drm - Fix memory leak in broadwell or later GPUs
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
blob85103784e84da8d0d2a9a42a13d4625c809f5456
1 /*
2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
37 int __intel_ring_space(int head, int tail, int size)
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
64 struct drm_i915_private *dev_priv = ring->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
70 struct intel_ringbuffer *ringbuf = ring->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_ring_stopped(ring))
73 return;
74 ring->write_tail(ring, ringbuf->tail);
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
82 struct intel_engine_cs *ring = req->ring;
83 u32 cmd;
84 int ret;
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
97 intel_ring_emit(ring, cmd);
98 intel_ring_emit(ring, MI_NOOP);
99 intel_ring_advance(ring);
101 return 0;
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
109 struct intel_engine_cs *ring = req->ring;
110 struct drm_device *dev = ring->dev;
111 u32 cmd;
112 int ret;
115 * read/write caches:
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
121 * read-only caches:
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
126 * I915_GEM_DOMAIN_COMMAND may not exist?
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
134 * TLBs:
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
156 intel_ring_emit(ring, cmd);
157 intel_ring_emit(ring, MI_NOOP);
158 intel_ring_advance(ring);
160 return 0;
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
176 * And the workaround for these two requires this workaround first:
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
203 struct intel_engine_cs *ring = req->ring;
204 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
211 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(ring, 0); /* low dword */
216 intel_ring_emit(ring, 0); /* high dword */
217 intel_ring_emit(ring, MI_NOOP);
218 intel_ring_advance(ring);
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
224 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(ring, 0);
228 intel_ring_emit(ring, 0);
229 intel_ring_emit(ring, MI_NOOP);
230 intel_ring_advance(ring);
232 return 0;
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
239 struct intel_engine_cs *ring = req->ring;
240 u32 flags = 0;
241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
260 flags |= PIPE_CONTROL_CS_STALL;
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
270 * TLB invalidate requires a post-sync write.
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
279 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(ring, flags);
281 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(ring, 0);
283 intel_ring_advance(ring);
285 return 0;
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
291 struct intel_engine_cs *ring = req->ring;
292 int ret;
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
298 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(ring, 0);
302 intel_ring_emit(ring, 0);
303 intel_ring_advance(ring);
305 return 0;
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
312 struct intel_engine_cs *ring = req->ring;
313 u32 flags = 0;
314 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
325 flags |= PIPE_CONTROL_CS_STALL;
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
346 * TLB invalidate requires a post-sync write.
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
363 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(ring, flags);
365 intel_ring_emit(ring, scratch_addr);
366 intel_ring_emit(ring, 0);
367 intel_ring_advance(ring);
369 return 0;
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
376 struct intel_engine_cs *ring = req->ring;
377 int ret;
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
383 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(ring, flags);
385 intel_ring_emit(ring, scratch_addr);
386 intel_ring_emit(ring, 0);
387 intel_ring_emit(ring, 0);
388 intel_ring_emit(ring, 0);
389 intel_ring_advance(ring);
391 return 0;
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
398 u32 flags = 0;
399 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
402 flags |= PIPE_CONTROL_CS_STALL;
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
425 if (ret)
426 return ret;
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
432 static void ring_write_tail(struct intel_engine_cs *ring,
433 u32 value)
435 struct drm_i915_private *dev_priv = ring->dev->dev_private;
436 I915_WRITE_TAIL(ring, value);
439 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 u64 acthd;
444 if (INTEL_INFO(ring->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446 RING_ACTHD_UDW(ring->mmio_base));
447 else if (INTEL_INFO(ring->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
452 return acthd;
455 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
457 struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 u32 addr;
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(ring->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
466 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
468 struct drm_device *dev = ring->dev;
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 i915_reg_t mmio;
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
475 if (IS_GEN7(dev)) {
476 switch (ring->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
495 } else if (IS_GEN6(ring->dev)) {
496 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(ring->mmio_base);
502 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503 POSTING_READ(mmio);
506 * Flush the TLB for this page
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 ring->name);
528 static bool stop_ring(struct intel_engine_cs *ring)
530 struct drm_i915_private *dev_priv = to_i915(ring->dev);
532 if (!IS_GEN2(ring->dev)) {
533 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536 /* Sometimes we observe that the idle flag is not
537 * set even though the ring is empty. So double
538 * check before giving up.
540 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541 return false;
545 I915_WRITE_CTL(ring, 0);
546 I915_WRITE_HEAD(ring, 0);
547 ring->write_tail(ring, 0);
549 if (!IS_GEN2(ring->dev)) {
550 (void)I915_READ_CTL(ring);
551 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
554 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
557 static int init_ring_common(struct intel_engine_cs *ring)
559 struct drm_device *dev = ring->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct intel_ringbuffer *ringbuf = ring->buffer;
562 struct drm_i915_gem_object *obj = ringbuf->obj;
563 int ret = 0;
565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
567 if (!stop_ring(ring)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
571 ring->name,
572 I915_READ_CTL(ring),
573 I915_READ_HEAD(ring),
574 I915_READ_TAIL(ring),
575 I915_READ_START(ring));
577 if (!stop_ring(ring)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
580 ring->name,
581 I915_READ_CTL(ring),
582 I915_READ_HEAD(ring),
583 I915_READ_TAIL(ring),
584 I915_READ_START(ring));
585 ret = -EIO;
586 goto out;
590 if (I915_NEED_GFX_HWS(dev))
591 intel_ring_setup_status_page(ring);
592 else
593 ring_setup_phys_status_page(ring);
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(ring);
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(ring))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 ring->name, I915_READ_HEAD(ring));
608 I915_WRITE_HEAD(ring, 0);
609 (void)I915_READ_HEAD(ring);
611 I915_WRITE_CTL(ring,
612 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 | RING_VALID);
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 ring->name,
622 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625 ret = -EIO;
626 goto out;
629 ringbuf->last_retired_head = -1;
630 ringbuf->head = I915_READ_HEAD(ring);
631 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632 intel_ring_update_space(ringbuf);
634 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
636 out:
637 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
639 return ret;
642 void
643 intel_fini_pipe_control(struct intel_engine_cs *ring)
645 struct drm_device *dev = ring->dev;
647 if (ring->scratch.obj == NULL)
648 return;
650 if (INTEL_INFO(dev)->gen >= 5) {
651 kunmap(sg_page(ring->scratch.obj->pages->sgl));
652 i915_gem_object_ggtt_unpin(ring->scratch.obj);
655 drm_gem_object_unreference(&ring->scratch.obj->base);
656 ring->scratch.obj = NULL;
660 intel_init_pipe_control(struct intel_engine_cs *ring)
662 int ret;
664 WARN_ON(ring->scratch.obj);
666 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667 if (ring->scratch.obj == NULL) {
668 DRM_ERROR("Failed to allocate seqno page\n");
669 ret = -ENOMEM;
670 goto err;
673 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674 if (ret)
675 goto err_unref;
677 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678 if (ret)
679 goto err_unref;
681 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683 if (ring->scratch.cpu_page == NULL) {
684 ret = -ENOMEM;
685 goto err_unpin;
688 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689 ring->name, ring->scratch.gtt_offset);
690 return 0;
692 err_unpin:
693 i915_gem_object_ggtt_unpin(ring->scratch.obj);
694 err_unref:
695 drm_gem_object_unreference(&ring->scratch.obj->base);
696 err:
697 return ret;
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
702 int ret, i;
703 struct intel_engine_cs *ring = req->ring;
704 struct drm_device *dev = ring->dev;
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 struct i915_workarounds *w = &dev_priv->workarounds;
708 if (w->count == 0)
709 return 0;
711 ring->gpu_caches_dirty = true;
712 ret = intel_ring_flush_all_caches(req);
713 if (ret)
714 return ret;
716 ret = intel_ring_begin(req, (w->count * 2 + 2));
717 if (ret)
718 return ret;
720 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721 for (i = 0; i < w->count; i++) {
722 intel_ring_emit_reg(ring, w->reg[i].addr);
723 intel_ring_emit(ring, w->reg[i].value);
725 intel_ring_emit(ring, MI_NOOP);
727 intel_ring_advance(ring);
729 ring->gpu_caches_dirty = true;
730 ret = intel_ring_flush_all_caches(req);
731 if (ret)
732 return ret;
734 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
736 return 0;
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
741 int ret;
743 ret = intel_ring_workarounds_emit(req);
744 if (ret != 0)
745 return ret;
747 ret = i915_gem_render_state_init(req);
748 if (ret)
749 DRM_ERROR("init render state: %d\n", ret);
751 return ret;
754 static int wa_add(struct drm_i915_private *dev_priv,
755 i915_reg_t addr,
756 const u32 mask, const u32 val)
758 const u32 idx = dev_priv->workarounds.count;
760 if (WARN_ON(idx >= I915_MAX_WA_REGS))
761 return -ENOSPC;
763 dev_priv->workarounds.reg[idx].addr = addr;
764 dev_priv->workarounds.reg[idx].value = val;
765 dev_priv->workarounds.reg[idx].mask = mask;
767 dev_priv->workarounds.count++;
769 return 0;
772 #define WA_REG(addr, mask, val) do { \
773 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774 if (r) \
775 return r; \
776 } while (0)
778 #define WA_SET_BIT_MASKED(addr, mask) \
779 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
792 static int gen8_init_workarounds(struct intel_engine_cs *ring)
794 struct drm_device *dev = ring->dev;
795 struct drm_i915_private *dev_priv = dev->dev_private;
797 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
799 /* WaDisableAsyncFlipPerfMode:bdw,chv */
800 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
802 /* WaDisablePartialInstShootdown:bdw,chv */
803 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
804 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
806 /* Use Force Non-Coherent whenever executing a 3D context. This is a
807 * workaround for for a possible hang in the unlikely event a TLB
808 * invalidation occurs during a PSD flush.
