amd64: declare initializecpu outside of SMP
[dragonfly.git] / sbin / newfs / mkfs.c
blobbd302bbc4520685eed40db1d576d58ea2f481add
1 /*
2 * Copyright (c) 1980, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)mkfs.c 8.11 (Berkeley) 5/3/95
34 * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
35 * $DragonFly: src/sbin/newfs/mkfs.c,v 1.14 2007/05/20 19:29:21 dillon Exp $
38 #include "defs.h"
40 #ifndef STANDALONE
41 #include <stdlib.h>
42 #else
44 extern int atoi(char *);
45 extern char * getenv(char *);
47 #ifdef FSIRAND
48 extern long random(void);
49 extern void srandomdev(void);
50 #endif
52 #endif /* STANDALONE */
55 * make file system for cylinder-group style file systems
59 * We limit the size of the inode map to be no more than a
60 * third of the cylinder group space, since we must leave at
61 * least an equal amount of space for the block map.
63 * N.B.: MAXIPG must be a multiple of INOPB(fs).
65 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
67 #define UMASK 0755
68 #define MAXINOPB (MAXBSIZE / sizeof(struct ufs1_dinode))
69 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
72 * variables set up by front end.
74 extern int mfs; /* run as the memory based filesystem */
75 extern char *mfs_mtpt; /* mount point for mfs */
76 extern struct stat mfs_mtstat; /* stat prior to mount */
77 extern int Nflag; /* run mkfs without writing file system */
78 extern int Oflag; /* format as an 4.3BSD file system */
79 extern int Uflag; /* enable soft updates for file system */
80 extern u_long fssize; /* file system size */
81 extern int ntracks; /* # tracks/cylinder */
82 extern int nsectors; /* # sectors/track */
83 extern int nphyssectors; /* # sectors/track including spares */
84 extern int secpercyl; /* sectors per cylinder */
85 extern int sectorsize; /* bytes/sector */
86 extern int realsectorsize; /* bytes/sector in hardware*/
87 extern int rpm; /* revolutions/minute of drive */
88 extern int interleave; /* hardware sector interleave */
89 extern int trackskew; /* sector 0 skew, per track */
90 extern int fsize; /* fragment size */
91 extern int bsize; /* block size */
92 extern int cpg; /* cylinders/cylinder group */
93 extern int cpgflg; /* cylinders/cylinder group flag was given */
94 extern int minfree; /* free space threshold */
95 extern int opt; /* optimization preference (space or time) */
96 extern int density; /* number of bytes per inode */
97 extern int maxcontig; /* max contiguous blocks to allocate */
98 extern int rotdelay; /* rotational delay between blocks */
99 extern int maxbpg; /* maximum blocks per file in a cyl group */
100 extern int nrpos; /* # of distinguished rotational positions */
101 extern int bbsize; /* boot block size */
102 extern int sbsize; /* superblock size */
103 extern int avgfilesize; /* expected average file size */
104 extern int avgfilesperdir; /* expected number of files per directory */
105 extern u_long memleft; /* virtual memory available */
106 extern caddr_t membase; /* start address of memory based filesystem */
107 extern char * filename;
108 extern struct disktab geom;
110 extern void fatal(const char *fmt, ...);
112 union {
113 struct fs fs;
114 char pad[SBSIZE];
115 } fsun;
116 #define sblock fsun.fs
117 struct csum *fscs;
119 union {
120 struct cg cg;
121 char pad[MAXBSIZE];
122 } cgun;
123 #define acg cgun.cg
125 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)];
127 int fsi, fso;
128 static fsnode_t copyroot;
129 static fsnode_t copyhlinks;
130 #ifdef FSIRAND
131 int randinit;
132 #endif
133 daddr_t alloc(int, int);
134 long calcipg(long, long, off_t *);
135 static int charsperline(void);
136 void clrblock(struct fs *, unsigned char *, int);
137 void fsinit(time_t);
138 void initcg(int, time_t);
139 int isblock(struct fs *, unsigned char *, int);
140 void iput(struct ufs1_dinode *, ino_t);
141 int makedir(struct direct *, int);
142 void parentready(int);
143 void rdfs(daddr_t, int, char *);
144 void setblock(struct fs *, unsigned char *, int);
145 void started(int);
146 void wtfs(daddr_t, int, char *);
147 void wtfsflush(void);
149 #ifndef STANDALONE
150 void get_memleft(void);
151 void raise_data_limit(void);
152 #else
153 void free(char *);
154 char * calloc(u_long, u_long);
155 caddr_t malloc(u_long);
156 caddr_t realloc(char *, u_long);
157 #endif
159 int mfs_ppid = 0;
160 int parentready_signalled;
162 void
163 mkfs(char *fsys, int fi, int fo, const char *mfscopy)
165 long i, mincpc, mincpg, inospercg;
166 long cylno, rpos, blk, j, emitwarn = 0;
167 long used, mincpgcnt, bpcg;
168 off_t usedb;
169 long mapcramped, inodecramped;
170 long postblsize, rotblsize, totalsbsize;
171 int status, fd;
172 time_t utime;
173 quad_t sizepb;
174 int width;
175 char tmpbuf[100]; /* XXX this will break in about 2,500 years */
177 #ifndef STANDALONE
178 time(&utime);
179 #endif
180 #ifdef FSIRAND
181 if (!randinit) {
182 randinit = 1;
183 srandomdev();
185 #endif
186 if (mfs) {
187 int omask;
188 pid_t child;
190 mfs_ppid = getpid();
191 signal(SIGUSR1, parentready);
192 if ((child = fork()) != 0) {
194 * Parent
196 if (child == -1)
