Resync patch with contrib.
[dragonfly.git] / sys / vfs / ufs / ffs_softdep.c
blobea0969b7f79764989a0e694a966dbe5a93368115
1 /*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
9 * Further information about soft updates can be obtained from:
11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/
12 * 1614 Oxford Street mckusick@mckusick.com
13 * Berkeley, CA 94709-1608 +1-510-843-9542
14 * USA
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
39 * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40 * $DragonFly: src/sys/vfs/ufs/ffs_softdep.c,v 1.52 2007/08/13 17:31:56 dillon Exp $
44 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 #ifndef DIAGNOSTIC
47 #define DIAGNOSTIC
48 #endif
49 #ifndef DEBUG
50 #define DEBUG
51 #endif
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/buf.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/proc.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <sys/buf2.h>
64 #include <machine/inttypes.h>
65 #include "dir.h"
66 #include "quota.h"
67 #include "inode.h"
68 #include "ufsmount.h"
69 #include "fs.h"
70 #include "softdep.h"
71 #include "ffs_extern.h"
72 #include "ufs_extern.h"
74 #include <sys/thread2.h>
77 * These definitions need to be adapted to the system to which
78 * this file is being ported.
81 * malloc types defined for the softdep system.
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
97 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE)
99 #define D_PAGEDEP 0
100 #define D_INODEDEP 1
101 #define D_NEWBLK 2
102 #define D_BMSAFEMAP 3
103 #define D_ALLOCDIRECT 4
104 #define D_INDIRDEP 5
105 #define D_ALLOCINDIR 6
106 #define D_FREEFRAG 7
107 #define D_FREEBLKS 8
108 #define D_FREEFILE 9
109 #define D_DIRADD 10
110 #define D_MKDIR 11
111 #define D_DIRREM 12
112 #define D_LAST D_DIRREM
115 * translate from workitem type to memory type
116 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
118 static struct malloc_type *memtype[] = {
119 M_PAGEDEP,
120 M_INODEDEP,
121 M_NEWBLK,
122 M_BMSAFEMAP,
123 M_ALLOCDIRECT,
124 M_INDIRDEP,
125 M_ALLOCINDIR,
126 M_FREEFRAG,
127 M_FREEBLKS,
128 M_FREEFILE,
129 M_DIRADD,
130 M_MKDIR,
131 M_DIRREM
134 #define DtoM(type) (memtype[type])
137 * Names of malloc types.
139 #define TYPENAME(type) \
140 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
142 * End system adaptaion definitions.
146 * Internal function prototypes.
148 static void softdep_error(char *, int);
149 static void drain_output(struct vnode *, int);
150 static int getdirtybuf(struct buf **, int);
151 static void clear_remove(struct thread *);
152 static void clear_inodedeps(struct thread *);
153 static int flush_pagedep_deps(struct vnode *, struct mount *,
154 struct diraddhd *);
155 static int flush_inodedep_deps(struct fs *, ino_t);
156 static int handle_written_filepage(struct pagedep *, struct buf *);
157 static void diradd_inode_written(struct diradd *, struct inodedep *);
158 static int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static void handle_allocdirect_partdone(struct allocdirect *);
160 static void handle_allocindir_partdone(struct allocindir *);
161 static void initiate_write_filepage(struct pagedep *, struct buf *);
162 static void handle_written_mkdir(struct mkdir *, int);
163 static void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static void handle_workitem_freefile(struct freefile *);
165 static void handle_workitem_remove(struct dirrem *);
166 static struct dirrem *newdirrem(struct buf *, struct inode *,
167 struct inode *, int, struct dirrem **);
168 static void free_diradd(struct diradd *);
169 static void free_allocindir(struct allocindir *, struct inodedep *);
170 static int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static void deallocate_dependencies(struct buf *, struct inodedep *);
172 static void free_allocdirect(struct allocdirectlst *,
173 struct allocdirect *, int);
174 static int check_inode_unwritten(struct inodedep *);
175 static int free_inodedep(struct inodedep *);
176 static void handle_workitem_freeblocks(struct freeblks *);
177 static void merge_inode_lists(struct inodedep *);
178 static void setup_allocindir_phase2(struct buf *, struct inode *,
179 struct allocindir *);
180 static struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 ufs_daddr_t);
182 static void handle_workitem_freefrag(struct freefrag *);
183 static struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static void allocdirect_merge(struct allocdirectlst *,
185 struct allocdirect *, struct allocdirect *);
186 static struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 struct newblk **);
189 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 struct pagedep **);
192 static void pause_timer(void *);
193 static int request_cleanup(int, int);
194 static int process_worklist_item(struct mount *, int);
195 static void add_to_worklist(struct worklist *);
198 * Exported softdep operations.
200 static void softdep_disk_io_initiation(struct buf *);
201 static void softdep_disk_write_complete(struct buf *);
202 static void softdep_deallocate_dependencies(struct buf *);
203 static int softdep_fsync(struct vnode *);
204 static int softdep_process_worklist(struct mount *);
205 static void softdep_move_dependencies(struct buf *, struct buf *);
206 static int softdep_count_dependencies(struct buf *bp, int);
208 static struct bio_ops softdep_bioops = {
209 softdep_disk_io_initiation, /* io_start */
210 softdep_disk_write_complete, /* io_complete */
211 softdep_deallocate_dependencies, /* io_deallocate */
212 softdep_fsync, /* io_fsync */
213 softdep_process_worklist, /* io_sync */
214 softdep_move_dependencies, /* io_movedeps */
215 softdep_count_dependencies, /* io_countdeps */
219 * Locking primitives.
221 * For a uniprocessor, all we need to do is protect against disk
222 * interrupts. For a multiprocessor, this lock would have to be
223 * a mutex. A single mutex is used throughout this file, though
224 * finer grain locking could be used if contention warranted it.
226 * For a multiprocessor, the sleep call would accept a lock and
227 * release it after the sleep processing was complete. In a uniprocessor
228 * implementation there is no such interlock, so we simple mark
229 * the places where it needs to be done with the `interlocked' form
230 * of the lock calls. Since the uniprocessor sleep already interlocks
231 * the spl, there is nothing that really needs to be done.
233 #ifndef /* NOT */ DEBUG
234 static struct lockit {
235 } lk = { 0 };
236 #define ACQUIRE_LOCK(lk) crit_enter_id("softupdates");
237 #define FREE_LOCK(lk) crit_exit_id("softupdates");
239 #else /* DEBUG */
240 #define NOHOLDER ((struct thread *)-1)
241 #define SPECIAL_FLAG ((struct thread *)-2)
242 static struct lockit {
243 int lkt_spl;
244 struct thread *lkt_held;
245 } lk = { 0, NOHOLDER };
246 static int lockcnt;
248 static void acquire_lock(struct lockit *);
249 static void free_lock(struct lockit *);
250 void softdep_panic(char *);
252 #define ACQUIRE_LOCK(lk) acquire_lock(lk)
253 #define FREE_LOCK(lk) free_lock(lk)
255 static void
256 acquire_lock(struct lockit *lk)
258 thread_t holder;
260 if (lk->lkt_held != NOHOLDER) {
261 holder = lk->lkt_held;
262 FREE_LOCK(lk);
263 if (holder == curthread)
264 panic("softdep_lock: locking against myself");
265 else
266 panic("softdep_lock: lock held by %p", holder);
268 crit_enter_id("softupdates");
269 lk->lkt_held = curthread;
270 lockcnt++;
273 static void
274 free_lock(struct lockit *lk)
277 if (lk->lkt_held == NOHOLDER)
278 panic("softdep_unlock: lock not held");
279 lk->lkt_held = NOHOLDER;
280 crit_exit_id("softupdates");
284 * Function to release soft updates lock and panic.
286 void
287 softdep_panic(char *msg)
290 if (lk.lkt_held != NOHOLDER)
291 FREE_LOCK(&lk);
292 panic(msg);
294 #endif /* DEBUG */
296 static int interlocked_sleep(struct lockit *, int, void *, int,
297 const char *, int);
300 * When going to sleep, we must save our SPL so that it does
301 * not get lost if some other process uses the lock while we
302 * are sleeping. We restore it after we have slept. This routine
303 * wraps the interlocking with functions that sleep. The list
304 * below enumerates the available set of operations.