810 /* WaForceEnableNonCoherent:bdw,chv */
811 /* WaHdcDisableFetchWhenMasked:bdw,chv */
812 WA_SET_BIT_MASKED(HDC_CHICKEN0,
813 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
814 HDC_FORCE_NON_COHERENT);
816 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
817 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
818 * polygons in the same 8x4 pixel/sample area to be processed without
819 * stalling waiting for the earlier ones to write to Hierarchical Z
820 * buffer."
822 * This optimization is off by default for BDW and CHV; turn it on.
824 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
826 /* Wa4x4STCOptimizationDisable:bdw,chv */
827 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
830 * BSpec recommends 8x4 when MSAA is used,
831 * however in practice 16x4 seems fastest.
833 * Note that PS/WM thread counts depend on the WIZ hashing
834 * disable bit, which we don't touch here, but it's good
835 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
837 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
838 GEN6_WIZ_HASHING_MASK,
839 GEN6_WIZ_HASHING_16x4);
841 return 0;
844 static int bdw_init_workarounds(struct intel_engine_cs *ring)
846 int ret;
847 struct drm_device *dev = ring->dev;
848 struct drm_i915_private *dev_priv = dev->dev_private;
850 ret = gen8_init_workarounds(ring);
851 if (ret)
852 return ret;
854 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
855 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
857 /* WaDisableDopClockGating:bdw */
858 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
859 DOP_CLOCK_GATING_DISABLE);
861 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
862 GEN8_SAMPLER_POWER_BYPASS_DIS);
864 WA_SET_BIT_MASKED(HDC_CHICKEN0,
865 /* WaForceContextSaveRestoreNonCoherent:bdw */
866 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
867 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
868 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
870 return 0;
873 static int chv_init_workarounds(struct intel_engine_cs *ring)
875 int ret;
876 struct drm_device *dev = ring->dev;
877 struct drm_i915_private *dev_priv = dev->dev_private;
879 ret = gen8_init_workarounds(ring);
880 if (ret)
881 return ret;
883 /* WaDisableThreadStallDopClockGating:chv */
884 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
886 /* Improve HiZ throughput on CHV. */
887 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
889 return 0;
892 static int gen9_init_workarounds(struct intel_engine_cs *ring)
894 struct drm_device *dev = ring->dev;
895 struct drm_i915_private *dev_priv = dev->dev_private;
896 uint32_t tmp;
898 /* WaEnableLbsSlaRetryTimerDecrement:skl */
899 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
900 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
902 /* WaDisableKillLogic:bxt,skl */
903 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
904 ECOCHK_DIS_TLB);
906 /* WaDisablePartialInstShootdown:skl,bxt */
907 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
910 /* Syncing dependencies between camera and graphics:skl,bxt */
911 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
912 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
914 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
915 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
916 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
917 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
918 GEN9_DG_MIRROR_FIX_ENABLE);
920 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
921 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
922 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
923 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
924 GEN9_RHWO_OPTIMIZATION_DISABLE);
926 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
927 * but we do that in per ctx batchbuffer as there is an issue
928 * with this register not getting restored on ctx restore
932 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
933 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
934 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
935 GEN9_ENABLE_YV12_BUGFIX);
937 /* Wa4x4STCOptimizationDisable:skl,bxt */
938 /* WaDisablePartialResolveInVc:skl,bxt */
939 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
940 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
942 /* WaCcsTlbPrefetchDisable:skl,bxt */
943 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
944 GEN9_CCS_TLB_PREFETCH_ENABLE);
946 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
947 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
948 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
949 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
950 PIXEL_MASK_CAMMING_DISABLE);
952 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
953 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
954 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
955 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
956 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
957 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
959 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
960 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
961 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
962 GEN8_SAMPLER_POWER_BYPASS_DIS);
964 /* WaDisableSTUnitPowerOptimization:skl,bxt */
965 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
967 return 0;
970 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
972 struct drm_device *dev = ring->dev;
973 struct drm_i915_private *dev_priv = dev->dev_private;
974 u8 vals[3] = { 0, 0, 0 };
975 unsigned int i;
977 for (i = 0; i < 3; i++) {
978 u8 ss;
981 * Only consider slices where one, and only one, subslice has 7
982 * EUs
984 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
985 continue;
988 * subslice_7eu[i] != 0 (because of the check above) and
989 * ss_max == 4 (maximum number of subslices possible per slice)
991 * -> 0 <= ss <= 3;
993 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
994 vals[i] = 3 - ss;
997 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
998 return 0;
1000 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1001 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1002 GEN9_IZ_HASHING_MASK(2) |
1003 GEN9_IZ_HASHING_MASK(1) |
1004 GEN9_IZ_HASHING_MASK(0),
1005 GEN9_IZ_HASHING(2, vals[2]) |
1006 GEN9_IZ_HASHING(1, vals[1]) |
1007 GEN9_IZ_HASHING(0, vals[0]));
1009 return 0;
1012 static int skl_init_workarounds(struct intel_engine_cs *ring)
1014 int ret;
1015 struct drm_device *dev = ring->dev;
1016 struct drm_i915_private *dev_priv = dev->dev_private;
1018 ret = gen9_init_workarounds(ring);
1019 if (ret)
1020 return ret;
1022 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1023 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1024 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1025 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1028 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1029 * involving this register should also be added to WA batch as required.
1031 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1032 /* WaDisableLSQCROPERFforOCL:skl */
1033 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1034 GEN8_LQSC_RO_PERF_DIS);
1036 /* WaEnableGapsTsvCreditFix:skl */
1037 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1038 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1039 GEN9_GAPS_TSV_CREDIT_DISABLE));
1042 /* WaDisablePowerCompilerClockGating:skl */
1043 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1044 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1045 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1047 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1049 *Use Force Non-Coherent whenever executing a 3D context. This
1050 * is a workaround for a possible hang in the unlikely event
1051 * a TLB invalidation occurs during a PSD flush.
1053 /* WaForceEnableNonCoherent:skl */
1054 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1055 HDC_FORCE_NON_COHERENT);
1057 /* WaDisableHDCInvalidation:skl */
1058 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1059 BDW_DISABLE_HDC_INVALIDATION);
1062 /* WaBarrierPerformanceFixDisable:skl */
1063 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1064 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1065 HDC_FENCE_DEST_SLM_DISABLE |
1066 HDC_BARRIER_PERFORMANCE_DISABLE);
1068 /* WaDisableSbeCacheDispatchPortSharing:skl */
1069 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1070 WA_SET_BIT_MASKED(
1071 GEN7_HALF_SLICE_CHICKEN1,
1072 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1074 return skl_tune_iz_hashing(ring);
1077 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1079 int ret;
1080 struct drm_device *dev = ring->dev;
1081 struct drm_i915_private *dev_priv = dev->dev_private;
1083 ret = gen9_init_workarounds(ring);
1084 if (ret)
1085 return ret;
1087 /* WaStoreMultiplePTEenable:bxt */
1088 /* This is a requirement according to Hardware specification */
1089 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1090 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1092 /* WaSetClckGatingDisableMedia:bxt */
1093 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1094 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1095 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1098 /* WaDisableThreadStallDopClockGating:bxt */
1099 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1100 STALL_DOP_GATING_DISABLE);
1102 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1103 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1104 WA_SET_BIT_MASKED(
1105 GEN7_HALF_SLICE_CHICKEN1,
1106 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1109 return 0;
1112 int init_workarounds_ring(struct intel_engine_cs *ring)
1114 struct drm_device *dev = ring->dev;
1115 struct drm_i915_private *dev_priv = dev->dev_private;
1117 WARN_ON(ring->id != RCS);
1119 dev_priv->workarounds.count = 0;
1121 if (IS_BROADWELL(dev))
1122 return bdw_init_workarounds(ring);
1124 if (IS_CHERRYVIEW(dev))
1125 return chv_init_workarounds(ring);
1127 if (IS_SKYLAKE(dev))
1128 return skl_init_workarounds(ring);
1130 if (IS_BROXTON(dev))
1131 return bxt_init_workarounds(ring);
1133 return 0;
1136 static int init_render_ring(struct intel_engine_cs *ring)
1138 struct drm_device *dev = ring->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 int ret = init_ring_common(ring);
1141 if (ret)
1142 return ret;
1144 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1145 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1146 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1148 /* We need to disable the AsyncFlip performance optimisations in order
1149 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1150 * programmed to '1' on all products.