197 err(10, "mfs");
198 if (mfscopy)
199 copyroot = FSCopy(&copyhlinks, mfscopy);
200 signal(SIGUSR1, started);
201 kill(child, SIGUSR1);
202 while (waitpid(child, &status, 0) != child)
204 exit(WEXITSTATUS(status));
205 /* NOTREACHED */
209 * Child
211 omask = sigblock(sigmask(SIGUSR1));
212 while (parentready_signalled == 0)
213 sigpause(omask);
214 sigsetmask(omask);
215 #ifdef STANDALONE
216 malloc(0);
217 #else
218 raise_data_limit();
219 #endif
220 if (filename != NULL) {
221 unsigned char buf[BUFSIZ];
222 unsigned long l, l1;
223 ssize_t w;
225 fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
226 if(fd < 0)
227 err(12, "%s", filename);
228 l1 = fssize * sectorsize;
229 if (l1 > BUFSIZ)
230 l1 = BUFSIZ;
231 for (l = 0; l < fssize * (u_long)sectorsize; l += l1) {
232 w = write(fd, buf, l1);
233 if (w < 0 || (u_long)w != l1)
234 err(12, "%s", filename);
236 membase = mmap(
238 fssize * sectorsize,
239 PROT_READ|PROT_WRITE,
240 MAP_SHARED,
243 if(membase == MAP_FAILED)
244 err(12, "mmap");
245 close(fd);
246 } else {
247 #ifndef STANDALONE
248 get_memleft();
249 #endif
250 if (fssize * (u_long)sectorsize > (memleft - 131072))
251 fssize = (memleft - 131072) / sectorsize;
252 if ((membase = malloc(fssize * sectorsize)) == NULL)
253 errx(13, "malloc failed");
256 fsi = fi;
257 fso = fo;
258 if (Oflag) {
259 sblock.fs_inodefmt = FS_42INODEFMT;
260 sblock.fs_maxsymlinklen = 0;
261 } else {
262 sblock.fs_inodefmt = FS_44INODEFMT;
263 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
265 if (Uflag)
266 sblock.fs_flags |= FS_DOSOFTDEP;
268 * Validate the given file system size.
269 * Verify that its last block can actually be accessed.
271 if (fssize == 0)
272 printf("preposterous size %lu\n", fssize), exit(13);
273 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
274 (char *)&sblock);
276 * collect and verify the sector and track info
278 sblock.fs_nsect = nsectors;
279 sblock.fs_ntrak = ntracks;
280 if (sblock.fs_ntrak <= 0)
281 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
282 if (sblock.fs_nsect <= 0)
283 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
285 * collect and verify the filesystem density info
287 sblock.fs_avgfilesize = avgfilesize;
288 sblock.fs_avgfpdir = avgfilesperdir;
289 if (sblock.fs_avgfilesize <= 0)
290 printf("illegal expected average file size %d\n",
291 sblock.fs_avgfilesize), exit(14);
292 if (sblock.fs_avgfpdir <= 0)
293 printf("illegal expected number of files per directory %d\n",
294 sblock.fs_avgfpdir), exit(15);
296 * collect and verify the block and fragment sizes
298 sblock.fs_bsize = bsize;
299 sblock.fs_fsize = fsize;
300 if (!POWEROF2(sblock.fs_bsize)) {
301 printf("block size must be a power of 2, not %d\n",
302 sblock.fs_bsize);
303 exit(16);
305 if (!POWEROF2(sblock.fs_fsize)) {
306 printf("fragment size must be a power of 2, not %d\n",
307 sblock.fs_fsize);
308 exit(17);
310 if (sblock.fs_fsize < sectorsize) {
311 printf("fragment size %d is too small, minimum is %d\n",
312 sblock.fs_fsize, sectorsize);
313 exit(18);
315 if (sblock.fs_bsize < MINBSIZE) {
316 printf("block size %d is too small, minimum is %d\n",
317 sblock.fs_bsize, MINBSIZE);
318 exit(19);
320 if (sblock.fs_bsize < sblock.fs_fsize) {
321 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
322 sblock.fs_bsize, sblock.fs_fsize);
323 exit(20);
325 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
326 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
327 sblock.fs_qbmask = ~sblock.fs_bmask;
328 sblock.fs_qfmask = ~sblock.fs_fmask;
329 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
330 sblock.fs_bshift++;
331 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
332 sblock.fs_fshift++;
333 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
334 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
335 sblock.fs_fragshift++;
336 if (sblock.fs_frag > MAXFRAG) {
337 printf("fragment size %d is too small, minimum with block size %d is %d\n",
338 sblock.fs_fsize, sblock.fs_bsize,
339 sblock.fs_bsize / MAXFRAG);
340 exit(21);
342 sblock.fs_nrpos = nrpos;
343 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
344 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
345 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
346 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
347 sblock.fs_fsbtodb++;
348 sblock.fs_sblkno =
349 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
350 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
351 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
352 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
353 sblock.fs_cgoffset = roundup(
354 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
355 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
356 sblock.fs_cgmask <<= 1;
357 if (!POWEROF2(sblock.fs_ntrak))
358 sblock.fs_cgmask <<= 1;
359 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
360 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
361 sizepb *= NINDIR(&sblock);
362 sblock.fs_maxfilesize += sizepb;
365 * Validate specified/determined secpercyl
366 * and calculate minimum cylinders per group.