306 #define UNKNOWN 0
307 #define SLEEP 1
308 #define LOCKBUF 2
310 static int
311 interlocked_sleep(struct lockit *lk, int op, void *ident, int flags,
312 const char *wmesg, int timo)
314 thread_t holder;
315 int s, retval;
317 s = lk->lkt_spl;
318 # ifdef DEBUG
319 if (lk->lkt_held == NOHOLDER)
320 panic("interlocked_sleep: lock not held");
321 lk->lkt_held = NOHOLDER;
322 # endif /* DEBUG */
323 switch (op) {
324 case SLEEP:
325 retval = tsleep(ident, flags, wmesg, timo);
326 break;
327 case LOCKBUF:
328 retval = BUF_LOCK((struct buf *)ident, flags);
329 break;
330 default:
331 panic("interlocked_sleep: unknown operation");
333 # ifdef DEBUG
334 if (lk->lkt_held != NOHOLDER) {
335 holder = lk->lkt_held;
336 FREE_LOCK(lk);
337 if (holder == curthread)
338 panic("interlocked_sleep: locking against self");
339 else
340 panic("interlocked_sleep: lock held by %p", holder);
342 lk->lkt_held = curthread;
343 lockcnt++;
344 # endif /* DEBUG */
345 lk->lkt_spl = s;
346 return (retval);
350 * Place holder for real semaphores.
352 struct sema {
353 int value;
354 thread_t holder;
355 char *name;
356 int prio;
357 int timo;
359 static void sema_init(struct sema *, char *, int, int);
360 static int sema_get(struct sema *, struct lockit *);
361 static void sema_release(struct sema *);
363 static void
364 sema_init(struct sema *semap, char *name, int prio, int timo)
367 semap->holder = NOHOLDER;
368 semap->value = 0;
369 semap->name = name;
370 semap->prio = prio;
371 semap->timo = timo;
374 static int
375 sema_get(struct sema *semap, struct lockit *interlock)
378 if (semap->value++ > 0) {
379 if (interlock != NULL) {
380 interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
381 semap->prio, semap->name, semap->timo);
382 FREE_LOCK(interlock);
383 } else {
384 tsleep((caddr_t)semap, semap->prio, semap->name,
385 semap->timo);
387 return (0);
389 semap->holder = curthread;
390 if (interlock != NULL)
391 FREE_LOCK(interlock);
392 return (1);
395 static void
396 sema_release(struct sema *semap)
399 if (semap->value <= 0 || semap->holder != curthread) {
400 if (lk.lkt_held != NOHOLDER)
401 FREE_LOCK(&lk);
402 panic("sema_release: not held");
404 if (--semap->value > 0) {
405 semap->value = 0;
406 wakeup(semap);
408 semap->holder = NOHOLDER;
412 * Worklist queue management.
413 * These routines require that the lock be held.
415 #ifndef /* NOT */ DEBUG
416 #define WORKLIST_INSERT(head, item) do { \
417 (item)->wk_state |= ONWORKLIST; \
418 LIST_INSERT_HEAD(head, item, wk_list); \
419 } while (0)
420 #define WORKLIST_REMOVE(item) do { \
421 (item)->wk_state &= ~ONWORKLIST; \
422 LIST_REMOVE(item, wk_list); \
423 } while (0)
424 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
426 #else /* DEBUG */
427 static void worklist_insert(struct workhead *, struct worklist *);
428 static void worklist_remove(struct worklist *);
429 static void workitem_free(struct worklist *, int);
431 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
432 #define WORKLIST_REMOVE(item) worklist_remove(item)
433 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
435 static void
436 worklist_insert(struct workhead *head, struct worklist *item)
439 if (lk.lkt_held == NOHOLDER)
440 panic("worklist_insert: lock not held");
441 if (item->wk_state & ONWORKLIST) {
442 FREE_LOCK(&lk);
443 panic("worklist_insert: already on list");
445 item->wk_state |= ONWORKLIST;
446 LIST_INSERT_HEAD(head, item, wk_list);
449 static void
450 worklist_remove(struct worklist *item)
453 if (lk.lkt_held == NOHOLDER)
454 panic("worklist_remove: lock not held");
455 if ((item->wk_state & ONWORKLIST) == 0) {
456 FREE_LOCK(&lk);
457 panic("worklist_remove: not on list");
459 item->wk_state &= ~ONWORKLIST;
460 LIST_REMOVE(item, wk_list);
463 static void
464 workitem_free(struct worklist *item, int type)
467 if (item->wk_state & ONWORKLIST) {
468 if (lk.lkt_held != NOHOLDER)
469 FREE_LOCK(&lk);
470 panic("workitem_free: still on list");
472 if (item->wk_type != type) {
473 if (lk.lkt_held != NOHOLDER)
474 FREE_LOCK(&lk);
475 panic("workitem_free: type mismatch");
477 FREE(item, DtoM(type));
479 #endif /* DEBUG */
482 * Workitem queue management
484 static struct workhead softdep_workitem_pending;
485 static int num_on_worklist; /* number of worklist items to be processed */
486 static int softdep_worklist_busy; /* 1 => trying to do unmount */
487 static int softdep_worklist_req; /* serialized waiters */
488 static int max_softdeps; /* maximum number of structs before slowdown */
489 static int tickdelay = 2; /* number of ticks to pause during slowdown */
490 static int *stat_countp; /* statistic to count in proc_waiting timeout */
491 static int proc_waiting; /* tracks whether we have a timeout posted */
492 static struct callout handle; /* handle on posted proc_waiting timeout */
493 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
494 static int req_clear_inodedeps; /* syncer process flush some inodedeps */
495 #define FLUSH_INODES 1
496 static int req_clear_remove; /* syncer process flush some freeblks */
497 #define FLUSH_REMOVE 2
499 * runtime statistics
501 static int stat_worklist_push; /* number of worklist cleanups */
502 static int stat_blk_limit_push; /* number of times block limit neared */
503 static int stat_ino_limit_push; /* number of times inode limit neared */
504 static int stat_blk_limit_hit; /* number of times block slowdown imposed */
505 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
506 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
507 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
508 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
509 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
510 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
511 #ifdef DEBUG
512 #include <vm/vm.h>
513 #include <sys/sysctl.h>
514 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
515 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
516 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
517 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
518 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
519 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
520 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
521 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
522 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
523 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
524 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
525 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
526 #endif /* DEBUG */
529 * Add an item to the end of the work queue.
530 * This routine requires that the lock be held.
531 * This is the only routine that adds items to the list.
532 * The following routine is the only one that removes items
533 * and does so in order from first to last.
535 static void
536 add_to_worklist(struct worklist *wk)
538 static struct worklist *worklist_tail;
540 if (wk->wk_state & ONWORKLIST) {
541 if (lk.lkt_held != NOHOLDER)
542 FREE_LOCK(&lk);
543 panic("add_to_worklist: already on list");
545 wk->wk_state |= ONWORKLIST;
546 if (LIST_FIRST(&softdep_workitem_pending) == NULL)
547 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
548 else
549 LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
550 worklist_tail = wk;
551 num_on_worklist += 1;
555 * Process that runs once per second to handle items in the background queue.
557 * Note that we ensure that everything is done in the order in which they
558 * appear in the queue. The code below depends on this property to ensure
559 * that blocks of a file are freed before the inode itself is freed. This
560 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
561 * until all the old ones have been purged from the dependency lists.
563 static int
564 softdep_process_worklist(struct mount *matchmnt)
566 thread_t td = curthread;
567 int matchcnt, loopcount;
568 long starttime;
571 * Record the process identifier of our caller so that we can give
572 * this process preferential treatment in request_cleanup below.
574 filesys_syncer = td;
575 matchcnt = 0;
578 * There is no danger of having multiple processes run this
579 * code, but we have to single-thread it when softdep_flushfiles()
580 * is in operation to get an accurate count of the number of items
581 * related to its mount point that are in the list.
583 if (matchmnt == NULL) {
584 if (softdep_worklist_busy < 0)
585 return(-1);
586 softdep_worklist_busy += 1;
590 * If requested, try removing inode or removal dependencies.
592 if (req_clear_inodedeps) {
593 clear_inodedeps(td);
594 req_clear_inodedeps -= 1;
595 wakeup_one(&proc_waiting);
597 if (req_clear_remove) {
598 clear_remove(td);
599 req_clear_remove -= 1;
600 wakeup_one(&proc_waiting);
602 loopcount = 1;
603 starttime = time_second;
604 while (num_on_worklist > 0) {
605 matchcnt += process_worklist_item(matchmnt, 0);
608 * If a umount operation wants to run the worklist
609 * accurately, abort.
611 if (softdep_worklist_req && matchmnt == NULL) {
612 matchcnt = -1;
613 break;
617 * If requested, try removing inode or removal dependencies.
619 if (req_clear_inodedeps) {
620 clear_inodedeps(td);
621 req_clear_inodedeps -= 1;
622 wakeup_one(&proc_waiting);
624 if (req_clear_remove) {
625 clear_remove(td);
626 req_clear_remove -= 1;
627 wakeup_one(&proc_waiting);
630 * We do not generally want to stop for buffer space, but if
631 * we are really being a buffer hog, we will stop and wait.