1152 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1154 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1155 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1157 /* Required for the hardware to program scanline values for waiting */
1158 /* WaEnableFlushTlbInvalidationMode:snb */
1159 if (INTEL_INFO(dev)->gen == 6)
1160 I915_WRITE(GFX_MODE,
1161 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1163 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1164 if (IS_GEN7(dev))
1165 I915_WRITE(GFX_MODE_GEN7,
1166 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1167 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1169 if (IS_GEN6(dev)) {
1170 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1171 * "If this bit is set, STCunit will have LRA as replacement
1172 * policy. [...] This bit must be reset. LRA replacement
1173 * policy is not supported."
1175 I915_WRITE(CACHE_MODE_0,
1176 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1179 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1180 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1182 if (HAS_L3_DPF(dev))
1183 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1185 return init_workarounds_ring(ring);
1188 static void render_ring_cleanup(struct intel_engine_cs *ring)
1190 struct drm_device *dev = ring->dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1193 if (dev_priv->semaphore_obj) {
1194 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1195 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1196 dev_priv->semaphore_obj = NULL;
1199 intel_fini_pipe_control(ring);
1202 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1203 unsigned int num_dwords)
1205 #define MBOX_UPDATE_DWORDS 8
1206 struct intel_engine_cs *signaller = signaller_req->ring;
1207 struct drm_device *dev = signaller->dev;
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209 struct intel_engine_cs *waiter;
1210 int i, ret, num_rings;
1212 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1213 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1214 #undef MBOX_UPDATE_DWORDS
1216 ret = intel_ring_begin(signaller_req, num_dwords);
1217 if (ret)
1218 return ret;
1220 for_each_ring(waiter, dev_priv, i) {
1221 u32 seqno;
1222 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1223 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1224 continue;
1226 seqno = i915_gem_request_get_seqno(signaller_req);
1227 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1228 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1229 PIPE_CONTROL_QW_WRITE |
1230 PIPE_CONTROL_FLUSH_ENABLE);
1231 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1232 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1233 intel_ring_emit(signaller, seqno);
1234 intel_ring_emit(signaller, 0);
1235 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1236 MI_SEMAPHORE_TARGET(waiter->id));
1237 intel_ring_emit(signaller, 0);
1240 return 0;
1243 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1244 unsigned int num_dwords)
1246 #define MBOX_UPDATE_DWORDS 6
1247 struct intel_engine_cs *signaller = signaller_req->ring;
1248 struct drm_device *dev = signaller->dev;
1249 struct drm_i915_private *dev_priv = dev->dev_private;
1250 struct intel_engine_cs *waiter;
1251 int i, ret, num_rings;
1253 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1254 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1255 #undef MBOX_UPDATE_DWORDS
1257 ret = intel_ring_begin(signaller_req, num_dwords);
1258 if (ret)
1259 return ret;
1261 for_each_ring(waiter, dev_priv, i) {
1262 u32 seqno;
1263 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1264 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1265 continue;
1267 seqno = i915_gem_request_get_seqno(signaller_req);
1268 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1269 MI_FLUSH_DW_OP_STOREDW);
1270 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1271 MI_FLUSH_DW_USE_GTT);
1272 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1273 intel_ring_emit(signaller, seqno);
1274 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1275 MI_SEMAPHORE_TARGET(waiter->id));
1276 intel_ring_emit(signaller, 0);
1279 return 0;
1282 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1283 unsigned int num_dwords)
1285 struct intel_engine_cs *signaller = signaller_req->ring;
1286 struct drm_device *dev = signaller->dev;
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1288 struct intel_engine_cs *useless;
1289 int i, ret, num_rings;
1291 #define MBOX_UPDATE_DWORDS 3
1292 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1293 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1294 #undef MBOX_UPDATE_DWORDS
1296 ret = intel_ring_begin(signaller_req, num_dwords);
1297 if (ret)
1298 return ret;
1300 for_each_ring(useless, dev_priv, i) {
1301 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1303 if (i915_mmio_reg_valid(mbox_reg)) {
1304 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1306 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1307 intel_ring_emit_reg(signaller, mbox_reg);
1308 intel_ring_emit(signaller, seqno);
1312 /* If num_dwords was rounded, make sure the tail pointer is correct */
1313 if (num_rings % 2 == 0)
1314 intel_ring_emit(signaller, MI_NOOP);
1316 return 0;
1320 * gen6_add_request - Update the semaphore mailbox registers
1322 * @request - request to write to the ring
1324 * Update the mailbox registers in the *other* rings with the current seqno.
1325 * This acts like a signal in the canonical semaphore.
1327 static int
1328 gen6_add_request(struct drm_i915_gem_request *req)
1330 struct intel_engine_cs *ring = req->ring;
1331 int ret;
1333 if (ring->semaphore.signal)
1334 ret = ring->semaphore.signal(req, 4);
1335 else
1336 ret = intel_ring_begin(req, 4);
1338 if (ret)
1339 return ret;
1341 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1342 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1343 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1344 intel_ring_emit(ring, MI_USER_INTERRUPT);
1345 __intel_ring_advance(ring);
1347 return 0;
1350 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1351 u32 seqno)
1353 struct drm_i915_private *dev_priv = dev->dev_private;
1354 return dev_priv->last_seqno < seqno;
1358 * intel_ring_sync - sync the waiter to the signaller on seqno
1360 * @waiter - ring that is waiting
1361 * @signaller - ring which has, or will signal
1362 * @seqno - seqno which the waiter will block on
1365 static int
1366 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1367 struct intel_engine_cs *signaller,
1368 u32 seqno)
1370 struct intel_engine_cs *waiter = waiter_req->ring;
1371 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1372 int ret;
1374 ret = intel_ring_begin(waiter_req, 4);
1375 if (ret)
1376 return ret;
1378 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1379 MI_SEMAPHORE_GLOBAL_GTT |
1380 MI_SEMAPHORE_POLL |
1381 MI_SEMAPHORE_SAD_GTE_SDD);
1382 intel_ring_emit(waiter, seqno);
1383 intel_ring_emit(waiter,
1384 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1385 intel_ring_emit(waiter,
1386 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1387 intel_ring_advance(waiter);
1388 return 0;
1391 static int
1392 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1393 struct intel_engine_cs *signaller,
1394 u32 seqno)
1396 struct intel_engine_cs *waiter = waiter_req->ring;
1397 u32 dw1 = MI_SEMAPHORE_MBOX |
1398 MI_SEMAPHORE_COMPARE |
1399 MI_SEMAPHORE_REGISTER;
1400 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1401 int ret;
1403 /* Throughout all of the GEM code, seqno passed implies our current
1404 * seqno is >= the last seqno executed. However for hardware the
1405 * comparison is strictly greater than.
1407 seqno -= 1;
1409 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1411 ret = intel_ring_begin(waiter_req, 4);
1412 if (ret)
1413 return ret;
1415 /* If seqno wrap happened, omit the wait with no-ops */
1416 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1417 intel_ring_emit(waiter, dw1 | wait_mbox);
1418 intel_ring_emit(waiter, seqno);
1419 intel_ring_emit(waiter, 0);
1420 intel_ring_emit(waiter, MI_NOOP);
1421 } else {
1422 intel_ring_emit(waiter, MI_NOOP);
1423 intel_ring_emit(waiter, MI_NOOP);
1424 intel_ring_emit(waiter, MI_NOOP);
1425 intel_ring_emit(waiter, MI_NOOP);
1427 intel_ring_advance(waiter);
1429 return 0;
1432 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1433 do { \
1434 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1435 PIPE_CONTROL_DEPTH_STALL); \
1436 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1437 intel_ring_emit(ring__, 0); \
1438 intel_ring_emit(ring__, 0); \
1439 } while (0)
1441 static int
1442 pc_render_add_request(struct drm_i915_gem_request *req)
1444 struct intel_engine_cs *ring = req->ring;
1445 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1446 int ret;
1448 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1449 * incoherent with writes to memory, i.e. completely fubar,
1450 * so we need to use PIPE_NOTIFY instead.