368 sblock.fs_spc = secpercyl;
369 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
370 sblock.fs_cpc > 1 && (i & 1) == 0;
371 sblock.fs_cpc >>= 1, i >>= 1)
372 /* void */;
373 mincpc = sblock.fs_cpc;
374 bpcg = sblock.fs_spc * sectorsize;
375 inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
376 if (inospercg > MAXIPG(&sblock))
377 inospercg = MAXIPG(&sblock);
378 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
379 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
380 sblock.fs_spc);
381 mincpg = roundup(mincpgcnt, mincpc);
383 * Ensure that cylinder group with mincpg has enough space
384 * for block maps.
386 sblock.fs_cpg = mincpg;
387 sblock.fs_ipg = inospercg;
388 if (maxcontig > 1)
389 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
390 mapcramped = 0;
391 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
392 mapcramped = 1;
393 if (sblock.fs_bsize < MAXBSIZE) {
394 sblock.fs_bsize <<= 1;
395 if ((i & 1) == 0) {
396 i >>= 1;
397 } else {
398 sblock.fs_cpc <<= 1;
399 mincpc <<= 1;
400 mincpg = roundup(mincpgcnt, mincpc);
401 sblock.fs_cpg = mincpg;
403 sblock.fs_frag <<= 1;
404 sblock.fs_fragshift += 1;
405 if (sblock.fs_frag <= MAXFRAG)
406 continue;
408 if (sblock.fs_fsize == sblock.fs_bsize) {
409 printf("There is no block size that");
410 printf(" can support this disk\n");
411 exit(22);
413 sblock.fs_frag >>= 1;
414 sblock.fs_fragshift -= 1;
415 sblock.fs_fsize <<= 1;
416 sblock.fs_nspf <<= 1;
419 * Ensure that cylinder group with mincpg has enough space for inodes.
421 inodecramped = 0;
422 inospercg = calcipg(mincpg, bpcg, &usedb);
423 sblock.fs_ipg = inospercg;
424 while (inospercg > MAXIPG(&sblock)) {
425 inodecramped = 1;
426 if (mincpc == 1 || sblock.fs_frag == 1 ||
427 sblock.fs_bsize == MINBSIZE)
428 break;
429 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
430 "minimum bytes per inode is",
431 (int)((mincpg * (off_t)bpcg - usedb)
432 / MAXIPG(&sblock) + 1));
433 sblock.fs_bsize >>= 1;
434 sblock.fs_frag >>= 1;
435 sblock.fs_fragshift -= 1;
436 mincpc >>= 1;
437 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
438 if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
439 sblock.fs_bsize <<= 1;
440 break;
442 mincpg = sblock.fs_cpg;
443 inospercg = calcipg(mincpg, bpcg, &usedb);
444 sblock.fs_ipg = inospercg;
446 if (inodecramped) {
447 if (inospercg > MAXIPG(&sblock)) {
448 printf("Minimum bytes per inode is %d\n",
449 (int)((mincpg * (off_t)bpcg - usedb)
450 / MAXIPG(&sblock) + 1));
451 } else if (!mapcramped) {
452 printf("With %d bytes per inode, ", density);
453 printf("minimum cylinders per group is %ld\n", mincpg);
456 if (mapcramped) {
457 printf("With %d sectors per cylinder, ", sblock.fs_spc);
458 printf("minimum cylinders per group is %ld\n", mincpg);
460 if (inodecramped || mapcramped) {
461 if (sblock.fs_bsize != bsize)
462 printf("%s to be changed from %d to %d\n",
463 "This requires the block size",
464 bsize, sblock.fs_bsize);
465 if (sblock.fs_fsize != fsize)
466 printf("\t%s to be changed from %d to %d\n",
467 "and the fragment size",
468 fsize, sblock.fs_fsize);
469 exit(23);
472 * Calculate the number of cylinders per group
474 sblock.fs_cpg = cpg;
475 if (sblock.fs_cpg % mincpc != 0) {
476 printf("%s groups must have a multiple of %ld cylinders\n",
477 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
478 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
479 if (!cpgflg)
480 cpg = sblock.fs_cpg;
483 * Must ensure there is enough space for inodes.
485 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
486 while (sblock.fs_ipg > MAXIPG(&sblock)) {
487 inodecramped = 1;
488 sblock.fs_cpg -= mincpc;
489 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
492 * Must ensure there is enough space to hold block map.
494 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
495 mapcramped = 1;
496 sblock.fs_cpg -= mincpc;
497 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
499 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
500 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
501 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
502 exit(24);
504 if (sblock.fs_cpg < mincpg) {
505 printf("cylinder groups must have at least %ld cylinders\n",
506 mincpg);
507 exit(25);
508 } else if (sblock.fs_cpg != cpg) {
509 if (!cpgflg && !mfs)
510 printf("Warning: ");
511 else if (!mapcramped && !inodecramped)
512 exit(26);
513 if (!mfs) {
514 if (mapcramped && inodecramped)
515 printf("Block size and bytes per inode restrict");
516 else if (mapcramped)
517 printf("Block size restricts");
518 else
519 printf("Bytes per inode restrict");
520 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
522 if (cpgflg)
523 exit(27);
525 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
527 * Now have size for file system and nsect and ntrak.
528 * Determine number of cylinders and blocks in the file system.
530 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
531 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
532 if ((long)fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
533 sblock.fs_ncyl++;
534 emitwarn = 1;
536 if (sblock.fs_ncyl < 1) {
537 printf("file systems must have at least one cylinder\n");
538 exit(28);
541 * Determine feasability/values of rotational layout tables.
