such a device is
69 * available to the system (not advisable !).
70 * Nanouptime() acquired by a Read-Event is a very important aspect of
71 * this design, since it ensures that unpredictable data is added to
72 * the CSPRNGs even if there are no other sources.
73 * The nanouptime() Kernel routine is used since time relative to
74 * boot is less adversary-known than time itself.
76 * This design has been thoroughly tested with debug logging
77 * and the output from both /dev/random and /dev/urandom has
78 * been tested with the DIEHARD test-suite; both pass.
80 * MODIFICATIONS MADE TO ORIGINAL "kern_random.c":
84 * o Changed ReadSeed() function to schedule future read-seed-events
85 * by at least one second. Previous implementation used a randomised
86 * scheduling { 0, 1, 2, 3 seconds }.
87 * o Changed SEED_NANOUP() function to use a "previous" accumulator
88 * algorithm similar to ReadSeed(). This ensures that there is no
89 * way that an adversary can tell what number is being added to the
90 * CSPRNGs, since the number added to the CSPRNGs at Event-Time is
91 * the sum of nanouptime()@Event and an unknown/secret number.
92 * o Changed rnddev_add_interrupt() function to schedule future
93 * interrupt-events by at least one second. Previous implementation
94 * had no scheduling algorithm which allowed an "interrupt storm"
95 * to occur resulting in skewed data entering into the CSPRNGs.
100 * o Some small cleanups and change all internal functions to be
102 * o Removed ReadSeed() since its functionality is already performed
103 * by another function { rnddev_add_interrupt_OR_read() } and remove
104 * the silly rndByte accumulator/feedback-thing (since multipying by
105 * rndByte could yield a value of 0).
106 * o Made IBAA/L14 public interface become static/private;
107 * Local to this file (not changed to that in the original C modules).
111 * o SEED_NANOUP() -> NANOUP_EVENT() function rename.
112 * o Make NANOUP_EVENT() handle the time-buffering directly so that all
113 * time-stamp-events use this single time-buffer (including keyboard).
114 * This removes dependancy on "time_second" Kernel variable.
115 * o Removed second-time-buffer code in rnddev_add_interrupt_OR_read (void).
116 * o Rewrote the time-buffering algorithm in NANOUP_EVENT() to use a
117 * randomised time-delay range.
121 * o Updated to (hopefully final) L15 algorithm.
125 * o Added missing (u_char *) cast in RnddevRead() function.
126 * o Changed copyright to 3-clause BSD license and cleaned up the layout
129 * For a proper changelog, refer to the version control history of this
133 #include <sys/types.h>
134 #include <sys/kernel.h>
135 #include <sys/systm.h>
136 #include <sys/poll.h>
137 #include <sys/event.h>
138 #include <sys/random.h>
139 #include <sys/systimer.h>
140 #include <sys/time.h>
141 #include <sys/proc.h>
142 #include <sys/lock.h>
143 #include <sys/sysctl.h>
144 #include <sys/spinlock.h>
145 #include <sys/csprng.h>
146 #include <machine/atomic.h>
147 #include <machine/clock.h>
149 #include <sys/thread2.h>
150 #include <sys/spinlock2.h>
152 struct csprng_state csprng_state
;
155 * Portability note: The u_char/unsigned char type is used where
156 * uint8_t from <stdint.h> or u_int8_t from <sys/types.h> should really
157 * be being used. On FreeBSD, it is safe to make the assumption that these
158 * different types are equivalent (on all architectures).
159 * The FreeBSD <sys/crypto/rc4> module also makes this assumption.
162 /*------------------------------ IBAA ----------------------------------*/
164 /*-------------------------- IBAA CSPRNG -------------------------------*/
167 * NOTE: The original source code from which this source code (IBAA)
168 * was taken has no copyright/license. The algorithm has no patent
169 * and is freely/publicly available from:
171 * http://www.burtleburtle.net/bob/rand/isaac.html
175 * ^ means XOR, & means bitwise AND, a<<b means shift a by b.