1452 * However, we also need to workaround the qword write
1453 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1454 * memory before requesting an interrupt.
1456 ret = intel_ring_begin(req, 32);
1457 if (ret)
1458 return ret;
1460 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1461 PIPE_CONTROL_WRITE_FLUSH |
1462 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1463 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465 intel_ring_emit(ring, 0);
1466 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1467 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1468 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1469 scratch_addr += 2 * CACHELINE_BYTES;
1470 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1471 scratch_addr += 2 * CACHELINE_BYTES;
1472 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1473 scratch_addr += 2 * CACHELINE_BYTES;
1474 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1475 scratch_addr += 2 * CACHELINE_BYTES;
1476 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1478 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1479 PIPE_CONTROL_WRITE_FLUSH |
1480 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1481 PIPE_CONTROL_NOTIFY);
1482 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1483 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484 intel_ring_emit(ring, 0);
1485 __intel_ring_advance(ring);
1487 return 0;
1490 static u32
1491 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1493 /* Workaround to force correct ordering between irq and seqno writes on
1494 * ivb (and maybe also on snb) by reading from a CS register (like
1495 * ACTHD) before reading the status page. */
1496 if (!lazy_coherency) {
1497 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1498 POSTING_READ(RING_ACTHD(ring->mmio_base));
1501 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1504 static u32
1505 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1507 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1510 static void
1511 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1513 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1516 static u32
1517 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1519 return ring->scratch.cpu_page[0];
1522 static void
1523 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1525 ring->scratch.cpu_page[0] = seqno;
1528 static bool
1529 gen5_ring_get_irq(struct intel_engine_cs *ring)
1531 struct drm_device *dev = ring->dev;
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 unsigned long flags;
1535 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1536 return false;
1538 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1539 if (ring->irq_refcount++ == 0)
1540 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1541 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1543 return true;
1546 static void
1547 gen5_ring_put_irq(struct intel_engine_cs *ring)
1549 struct drm_device *dev = ring->dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 unsigned long flags;
1553 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1554 if (--ring->irq_refcount == 0)
1555 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1556 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1559 static bool
1560 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1562 struct drm_device *dev = ring->dev;
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 unsigned long flags;
1566 if (!intel_irqs_enabled(dev_priv))
1567 return false;
1569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1570 if (ring->irq_refcount++ == 0) {
1571 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1572 I915_WRITE(IMR, dev_priv->irq_mask);
1573 POSTING_READ(IMR);
1575 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1577 return true;
1580 static void
1581 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1583 struct drm_device *dev = ring->dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 unsigned long flags;
1587 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588 if (--ring->irq_refcount == 0) {
1589 dev_priv->irq_mask |= ring->irq_enable_mask;
1590 I915_WRITE(IMR, dev_priv->irq_mask);
1591 POSTING_READ(IMR);
1593 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1596 static bool
1597 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1599 struct drm_device *dev = ring->dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 unsigned long flags;
1603 if (!intel_irqs_enabled(dev_priv))
1604 return false;
1606 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1607 if (ring->irq_refcount++ == 0) {
1608 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1609 I915_WRITE16(IMR, dev_priv->irq_mask);
1610 POSTING_READ16(IMR);
1612 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1614 return true;
1617 static void
1618 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1620 struct drm_device *dev = ring->dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 unsigned long flags;
1624 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625 if (--ring->irq_refcount == 0) {
1626 dev_priv->irq_mask |= ring->irq_enable_mask;
1627 I915_WRITE16(IMR, dev_priv->irq_mask);
1628 POSTING_READ16(IMR);
1630 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1633 static int
1634 bsd_ring_flush(struct drm_i915_gem_request *req,
1635 u32 invalidate_domains,
1636 u32 flush_domains)
1638 struct intel_engine_cs *ring = req->ring;
1639 int ret;
1641 ret = intel_ring_begin(req, 2);
1642 if (ret)
1643 return ret;
1645 intel_ring_emit(ring, MI_FLUSH);
1646 intel_ring_emit(ring, MI_NOOP);
1647 intel_ring_advance(ring);
1648 return 0;
1651 static int
1652 i9xx_add_request(struct drm_i915_gem_request *req)
1654 struct intel_engine_cs *ring = req->ring;
1655 int ret;
1657 ret = intel_ring_begin(req, 4);
1658 if (ret)
1659 return ret;
1661 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1662 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1663 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1664 intel_ring_emit(ring, MI_USER_INTERRUPT);
1665 __intel_ring_advance(ring);
1667 return 0;
1670 static bool
1671 gen6_ring_get_irq(struct intel_engine_cs *ring)
1673 struct drm_device *dev = ring->dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 unsigned long flags;
1677 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1678 return false;
1680 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1681 if (ring->irq_refcount++ == 0) {
1682 if (HAS_L3_DPF(dev) && ring->id == RCS)
1683 I915_WRITE_IMR(ring,
1684 ~(ring->irq_enable_mask |
1685 GT_PARITY_ERROR(dev)));
1686 else
1687 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1688 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1690 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1692 return true;
1695 static void
1696 gen6_ring_put_irq(struct intel_engine_cs *ring)
1698 struct drm_device *dev = ring->dev;
1699 struct drm_i915_private *dev_priv = dev->dev_private;
1700 unsigned long flags;
1702 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703 if (--ring->irq_refcount == 0) {
1704 if (HAS_L3_DPF(dev) && ring->id == RCS)
1705 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1706 else
1707 I915_WRITE_IMR(ring, ~0);
1708 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1710 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1713 static bool
1714 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1716 struct drm_device *dev = ring->dev;
1717 struct drm_i915_private *dev_priv = dev->dev_private;
1718 unsigned long flags;
1720 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1721 return false;
1723 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724 if (ring->irq_refcount++ == 0) {
1725 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1726 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1728 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1730 return true;
1733 static void
1734 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1736 struct drm_device *dev = ring->dev;
1737 struct drm_i915_private *dev_priv = dev->dev_private;
1738 unsigned long flags;
1740 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741 if (--ring->irq_refcount == 0) {
1742 I915_WRITE_IMR(ring, ~0);
1743 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1745 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1748 static bool
1749 gen8_ring_get_irq(struct intel_engine_cs *ring)
1751 struct drm_device *dev = ring->dev;
1752 struct drm_i915_private *dev_priv = dev->dev_private;
1753 unsigned long flags;
1755 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1756 return false;
1758 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1759 if (ring->irq_refcount++ == 0) {
1760 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1761 I915_WRITE_IMR(ring,
1762 ~(ring->irq_enable_mask |
1763 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1764 } else {
1765 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1767 POSTING_READ(RING_IMR(ring->mmio_base));
1769 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1771 return true;
1774 static void
1775 gen8_ring_put_irq(struct intel_engine_cs *ring)
1777 struct drm_device *dev = ring->dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 unsigned long flags;
1781 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1782 if (--ring->irq_refcount == 0) {
1783 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1784 I915_WRITE_IMR(ring,
1785 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1786 } else {
1787 I915_WRITE_IMR(ring, ~0);
1789 POSTING_READ(RING_IMR(ring->mmio_base));
1791 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1794 static int
1795 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1796 u64 offset, u32 length,
1797 unsigned dispatch_flags)
1799 struct intel_engine_cs *ring = req->ring;
1800 int ret;
1802 ret = intel_ring_begin(req, 2);
1803 if (ret)
1804 return ret;
1806 intel_ring_emit(ring,
1807 MI_BATCH_BUFFER_START |
1808 MI_BATCH_GTT |
1809 (dispatch_flags & I915_DISPATCH_SECURE ?
1810 0 : MI_BATCH_NON_SECURE_I965));
1811 intel_ring_emit(ring, offset);
1812 intel_ring_advance(ring);
1814 return 0;
1817 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1818 #define I830_BATCH_LIMIT (256*1024)
1819 #define I830_TLB_ENTRIES (2)
1820 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1821 static int
1822 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1823 u64 offset, u32 len,
1824 unsigned dispatch_flags)
1826 struct intel_engine_cs *ring = req->ring;
1827 u32 cs_offset = ring->scratch.gtt_offset;
1828 int ret;
1830 ret = intel_ring_begin(req, 6);
1831 if (ret)
1832 return ret;
1834 /* Evict the invalid PTE TLBs */
1835 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1836 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1837 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1838 intel_ring_emit(ring, cs_offset);
1839 intel_ring_emit(ring, 0xdeadbeef);
1840 intel_ring_emit(ring, MI_NOOP);
1841 intel_ring_advance(ring);
1843 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1844 if (len > I830_BATCH_LIMIT)
1845 return -ENOSPC;
1847 ret = intel_ring_begin(req, 6 + 2);
1848 if (ret)
1849 return ret;
1851 /* Blit the batch (which has now all relocs applied) to the
1852 * stable batch scratch bo area (so that the CS never
1853 * stumbles over its tlb invalidation bug) ...