543 * The size of the rotational layout tables is limited by the
544 * size of the superblock, SBSIZE. The amount of space available
545 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
546 * The size of these tables is inversely proportional to the block
547 * size of the file system. The size increases if sectors per track
548 * are not powers of two, because more cylinders must be described
549 * by the tables before the rotational pattern repeats (fs_cpc).
551 sblock.fs_interleave = interleave;
552 sblock.fs_trackskew = trackskew;
553 sblock.fs_npsect = nphyssectors;
554 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
555 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
556 if (sblock.fs_sbsize > SBSIZE)
557 sblock.fs_sbsize = SBSIZE;
558 if (sblock.fs_ntrak == 1) {
559 sblock.fs_cpc = 0;
560 goto next;
562 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
563 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
564 totalsbsize = sizeof(struct fs) + rotblsize;
565 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
566 /* use old static table space */
567 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
568 (char *)(&sblock.fs_firstfield);
569 sblock.fs_rotbloff = &sblock.fs_space[0] -
570 (u_char *)(&sblock.fs_firstfield);
571 } else {
572 /* use dynamic table space */
573 sblock.fs_postbloff = &sblock.fs_space[0] -
574 (u_char *)(&sblock.fs_firstfield);
575 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
576 totalsbsize += postblsize;
578 if (totalsbsize > SBSIZE ||
579 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
580 printf("%s %s %d %s %d.%s",
581 "Warning: insufficient space in super block for\n",
582 "rotational layout tables with nsect", sblock.fs_nsect,
583 "and ntrak", sblock.fs_ntrak,
584 "\nFile system performance may be impaired.\n");
585 sblock.fs_cpc = 0;
586 goto next;
588 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
589 if (sblock.fs_sbsize > SBSIZE)
590 sblock.fs_sbsize = SBSIZE;
592 * calculate the available blocks for each rotational position
594 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
595 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
596 fs_postbl(&sblock, cylno)[rpos] = -1;
597 for (i = (rotblsize - 1) * sblock.fs_frag;
598 i >= 0; i -= sblock.fs_frag) {
599 cylno = cbtocylno(&sblock, i);
600 rpos = cbtorpos(&sblock, i);
601 blk = fragstoblks(&sblock, i);
602 if (fs_postbl(&sblock, cylno)[rpos] == -1)
603 fs_rotbl(&sblock)[blk] = 0;
604 else
605 fs_rotbl(&sblock)[blk] =
606 fs_postbl(&sblock, cylno)[rpos] - blk;
607 fs_postbl(&sblock, cylno)[rpos] = blk;
609 next:
611 * Compute/validate number of cylinder groups.
613 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
614 if (sblock.fs_ncyl % sblock.fs_cpg)
615 sblock.fs_ncg++;
616 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
617 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
618 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
619 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
620 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
621 (long)(sblock.fs_fpg / sblock.fs_frag));
622 printf("number of cylinders per cylinder group (%d) %s.\n",
623 sblock.fs_cpg, "must be increased");
624 exit(29);
626 j = sblock.fs_ncg - 1;
627 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
628 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
629 if (j == 0) {
630 printf("Filesystem must have at least %d sectors\n",
631 NSPF(&sblock) *
632 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
633 exit(30);
635 printf(
636 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
637 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
638 i / sblock.fs_frag);
639 printf(
640 " cylinder group. This implies %ld sector(s) cannot be allocated.\n",
641 i * NSPF(&sblock));
642 sblock.fs_ncg--;
643 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
644 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
645 NSPF(&sblock);
646 emitwarn = 0;
648 if (emitwarn && !mfs) {
649 printf("Warning: %lu sector(s) in last cylinder unallocated\n",
650 sblock.fs_spc -
651 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
652 * sblock.fs_spc));
655 * fill in remaining fields of the super block
657 sblock.fs_csaddr = cgdmin(&sblock, 0);
658 sblock.fs_cssize =
659 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
661 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
662 * longer used. However, we still initialise them so that the
663 * filesystem remains compatible with old kernels.
665 i = sblock.fs_bsize / sizeof(struct csum);
666 sblock.fs_csmask = ~(i - 1);
667 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
668 sblock.fs_csshift++;
669 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
670 if (fscs == NULL)
671 errx(31, "calloc failed");
672 sblock.fs_magic = FS_MAGIC;
673 sblock.fs_rotdelay = rotdelay;
674 sblock.fs_minfree = minfree;
675 sblock.fs_maxcontig = maxcontig;
676 sblock.fs_maxbpg = maxbpg;
677 sblock.fs_rps = rpm / 60;
678 sblock.fs_optim = opt;
679 sblock.fs_cgrotor = 0;
680 sblock.fs_cstotal.cs_ndir = 0;
681 sblock.fs_cstotal.cs_nbfree = 0;
682 sblock.fs_cstotal.cs_nifree = 0;
683 sblock.fs_cstotal.cs_nffree = 0;
684 sblock.fs_fmod = 0;
685 sblock.fs_ronly = 0;
686 sblock.fs_clean = 1;
687 #ifdef FSIRAND
688 sblock.fs_id[0] = (long)utime;
689 sblock.fs_id[1] = random();
690 #endif
693 * Dump out summary information about file system.
695 if (!mfs) {
696 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
697 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
698 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
699 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
700 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
701 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
702 sblock.fs_ncg, sblock.fs_cpg,
703 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
704 sblock.fs_ipg,
705 sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
706 #undef B2MBFACTOR
709 * Now build the cylinders group blocks and
710 * then print out indices of cylinder groups.