633 if (loopcount++ % 128 == 0)
634 bwillwrite();
636 * Never allow processing to run for more than one
637 * second. Otherwise the other syncer tasks may get
638 * excessively backlogged.
640 if (starttime != time_second && matchmnt == NULL) {
641 matchcnt = -1;
642 break;
645 if (matchmnt == NULL) {
646 --softdep_worklist_busy;
647 if (softdep_worklist_req && softdep_worklist_busy == 0)
648 wakeup(&softdep_worklist_req);
650 return (matchcnt);
654 * Process one item on the worklist.
656 static int
657 process_worklist_item(struct mount *matchmnt, int flags)
659 struct worklist *wk;
660 struct dirrem *dirrem;
661 struct fs *matchfs;
662 struct vnode *vp;
663 int matchcnt = 0;
665 matchfs = NULL;
666 if (matchmnt != NULL)
667 matchfs = VFSTOUFS(matchmnt)->um_fs;
668 ACQUIRE_LOCK(&lk);
670 * Normally we just process each item on the worklist in order.
671 * However, if we are in a situation where we cannot lock any
672 * inodes, we have to skip over any dirrem requests whose
673 * vnodes are resident and locked.
675 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
676 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
677 break;
678 dirrem = WK_DIRREM(wk);
679 vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
680 dirrem->dm_oldinum);
681 if (vp == NULL || !vn_islocked(vp))
682 break;
684 if (wk == 0) {
685 FREE_LOCK(&lk);
686 return (0);
688 WORKLIST_REMOVE(wk);
689 num_on_worklist -= 1;
690 FREE_LOCK(&lk);
691 switch (wk->wk_type) {
693 case D_DIRREM:
694 /* removal of a directory entry */
695 if (WK_DIRREM(wk)->dm_mnt == matchmnt)
696 matchcnt += 1;
697 handle_workitem_remove(WK_DIRREM(wk));
698 break;
700 case D_FREEBLKS:
701 /* releasing blocks and/or fragments from a file */
702 if (WK_FREEBLKS(wk)->fb_fs == matchfs)
703 matchcnt += 1;
704 handle_workitem_freeblocks(WK_FREEBLKS(wk));
705 break;
707 case D_FREEFRAG:
708 /* releasing a fragment when replaced as a file grows */
709 if (WK_FREEFRAG(wk)->ff_fs == matchfs)
710 matchcnt += 1;
711 handle_workitem_freefrag(WK_FREEFRAG(wk));
712 break;
714 case D_FREEFILE:
715 /* releasing an inode when its link count drops to 0 */
716 if (WK_FREEFILE(wk)->fx_fs == matchfs)
717 matchcnt += 1;
718 handle_workitem_freefile(WK_FREEFILE(wk));
719 break;
721 default:
722 panic("%s_process_worklist: Unknown type %s",
723 "softdep", TYPENAME(wk->wk_type));
724 /* NOTREACHED */
726 return (matchcnt);
730 * Move dependencies from one buffer to another.
732 static void
733 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
735 struct worklist *wk, *wktail;
737 if (LIST_FIRST(&newbp->b_dep) != NULL)
738 panic("softdep_move_dependencies: need merge code");
739 wktail = 0;
740 ACQUIRE_LOCK(&lk);
741 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
742 LIST_REMOVE(wk, wk_list);
743 if (wktail == 0)
744 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
745 else
746 LIST_INSERT_AFTER(wktail, wk, wk_list);
747 wktail = wk;
749 FREE_LOCK(&lk);
753 * Purge the work list of all items associated with a particular mount point.
756 softdep_flushfiles(struct mount *oldmnt, int flags)
758 struct vnode *devvp;
759 int error, loopcnt;
762 * Await our turn to clear out the queue, then serialize access.
764 while (softdep_worklist_busy != 0) {
765 softdep_worklist_req += 1;
766 tsleep(&softdep_worklist_req, 0, "softflush", 0);
767 softdep_worklist_req -= 1;
769 softdep_worklist_busy = -1;
771 if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
772 softdep_worklist_busy = 0;
773 if (softdep_worklist_req)
774 wakeup(&softdep_worklist_req);
775 return (error);
778 * Alternately flush the block device associated with the mount
779 * point and process any dependencies that the flushing
780 * creates. In theory, this loop can happen at most twice,
781 * but we give it a few extra just to be sure.
783 devvp = VFSTOUFS(oldmnt)->um_devvp;
784 for (loopcnt = 10; loopcnt > 0; ) {
785 if (softdep_process_worklist(oldmnt) == 0) {
786 loopcnt--;
788 * Do another flush in case any vnodes were brought in
789 * as part of the cleanup operations.
791 if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
792 break;
794 * If we still found nothing to do, we are really done.
796 if (softdep_process_worklist(oldmnt) == 0)
797 break;
799 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
800 error = VOP_FSYNC(devvp, MNT_WAIT);
801 vn_unlock(devvp);
802 if (error)
803 break;
805 softdep_worklist_busy = 0;
806 if (softdep_worklist_req)
807 wakeup(&softdep_worklist_req);
810 * If we are unmounting then it is an error to fail. If we
811 * are simply trying to downgrade to read-only, then filesystem
812 * activity can keep us busy forever, so we just fail with EBUSY.
814 if (loopcnt == 0) {
815 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
816 panic("softdep_flushfiles: looping");
817 error = EBUSY;
819 return (error);
823 * Structure hashing.
825 * There are three types of structures that can be looked up:
826 * 1) pagedep structures identified by mount point, inode number,
827 * and logical block.
828 * 2) inodedep structures identified by mount point and inode number.
829 * 3) newblk structures identified by mount point and
830 * physical block number.
832 * The "pagedep" and "inodedep" dependency structures are hashed
833 * separately from the file blocks and inodes to which they correspond.
834 * This separation helps when the in-memory copy of an inode or
835 * file block must be replaced. It also obviates the need to access
836 * an inode or file page when simply updating (or de-allocating)
837 * dependency structures. Lookup of newblk structures is needed to
838 * find newly allocated blocks when trying to associate them with
839 * their allocdirect or allocindir structure.
841 * The lookup routines optionally create and hash a new instance when
842 * an existing entry is not found.
844 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */
845 #define NODELAY 0x0002 /* cannot do background work */
848 * Structures and routines associated with pagedep caching.
850 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
851 u_long pagedep_hash; /* size of hash table - 1 */
852 #define PAGEDEP_HASH(mp, inum, lbn) \
853 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
854 pagedep_hash])
855 static struct sema pagedep_in_progress;
858 * Helper routine for pagedep_lookup()
860 static __inline
861 struct pagedep *
862 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
863 struct mount *mp)
865 struct pagedep *pagedep;
867 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
868 if (ino == pagedep->pd_ino &&
869 lbn == pagedep->pd_lbn &&
870 mp == pagedep->pd_mnt) {
871 return (pagedep);
874 return(NULL);
878 * Look up a pagedep. Return 1 if found, 0 if not found.
879 * If not found, allocate if DEPALLOC flag is passed.
880 * Found or allocated entry is returned in pagedeppp.
881 * This routine must be called with splbio interrupts blocked.
883 static int
884 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
885 struct pagedep **pagedeppp)
887 struct pagedep *pagedep;
888 struct pagedep_hashhead *pagedephd;
889 struct mount *mp;
890 int i;
892 #ifdef DEBUG
893 if (lk.lkt_held == NOHOLDER)
894 panic("pagedep_lookup: lock not held");
895 #endif
896 mp = ITOV(ip)->v_mount;
897 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
898 top:
899 *pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
900 if (*pagedeppp)
901 return(1);
902 if ((flags & DEPALLOC) == 0)
903 return (0);
904 if (sema_get(&pagedep_in_progress, &lk) == 0) {
905 ACQUIRE_LOCK(&lk);
906 goto top;
908 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
909 M_SOFTDEP_FLAGS | M_ZERO);
911 if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
912 kprintf("pagedep_lookup: blocking race avoided\n");
913 ACQUIRE_LOCK(&lk);
914 sema_release(&pagedep_in_progress);
915 kfree(pagedep, M_PAGEDEP);
916 goto top;
919 pagedep->pd_list.wk_type = D_PAGEDEP;
920 pagedep->pd_mnt = mp;
921 pagedep->pd_ino = ip->i_number;
922 pagedep->pd_lbn = lbn;
923 LIST_INIT(&pagedep->pd_dirremhd);
924 LIST_INIT(&pagedep->pd_pendinghd);
925 for (i = 0; i < DAHASHSZ; i++)
926 LIST_INIT(&pagedep->pd_diraddhd[i]);
927 ACQUIRE_LOCK(&lk);
928 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
929 sema_release(&pagedep_in_progress);
930 *pagedeppp = pagedep;
931 return (0);
935 * Structures and routines associated with inodedep caching.