176 * barrel(a) shifts a 19 bits to the left, and bits wrap around
177 * ind(x) is (x AND 255), or (x mod 256)
179 typedef u_int32_t u4
; /* unsigned four bytes, 32 bits */
182 #define SIZE (1 << ALPHA)
183 #define MASK (SIZE - 1)
184 #define ind(x) ((x) & (SIZE - 1))
185 #define barrel(a) (((a) << 20) ^ ((a) >> 12)) /* beta=32,shift=20 */
189 u4
*m
, /* Memory: array of SIZE ALPHA-bit terms */
190 u4
*r
, /* Results: the sequence, same size as m */
191 u4
*aa
, /* Accumulator: a single value */
192 u4
*bb
, /* the previous result */
193 u4
*counter
/* counter */
201 for (i
= 0; i
< SIZE
; ++i
) {
203 a
= barrel(a
) + m
[ind(i
+ (SIZE
/ 2))]; /* set a */
204 m
[i
] = y
= m
[ind(x
)] + a
+ b
; /* set m */
205 r
[i
] = b
= m
[ind(y
>> ALPHA
)] + x
; /* set r */
210 /*-------------------------- IBAA CSPRNG -------------------------------*/
213 static u4 IBAA_memory
[SIZE
];
214 static u4 IBAA_results
[SIZE
];
217 static u4 IBAA_counter
;
219 static volatile int IBAA_byte_index
;
222 static void IBAA_Init(void);
223 static void IBAA_Call(void);
224 static void IBAA_Seed(const u_int32_t val
);
225 static u_char
IBAA_Byte(void);
235 for (i
= 0; i
< SIZE
; ++i
) {
238 IBAA_aa
= IBAA_bb
= 0;
240 IBAA_byte_index
= sizeof(IBAA_results
); /* force IBAA_Call() */
244 * PRIVATE: Call IBAA to produce 256 32-bit u4 results.
249 IBAA(IBAA_memory
, IBAA_results
, &IBAA_aa
, &IBAA_bb
, &IBAA_counter
);
254 * Add a 32-bit u4 seed value into IBAAs memory. Mix the low 4 bits
255 * with 4 bits of PNG data to reduce the possibility of a seeding-based
259 IBAA_Seed (const u_int32_t val
)
264 iptr
= &IBAA_memory
[memIndex
& MASK
];
265 *iptr
= ((*iptr
<< 3) | (*iptr
>> 29)) + (val
^ (IBAA_Byte() & 15));
270 IBAA_Vector (const char *buf
, int bytes
)
274 while (bytes
>= sizeof(int)) {
275 IBAA_Seed(*(const int *)buf
);
277 bytes
-= sizeof(int);
281 * Warm up the generator to get rid of weak initial states.
283 for (i
= 0; i
< 10; ++i
)
288 * Extract a byte from IBAAs 256 32-bit u4 results array.
290 * NOTE: This code is designed to prevent MP races from taking
291 * IBAA_byte_index out of bounds.
299 index
= IBAA_byte_index
;
300 if (index
== sizeof(IBAA_results
)) {
304 result
= ((u_char
*)IBAA_results
)[index
];
305 IBAA_byte_index
= index
+ 1;
309 /*------------------------------ IBAA ----------------------------------*/
312 /*------------------------------- L15 ----------------------------------*/
315 * IMPORTANT NOTE: LByteType must be exactly 8-bits in size or this software
316 * will not function correctly.
318 typedef unsigned char LByteType
;
320 #define L15_STATE_SIZE 256
322 static LByteType L15_x
, L15_y
;
323 static LByteType L15_start_x
;
324 static LByteType L15_state
[L15_STATE_SIZE
];
330 static void L15_Swap(const LByteType pos1
, const LByteType pos2
);
331 static void L15_InitState(void);
332 static void L15_KSA(const LByteType
* const key
,
333 const size_t keyLen
);
334 static void L15_Discard(const LByteType numCalls
);
339 static void L15(const LByteType
* const key
, const size_t keyLen
);
340 static LByteType
L15_Byte(void);
341 static void L15_Vector(const LByteType
* const key
,
342 const size_t keyLen
);
345 L15_Swap(const LByteType pos1
, const LByteType pos2
)
347 const LByteType save1
= L15_state
[pos1
];
349 L15_state
[pos1
] = L15_state
[pos2
];
350 L15_state
[pos2
] = save1
;
357 for (i
= 0; i
< L15_STATE_SIZE
; ++i
)
361 #define L_SCHEDULE(xx) \
363 for (i = 0; i < L15_STATE_SIZE; ++i) { \
364 L15_Swap(i, (stateIndex += (L15_state[i] + (xx)))); \
368 L15_KSA (const LByteType
* const key
, const size_t keyLen
)
371 static LByteType stateIndex
= 0;
373 for (keyIndex
= 0; keyIndex
< keyLen
; ++keyIndex
) {
374 L_SCHEDULE(key
[keyIndex
]);
380 L15_Discard(const LByteType numCalls
)
383 for (i
= 0; i
< numCalls
; ++i
) {
393 L15(const LByteType
* const key
, const size_t keyLen
)
395 L15_x
= L15_start_x
= 0;
396 L15_y
= L15_STATE_SIZE
- 1;
398 L15_KSA(key
, keyLen
);
399 L15_Discard(L15_Byte());
407 L15_Swap(L15_state
[L15_x
], L15_y
);
408 z
= (L15_state
[L15_x
++] + L15_state
[L15_y
--]);
409 if (L15_x
== L15_start_x
) {
412 return (L15_state
[z
]);
416 L15_Vector (const LByteType
* const key
, const size_t keyLen
)
418 L15_KSA(key
, keyLen
);
421 /*------------------------------- L15 ----------------------------------*/
423 /************************************************************************
425 ************************************************************************
427 * By Robin J Carey, Matthew Dillon and Alex Hornung.
