Import the kernel GPT and UUID header files from FreeBSD, and bring in
[dragonfly.git] / sys / kern / kern_uuid.c
blob70794feaea244c05e5454095877bf0373d274a4e
1 /*-
2 * Copyright (c) 2002 Marcel Moolenaar
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * $FreeBSD: src/sys/kern/kern_uuid.c,v 1.13 2007/04/23 12:53:00 pjd Exp $
27 * $DragonFly: src/sys/kern/kern_uuid.c,v 1.1 2007/06/16 18:55:27 dillon Exp $
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/sbuf.h>
36 #include <sys/socket.h>
37 #include <sys/sysproto.h>
38 #include <sys/uuid.h>
41 * See also:
42 * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
43 * http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
45 * Note that the generator state is itself an UUID, but the time and clock
46 * sequence fields are written in the native byte order.
49 /* We use an alternative, more convenient representation in the generator. */
50 struct uuid_private {
51 union {
52 uint64_t ll; /* internal. */
53 struct {
54 uint32_t low;
55 uint16_t mid;
56 uint16_t hi;
57 } x;
58 } time;
59 uint16_t seq; /* Big-endian. */
60 uint16_t node[UUID_NODE_LEN>>1];
63 #if 0 /* NOT YET */
65 static struct uuid_private uuid_last;
67 static struct mtx uuid_mutex;
68 MTX_SYSINIT(uuid_lock, &uuid_mutex, "UUID generator mutex lock", MTX_DEF);
71 * Return the first MAC address we encounter or, if none was found,
72 * construct a sufficiently random multicast address. We don't try
73 * to return the same MAC address as previously returned. We always
74 * generate a new multicast address if no MAC address exists in the
75 * system.
76 * It would be nice to know if 'ifnet' or any of its sub-structures
77 * has been changed in any way. If not, we could simply skip the
78 * scan and safely return the MAC address we returned before.
80 static void
81 uuid_node(uint16_t *node)
83 struct ifnet *ifp;
84 struct ifaddr *ifa;
85 struct sockaddr_dl *sdl;
86 int i;
88 IFNET_RLOCK();
89 TAILQ_FOREACH(ifp, &ifnet, if_link) {
90 /* Walk the address list */
91 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
92 sdl = (struct sockaddr_dl*)ifa->ifa_addr;
93 if (sdl != NULL && sdl->sdl_family == AF_LINK &&
94 sdl->sdl_type == IFT_ETHER) {
95 /* Got a MAC address. */
96 bcopy(LLADDR(sdl), node, UUID_NODE_LEN);
97 IFNET_RUNLOCK();
98 return;
102 IFNET_RUNLOCK();
104 for (i = 0; i < (UUID_NODE_LEN>>1); i++)
105 node[i] = (uint16_t)arc4random();
106 *((uint8_t*)node) |= 0x01;
110 * Get the current time as a 60 bit count of 100-nanosecond intervals
111 * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
112 * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
113 * Gregorian reform to the Christian calendar.
115 static uint64_t
116 uuid_time(void)
118 struct bintime bt;
119 uint64_t time = 0x01B21DD213814000LL;
121 bintime(&bt);
122 time += (uint64_t)bt.sec * 10000000LL;
123 time += (10000000LL * (uint32_t)(bt.frac >> 32)) >> 32;
124 return (time & ((1LL << 60) - 1LL));
127 struct uuid *
128 kern_uuidgen(struct uuid *store, size_t count)
130 struct uuid_private uuid;
131 uint64_t time;
132 size_t n;
134 mtx_lock(&uuid_mutex);
136 uuid_node(uuid.node);
137 time = uuid_time();
139 if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid.node[0] ||
140 uuid_last.node[1] != uuid.node[1] ||
141 uuid_last.node[2] != uuid.node[2])
142 uuid.seq = (uint16_t)arc4random() & 0x3fff;
143 else if (uuid_last.time.ll >= time)
144 uuid.seq = (uuid_last.seq + 1) & 0x3fff;
145 else
146 uuid.seq = uuid_last.seq;
148 uuid_last = uuid;
149 uuid_last.time.ll = (time + count - 1) & ((1LL << 60) - 1LL);
151 mtx_unlock(&uuid_mutex);
153 /* Set sequence and variant and deal with byte order. */
154 uuid.seq = htobe16(uuid.seq | 0x8000);
156 for (n = 0; n < count; n++) {
157 /* Set time and version (=1). */
158 uuid.time.x.low = (uint32_t)time;
159 uuid.time.x.mid = (uint16_t)(time >> 32);
160 uuid.time.x.hi = ((uint16_t)(time >> 48) & 0xfff) | (1 << 12);
161 store[n] = *(struct uuid *)&uuid;
162 time++;
165 return (store);
168 #ifndef _SYS_SYSPROTO_H_
169 struct uuidgen_args {
170 struct uuid *store;
171 int count;
173 #endif
175 uuidgen(struct thread *td, struct uuidgen_args *uap)
177 struct uuid *store;
178 size_t count;
179 int error;
182 * Limit the number of UUIDs that can be created at the same time
183 * to some arbitrary number. This isn't really necessary, but I
184 * like to have some sort of upper-bound that's less than 2G :-)
185 * XXX probably needs to be tunable.