937 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
938 static u_long inodedep_hash; /* size of hash table - 1 */
939 static long num_inodedep; /* number of inodedep allocated */
940 #define INODEDEP_HASH(fs, inum) \
941 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
942 static struct sema inodedep_in_progress;
945 * Helper routine for inodedep_lookup()
947 static __inline
948 struct inodedep *
949 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
951 struct inodedep *inodedep;
953 LIST_FOREACH(inodedep, inodedephd, id_hash) {
954 if (inum == inodedep->id_ino && fs == inodedep->id_fs)
955 return(inodedep);
957 return (NULL);
961 * Look up a inodedep. Return 1 if found, 0 if not found.
962 * If not found, allocate if DEPALLOC flag is passed.
963 * Found or allocated entry is returned in inodedeppp.
964 * This routine must be called with splbio interrupts blocked.
966 static int
967 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
968 struct inodedep **inodedeppp)
970 struct inodedep *inodedep;
971 struct inodedep_hashhead *inodedephd;
972 int firsttry;
974 #ifdef DEBUG
975 if (lk.lkt_held == NOHOLDER)
976 panic("inodedep_lookup: lock not held");
977 #endif
978 firsttry = 1;
979 inodedephd = INODEDEP_HASH(fs, inum);
980 top:
981 *inodedeppp = inodedep_find(inodedephd, fs, inum);
982 if (*inodedeppp)
983 return (1);
984 if ((flags & DEPALLOC) == 0)
985 return (0);
987 * If we are over our limit, try to improve the situation.
989 if (num_inodedep > max_softdeps && firsttry &&
990 speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
991 request_cleanup(FLUSH_INODES, 1)) {
992 firsttry = 0;
993 goto top;
995 if (sema_get(&inodedep_in_progress, &lk) == 0) {
996 ACQUIRE_LOCK(&lk);
997 goto top;
999 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1000 M_INODEDEP, M_SOFTDEP_FLAGS | M_ZERO);
1001 if (inodedep_find(inodedephd, fs, inum)) {
1002 kprintf("inodedep_lookup: blocking race avoided\n");
1003 ACQUIRE_LOCK(&lk);
1004 sema_release(&inodedep_in_progress);
1005 kfree(inodedep, M_INODEDEP);
1006 goto top;
1008 inodedep->id_list.wk_type = D_INODEDEP;
1009 inodedep->id_fs = fs;
1010 inodedep->id_ino = inum;
1011 inodedep->id_state = ALLCOMPLETE;
1012 inodedep->id_nlinkdelta = 0;
1013 inodedep->id_savedino = NULL;
1014 inodedep->id_savedsize = -1;
1015 inodedep->id_buf = NULL;
1016 LIST_INIT(&inodedep->id_pendinghd);
1017 LIST_INIT(&inodedep->id_inowait);
1018 LIST_INIT(&inodedep->id_bufwait);
1019 TAILQ_INIT(&inodedep->id_inoupdt);
1020 TAILQ_INIT(&inodedep->id_newinoupdt);
1021 ACQUIRE_LOCK(&lk);
1022 num_inodedep += 1;
1023 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1024 sema_release(&inodedep_in_progress);
1025 *inodedeppp = inodedep;
1026 return (0);
1030 * Structures and routines associated with newblk caching.
1032 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1033 u_long newblk_hash; /* size of hash table - 1 */
1034 #define NEWBLK_HASH(fs, inum) \
1035 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1036 static struct sema newblk_in_progress;
1039 * Helper routine for newblk_lookup()
1041 static __inline
1042 struct newblk *
1043 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
1044 ufs_daddr_t newblkno)
1046 struct newblk *newblk;
1048 LIST_FOREACH(newblk, newblkhd, nb_hash) {
1049 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1050 return (newblk);
1052 return(NULL);
1056 * Look up a newblk. Return 1 if found, 0 if not found.
1057 * If not found, allocate if DEPALLOC flag is passed.
1058 * Found or allocated entry is returned in newblkpp.
1060 static int
1061 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1062 struct newblk **newblkpp)
1064 struct newblk *newblk;
1065 struct newblk_hashhead *newblkhd;
1067 newblkhd = NEWBLK_HASH(fs, newblkno);
1068 top:
1069 *newblkpp = newblk_find(newblkhd, fs, newblkno);
1070 if (*newblkpp)
1071 return(1);
1072 if ((flags & DEPALLOC) == 0)
1073 return (0);
1074 if (sema_get(&newblk_in_progress, 0) == 0)
1075 goto top;
1076 MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1077 M_NEWBLK, M_SOFTDEP_FLAGS | M_ZERO);
1079 if (newblk_find(newblkhd, fs, newblkno)) {
1080 kprintf("newblk_lookup: blocking race avoided\n");
1081 sema_release(&pagedep_in_progress);
1082 kfree(newblk, M_NEWBLK);
1083 goto top;
1085 newblk->nb_state = 0;
1086 newblk->nb_fs = fs;
1087 newblk->nb_newblkno = newblkno;
1088 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1089 sema_release(&newblk_in_progress);
1090 *newblkpp = newblk;
1091 return (0);
1095 * Executed during filesystem system initialization before
1096 * mounting any filesystems.
1098 void
1099 softdep_initialize(void)
1101 callout_init(&handle);
1102 bioops = softdep_bioops; /* XXX hack */
1104 LIST_INIT(&mkdirlisthd);
1105 LIST_INIT(&softdep_workitem_pending);
1106 max_softdeps = min(desiredvnodes * 8,
1107 M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1108 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1109 &pagedep_hash);
1110 sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1111 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1112 sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1113 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1114 sema_init(&newblk_in_progress, "newblk", 0, 0);
1118 * Called at mount time to notify the dependency code that a
1119 * filesystem wishes to use it.
1122 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1124 struct csum cstotal;
1125 struct cg *cgp;
1126 struct buf *bp;
1127 int error, cyl;
1129 mp->mnt_flag &= ~MNT_ASYNC;
1130 mp->mnt_flag |= MNT_SOFTDEP;
1132 * When doing soft updates, the counters in the
1133 * superblock may have gotten out of sync, so we have
1134 * to scan the cylinder groups and recalculate them.
1136 if (fs->fs_clean != 0)
1137 return (0);
1138 bzero(&cstotal, sizeof cstotal);
1139 for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1140 if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1141 fs->fs_cgsize, &bp)) != 0) {
1142 brelse(bp);
1143 return (error);
1145 cgp = (struct cg *)bp->b_data;
1146 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1147 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1148 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1149 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1150 fs->fs_cs(fs, cyl) = cgp->cg_cs;
1151 brelse(bp);
1153 #ifdef DEBUG
1154 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1155 kprintf("ffs_mountfs: superblock updated for soft updates\n");
1156 #endif
1157 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1158 return (0);
1162 * Protecting the freemaps (or bitmaps).
1164 * To eliminate the need to execute fsck before mounting a filesystem
1165 * after a power failure, one must (conservatively) guarantee that the
1166 * on-disk copy of the bitmaps never indicate that a live inode or block is
1167 * free. So, when a block or inode is allocated, the bitmap should be
1168 * updated (on disk) before any new pointers. When a block or inode is
1169 * freed, the bitmap should not be updated until all pointers have been
1170 * reset. The latter dependency is handled by the delayed de-allocation
1171 * approach described below for block and inode de-allocation. The former
1172 * dependency is handled by calling the following procedure when a block or
1173 * inode is allocated. When an inode is allocated an "inodedep" is created
1174 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1175 * Each "inodedep" is also inserted into the hash indexing structure so
1176 * that any additional link additions can be made dependent on the inode
1177 * allocation.
1179 * The ufs filesystem maintains a number of free block counts (e.g., per
1180 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1181 * in addition to the bitmaps. These counts are used to improve efficiency
1182 * during allocation and therefore must be consistent with the bitmaps.
1183 * There is no convenient way to guarantee post-crash consistency of these
1184 * counts with simple update ordering, for two main reasons: (1) The counts
1185 * and bitmaps for a single cylinder group block are not in the same disk
1186 * sector. If a disk write is interrupted (e.g., by power failure), one may
1187 * be written and the other not. (2) Some of the counts are located in the
1188 * superblock rather than the cylinder group block. So, we focus our soft
1189 * updates implementation on protecting the bitmaps. When mounting a
1190 * filesystem, we recompute the auxiliary counts from the bitmaps.
1194 * Called just after updating the cylinder group block to allocate an inode.
1196 * Parameters:
1197 * bp: buffer for cylgroup block with inode map
1198 * ip: inode related to allocation
1199 * newinum: new inode number being allocated
1201 void
1202 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1204 struct inodedep *inodedep;
1205 struct bmsafemap *bmsafemap;
1208 * Create a dependency for the newly allocated inode.