430 static int rand_thread_value
;
431 static void NANOUP_EVENT(void);
432 static thread_t rand_td
;
433 static struct spinlock rand_spin
;
435 static int sysctl_kern_random(SYSCTL_HANDLER_ARGS
);
437 static int nrandevents
;
438 static int rand_mode
= 2;
439 static struct systimer systimer_rand
;
441 static int sysctl_kern_rand_mode(SYSCTL_HANDLER_ARGS
);
443 SYSCTL_INT(_kern
, OID_AUTO
, nrandevents
, CTLFLAG_RD
, &nrandevents
, 0, "");
444 SYSCTL_PROC(_kern
, OID_AUTO
, random
, CTLFLAG_RD
| CTLFLAG_ANYBODY
, 0, 0,
445 sysctl_kern_random
, "I", "Acquire random data");
446 SYSCTL_PROC(_kern
, OID_AUTO
, rand_mode
, CTLTYPE_STRING
| CTLFLAG_RW
, NULL
, 0,
447 sysctl_kern_rand_mode
, "A", "RNG mode (csprng, ibaa or mixed)");
451 * Called from early boot
454 rand_initialize(void)
459 csprng_init(&csprng_state
);
462 * XXX: we do the reseeding when someone uses the RNG instead
463 * of regularly using init_reseed (which initializes a callout)
464 * to avoid unnecessary and regular reseeding.
466 csprng_init_reseed(&csprng_state
);
470 spin_init(&rand_spin
, "randinit");
472 /* Initialize IBAA. */
475 /* Initialize L15. */
477 L15((const LByteType
*)&now
.tv_nsec
, sizeof(now
.tv_nsec
));
478 for (i
= 0; i
< (SIZE
/ 2); ++i
) {
480 add_buffer_randomness_src((const uint8_t *)&now
.tv_nsec
,
481 sizeof(now
.tv_nsec
), RAND_SRC_TIMING
);
483 add_buffer_randomness_src((const uint8_t *)&now
.tv_nsec
,
484 sizeof(now
.tv_nsec
), RAND_SRC_TIMING
);
488 * Warm up the generator to get rid of weak initial states.
490 for (i
= 0; i
< 10; ++i
)
498 add_keyboard_randomness(u_char scancode
)
500 spin_lock(&rand_spin
);
501 L15_Vector((const LByteType
*) &scancode
, sizeof (scancode
));
502 spin_unlock(&rand_spin
);
503 add_interrupt_randomness(0);
507 * Interrupt events. This is SMP safe and allowed to race.
509 * This adjusts rand_thread_value which will be incorporated into the next
510 * time-buffered seed. It does not effect the seeding period per-say.
513 add_interrupt_randomness(int intr
)
516 rand_thread_value
= (rand_thread_value
<< 4) ^ 1 ^
517 ((int)rdtsc() % 151);
519 ++rand_thread_value
; /* ~1 bit */
523 * True random number source
526 add_buffer_randomness(const char *buf
, int bytes
)
528 spin_lock(&rand_spin
);
529 L15_Vector((const LByteType
*)buf
, bytes
);
530 IBAA_Vector(buf
, bytes
);
531 spin_unlock(&rand_spin
);
533 atomic_add_int(&nrandevents
, 1);
535 csprng_add_entropy(&csprng_state
, RAND_SRC_UNKNOWN
,
536 (const uint8_t *)buf
, bytes
, 0);
543 add_buffer_randomness_src(const char *buf
, int bytes
, int srcid
)
545 spin_lock(&rand_spin
);
546 L15_Vector((const LByteType
*)buf
, bytes
);
547 IBAA_Vector(buf
, bytes
);
548 spin_unlock(&rand_spin
);
550 atomic_add_int(&nrandevents
, 1);
552 csprng_add_entropy(&csprng_state
, srcid
& 0xff,
553 (const uint8_t *)buf
, bytes
, 0);
560 * Kqueue filter (always succeeds)
563 random_filter_read(struct knote
*kn
, long hint
)
569 * Heavy weight random number generator. May return less then the
570 * requested number of bytes.