712 if (!mfs)
713 printf("super-block backups (for fsck -b #) at:\n");
714 i = 0;
715 width = charsperline();
716 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
717 initcg(cylno, utime);
718 if (mfs)
719 continue;
720 j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
721 fsbtodb(&sblock, cgsblock(&sblock, cylno)),
722 cylno < (sblock.fs_ncg-1) ? "," : "" );
723 if (i + j >= width) {
724 printf("\n");
725 i = 0;
727 i += j;
728 printf("%s", tmpbuf);
729 fflush(stdout);
731 if (!mfs)
732 printf("\n");
733 if (Nflag && !mfs)
734 exit(0);
736 * Now construct the initial file system,
737 * then write out the super-block.
739 fsinit(utime);
740 sblock.fs_time = utime;
741 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
742 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
743 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
744 sblock.fs_cssize - i < sblock.fs_bsize ?
745 sblock.fs_cssize - i : sblock.fs_bsize,
746 ((char *)fscs) + i);
748 * Write out the duplicate super blocks
750 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
751 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
752 sbsize, (char *)&sblock);
753 wtfsflush();
756 * NOTE: we no longer update information in the disklabel
760 * Notify parent process of success.
761 * Dissociate from session and tty.
763 * NOTE: We are the child and may receive a SIGINT due
764 * to losing the tty session? XXX
766 if (mfs) {
767 /* YYY */
768 kill(mfs_ppid, SIGUSR1);
769 setsid();
770 close(0);
771 close(1);
772 close(2);
773 chdir("/");
774 /* returns to mount_mfs (newfs) and issues the mount */
779 * Initialize a cylinder group.
781 void
782 initcg(int cylno, time_t utime)
784 daddr_t cbase, d, dlower, dupper, dmax, blkno;
785 long i;
786 unsigned long k;
787 struct csum *cs;
788 #ifdef FSIRAND
789 uint32_t j;
790 #endif
793 * Determine block bounds for cylinder group.
794 * Allow space for super block summary information in first
795 * cylinder group.
797 cbase = cgbase(&sblock, cylno);
798 dmax = cbase + sblock.fs_fpg;
799 if (dmax > sblock.fs_size)
800 dmax = sblock.fs_size;
801 dlower = cgsblock(&sblock, cylno) - cbase;
802 dupper = cgdmin(&sblock, cylno) - cbase;
803 if (cylno == 0)
804 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
805 cs = fscs + cylno;
806 memset(&acg, 0, sblock.fs_cgsize);
807 acg.cg_time = utime;
808 acg.cg_magic = CG_MAGIC;
809 acg.cg_cgx = cylno;
810 if (cylno == sblock.fs_ncg - 1)
811 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
812 else
813 acg.cg_ncyl = sblock.fs_cpg;
814 acg.cg_niblk = sblock.fs_ipg;
815 acg.cg_ndblk = dmax - cbase;
816 if (sblock.fs_contigsumsize > 0)
817 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
818 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
819 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
820 acg.cg_iusedoff = acg.cg_boff +
821 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
822 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
823 if (sblock.fs_contigsumsize <= 0) {
824 acg.cg_nextfreeoff = acg.cg_freeoff +
825 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
826 } else {
827 acg.cg_clustersumoff = acg.cg_freeoff + howmany
828 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
829 sizeof(u_int32_t);
830 acg.cg_clustersumoff =
831 roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
832 acg.cg_clusteroff = acg.cg_clustersumoff +
833 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
834 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
835 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
837 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
838 printf("Panic: cylinder group too big\n");
839 exit(37);
841 acg.cg_cs.cs_nifree += sblock.fs_ipg;
842 if (cylno == 0) {
843 for (k = 0; k < ROOTINO; k++) {
844 setbit(cg_inosused(&acg), k);
845 acg.cg_cs.cs_nifree--;
848 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
849 #ifdef FSIRAND
850 for (j = 0;
851 j < sblock.fs_bsize / sizeof(struct ufs1_dinode);
852 j++) {
853 zino[j].di_gen = random();
855 #endif
856 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
857 sblock.fs_bsize, (char *)zino);
859 if (cylno > 0) {
861 * In cylno 0, beginning space is reserved
862 * for boot and super blocks.