187 if (uap->count < 1 || uap->count > 2048)
188 return (EINVAL);
190 count = uap->count;
191 store = malloc(count * sizeof(struct uuid), M_TEMP, M_WAITOK);
192 kern_uuidgen(store, count);
193 error = copyout(store, uap->store, count * sizeof(struct uuid));
194 free(store, M_TEMP);
195 return (error);
198 #endif /* NOT YET */
201 snprintf_uuid(char *buf, size_t sz, struct uuid *uuid)
203 struct uuid_private *id;
204 int cnt;
206 id = (struct uuid_private *)uuid;
207 cnt = ksnprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
208 id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
209 be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
210 return (cnt);
214 printf_uuid(struct uuid *uuid)
216 char buf[38];
218 snprintf_uuid(buf, sizeof(buf), uuid);
219 return (kprintf("%s", buf));
223 sbuf_printf_uuid(struct sbuf *sb, struct uuid *uuid)
225 char buf[38];
227 snprintf_uuid(buf, sizeof(buf), uuid);
228 return (sbuf_printf(sb, "%s", buf));
232 * Encode/Decode UUID into byte-stream.
233 * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
235 * 0 1 2 3
236 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
237 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
238 * | time_low |
239 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
240 * | time_mid | time_hi_and_version |
241 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
242 * |clk_seq_hi_res | clk_seq_low | node (0-1) |
243 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
244 * | node (2-5) |
245 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
248 void
249 le_uuid_enc(void *buf, struct uuid const *uuid)
251 u_char *p;
252 int i;
254 p = buf;
255 le32enc(p, uuid->time_low);
256 le16enc(p + 4, uuid->time_mid);
257 le16enc(p + 6, uuid->time_hi_and_version);
258 p[8] = uuid->clock_seq_hi_and_reserved;
259 p[9] = uuid->clock_seq_low;
260 for (i = 0; i < _UUID_NODE_LEN; i++)
261 p[10 + i] = uuid->node[i];
264 void
265 le_uuid_dec(void const *buf, struct uuid *uuid)
267 u_char const *p;
268 int i;
270 p = buf;
271 uuid->time_low = le32dec(p);
272 uuid->time_mid = le16dec(p + 4);
273 uuid->time_hi_and_version = le16dec(p + 6);
274 uuid->clock_seq_hi_and_reserved = p[8];
275 uuid->clock_seq_low = p[9];
276 for (i = 0; i < _UUID_NODE_LEN; i++)
277 uuid->node[i] = p[10 + i];
280 void
281 be_uuid_enc(void *buf, struct uuid const *uuid)
283 u_char *p;
284 int i;
286 p = buf;
287 be32enc(p, uuid->time_low);
288 be16enc(p + 4, uuid->time_mid);
289 be16enc(p + 6, uuid->time_hi_and_version);
290 p[8] = uuid->clock_seq_hi_and_reserved;
291 p[9] = uuid->clock_seq_low;
292 for (i = 0; i < _UUID_NODE_LEN; i++)
293 p[10 + i] = uuid->node[i];
296 void
297 be_uuid_dec(void const *buf, struct uuid *uuid)
299 u_char const *p;
300 int i;
302 p = buf;
303 uuid->time_low = be32dec(p);
304 uuid->time_mid = le16dec(p + 4);
305 uuid->time_hi_and_version = be16dec(p + 6);
306 uuid->clock_seq_hi_and_reserved = p[8];
307 uuid->clock_seq_low = p[9];
308 for (i = 0; i < _UUID_NODE_LEN; i++)
309 uuid->node[i] = p[10 + i];
313 parse_uuid(const char *str, struct uuid *uuid)
315 u_int c[11];
316 int n;
318 /* An empty string represents a nil UUID. */
319 if (*str == '\0') {
320 bzero(uuid, sizeof(*uuid));
321 return (0);
324 /* The UUID string representation has a fixed length. */
325 if (strlen(str) != 36)
326 return (EINVAL);
329 * We only work with "new" UUIDs. New UUIDs have the form:
330 * 01234567-89ab-cdef-0123-456789abcdef
331 * The so called "old" UUIDs, which we don't support, have the form:
332 * 0123456789ab.cd.ef.01.23.45.67.89.ab
334 if (str[8] != '-')
335 return (EINVAL);
337 n = ksscanf(str, "%8x-%4x-%4x-%2x%2x-%2x%2x%2x%2x%2x%2x", c + 0, c + 1,
338 c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9, c + 10);
339 /* Make sure we have all conversions. */
340 if (n != 11)
341 return (EINVAL);
343 /* Successful scan. Build the UUID. */
344 uuid->time_low = c[0];
345 uuid->time_mid = c[1];
346 uuid->time_hi_and_version = c[2];
347 uuid->clock_seq_hi_and_reserved = c[3];
348 uuid->clock_seq_low = c[4];
349 for (n = 0; n < 6; n++)
350 uuid->node[n] = c[n + 5];
352 /* Check semantics... */
353 return (((c[3] & 0x80) != 0x00 && /* variant 0? */
354 (c[3] & 0xc0) != 0x80 && /* variant 1? */
355 (c[3] & 0xe0) != 0xc0) ? EINVAL : 0); /* variant 2? */