572 * Instead of stopping early,
575 read_random(void *buf
, u_int nbytes
)
579 if (rand_mode
== 0) {
580 /* Only use CSPRNG */
581 i
= csprng_get_random(&csprng_state
, buf
, nbytes
, 0);
582 } else if (rand_mode
== 1) {
584 spin_lock(&rand_spin
);
585 for (i
= 0; i
< nbytes
; i
++)
586 ((u_char
*)buf
)[i
] = IBAA_Byte();
587 spin_unlock(&rand_spin
);
589 /* Mix both CSPRNG and IBAA */
590 i
= csprng_get_random(&csprng_state
, buf
, nbytes
, 0);
591 spin_lock(&rand_spin
);
592 for (j
= 0; j
< i
; j
++)
593 ((u_char
*)buf
)[j
] ^= IBAA_Byte();
594 spin_unlock(&rand_spin
);
597 add_interrupt_randomness(0);
598 return (i
> 0) ? i
: 0;
602 * Heavy weight random number generator. Must return the requested
606 read_random_unlimited(void *buf
, u_int nbytes
)
610 spin_lock(&rand_spin
);
611 for (i
= 0; i
< nbytes
; ++i
)
612 ((u_char
*)buf
)[i
] = IBAA_Byte();
613 spin_unlock(&rand_spin
);
614 add_interrupt_randomness(0);
619 * Read random data via sysctl().
623 sysctl_kern_random(SYSCTL_HANDLER_ARGS
)
634 if ((r
= n
) > sizeof(buf
))
636 read_random_unlimited(buf
, r
);
637 error
= SYSCTL_OUT(req
, buf
, r
);
646 * Change the random mode via sysctl().
650 rand_mode_to_str(int mode
)
666 sysctl_kern_rand_mode(SYSCTL_HANDLER_ARGS
)
671 strncpy(mode
, rand_mode_to_str(rand_mode
), sizeof(mode
)-1);
672 error
= sysctl_handle_string(oidp
, mode
, sizeof(mode
), req
);
673 if (error
|| req
->newptr
== NULL
)
676 if ((strncmp(mode
, "csprng", sizeof(mode
))) == 0)
678 else if ((strncmp(mode
, "ibaa", sizeof(mode
))) == 0)
680 else if ((strncmp(mode
, "mixed", sizeof(mode
))) == 0)
689 * Random number generator helper thread. This limits code overhead from
690 * high frequency events by delaying the clearing of rand_thread_value.
692 * This is a time-buffered loop, with a randomizing delay. Note that interrupt
693 * entropy does not cause the thread to wakeup any faster, but does improve the
694 * quality of the entropy produced.
698 rand_thread_loop(void *dummy
)
707 spin_lock(&rand_spin
);
708 count
= (uint8_t)L15_Byte();
709 spin_unlock(&rand_spin
);
712 * Calculate 1/10 of a second to 2/10 of a second, fine-grained
713 * using a L15_Byte() feedback.
715 * Go faster in the first 1200 seconds after boot. This effects
716 * the time-after-next interrupt (pipeline delay).
718 count
= sys_cputimer
->freq
* (count
+ 256) / (256 * 10);
719 if (time_uptime
< 120)
720 count
= count
/ 10 + 1;
721 systimer_rand
.periodic
= count
;
723 tsleep(rand_td
, 0, "rwait", 0);
728 * Systimer trigger - fine-grained random trigger
732 rand_thread_wakeup(struct systimer
*timer
, int in_ipi
, struct intrframe
*frame
)
739 rand_thread_init(void)
741 systimer_init_periodic_nq(&systimer_rand
, rand_thread_wakeup
, NULL
, 25);
742 lwkt_create(rand_thread_loop
, NULL
, &rand_td
, NULL
, 0, 0, "random");
745 SYSINIT(rand
, SI_SUB_HELPER_THREADS
, SI_ORDER_ANY
, rand_thread_init
, 0);
748 * Caller is time-buffered. Incorporate any accumulated interrupt randomness
749 * as well as the high frequency bits of the TSC.
751 * A delta nanoseconds value is used to remove absolute time from the generated
752 * entropy. Even though we are pushing 32 bits, this entropy is probably only
753 * good for one or two bits without any interrupt sources, and possibly 8 bits with.
758 static struct timespec last
;
763 * Delta nanoseconds since last event
766 nsec
= now
.tv_nsec
- last
.tv_nsec
;
770 * Interrupt randomness.
772 nsec
^= rand_thread_value
;
775 * The TSC, if present, generally has an even higher
776 * resolution. Integrate a portion of it into our seed.
779 nsec
^= (rdtsc() & 255) << 8;
785 add_buffer_randomness_src((const uint8_t *)&nsec
, sizeof(nsec
), RAND_SRC_INTR
);