1855 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1856 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1857 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1858 intel_ring_emit(ring, cs_offset);
1859 intel_ring_emit(ring, 4096);
1860 intel_ring_emit(ring, offset);
1862 intel_ring_emit(ring, MI_FLUSH);
1863 intel_ring_emit(ring, MI_NOOP);
1864 intel_ring_advance(ring);
1866 /* ... and execute it. */
1867 offset = cs_offset;
1870 ret = intel_ring_begin(req, 4);
1871 if (ret)
1872 return ret;
1874 intel_ring_emit(ring, MI_BATCH_BUFFER);
1875 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1876 0 : MI_BATCH_NON_SECURE));
1877 intel_ring_emit(ring, offset + len - 8);
1878 intel_ring_emit(ring, MI_NOOP);
1879 intel_ring_advance(ring);
1881 return 0;
1884 static int
1885 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1886 u64 offset, u32 len,
1887 unsigned dispatch_flags)
1889 struct intel_engine_cs *ring = req->ring;
1890 int ret;
1892 ret = intel_ring_begin(req, 2);
1893 if (ret)
1894 return ret;
1896 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1897 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1898 0 : MI_BATCH_NON_SECURE));
1899 intel_ring_advance(ring);
1901 return 0;
1904 static void cleanup_status_page(struct intel_engine_cs *ring)
1906 struct drm_i915_gem_object *obj;
1908 obj = ring->status_page.obj;
1909 if (obj == NULL)
1910 return;
1912 kunmap(sg_page(obj->pages->sgl));
1913 i915_gem_object_ggtt_unpin(obj);
1914 drm_gem_object_unreference(&obj->base);
1915 ring->status_page.obj = NULL;
1918 static int init_status_page(struct intel_engine_cs *ring)
1920 struct drm_i915_gem_object *obj;
1922 if ((obj = ring->status_page.obj) == NULL) {
1923 unsigned flags;
1924 int ret;
1926 obj = i915_gem_alloc_object(ring->dev, 4096);
1927 if (obj == NULL) {
1928 DRM_ERROR("Failed to allocate status page\n");
1929 return -ENOMEM;
1932 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1933 if (ret)
1934 goto err_unref;
1936 flags = 0;
1937 if (!HAS_LLC(ring->dev))
1938 /* On g33, we cannot place HWS above 256MiB, so
1939 * restrict its pinning to the low mappable arena.
1940 * Though this restriction is not documented for
1941 * gen4, gen5, or byt, they also behave similarly
1942 * and hang if the HWS is placed at the top of the
1943 * GTT. To generalise, it appears that all !llc
1944 * platforms have issues with us placing the HWS
1945 * above the mappable region (even though we never
1946 * actualy map it).
1948 flags |= PIN_MAPPABLE;
1949 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1950 if (ret) {
1951 err_unref:
1952 drm_gem_object_unreference(&obj->base);
1953 return ret;
1956 ring->status_page.obj = obj;
1959 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1960 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1961 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1963 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1964 ring->name, ring->status_page.gfx_addr);
1966 return 0;
1969 static int init_phys_status_page(struct intel_engine_cs *ring)
1971 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1973 if (!dev_priv->status_page_dmah) {
1974 dev_priv->status_page_dmah =
1975 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1976 if (!dev_priv->status_page_dmah)
1977 return -ENOMEM;
1980 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1981 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1983 return 0;
1986 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1988 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1989 vunmap(ringbuf->virtual_start, ringbuf->virtual_count);
1990 else
1991 iounmap(ringbuf->virtual_start);
1992 ringbuf->virtual_start = NULL;
1993 i915_gem_object_ggtt_unpin(ringbuf->obj);
1996 static u32 *vmap_obj(struct drm_i915_gem_object *obj, unsigned int *countp)
1998 struct sg_page_iter sg_iter;
1999 struct vm_page **pages;
2000 void *addr;
2001 int i;
2003 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2004 if (pages == NULL)
2005 return NULL;
2007 i = 0;
2008 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2009 pages[i++] = sg_page_iter_page(&sg_iter);
2010 *countp = i;
2012 addr = vmap(pages, i, 0, PAGE_KERNEL);
2013 drm_free_large(pages);
2015 return addr;
2018 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2019 struct intel_ringbuffer *ringbuf)
2021 struct drm_i915_private *dev_priv = to_i915(dev);
2022 struct drm_i915_gem_object *obj = ringbuf->obj;
2023 int ret;
2025 if (HAS_LLC(dev_priv) && !obj->stolen) {
2026 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2027 if (ret)
2028 return ret;
2030 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2031 if (ret) {
2032 i915_gem_object_ggtt_unpin(obj);
2033 return ret;
2036 ringbuf->virtual_start = (char *)vmap_obj(obj,
2037 &ringbuf->virtual_count);
2038 if (ringbuf->virtual_start == NULL) {
2039 i915_gem_object_ggtt_unpin(obj);
2040 return -ENOMEM;
2042 } else {
2043 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2044 if (ret)
2045 return ret;
2047 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2048 if (ret) {
2049 i915_gem_object_ggtt_unpin(obj);
2050 return ret;
2053 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2054 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2055 if (ringbuf->virtual_start == NULL) {
2056 i915_gem_object_ggtt_unpin(obj);
2057 return -EINVAL;
2061 return 0;
2064 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2066 drm_gem_object_unreference(&ringbuf->obj->base);
2067 ringbuf->obj = NULL;
2070 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2071 struct intel_ringbuffer *ringbuf)
2073 struct drm_i915_gem_object *obj;
2075 obj = NULL;
2076 if (!HAS_LLC(dev))
2077 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2078 if (obj == NULL)
2079 obj = i915_gem_alloc_object(dev, ringbuf->size);
2080 if (obj == NULL)
2081 return -ENOMEM;
2083 /* mark ring buffers as read-only from GPU side by default */
2084 obj->gt_ro = 1;
2086 ringbuf->obj = obj;
2088 return 0;
2091 struct intel_ringbuffer *
2092 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2094 struct intel_ringbuffer *ring;
2095 int ret;
2097 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2098 if (ring == NULL) {
2099 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2100 engine->name);
2101 return ERR_PTR(-ENOMEM);
2104 ring->ring = engine;
2105 list_add(&ring->link, &engine->buffers);
2107 ring->size = size;
2108 /* Workaround an erratum on the i830 which causes a hang if
2109 * the TAIL pointer points to within the last 2 cachelines
2110 * of the buffer.