1209 * Panic if it already exists as something is seriously wrong.
1210 * Otherwise add it to the dependency list for the buffer holding
1211 * the cylinder group map from which it was allocated.
1213 ACQUIRE_LOCK(&lk);
1214 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1215 FREE_LOCK(&lk);
1216 panic("softdep_setup_inomapdep: found inode");
1218 inodedep->id_buf = bp;
1219 inodedep->id_state &= ~DEPCOMPLETE;
1220 bmsafemap = bmsafemap_lookup(bp);
1221 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1222 FREE_LOCK(&lk);
1226 * Called just after updating the cylinder group block to
1227 * allocate block or fragment.
1229 * Parameters:
1230 * bp: buffer for cylgroup block with block map
1231 * fs: filesystem doing allocation
1232 * newblkno: number of newly allocated block
1234 void
1235 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1236 ufs_daddr_t newblkno)
1238 struct newblk *newblk;
1239 struct bmsafemap *bmsafemap;
1242 * Create a dependency for the newly allocated block.
1243 * Add it to the dependency list for the buffer holding
1244 * the cylinder group map from which it was allocated.
1246 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1247 panic("softdep_setup_blkmapdep: found block");
1248 ACQUIRE_LOCK(&lk);
1249 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1250 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1251 FREE_LOCK(&lk);
1255 * Find the bmsafemap associated with a cylinder group buffer.
1256 * If none exists, create one. The buffer must be locked when
1257 * this routine is called and this routine must be called with
1258 * splbio interrupts blocked.
1260 static struct bmsafemap *
1261 bmsafemap_lookup(struct buf *bp)
1263 struct bmsafemap *bmsafemap;
1264 struct worklist *wk;
1266 #ifdef DEBUG
1267 if (lk.lkt_held == NOHOLDER)
1268 panic("bmsafemap_lookup: lock not held");
1269 #endif
1270 LIST_FOREACH(wk, &bp->b_dep, wk_list)
1271 if (wk->wk_type == D_BMSAFEMAP)
1272 return (WK_BMSAFEMAP(wk));
1273 FREE_LOCK(&lk);
1274 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1275 M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1276 bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1277 bmsafemap->sm_list.wk_state = 0;
1278 bmsafemap->sm_buf = bp;
1279 LIST_INIT(&bmsafemap->sm_allocdirecthd);
1280 LIST_INIT(&bmsafemap->sm_allocindirhd);
1281 LIST_INIT(&bmsafemap->sm_inodedephd);
1282 LIST_INIT(&bmsafemap->sm_newblkhd);
1283 ACQUIRE_LOCK(&lk);
1284 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1285 return (bmsafemap);
1289 * Direct block allocation dependencies.
1291 * When a new block is allocated, the corresponding disk locations must be
1292 * initialized (with zeros or new data) before the on-disk inode points to
1293 * them. Also, the freemap from which the block was allocated must be
1294 * updated (on disk) before the inode's pointer. These two dependencies are
1295 * independent of each other and are needed for all file blocks and indirect
1296 * blocks that are pointed to directly by the inode. Just before the
1297 * "in-core" version of the inode is updated with a newly allocated block
1298 * number, a procedure (below) is called to setup allocation dependency
1299 * structures. These structures are removed when the corresponding
1300 * dependencies are satisfied or when the block allocation becomes obsolete
1301 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1302 * fragment that gets upgraded). All of these cases are handled in
1303 * procedures described later.
1305 * When a file extension causes a fragment to be upgraded, either to a larger
1306 * fragment or to a full block, the on-disk location may change (if the
1307 * previous fragment could not simply be extended). In this case, the old
1308 * fragment must be de-allocated, but not until after the inode's pointer has
1309 * been updated. In most cases, this is handled by later procedures, which
1310 * will construct a "freefrag" structure to be added to the workitem queue
1311 * when the inode update is complete (or obsolete). The main exception to
1312 * this is when an allocation occurs while a pending allocation dependency
1313 * (for the same block pointer) remains. This case is handled in the main
1314 * allocation dependency setup procedure by immediately freeing the
1315 * unreferenced fragments.
1317 * Parameters:
1318 * ip: inode to which block is being added
1319 * lbn: block pointer within inode
1320 * newblkno: disk block number being added
1321 * oldblkno: previous block number, 0 unless frag
1322 * newsize: size of new block
1323 * oldsize: size of new block
1324 * bp: bp for allocated block
1326 void
1327 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1328 ufs_daddr_t oldblkno, long newsize, long oldsize,
1329 struct buf *bp)
1331 struct allocdirect *adp, *oldadp;
1332 struct allocdirectlst *adphead;
1333 struct bmsafemap *bmsafemap;
1334 struct inodedep *inodedep;
1335 struct pagedep *pagedep;
1336 struct newblk *newblk;
1338 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1339 M_ALLOCDIRECT, M_SOFTDEP_FLAGS);
1340 bzero(adp, sizeof(struct allocdirect));
1341 adp->ad_list.wk_type = D_ALLOCDIRECT;
1342 adp->ad_lbn = lbn;
1343 adp->ad_newblkno = newblkno;
1344 adp->ad_oldblkno = oldblkno;
1345 adp->ad_newsize = newsize;
1346 adp->ad_oldsize = oldsize;
1347 adp->ad_state = ATTACHED;
1348 if (newblkno == oldblkno)
1349 adp->ad_freefrag = NULL;
1350 else
1351 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1353 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1354 panic("softdep_setup_allocdirect: lost block");
1356 ACQUIRE_LOCK(&lk);
1357 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1358 adp->ad_inodedep = inodedep;
1360 if (newblk->nb_state == DEPCOMPLETE) {
1361 adp->ad_state |= DEPCOMPLETE;
1362 adp->ad_buf = NULL;
1363 } else {
1364 bmsafemap = newblk->nb_bmsafemap;
1365 adp->ad_buf = bmsafemap->sm_buf;
1366 LIST_REMOVE(newblk, nb_deps);
1367 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1369 LIST_REMOVE(newblk, nb_hash);
1370 FREE(newblk, M_NEWBLK);
1372 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1373 if (lbn >= NDADDR) {
1374 /* allocating an indirect block */
1375 if (oldblkno != 0) {
1376 FREE_LOCK(&lk);
1377 panic("softdep_setup_allocdirect: non-zero indir");
1379 } else {
1381 * Allocating a direct block.
1383 * If we are allocating a directory block, then we must
1384 * allocate an associated pagedep to track additions and
1385 * deletions.
1387 if ((ip->i_mode & IFMT) == IFDIR &&
1388 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1389 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1392 * The list of allocdirects must be kept in sorted and ascending
1393 * order so that the rollback routines can quickly determine the
1394 * first uncommitted block (the size of the file stored on disk
1395 * ends at the end of the lowest committed fragment, or if there
1396 * are no fragments, at the end of the highest committed block).
1397 * Since files generally grow, the typical case is that the new
1398 * block is to be added at the end of the list. We speed this
1399 * special case by checking against the last allocdirect in the
1400 * list before laboriously traversing the list looking for the
1401 * insertion point.
1403 adphead = &inodedep->id_newinoupdt;
1404 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1405 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1406 /* insert at end of list */
1407 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1408 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1409 allocdirect_merge(adphead, adp, oldadp);
1410 FREE_LOCK(&lk);
1411 return;
1413 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1414 if (oldadp->ad_lbn >= lbn)
1415 break;
1417 if (oldadp == NULL) {
1418 FREE_LOCK(&lk);
1419 panic("softdep_setup_allocdirect: lost entry");
1421 /* insert in middle of list */
1422 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1423 if (oldadp->ad_lbn == lbn)
1424 allocdirect_merge(adphead, adp, oldadp);
1425 FREE_LOCK(&lk);
1429 * Replace an old allocdirect dependency with a newer one.
1430 * This routine must be called with splbio interrupts blocked.
1432 * Parameters:
1433 * adphead: head of list holding allocdirects
1434 * newadp: allocdirect being added
1435 * oldadp: existing allocdirect being checked
1437 static void
1438 allocdirect_merge(struct allocdirectlst *adphead,
1439 struct allocdirect *newadp,
1440 struct allocdirect *oldadp)
1442 struct freefrag *freefrag;
1444 #ifdef DEBUG
1445 if (lk.lkt_held == NOHOLDER)
1446 panic("allocdirect_merge: lock not held");
1447 #endif
1448 if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1449 newadp->ad_oldsize != oldadp->ad_newsize ||
1450 newadp->ad_lbn >= NDADDR) {
1451 FREE_LOCK(&lk);
1452 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1453 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1454 NDADDR);
1456 newadp->ad_oldblkno = oldadp->ad_oldblkno;
1457 newadp->ad_oldsize = oldadp->ad_oldsize;
1459 * If the old dependency had a fragment to free or had never
1460 * previously had a block allocated, then the new dependency
1461 * can immediately post its freefrag and adopt the old freefrag.