864 for (d = 0; d < dlower; d += sblock.fs_frag) {
865 blkno = d / sblock.fs_frag;
866 setblock(&sblock, cg_blksfree(&acg), blkno);
867 if (sblock.fs_contigsumsize > 0)
868 setbit(cg_clustersfree(&acg), blkno);
869 acg.cg_cs.cs_nbfree++;
870 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
871 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
872 [cbtorpos(&sblock, d)]++;
874 sblock.fs_dsize += dlower;
876 sblock.fs_dsize += acg.cg_ndblk - dupper;
877 if ((i = dupper % sblock.fs_frag)) {
878 acg.cg_frsum[sblock.fs_frag - i]++;
879 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
880 setbit(cg_blksfree(&acg), dupper);
881 acg.cg_cs.cs_nffree++;
884 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
885 blkno = d / sblock.fs_frag;
886 setblock(&sblock, cg_blksfree(&acg), blkno);
887 if (sblock.fs_contigsumsize > 0)
888 setbit(cg_clustersfree(&acg), blkno);
889 acg.cg_cs.cs_nbfree++;
890 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
891 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
892 [cbtorpos(&sblock, d)]++;
893 d += sblock.fs_frag;
895 if (d < dmax - cbase) {
896 acg.cg_frsum[dmax - cbase - d]++;
897 for (; d < dmax - cbase; d++) {
898 setbit(cg_blksfree(&acg), d);
899 acg.cg_cs.cs_nffree++;
902 if (sblock.fs_contigsumsize > 0) {
903 int32_t *sump = cg_clustersum(&acg);
904 u_char *mapp = cg_clustersfree(&acg);
905 int map = *mapp++;
906 int bit = 1;
907 int run = 0;
909 for (i = 0; i < acg.cg_nclusterblks; i++) {
910 if ((map & bit) != 0) {
911 run++;
912 } else if (run != 0) {
913 if (run > sblock.fs_contigsumsize)
914 run = sblock.fs_contigsumsize;
915 sump[run]++;
916 run = 0;
918 if ((i & (NBBY - 1)) != (NBBY - 1)) {
919 bit <<= 1;
920 } else {
921 map = *mapp++;
922 bit = 1;
925 if (run != 0) {
926 if (run > sblock.fs_contigsumsize)
927 run = sblock.fs_contigsumsize;
928 sump[run]++;
931 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
932 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
933 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
934 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
935 *cs = acg.cg_cs;
936 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
937 sblock.fs_bsize, (char *)&acg);
941 * initialize the file system
943 struct ufs1_dinode node;
945 #ifdef LOSTDIR
946 #define PREDEFDIR 3
947 #else
948 #define PREDEFDIR 2
949 #endif
951 struct direct root_dir[] = {
952 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
953 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
954 #ifdef LOSTDIR
955 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
956 #endif
958 struct odirect {
959 u_long d_ino;
960 u_short d_reclen;
961 u_short d_namlen;
962 u_char d_name[MAXNAMLEN + 1];
963 } oroot_dir[] = {
964 { ROOTINO, sizeof(struct direct), 1, "." },
965 { ROOTINO, sizeof(struct direct), 2, ".." },
966 #ifdef LOSTDIR
967 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
968 #endif
970 #ifdef LOSTDIR
971 struct direct lost_found_dir[] = {
972 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
973 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
974 { 0, DIRBLKSIZ, 0, 0, 0 },
976 struct odirect olost_found_dir[] = {
977 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
978 { ROOTINO, sizeof(struct direct), 2, ".." },
979 { 0, DIRBLKSIZ, 0, 0 },
981 #endif
982 char buf[MAXBSIZE];
984 void
985 fsinit(time_t utime)
987 #ifdef LOSTDIR
988 int i;
989 #endif
992 * initialize the node
994 node.di_atime = utime;
995 node.di_mtime = utime;
996 node.di_ctime = utime;
997 #ifdef LOSTDIR
999 * create the lost+found directory
1001 if (Oflag) {
1002 makedir((struct direct *)olost_found_dir, 2);
1003 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
1004 memmove(&buf[i], &olost_found_dir[2],
1005 DIRSIZ(0, &olost_found_dir[2]));
1006 } else {
1007 makedir(lost_found_dir, 2);
1008 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
1009 memmove(&buf[i], &lost_found_dir[2],
1010 DIRSIZ(0, &lost_found_dir[2]));
1012 node.di_mode = IFDIR | UMASK;
1013 node.di_nlink = 2;
1014 node.di_size = sblock.fs_bsize;
1015 node.di_db[0] = alloc(node.di_size, node.di_mode);
1016 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1017 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
1018 iput(&node, LOSTFOUNDINO);
1019 #endif
1021 * create the root directory
1023 if (mfs)
1024 node.di_mode = IFDIR | 01777;
1025 else
1026 node.di_mode = IFDIR | UMASK;
1027 node.di_nlink = PREDEFDIR;
1028 if (Oflag)
1029 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1030 else
1031 node.di_size = makedir(root_dir, PREDEFDIR);
1032 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1033 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1034 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1035 iput(&node, ROOTINO);
1039 * construct a set of directory entries in "buf".
1040 * return size of directory.
1043 makedir(struct direct *protodir, int entries)
1045 char *cp;
1046 int i, spcleft;
1048 spcleft = DIRBLKSIZ;
1049 for (cp = buf, i = 0; i < entries - 1; i++) {
1050 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1051 memmove(cp, &protodir[i], protodir[i].d_reclen);
1052 cp += protodir[i].d_reclen;
1053 spcleft -= protodir[i].d_reclen;
1055 protodir[i].d_reclen = spcleft;
1056 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1057 return (DIRBLKSIZ);
1061 * allocate a block or frag
1063 daddr_t
1064 alloc(int size, int mode)
1066 int i, frag;
1067 daddr_t d, blkno;
1069 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1070 (char *)&acg);
1071 if (acg.cg_magic != CG_MAGIC) {
1072 printf("cg 0: bad magic number\n");
1073 return (0);
1075 if (acg.cg_cs.cs_nbfree == 0) {
1076 printf("first cylinder group ran out of space\n");
1077 return (0);
1079 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1080 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1081 goto goth;
1082 printf("internal error: can't find block in cyl 0\n");
1083 return (0);
1084 goth:
1085 blkno = fragstoblks(&sblock, d);
1086 clrblock(&sblock, cg_blksfree(&acg), blkno);
1087 if (sblock.fs_contigsumsize > 0)
1088 clrbit(cg_clustersfree(&acg), blkno);
1089 acg.cg_cs.cs_nbfree--;
1090 sblock.fs_cstotal.cs_nbfree--;
1091 fscs[0].cs_nbfree--;
1092 if (mode & IFDIR) {
1093 acg.cg_cs.cs_ndir++;
1094 sblock.fs_cstotal.cs_ndir++;
1095 fscs[0].cs_ndir++;
1097 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1098 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1099 if (size != sblock.fs_bsize) {
1100 frag = howmany(size, sblock.fs_fsize);
1101 fscs[0].cs_nffree += sblock.fs_frag - frag;
1102 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1103 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1104 acg.cg_frsum[sblock.fs_frag - frag]++;
1105 for (i = frag; i < sblock.fs_frag; i++)
1106 setbit(cg_blksfree(&acg), d + i);
1108 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1109 (char *)&acg);
1110 return (d);
1114 * Calculate number of inodes per group.