2112 ring->effective_size = size;
2113 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2114 ring->effective_size -= 2 * CACHELINE_BYTES;
2116 ring->last_retired_head = -1;
2117 intel_ring_update_space(ring);
2119 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2120 if (ret) {
2121 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2122 engine->name, ret);
2123 list_del(&ring->link);
2124 kfree(ring);
2125 return ERR_PTR(ret);
2128 return ring;
2131 void
2132 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2134 intel_destroy_ringbuffer_obj(ring);
2135 list_del(&ring->link);
2136 kfree(ring);
2139 static int intel_init_ring_buffer(struct drm_device *dev,
2140 struct intel_engine_cs *ring)
2142 struct intel_ringbuffer *ringbuf;
2143 int ret;
2145 WARN_ON(ring->buffer);
2147 ring->dev = dev;
2148 INIT_LIST_HEAD(&ring->active_list);
2149 INIT_LIST_HEAD(&ring->request_list);
2150 INIT_LIST_HEAD(&ring->execlist_queue);
2151 INIT_LIST_HEAD(&ring->buffers);
2152 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2153 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2155 init_waitqueue_head(&ring->irq_queue);
2157 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2158 if (IS_ERR(ringbuf)) {
2159 ret = PTR_ERR(ringbuf);
2160 goto error;
2162 ring->buffer = ringbuf;
2164 if (I915_NEED_GFX_HWS(dev)) {
2165 ret = init_status_page(ring);
2166 if (ret)
2167 goto error;
2168 } else {
2169 BUG_ON(ring->id != RCS);
2170 ret = init_phys_status_page(ring);
2171 if (ret)
2172 goto error;
2175 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2176 if (ret) {
2177 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2178 ring->name, ret);
2179 intel_destroy_ringbuffer_obj(ringbuf);
2180 goto error;
2183 ret = i915_cmd_parser_init_ring(ring);
2184 if (ret)
2185 goto error;
2187 return 0;
2189 error:
2190 intel_cleanup_ring_buffer(ring);
2191 return ret;
2194 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2196 struct drm_i915_private *dev_priv;
2198 if (!intel_ring_initialized(ring))
2199 return;
2201 dev_priv = to_i915(ring->dev);
2203 if (ring->buffer) {
2204 intel_stop_ring_buffer(ring);
2205 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2207 intel_unpin_ringbuffer_obj(ring->buffer);
2208 intel_ringbuffer_free(ring->buffer);
2209 ring->buffer = NULL;
2212 if (ring->cleanup)
2213 ring->cleanup(ring);
2215 cleanup_status_page(ring);
2217 i915_cmd_parser_fini_ring(ring);
2218 i915_gem_batch_pool_fini(&ring->batch_pool);
2219 ring->dev = NULL;
2222 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2224 struct intel_ringbuffer *ringbuf = ring->buffer;
2225 struct drm_i915_gem_request *request;
2226 unsigned space;
2227 int ret;
2229 if (intel_ring_space(ringbuf) >= n)
2230 return 0;
2232 /* The whole point of reserving space is to not wait! */
2233 WARN_ON(ringbuf->reserved_in_use);
2235 list_for_each_entry(request, &ring->request_list, list) {
2236 space = __intel_ring_space(request->postfix, ringbuf->tail,
2237 ringbuf->size);
2238 if (space >= n)
2239 break;
2242 if (WARN_ON(&request->list == &ring->request_list))
2243 return -ENOSPC;
2245 ret = i915_wait_request(request);
2246 if (ret)
2247 return ret;
2249 ringbuf->space = space;
2250 return 0;
2253 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2255 uint32_t __iomem *virt;
2256 int rem = ringbuf->size - ringbuf->tail;
2258 virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2259 rem /= 4;
2260 while (rem--)
2261 iowrite32(MI_NOOP, virt++);
2263 ringbuf->tail = 0;
2264 intel_ring_update_space(ringbuf);
2267 int intel_ring_idle(struct intel_engine_cs *ring)
2269 struct drm_i915_gem_request *req;
2271 /* Wait upon the last request to be completed */
2272 if (list_empty(&ring->request_list))
2273 return 0;
2275 req = list_entry(ring->request_list.prev,
2276 struct drm_i915_gem_request,
2277 list);
2279 /* Make sure we do not trigger any retires */
2280 return __i915_wait_request(req,
2281 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2282 to_i915(ring->dev)->mm.interruptible,
2283 NULL, NULL);
2286 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2288 request->ringbuf = request->ring->buffer;
2289 return 0;
2292 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2295 * The first call merely notes the reserve request and is common for
2296 * all back ends. The subsequent localised _begin() call actually
2297 * ensures that the reservation is available. Without the begin, if
2298 * the request creator immediately submitted the request without
2299 * adding any commands to it then there might not actually be
2300 * sufficient room for the submission commands.
2302 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2304 return intel_ring_begin(request, 0);
2307 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2309 WARN_ON(ringbuf->reserved_size);
2310 WARN_ON(ringbuf->reserved_in_use);
2312 ringbuf->reserved_size = size;
2315 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2317 WARN_ON(ringbuf->reserved_in_use);
2319 ringbuf->reserved_size = 0;
2320 ringbuf->reserved_in_use = false;
2323 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2325 WARN_ON(ringbuf->reserved_in_use);
2327 ringbuf->reserved_in_use = true;
2328 ringbuf->reserved_tail = ringbuf->tail;
2331 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2333 WARN_ON(!ringbuf->reserved_in_use);
2334 if (ringbuf->tail > ringbuf->reserved_tail) {
2335 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2336 "request reserved size too small: %d vs %d!\n",
2337 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2338 } else {
2340 * The ring was wrapped while the reserved space was in use.
2341 * That means that some unknown amount of the ring tail was
2342 * no-op filled and skipped. Thus simply adding the ring size
2343 * to the tail and doing the above space check will not work.
2344 * Rather than attempt to track how much tail was skipped,
2345 * it is much simpler to say that also skipping the sanity
2346 * check every once in a while is not a big issue.
2350 ringbuf->reserved_size = 0;
2351 ringbuf->reserved_in_use = false;
2354 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2356 struct intel_ringbuffer *ringbuf = ring->buffer;
2357 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2358 int remain_actual = ringbuf->size - ringbuf->tail;
2359 int ret, total_bytes, wait_bytes = 0;
2360 bool need_wrap = false;
2362 if (ringbuf->reserved_in_use)
2363 total_bytes = bytes;
2364 else
2365 total_bytes = bytes + ringbuf->reserved_size;
2367 if (unlikely(bytes > remain_usable)) {
2369 * Not enough space for the basic request. So need to flush
2370 * out the remainder and then wait for base + reserved.
2372 wait_bytes = remain_actual + total_bytes;
2373 need_wrap = true;
2374 } else {
2375 if (unlikely(total_bytes > remain_usable)) {
2377 * The base request will fit but the reserved space
2378 * falls off the end. So only need to to wait for the
2379 * reserved size after flushing out the remainder.
2381 wait_bytes = remain_actual + ringbuf->reserved_size;
2382 need_wrap = true;
2383 } else if (total_bytes > ringbuf->space) {
2384 /* No wrapping required, just waiting. */
2385 wait_bytes = total_bytes;
2389 if (wait_bytes) {
2390 ret = ring_wait_for_space(ring, wait_bytes);
2391 if (unlikely(ret))
2392 return ret;
2394 if (need_wrap)
2395 __wrap_ring_buffer(ringbuf);
2398 return 0;
2401 int intel_ring_begin(struct drm_i915_gem_request *req,
2402 int num_dwords)
2404 struct intel_engine_cs *ring;
2405 struct drm_i915_private *dev_priv;
2406 int ret;
2408 WARN_ON(req == NULL);
2409 ring = req->ring;
2410 dev_priv = ring->dev->dev_private;
2412 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2413 dev_priv->mm.interruptible);
2414 if (ret)
2415 return ret;
2417 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2418 if (ret)
2419 return ret;
2421 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2422 return 0;
2425 /* Align the ring tail to a cacheline boundary */
2426 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2428 struct intel_engine_cs *ring = req->ring;
2429 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2430 int ret;
2432 if (num_dwords == 0)
2433 return 0;
2435 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2436 ret = intel_ring_begin(req, num_dwords);
2437 if (ret)
2438 return ret;
2440 while (num_dwords--)
2441 intel_ring_emit(ring, MI_NOOP);
2443 intel_ring_advance(ring);
2445 return 0;
2448 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2450 struct drm_device *dev = ring->dev;
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2453 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2454 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2455 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2456 if (HAS_VEBOX(dev))
2457 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2460 ring->set_seqno(ring, seqno);
2461 ring->hangcheck.seqno = seqno;
2464 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2465 u32 value)
2467 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2469 /* Every tail move must follow the sequence below */
2471 /* Disable notification that the ring is IDLE. The GT
2472 * will then assume that it is busy and bring it out of rc6.
2474 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2475 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2477 /* Clear the context id. Here be magic! */
2478 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2480 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2481 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2482 GEN6_BSD_SLEEP_INDICATOR) == 0,
2483 50))
2484 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2486 /* Now that the ring is fully powered up, update the tail */
2487 I915_WRITE_TAIL(ring, value);
2488 POSTING_READ(RING_TAIL(ring->mmio_base));
2490 /* Let the ring send IDLE messages to the GT again,
2491 * and so let it sleep to conserve power when idle.
2493 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2494 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2497 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2498 u32 invalidate, u32 flush)
2500 struct intel_engine_cs *ring = req->ring;
2501 uint32_t cmd;
2502 int ret;
2504 ret = intel_ring_begin(req, 4);
2505 if (ret)
2506 return ret;
2508 cmd = MI_FLUSH_DW;
2509 if (INTEL_INFO(ring->dev)->gen >= 8)
2510 cmd += 1;
2512 /* We always require a command barrier so that subsequent
2513 * commands, such as breadcrumb interrupts, are strictly ordered
2514 * wrt the contents of the write cache being flushed to memory
2515 * (and thus being coherent from the CPU).
2517 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2520 * Bspec vol 1c.5 - video engine command streamer:
2521 * "If ENABLED, all TLBs will be invalidated once the flush
2522 * operation is complete. This bit is only valid when the
2523 * Post-Sync Operation field is a value of 1h or 3h."