1462 * This action is done by swapping the freefrag dependencies.
1463 * The new dependency gains the old one's freefrag, and the
1464 * old one gets the new one and then immediately puts it on
1465 * the worklist when it is freed by free_allocdirect. It is
1466 * not possible to do this swap when the old dependency had a
1467 * non-zero size but no previous fragment to free. This condition
1468 * arises when the new block is an extension of the old block.
1469 * Here, the first part of the fragment allocated to the new
1470 * dependency is part of the block currently claimed on disk by
1471 * the old dependency, so cannot legitimately be freed until the
1472 * conditions for the new dependency are fulfilled.
1474 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1475 freefrag = newadp->ad_freefrag;
1476 newadp->ad_freefrag = oldadp->ad_freefrag;
1477 oldadp->ad_freefrag = freefrag;
1479 free_allocdirect(adphead, oldadp, 0);
1483 * Allocate a new freefrag structure if needed.
1485 static struct freefrag *
1486 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1488 struct freefrag *freefrag;
1489 struct fs *fs;
1491 if (blkno == 0)
1492 return (NULL);
1493 fs = ip->i_fs;
1494 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1495 panic("newfreefrag: frag size");
1496 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1497 M_FREEFRAG, M_SOFTDEP_FLAGS);
1498 freefrag->ff_list.wk_type = D_FREEFRAG;
1499 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
1500 freefrag->ff_inum = ip->i_number;
1501 freefrag->ff_fs = fs;
1502 freefrag->ff_devvp = ip->i_devvp;
1503 freefrag->ff_blkno = blkno;
1504 freefrag->ff_fragsize = size;
1505 return (freefrag);
1509 * This workitem de-allocates fragments that were replaced during
1510 * file block allocation.
1512 static void
1513 handle_workitem_freefrag(struct freefrag *freefrag)
1515 struct inode tip;
1517 tip.i_fs = freefrag->ff_fs;
1518 tip.i_devvp = freefrag->ff_devvp;
1519 tip.i_dev = freefrag->ff_devvp->v_rdev;
1520 tip.i_number = freefrag->ff_inum;
1521 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */
1522 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1523 FREE(freefrag, M_FREEFRAG);
1527 * Indirect block allocation dependencies.
1529 * The same dependencies that exist for a direct block also exist when
1530 * a new block is allocated and pointed to by an entry in a block of
1531 * indirect pointers. The undo/redo states described above are also
1532 * used here. Because an indirect block contains many pointers that
1533 * may have dependencies, a second copy of the entire in-memory indirect
1534 * block is kept. The buffer cache copy is always completely up-to-date.
1535 * The second copy, which is used only as a source for disk writes,
1536 * contains only the safe pointers (i.e., those that have no remaining
1537 * update dependencies). The second copy is freed when all pointers
1538 * are safe. The cache is not allowed to replace indirect blocks with
1539 * pending update dependencies. If a buffer containing an indirect
1540 * block with dependencies is written, these routines will mark it
1541 * dirty again. It can only be successfully written once all the
1542 * dependencies are removed. The ffs_fsync routine in conjunction with
1543 * softdep_sync_metadata work together to get all the dependencies
1544 * removed so that a file can be successfully written to disk. Three
1545 * procedures are used when setting up indirect block pointer
1546 * dependencies. The division is necessary because of the organization
1547 * of the "balloc" routine and because of the distinction between file
1548 * pages and file metadata blocks.
1552 * Allocate a new allocindir structure.
1554 * Parameters:
1555 * ip: inode for file being extended
1556 * ptrno: offset of pointer in indirect block
1557 * newblkno: disk block number being added
1558 * oldblkno: previous block number, 0 if none
1560 static struct allocindir *
1561 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1562 ufs_daddr_t oldblkno)
1564 struct allocindir *aip;
1566 MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1567 M_ALLOCINDIR, M_SOFTDEP_FLAGS);
1568 bzero(aip, sizeof(struct allocindir));
1569 aip->ai_list.wk_type = D_ALLOCINDIR;
1570 aip->ai_state = ATTACHED;
1571 aip->ai_offset = ptrno;
1572 aip->ai_newblkno = newblkno;
1573 aip->ai_oldblkno = oldblkno;
1574 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1575 return (aip);
1579 * Called just before setting an indirect block pointer
1580 * to a newly allocated file page.
1582 * Parameters:
1583 * ip: inode for file being extended
1584 * lbn: allocated block number within file
1585 * bp: buffer with indirect blk referencing page
1586 * ptrno: offset of pointer in indirect block
1587 * newblkno: disk block number being added
1588 * oldblkno: previous block number, 0 if none
1589 * nbp: buffer holding allocated page
1591 void
1592 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1593 struct buf *bp, int ptrno,
1594 ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1595 struct buf *nbp)
1597 struct allocindir *aip;
1598 struct pagedep *pagedep;
1600 aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1601 ACQUIRE_LOCK(&lk);
1603 * If we are allocating a directory page, then we must
1604 * allocate an associated pagedep to track additions and
1605 * deletions.
1607 if ((ip->i_mode & IFMT) == IFDIR &&
1608 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1609 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1610 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1611 FREE_LOCK(&lk);
1612 setup_allocindir_phase2(bp, ip, aip);
1616 * Called just before setting an indirect block pointer to a
1617 * newly allocated indirect block.
1618 * Parameters:
1619 * nbp: newly allocated indirect block
1620 * ip: inode for file being extended
1621 * bp: indirect block referencing allocated block
1622 * ptrno: offset of pointer in indirect block
1623 * newblkno: disk block number being added
1625 void
1626 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1627 struct buf *bp, int ptrno,
1628 ufs_daddr_t newblkno)
1630 struct allocindir *aip;
1632 aip = newallocindir(ip, ptrno, newblkno, 0);
1633 ACQUIRE_LOCK(&lk);
1634 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1635 FREE_LOCK(&lk);
1636 setup_allocindir_phase2(bp, ip, aip);
1640 * Called to finish the allocation of the "aip" allocated
1641 * by one of the two routines above.
1643 * Parameters:
1644 * bp: in-memory copy of the indirect block
1645 * ip: inode for file being extended
1646 * aip: allocindir allocated by the above routines
1648 static void
1649 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1650 struct allocindir *aip)
1652 struct worklist *wk;
1653 struct indirdep *indirdep, *newindirdep;
1654 struct bmsafemap *bmsafemap;
1655 struct allocindir *oldaip;
1656 struct freefrag *freefrag;
1657 struct newblk *newblk;
1659 if (bp->b_loffset >= 0)
1660 panic("setup_allocindir_phase2: not indir blk");
1661 for (indirdep = NULL, newindirdep = NULL; ; ) {
1662 ACQUIRE_LOCK(&lk);
1663 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1664 if (wk->wk_type != D_INDIRDEP)
1665 continue;
1666 indirdep = WK_INDIRDEP(wk);
1667 break;
1669 if (indirdep == NULL && newindirdep) {
1670 indirdep = newindirdep;
1671 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1672 newindirdep = NULL;
1674 FREE_LOCK(&lk);
1675 if (indirdep) {
1676 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1677 &newblk) == 0)
1678 panic("setup_allocindir: lost block");
1679 ACQUIRE_LOCK(&lk);
1680 if (newblk->nb_state == DEPCOMPLETE) {
1681 aip->ai_state |= DEPCOMPLETE;
1682 aip->ai_buf = NULL;
1683 } else {
1684 bmsafemap = newblk->nb_bmsafemap;
1685 aip->ai_buf = bmsafemap->sm_buf;
1686 LIST_REMOVE(newblk, nb_deps);
1687 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1688 aip, ai_deps);
1690 LIST_REMOVE(newblk, nb_hash);
1691 FREE(newblk, M_NEWBLK);
1692 aip->ai_indirdep = indirdep;
1694 * Check to see if there is an existing dependency
1695 * for this block. If there is, merge the old
1696 * dependency into the new one.
1698 if (aip->ai_oldblkno == 0)
1699 oldaip = NULL;
1700 else
1702 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1703 if (oldaip->ai_offset == aip->ai_offset)
1704 break;
1705 if (oldaip != NULL) {
1706 if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1707 FREE_LOCK(&lk);
1708 panic("setup_allocindir_phase2: blkno");
1710 aip->ai_oldblkno = oldaip->ai_oldblkno;
1711 freefrag = oldaip->ai_freefrag;
1712 oldaip->ai_freefrag = aip->ai_freefrag;
1713 aip->ai_freefrag = freefrag;
1714 free_allocindir(oldaip, NULL);
1716 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1717 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1718 [aip->ai_offset] = aip->ai_oldblkno;
1719 FREE_LOCK(&lk);
1721 if (newindirdep) {
1723 * Avoid any possibility of data corruption by
1724 * ensuring that our old version is thrown away.