1116 long
1117 calcipg(long cylspg, long bpcg, off_t *usedbp)
1119 int i;
1120 long ipg, new_ipg, ncg, ncyl;
1121 off_t usedb;
1124 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1125 * Note that fssize is still in sectors, not filesystem blocks.
1127 ncyl = howmany(fssize, (u_int)secpercyl);
1128 ncg = howmany(ncyl, cylspg);
1130 * Iterate a few times to allow for ipg depending on itself.
1132 ipg = 0;
1133 for (i = 0; i < 10; i++) {
1134 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1135 * NSPF(&sblock) * (off_t)sectorsize;
1136 new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize
1137 / ncg / secpercyl / cylspg;
1138 new_ipg = roundup(new_ipg, INOPB(&sblock));
1139 if (new_ipg == ipg)
1140 break;
1141 ipg = new_ipg;
1143 *usedbp = usedb;
1144 return (ipg);
1148 * Allocate an inode on the disk
1150 void
1151 iput(struct ufs1_dinode *ip, ino_t ino)
1153 struct ufs1_dinode inobuf[MAXINOPB];
1154 daddr_t d;
1155 int c;
1157 #ifdef FSIRAND
1158 ip->di_gen = random();
1159 #endif
1160 c = ino_to_cg(&sblock, ino);
1161 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1162 (char *)&acg);
1163 if (acg.cg_magic != CG_MAGIC) {
1164 printf("cg 0: bad magic number\n");
1165 exit(31);
1167 acg.cg_cs.cs_nifree--;
1168 setbit(cg_inosused(&acg), ino);
1169 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1170 (char *)&acg);
1171 sblock.fs_cstotal.cs_nifree--;
1172 fscs[0].cs_nifree--;
1173 if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) {
1174 printf("fsinit: inode value out of range (%ju).\n",
1175 (uintmax_t)ino);
1176 exit(32);
1178 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1179 rdfs(d, sblock.fs_bsize, (char *)inobuf);
1180 inobuf[ino_to_fsbo(&sblock, ino)] = *ip;
1181 wtfs(d, sblock.fs_bsize, (char *)inobuf);
1185 * Parent notifies child that it can proceed with the newfs and mount
1186 * operation (occurs after parent has copied the underlying filesystem
1187 * if the -C option was specified (for MFS), or immediately after the
1188 * parent forked the child otherwise).
1190 void
1191 parentready(__unused int signo)
1193 parentready_signalled = 1;
1197 * Notify parent process that the filesystem has created itself successfully.
1199 * We have to wait until the mount has actually completed!
1201 void
1202 started(__unused int signo)
1204 int retry = 100; /* 10 seconds, 100ms */
1206 while (mfs_ppid && retry) {
1207 struct stat st;
1209 if (
1210 stat(mfs_mtpt, &st) < 0 ||
1211 st.st_dev != mfs_mtstat.st_dev
1213 break;
1215 usleep(100*1000);
1216 --retry;
1218 if (retry == 0) {
1219 fatal("mfs mount failed waiting for mount to go active");
1220 } else if (copyroot) {
1221 FSPaste(mfs_mtpt, copyroot, copyhlinks);
1223 exit(0);
1226 #ifdef STANDALONE
1228 * Replace libc function with one suited to our needs.
1230 caddr_t
1231 malloc(u_long size)
1233 char *base, *i;
1234 static u_long pgsz;
1235 struct rlimit rlp;
1237 if (pgsz == 0) {
1238 base = sbrk(0);
1239 pgsz = getpagesize() - 1;
1240 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1241 base = sbrk(i - base);
1242 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1243 warn("getrlimit");
1244 rlp.rlim_cur = rlp.rlim_max;
1245 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1246 warn("setrlimit");
1247 memleft = rlp.rlim_max - (u_long)base;
1249 size = (size + pgsz) &~ pgsz;
1250 if (size > memleft)
1251 size = memleft;
1252 memleft -= size;
1253 if (size == 0)
1254 return (0);
1255 return ((caddr_t)sbrk(size));
1259 * Replace libc function with one suited to our needs.
1261 caddr_t
1262 realloc(char *ptr, u_long size)
1264 void *p;
1266 if ((p = malloc(size)) == NULL)
1267 return (NULL);
1268 memmove(p, ptr, size);
1269 free(ptr);
1270 return (p);
1274 * Replace libc function with one suited to our needs.
1276 char *
1277 calloc(u_long size, u_long numelm)
1279 caddr_t base;
1281 size *= numelm;
1282 if ((base = malloc(size)) == NULL)
1283 return (NULL);
1284 memset(base, 0, size);
1285 return (base);
1289 * Replace libc function with one suited to our needs.