2525 if (invalidate & I915_GEM_GPU_DOMAINS)
2526 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2528 intel_ring_emit(ring, cmd);
2529 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2530 if (INTEL_INFO(ring->dev)->gen >= 8) {
2531 intel_ring_emit(ring, 0); /* upper addr */
2532 intel_ring_emit(ring, 0); /* value */
2533 } else {
2534 intel_ring_emit(ring, 0);
2535 intel_ring_emit(ring, MI_NOOP);
2537 intel_ring_advance(ring);
2538 return 0;
2541 static int
2542 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2543 u64 offset, u32 len,
2544 unsigned dispatch_flags)
2546 struct intel_engine_cs *ring = req->ring;
2547 bool ppgtt = USES_PPGTT(ring->dev) &&
2548 !(dispatch_flags & I915_DISPATCH_SECURE);
2549 int ret;
2551 ret = intel_ring_begin(req, 4);
2552 if (ret)
2553 return ret;
2555 /* FIXME(BDW): Address space and security selectors. */
2556 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2557 (dispatch_flags & I915_DISPATCH_RS ?
2558 MI_BATCH_RESOURCE_STREAMER : 0));
2559 intel_ring_emit(ring, lower_32_bits(offset));
2560 intel_ring_emit(ring, upper_32_bits(offset));
2561 intel_ring_emit(ring, MI_NOOP);
2562 intel_ring_advance(ring);
2564 return 0;
2567 static int
2568 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2569 u64 offset, u32 len,
2570 unsigned dispatch_flags)
2572 struct intel_engine_cs *ring = req->ring;
2573 int ret;
2575 ret = intel_ring_begin(req, 2);
2576 if (ret)
2577 return ret;
2579 intel_ring_emit(ring,
2580 MI_BATCH_BUFFER_START |
2581 (dispatch_flags & I915_DISPATCH_SECURE ?
2582 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2583 (dispatch_flags & I915_DISPATCH_RS ?
2584 MI_BATCH_RESOURCE_STREAMER : 0));
2585 /* bit0-7 is the length on GEN6+ */
2586 intel_ring_emit(ring, offset);
2587 intel_ring_advance(ring);
2589 return 0;
2592 static int
2593 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2594 u64 offset, u32 len,
2595 unsigned dispatch_flags)
2597 struct intel_engine_cs *ring = req->ring;
2598 int ret;
2600 ret = intel_ring_begin(req, 2);
2601 if (ret)
2602 return ret;
2604 intel_ring_emit(ring,
2605 MI_BATCH_BUFFER_START |
2606 (dispatch_flags & I915_DISPATCH_SECURE ?
2607 0 : MI_BATCH_NON_SECURE_I965));
2608 /* bit0-7 is the length on GEN6+ */
2609 intel_ring_emit(ring, offset);
2610 intel_ring_advance(ring);
2612 return 0;
2615 /* Blitter support (SandyBridge+) */
2617 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2618 u32 invalidate, u32 flush)
2620 struct intel_engine_cs *ring = req->ring;
2621 struct drm_device *dev = ring->dev;
2622 uint32_t cmd;
2623 int ret;
2625 ret = intel_ring_begin(req, 4);
2626 if (ret)
2627 return ret;
2629 cmd = MI_FLUSH_DW;
2630 if (INTEL_INFO(dev)->gen >= 8)
2631 cmd += 1;
2633 /* We always require a command barrier so that subsequent
2634 * commands, such as breadcrumb interrupts, are strictly ordered
2635 * wrt the contents of the write cache being flushed to memory
2636 * (and thus being coherent from the CPU).
2638 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2641 * Bspec vol 1c.3 - blitter engine command streamer:
2642 * "If ENABLED, all TLBs will be invalidated once the flush
2643 * operation is complete. This bit is only valid when the
2644 * Post-Sync Operation field is a value of 1h or 3h."
2646 if (invalidate & I915_GEM_DOMAIN_RENDER)
2647 cmd |= MI_INVALIDATE_TLB;
2648 intel_ring_emit(ring, cmd);
2649 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2650 if (INTEL_INFO(dev)->gen >= 8) {
2651 intel_ring_emit(ring, 0); /* upper addr */
2652 intel_ring_emit(ring, 0); /* value */
2653 } else {
2654 intel_ring_emit(ring, 0);
2655 intel_ring_emit(ring, MI_NOOP);
2657 intel_ring_advance(ring);
2659 return 0;
2662 int intel_init_render_ring_buffer(struct drm_device *dev)
2664 struct drm_i915_private *dev_priv = dev->dev_private;
2665 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2666 struct drm_i915_gem_object *obj;
2667 int ret;
2669 ring->name = "render ring";
2670 ring->id = RCS;
2671 ring->mmio_base = RENDER_RING_BASE;
2673 if (INTEL_INFO(dev)->gen >= 8) {
2674 if (i915_semaphore_is_enabled(dev)) {
2675 obj = i915_gem_alloc_object(dev, 4096);
2676 if (obj == NULL) {
2677 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2678 i915.semaphores = 0;
2679 } else {
2680 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2681 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2682 if (ret != 0) {
2683 drm_gem_object_unreference(&obj->base);
2684 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2685 i915.semaphores = 0;
2686 } else
2687 dev_priv->semaphore_obj = obj;
2691 ring->init_context = intel_rcs_ctx_init;
2692 ring->add_request = gen6_add_request;
2693 ring->flush = gen8_render_ring_flush;
2694 ring->irq_get = gen8_ring_get_irq;
2695 ring->irq_put = gen8_ring_put_irq;
2696 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2697 ring->get_seqno = gen6_ring_get_seqno;
2698 ring->set_seqno = ring_set_seqno;
2699 if (i915_semaphore_is_enabled(dev)) {
2700 WARN_ON(!dev_priv->semaphore_obj);
2701 ring->semaphore.sync_to = gen8_ring_sync;
2702 ring->semaphore.signal = gen8_rcs_signal;
2703 GEN8_RING_SEMAPHORE_INIT;
2705 } else if (INTEL_INFO(dev)->gen >= 6) {
2706 ring->init_context = intel_rcs_ctx_init;
2707 ring->add_request = gen6_add_request;
2708 ring->flush = gen7_render_ring_flush;
2709 if (INTEL_INFO(dev)->gen == 6)
2710 ring->flush = gen6_render_ring_flush;
2711 ring->irq_get = gen6_ring_get_irq;
2712 ring->irq_put = gen6_ring_put_irq;
2713 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2714 ring->get_seqno = gen6_ring_get_seqno;
2715 ring->set_seqno = ring_set_seqno;
2716 if (i915_semaphore_is_enabled(dev)) {
2717 ring->semaphore.sync_to = gen6_ring_sync;
2718 ring->semaphore.signal = gen6_signal;
2720 * The current semaphore is only applied on pre-gen8
2721 * platform. And there is no VCS2 ring on the pre-gen8
2722 * platform. So the semaphore between RCS and VCS2 is
2723 * initialized as INVALID. Gen8 will initialize the
2724 * sema between VCS2 and RCS later.