1726 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1727 brelse(newindirdep->ir_savebp);
1728 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1730 if (indirdep)
1731 break;
1732 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1733 M_INDIRDEP, M_SOFTDEP_FLAGS);
1734 newindirdep->ir_list.wk_type = D_INDIRDEP;
1735 newindirdep->ir_state = ATTACHED;
1736 LIST_INIT(&newindirdep->ir_deplisthd);
1737 LIST_INIT(&newindirdep->ir_donehd);
1738 if (bp->b_bio2.bio_offset == NOOFFSET) {
1739 VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1740 &bp->b_bio2.bio_offset, NULL, NULL);
1742 KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1743 newindirdep->ir_savebp = getblk(ip->i_devvp,
1744 bp->b_bio2.bio_offset,
1745 bp->b_bcount, 0, 0);
1746 BUF_KERNPROC(newindirdep->ir_savebp);
1747 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1752 * Block de-allocation dependencies.
1754 * When blocks are de-allocated, the on-disk pointers must be nullified before
1755 * the blocks are made available for use by other files. (The true
1756 * requirement is that old pointers must be nullified before new on-disk
1757 * pointers are set. We chose this slightly more stringent requirement to
1758 * reduce complexity.) Our implementation handles this dependency by updating
1759 * the inode (or indirect block) appropriately but delaying the actual block
1760 * de-allocation (i.e., freemap and free space count manipulation) until
1761 * after the updated versions reach stable storage. After the disk is
1762 * updated, the blocks can be safely de-allocated whenever it is convenient.
1763 * This implementation handles only the common case of reducing a file's
1764 * length to zero. Other cases are handled by the conventional synchronous
1765 * write approach.
1767 * The ffs implementation with which we worked double-checks
1768 * the state of the block pointers and file size as it reduces
1769 * a file's length. Some of this code is replicated here in our
1770 * soft updates implementation. The freeblks->fb_chkcnt field is
1771 * used to transfer a part of this information to the procedure
1772 * that eventually de-allocates the blocks.
1774 * This routine should be called from the routine that shortens
1775 * a file's length, before the inode's size or block pointers
1776 * are modified. It will save the block pointer information for
1777 * later release and zero the inode so that the calling routine
1778 * can release it.
1780 struct softdep_setup_freeblocks_info {
1781 struct fs *fs;
1782 struct inode *ip;
1785 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1788 * Parameters:
1789 * ip: The inode whose length is to be reduced
1790 * length: The new length for the file
1792 void
1793 softdep_setup_freeblocks(struct inode *ip, off_t length)
1795 struct softdep_setup_freeblocks_info info;
1796 struct freeblks *freeblks;
1797 struct inodedep *inodedep;
1798 struct allocdirect *adp;
1799 struct vnode *vp;
1800 struct buf *bp;
1801 struct fs *fs;
1802 int i, error, delay;
1803 int count;
1805 fs = ip->i_fs;
1806 if (length != 0)
1807 panic("softde_setup_freeblocks: non-zero length");
1808 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1809 M_FREEBLKS, M_SOFTDEP_FLAGS);
1810 bzero(freeblks, sizeof(struct freeblks));
1811 freeblks->fb_list.wk_type = D_FREEBLKS;
1812 freeblks->fb_state = ATTACHED;
1813 freeblks->fb_uid = ip->i_uid;
1814 freeblks->fb_previousinum = ip->i_number;
1815 freeblks->fb_devvp = ip->i_devvp;
1816 freeblks->fb_fs = fs;
1817 freeblks->fb_oldsize = ip->i_size;
1818 freeblks->fb_newsize = length;
1819 freeblks->fb_chkcnt = ip->i_blocks;
1820 for (i = 0; i < NDADDR; i++) {
1821 freeblks->fb_dblks[i] = ip->i_db[i];
1822 ip->i_db[i] = 0;
1824 for (i = 0; i < NIADDR; i++) {
1825 freeblks->fb_iblks[i] = ip->i_ib[i];
1826 ip->i_ib[i] = 0;
1828 ip->i_blocks = 0;
1829 ip->i_size = 0;
1831 * Push the zero'ed inode to to its disk buffer so that we are free
1832 * to delete its dependencies below. Once the dependencies are gone
1833 * the buffer can be safely released.
1835 if ((error = bread(ip->i_devvp,
1836 fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1837 (int)fs->fs_bsize, &bp)) != 0)
1838 softdep_error("softdep_setup_freeblocks", error);
1839 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1840 ip->i_din;
1842 * Find and eliminate any inode dependencies.
1844 ACQUIRE_LOCK(&lk);
1845 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1846 if ((inodedep->id_state & IOSTARTED) != 0) {
1847 FREE_LOCK(&lk);
1848 panic("softdep_setup_freeblocks: inode busy");
1851 * Add the freeblks structure to the list of operations that
1852 * must await the zero'ed inode being written to disk. If we
1853 * still have a bitmap dependency (delay == 0), then the inode
1854 * has never been written to disk, so we can process the
1855 * freeblks below once we have deleted the dependencies.
1857 delay = (inodedep->id_state & DEPCOMPLETE);
1858 if (delay)
1859 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1861 * Because the file length has been truncated to zero, any
1862 * pending block allocation dependency structures associated
1863 * with this inode are obsolete and can simply be de-allocated.
1864 * We must first merge the two dependency lists to get rid of
1865 * any duplicate freefrag structures, then purge the merged list.
1867 merge_inode_lists(inodedep);
1868 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1869 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1870 FREE_LOCK(&lk);
1871 bdwrite(bp);
1873 * We must wait for any I/O in progress to finish so that
1874 * all potential buffers on the dirty list will be visible.
1875 * Once they are all there, walk the list and get rid of
1876 * any dependencies.
1878 vp = ITOV(ip);
1879 ACQUIRE_LOCK(&lk);
1880 drain_output(vp, 1);
1882 info.fs = fs;
1883 info.ip = ip;
1884 do {
1885 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1886 softdep_setup_freeblocks_bp, &info);
1887 } while (count != 0);
1888 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1889 (void)free_inodedep(inodedep);
1891 if (delay) {
1892 freeblks->fb_state |= DEPCOMPLETE;
1894 * If the inode with zeroed block pointers is now on disk
1895 * we can start freeing blocks. Add freeblks to the worklist
1896 * instead of calling handle_workitem_freeblocks directly as
1897 * it is more likely that additional IO is needed to complete
1898 * the request here than in the !delay case.
1900 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1901 add_to_worklist(&freeblks->fb_list);
1904 FREE_LOCK(&lk);
1906 * If the inode has never been written to disk (delay == 0),
1907 * then we can process the freeblks now that we have deleted
1908 * the dependencies.
1910 if (!delay)
1911 handle_workitem_freeblocks(freeblks);
1914 static int
1915 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1917 struct softdep_setup_freeblocks_info *info = data;
1918 struct inodedep *inodedep;
1920 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1921 kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1922 return(-1);
1924 if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1925 kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1926 BUF_UNLOCK(bp);
1927 return(-1);
1929 (void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1930 deallocate_dependencies(bp, inodedep);
1931 bp->b_flags |= B_INVAL | B_NOCACHE;
1932 FREE_LOCK(&lk);
1933 brelse(bp);
1934 ACQUIRE_LOCK(&lk);
1935 return(1);
1939 * Reclaim any dependency structures from a buffer that is about to
1940 * be reallocated to a new vnode. The buffer must be locked, thus,
1941 * no I/O completion operations can occur while we are manipulating
1942 * its associated dependencies. The mutex is held so that other I/O's
1943 * associated with related dependencies do not occur.
1945 static void
1946 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1948 struct worklist *wk;
1949 struct indirdep *indirdep;
1950 struct allocindir *aip;
1951 struct pagedep *pagedep;
1952 struct dirrem *dirrem;
1953 struct diradd *dap;
1954 int i;
1956 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1957 switch (wk->wk_type) {
1959 case D_INDIRDEP:
1960 indirdep = WK_INDIRDEP(wk);
1962 * None of the indirect pointers will ever be visible,
1963 * so they can simply be tossed. GOINGAWAY ensures
1964 * that allocated pointers will be saved in the buffer
1965 * cache until they are freed. Note that they will
1966 * only be able to be found by their physical address
1967 * since the inode mapping the logical address will
1968 * be gone. The save buffer used for the safe copy
1969 * was allocated in setup_allocindir_phase2 using
1970 * the physical address so it could be used for this
1971 * purpose. Hence we swap the safe copy with the real
1972 * copy, allowing the safe copy to be freed and holding
1973 * on to the real copy for later use in indir_trunc.