1291 void
1292 free(char *ptr)
1295 /* do not worry about it for now */
1298 #else /* !STANDALONE */
1300 void
1301 raise_data_limit(void)
1303 struct rlimit rlp;
1305 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1306 warn("getrlimit");
1307 rlp.rlim_cur = rlp.rlim_max;
1308 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1309 warn("setrlimit");
1312 #ifdef __ELF__
1313 extern char *_etext;
1314 #define etext _etext
1315 #else
1316 extern char *etext;
1317 #endif
1319 void
1320 get_memleft(void)
1322 static u_long pgsz;
1323 struct rlimit rlp;
1324 u_long freestart;
1325 u_long dstart;
1326 u_long memused;
1328 pgsz = getpagesize() - 1;
1329 dstart = ((u_long)&etext) &~ pgsz;
1330 freestart = ((u_long)((char *)sbrk(0) + pgsz) &~ pgsz);
1331 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1332 warn("getrlimit");
1333 memused = freestart - dstart;
1334 memleft = rlp.rlim_cur - memused;
1336 #endif /* STANDALONE */
1339 * read a block from the file system
1341 void
1342 rdfs(daddr_t bno, int size, char *bf)
1344 int n;
1346 wtfsflush();
1347 if (mfs) {
1348 memmove(bf, membase + bno * sectorsize, size);
1349 return;
1351 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1352 printf("seek error: %ld\n", (long)bno);
1353 err(33, "rdfs");
1355 n = read(fsi, bf, size);
1356 if (n != size) {
1357 printf("read error: %ld\n", (long)bno);
1358 err(34, "rdfs");
1362 #define WCSIZE (128 * 1024)
1363 daddr_t wc_sect; /* units of sectorsize */
1364 int wc_end; /* bytes */
1365 static char wc[WCSIZE]; /* bytes */
1368 * Flush dirty write behind buffer.
1370 void
1371 wtfsflush(void)
1373 int n;
1374 if (wc_end) {
1375 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1376 printf("seek error: %ld\n", (long)wc_sect);
1377 err(35, "wtfs - writecombine");
1379 n = write(fso, wc, wc_end);
1380 if (n != wc_end) {
1381 printf("write error: %ld\n", (long)wc_sect);
1382 err(36, "wtfs - writecombine");
1384 wc_end = 0;
1389 * write a block to the file system
1391 void
1392 wtfs(daddr_t bno, int size, char *bf)
1394 int n;
1395 int done;
1397 if (mfs) {
1398 memmove(membase + bno * sectorsize, bf, size);
1399 return;
1401 if (Nflag)
1402 return;
1403 done = 0;
1404 if (wc_end == 0 && size <= WCSIZE) {
1405 wc_sect = bno;
1406 bcopy(bf, wc, size);
1407 wc_end = size;
1408 if (wc_end < WCSIZE)
1409 return;
1410 done = 1;
1412 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1413 wc_end + size <= WCSIZE) {
1414 bcopy(bf, wc + wc_end, size);
1415 wc_end += size;
1416 if (wc_end < WCSIZE)
1417 return;
1418 done = 1;
1420 wtfsflush();
1421 if (done)
1422 return;
1423 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1424 printf("seek error: %ld\n", (long)bno);
1425 err(35, "wtfs");
1427 n = write(fso, bf, size);
1428 if (n != size) {
1429 printf("write error: fso %d blk %ld %d/%d\n",
1430 fso, (long)bno, n, size);
1431 err(36, "wtfs");
1436 * check if a block is available
1439 isblock(struct fs *fs, unsigned char *cp, int h)
1441 unsigned char mask;
1443 switch (fs->fs_frag) {
1444 case 8:
1445 return (cp[h] == 0xff);
1446 case 4:
1447 mask = 0x0f << ((h & 0x1) << 2);
1448 return ((cp[h >> 1] & mask) == mask);
1449 case 2:
1450 mask = 0x03 << ((h & 0x3) << 1);
1451 return ((cp[h >> 2] & mask) == mask);
1452 case 1:
1453 mask = 0x01 << (h & 0x7);
1454 return ((cp[h >> 3] & mask) == mask);
1455 default:
1456 #ifdef STANDALONE
1457 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1458 #else
1459 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1460 #endif
1461 return (0);
1466 * take a block out of the map
1468 void
1469 clrblock(struct fs *fs, unsigned char *cp, int h)
1471 switch ((fs)->fs_frag) {
1472 case 8:
1473 cp[h] = 0;
1474 return;
1475 case 4:
1476 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1477 return;
1478 case 2:
1479 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1480 return;
1481 case 1:
1482 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1483 return;
1484 default:
1485 #ifdef STANDALONE
1486 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1487 #else
1488 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1489 #endif
1490 return;
1495 * put a block into the map
1497 void
1498 setblock(struct fs *fs, unsigned char *cp, int h)
1500 switch (fs->fs_frag) {
1501 case 8:
1502 cp[h] = 0xff;
1503 return;
1504 case 4:
1505 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1506 return;
1507 case 2:
1508 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1509 return;
1510 case 1:
1511 cp[h >> 3] |= (0x01 << (h & 0x7));
1512 return;
1513 default:
1514 #ifdef STANDALONE
1515 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1516 #else
1517 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1518 #endif
1519 return;
1524 * Determine the number of characters in a
1525 * single line.
1528 static int
1529 charsperline(void)
1531 int columns;
1532 char *cp;
1533 struct winsize ws;
1535 columns = 0;
1536 if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1537 columns = ws.ws_col;
1538 if (columns == 0 && (cp = getenv("COLUMNS")))
1539 columns = atoi(cp);
1540 if (columns == 0)
1541 columns = 80; /* last resort */
1542 return columns;