2726 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2727 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2728 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2729 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2730 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2731 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2732 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2733 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2734 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2735 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2737 } else if (IS_GEN5(dev)) {
2738 ring->add_request = pc_render_add_request;
2739 ring->flush = gen4_render_ring_flush;
2740 ring->get_seqno = pc_render_get_seqno;
2741 ring->set_seqno = pc_render_set_seqno;
2742 ring->irq_get = gen5_ring_get_irq;
2743 ring->irq_put = gen5_ring_put_irq;
2744 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2745 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2746 } else {
2747 ring->add_request = i9xx_add_request;
2748 if (INTEL_INFO(dev)->gen < 4)
2749 ring->flush = gen2_render_ring_flush;
2750 else
2751 ring->flush = gen4_render_ring_flush;
2752 ring->get_seqno = ring_get_seqno;
2753 ring->set_seqno = ring_set_seqno;
2754 if (IS_GEN2(dev)) {
2755 ring->irq_get = i8xx_ring_get_irq;
2756 ring->irq_put = i8xx_ring_put_irq;
2757 } else {
2758 ring->irq_get = i9xx_ring_get_irq;
2759 ring->irq_put = i9xx_ring_put_irq;
2761 ring->irq_enable_mask = I915_USER_INTERRUPT;
2763 ring->write_tail = ring_write_tail;
2765 if (IS_HASWELL(dev))
2766 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2767 else if (IS_GEN8(dev))
2768 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2769 else if (INTEL_INFO(dev)->gen >= 6)
2770 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2771 else if (INTEL_INFO(dev)->gen >= 4)
2772 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2773 else if (IS_I830(dev) || IS_845G(dev))
2774 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2775 else
2776 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2777 ring->init_hw = init_render_ring;
2778 ring->cleanup = render_ring_cleanup;
2780 /* Workaround batchbuffer to combat CS tlb bug. */
2781 if (HAS_BROKEN_CS_TLB(dev)) {
2782 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2783 if (obj == NULL) {
2784 DRM_ERROR("Failed to allocate batch bo\n");
2785 return -ENOMEM;
2788 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2789 if (ret != 0) {
2790 drm_gem_object_unreference(&obj->base);
2791 DRM_ERROR("Failed to ping batch bo\n");
2792 return ret;
2795 ring->scratch.obj = obj;
2796 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2799 ret = intel_init_ring_buffer(dev, ring);
2800 if (ret)
2801 return ret;
2803 if (INTEL_INFO(dev)->gen >= 5) {
2804 ret = intel_init_pipe_control(ring);
2805 if (ret)
2806 return ret;
2809 return 0;
2812 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2814 struct drm_i915_private *dev_priv = dev->dev_private;
2815 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2817 ring->name = "bsd ring";
2818 ring->id = VCS;
2820 ring->write_tail = ring_write_tail;
2821 if (INTEL_INFO(dev)->gen >= 6) {
2822 ring->mmio_base = GEN6_BSD_RING_BASE;
2823 /* gen6 bsd needs a special wa for tail updates */
2824 if (IS_GEN6(dev))
2825 ring->write_tail = gen6_bsd_ring_write_tail;
2826 ring->flush = gen6_bsd_ring_flush;
2827 ring->add_request = gen6_add_request;
2828 ring->get_seqno = gen6_ring_get_seqno;
2829 ring->set_seqno = ring_set_seqno;
2830 if (INTEL_INFO(dev)->gen >= 8) {
2831 ring->irq_enable_mask =
2832 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2833 ring->irq_get = gen8_ring_get_irq;
2834 ring->irq_put = gen8_ring_put_irq;
2835 ring->dispatch_execbuffer =
2836 gen8_ring_dispatch_execbuffer;
2837 if (i915_semaphore_is_enabled(dev)) {
2838 ring->semaphore.sync_to = gen8_ring_sync;
2839 ring->semaphore.signal = gen8_xcs_signal;
2840 GEN8_RING_SEMAPHORE_INIT;
2842 } else {
2843 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2844 ring->irq_get = gen6_ring_get_irq;
2845 ring->irq_put = gen6_ring_put_irq;
2846 ring->dispatch_execbuffer =
2847 gen6_ring_dispatch_execbuffer;
2848 if (i915_semaphore_is_enabled(dev)) {
2849 ring->semaphore.sync_to = gen6_ring_sync;
2850 ring->semaphore.signal = gen6_signal;
2851 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2852 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2853 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2854 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2855 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2856 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2857 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2858 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2859 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2860 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2863 } else {
2864 ring->mmio_base = BSD_RING_BASE;
2865 ring->flush = bsd_ring_flush;
2866 ring->add_request = i9xx_add_request;
2867 ring->get_seqno = ring_get_seqno;
2868 ring->set_seqno = ring_set_seqno;
2869 if (IS_GEN5(dev)) {
2870 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2871 ring->irq_get = gen5_ring_get_irq;
2872 ring->irq_put = gen5_ring_put_irq;
2873 } else {
2874 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2875 ring->irq_get = i9xx_ring_get_irq;
2876 ring->irq_put = i9xx_ring_put_irq;
2878 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2880 ring->init_hw = init_ring_common;
2882 return intel_init_ring_buffer(dev, ring);
2886 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2888 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2890 struct drm_i915_private *dev_priv = dev->dev_private;
2891 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2893 ring->name = "bsd2 ring";
2894 ring->id = VCS2;
2896 ring->write_tail = ring_write_tail;
2897 ring->mmio_base = GEN8_BSD2_RING_BASE;
2898 ring->flush = gen6_bsd_ring_flush;
2899 ring->add_request = gen6_add_request;
2900 ring->get_seqno = gen6_ring_get_seqno;
2901 ring->set_seqno = ring_set_seqno;
2902 ring->irq_enable_mask =
2903 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2904 ring->irq_get = gen8_ring_get_irq;
2905 ring->irq_put = gen8_ring_put_irq;
2906 ring->dispatch_execbuffer =
2907 gen8_ring_dispatch_execbuffer;
2908 if (i915_semaphore_is_enabled(dev)) {
2909 ring->semaphore.sync_to = gen8_ring_sync;
2910 ring->semaphore.signal = gen8_xcs_signal;
2911 GEN8_RING_SEMAPHORE_INIT;
2913 ring->init_hw = init_ring_common;
2915 return intel_init_ring_buffer(dev, ring);
2918 int intel_init_blt_ring_buffer(struct drm_device *dev)
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2923 ring->name = "blitter ring";
2924 ring->id = BCS;
2926 ring->mmio_base = BLT_RING_BASE;
2927 ring->write_tail = ring_write_tail;
2928 ring->flush = gen6_ring_flush;
2929 ring->add_request = gen6_add_request;
2930 ring->get_seqno = gen6_ring_get_seqno;
2931 ring->set_seqno = ring_set_seqno;
2932 if (INTEL_INFO(dev)->gen >= 8) {
2933 ring->irq_enable_mask =
2934 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2935 ring->irq_get = gen8_ring_get_irq;
2936 ring->irq_put = gen8_ring_put_irq;
2937 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2938 if (i915_semaphore_is_enabled(dev)) {
2939 ring->semaphore.sync_to = gen8_ring_sync;
2940 ring->semaphore.signal = gen8_xcs_signal;
2941 GEN8_RING_SEMAPHORE_INIT;
2943 } else {
2944 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2945 ring->irq_get = gen6_ring_get_irq;
2946 ring->irq_put = gen6_ring_put_irq;
2947 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2948 if (i915_semaphore_is_enabled(dev)) {
2949 ring->semaphore.signal = gen6_signal;
2950 ring->semaphore.sync_to = gen6_ring_sync;
2952 * The current semaphore is only applied on pre-gen8
2953 * platform. And there is no VCS2 ring on the pre-gen8
2954 * platform. So the semaphore between BCS and VCS2 is
2955 * initialized as INVALID. Gen8 will initialize the
2956 * sema between BCS and VCS2 later.
2958 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2959 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2960 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2961 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2962 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2963 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2964 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2965 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2966 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2967 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2970 ring->init_hw = init_ring_common;
2972 return intel_init_ring_buffer(dev, ring);
2975 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2980 ring->name = "video enhancement ring";
2981 ring->id = VECS;
2983 ring->mmio_base = VEBOX_RING_BASE;
2984 ring->write_tail = ring_write_tail;
2985 ring->flush = gen6_ring_flush;
2986 ring->add_request = gen6_add_request;
2987 ring->get_seqno = gen6_ring_get_seqno;
2988 ring->set_seqno = ring_set_seqno;
2990 if (INTEL_INFO(dev)->gen >= 8) {
2991 ring->irq_enable_mask =
2992 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2993 ring->irq_get = gen8_ring_get_irq;
2994 ring->irq_put = gen8_ring_put_irq;
2995 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2996 if (i915_semaphore_is_enabled(dev)) {
2997 ring->semaphore.sync_to = gen8_ring_sync;
2998 ring->semaphore.signal = gen8_xcs_signal;
2999 GEN8_RING_SEMAPHORE_INIT;
3001 } else {
3002 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3003 ring->irq_get = hsw_vebox_get_irq;
3004 ring->irq_put = hsw_vebox_put_irq;
3005 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3006 if (i915_semaphore_is_enabled(dev)) {
3007 ring->semaphore.sync_to = gen6_ring_sync;
3008 ring->semaphore.signal = gen6_signal;
3009 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3010 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3011 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3012 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3013 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3014 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3015 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3016 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3017 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3018 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3021 ring->init_hw = init_ring_common;
3023 return intel_init_ring_buffer(dev, ring);
3027 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3029 struct intel_engine_cs *ring = req->ring;
3030 int ret;
3032 if (!ring->gpu_caches_dirty)
3033 return 0;
3035 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3036 if (ret)
3037 return ret;
3039 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3041 ring->gpu_caches_dirty = false;
3042 return 0;
3046 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3048 struct intel_engine_cs *ring = req->ring;
3049 uint32_t flush_domains;
3050 int ret;
3052 flush_domains = 0;
3053 if (ring->gpu_caches_dirty)
3054 flush_domains = I915_GEM_GPU_DOMAINS;
3056 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3057 if (ret)
3058 return ret;
3060 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3062 ring->gpu_caches_dirty = false;
3063 return 0;
3066 void
3067 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3069 int ret;
3071 if (!intel_ring_initialized(ring))
3072 return;
3074 ret = intel_ring_idle(ring);
3075 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3076 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3077 ring->name, ret);
3079 stop_ring(ring);