1975 * NOTE: ir_savebp is relative to the block device
1976 * so b_bio1 contains the device block number.
1978 if (indirdep->ir_state & GOINGAWAY) {
1979 FREE_LOCK(&lk);
1980 panic("deallocate_dependencies: already gone");
1982 indirdep->ir_state |= GOINGAWAY;
1983 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
1984 free_allocindir(aip, inodedep);
1985 if (bp->b_bio1.bio_offset >= 0 ||
1986 bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
1987 FREE_LOCK(&lk);
1988 panic("deallocate_dependencies: not indir");
1990 bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1991 bp->b_bcount);
1992 WORKLIST_REMOVE(wk);
1993 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
1994 continue;
1996 case D_PAGEDEP:
1997 pagedep = WK_PAGEDEP(wk);
1999 * None of the directory additions will ever be
2000 * visible, so they can simply be tossed.
2002 for (i = 0; i < DAHASHSZ; i++)
2003 while ((dap =
2004 LIST_FIRST(&pagedep->pd_diraddhd[i])))
2005 free_diradd(dap);
2006 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2007 free_diradd(dap);
2009 * Copy any directory remove dependencies to the list
2010 * to be processed after the zero'ed inode is written.
2011 * If the inode has already been written, then they
2012 * can be dumped directly onto the work list.
2014 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2015 LIST_REMOVE(dirrem, dm_next);
2016 dirrem->dm_dirinum = pagedep->pd_ino;
2017 if (inodedep == NULL ||
2018 (inodedep->id_state & ALLCOMPLETE) ==
2019 ALLCOMPLETE)
2020 add_to_worklist(&dirrem->dm_list);
2021 else
2022 WORKLIST_INSERT(&inodedep->id_bufwait,
2023 &dirrem->dm_list);
2025 WORKLIST_REMOVE(&pagedep->pd_list);
2026 LIST_REMOVE(pagedep, pd_hash);
2027 WORKITEM_FREE(pagedep, D_PAGEDEP);
2028 continue;
2030 case D_ALLOCINDIR:
2031 free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2032 continue;
2034 case D_ALLOCDIRECT:
2035 case D_INODEDEP:
2036 FREE_LOCK(&lk);
2037 panic("deallocate_dependencies: Unexpected type %s",
2038 TYPENAME(wk->wk_type));
2039 /* NOTREACHED */
2041 default:
2042 FREE_LOCK(&lk);
2043 panic("deallocate_dependencies: Unknown type %s",
2044 TYPENAME(wk->wk_type));
2045 /* NOTREACHED */
2051 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2052 * This routine must be called with splbio interrupts blocked.
2054 static void
2055 free_allocdirect(struct allocdirectlst *adphead,
2056 struct allocdirect *adp, int delay)
2059 #ifdef DEBUG
2060 if (lk.lkt_held == NOHOLDER)
2061 panic("free_allocdirect: lock not held");
2062 #endif
2063 if ((adp->ad_state & DEPCOMPLETE) == 0)
2064 LIST_REMOVE(adp, ad_deps);
2065 TAILQ_REMOVE(adphead, adp, ad_next);
2066 if ((adp->ad_state & COMPLETE) == 0)
2067 WORKLIST_REMOVE(&adp->ad_list);
2068 if (adp->ad_freefrag != NULL) {
2069 if (delay)
2070 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2071 &adp->ad_freefrag->ff_list);
2072 else
2073 add_to_worklist(&adp->ad_freefrag->ff_list);
2075 WORKITEM_FREE(adp, D_ALLOCDIRECT);
2079 * Prepare an inode to be freed. The actual free operation is not
2080 * done until the zero'ed inode has been written to disk.
2082 void
2083 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2085 struct inode *ip = VTOI(pvp);
2086 struct inodedep *inodedep;
2087 struct freefile *freefile;
2090 * This sets up the inode de-allocation dependency.
2092 MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2093 M_FREEFILE, M_SOFTDEP_FLAGS);
2094 freefile->fx_list.wk_type = D_FREEFILE;
2095 freefile->fx_list.wk_state = 0;
2096 freefile->fx_mode = mode;
2097 freefile->fx_oldinum = ino;
2098 freefile->fx_devvp = ip->i_devvp;
2099 freefile->fx_fs = ip->i_fs;
2102 * If the inodedep does not exist, then the zero'ed inode has
2103 * been written to disk. If the allocated inode has never been
2104 * written to disk, then the on-disk inode is zero'ed. In either
2105 * case we can free the file immediately.
2107 ACQUIRE_LOCK(&lk);
2108 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2109 check_inode_unwritten(inodedep)) {
2110 FREE_LOCK(&lk);
2111 handle_workitem_freefile(freefile);
2112 return;
2114 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2115 FREE_LOCK(&lk);
2119 * Check to see if an inode has never been written to disk. If
2120 * so free the inodedep and return success, otherwise return failure.
2121 * This routine must be called with splbio interrupts blocked.
2123 * If we still have a bitmap dependency, then the inode has never
2124 * been written to disk. Drop the dependency as it is no longer
2125 * necessary since the inode is being deallocated. We set the
2126 * ALLCOMPLETE flags since the bitmap now properly shows that the
2127 * inode is not allocated. Even if the inode is actively being
2128 * written, it has been rolled back to its zero'ed state, so we
2129 * are ensured that a zero inode is what is on the disk. For short
2130 * lived files, this change will usually result in removing all the
2131 * dependencies from the inode so that it can be freed immediately.
2133 static int
2134 check_inode_unwritten(struct inodedep *inodedep)
2137 if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2138 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2139 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2140 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2141 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2142 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2143 inodedep->id_nlinkdelta != 0)
2144 return (0);
2147 * Another process might be in initiate_write_inodeblock
2148 * trying to allocate memory without holding "Softdep Lock".
2150 if ((inodedep->id_state & IOSTARTED) != 0 &&
2151 inodedep->id_savedino == NULL)
2152 return(0);
2154 inodedep->id_state |= ALLCOMPLETE;
2155 LIST_REMOVE(inodedep, id_deps);
2156 inodedep->id_buf = NULL;
2157 if (inodedep->id_state & ONWORKLIST)
2158 WORKLIST_REMOVE(&inodedep->id_list);
2159 if (inodedep->id_savedino != NULL) {
2160 FREE(inodedep->id_savedino, M_INODEDEP);
2161 inodedep->id_savedino = NULL;
2163 if (free_inodedep(inodedep) == 0) {
2164 FREE_LOCK(&lk);
2165 panic("check_inode_unwritten: busy inode");
2167 return (1);
2171 * Try to free an inodedep structure. Return 1 if it could be freed.
2173 static int
2174 free_inodedep(struct inodedep *inodedep)
2177 if ((inodedep->id_state & ONWORKLIST) != 0 ||
2178 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2179 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2180 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2181 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2182 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2183 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2184 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2185 return (0);
2186 LIST_REMOVE(inodedep, id_hash);
2187 WORKITEM_FREE(inodedep, D_INODEDEP);
2188 num_inodedep -= 1;
2189 return (1);
2193 * This workitem routine performs the block de-allocation.
2194 * The workitem is added to the pending list after the updated
2195 * inode block has been written to disk. As mentioned above,
2196 * checks regarding the number of blocks de-allocated (compared
2197 * to the number of blocks allocated for the file) are also
2198 * performed in this function.
2200 static void
2201 handle_workitem_freeblocks(struct freeblks *freeblks)
2203 struct inode tip;
2204 ufs_daddr_t bn;
2205 struct fs *fs;
2206 int i, level, bsize;
2207 long nblocks, blocksreleased = 0;
2208 int error, allerror = 0;
2209 ufs_lbn_t baselbns[NIADDR], tmpval;
2211 tip.i_number = freeblks->fb_previousinum;
2212 tip.i_devvp = freeblks->fb_devvp;
2213 tip.i_dev = freeblks->fb_devvp->v_rdev;
2214 tip.i_fs = freeblks->fb_fs;
2215 tip.i_size = freeblks->fb_oldsize;
2216 tip.i_uid = freeblks->fb_uid;
2217 fs = freeblks->fb_fs;
2218 tmpval = 1;
2219 baselbns[0] = NDADDR;
2220 for (i = 1; i < NIADDR; i++) {
2221 tmpval *= NINDIR(fs);
2222 baselbns[i] = baselbns[i - 1] + tmpval;
2224 nblocks = btodb(fs->fs_bsize);
2225 blocksreleased = 0;
2227 * Indirect blocks first.
2229 for (level = (NIADDR - 1); level >= 0; level--) {
2230 if ((bn = freeblks->fb_iblks[level]) == 0)
2231 continue;
2232 if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2233 baselbns[level], &blocksreleased)) == 0)
2234 allerror = error;
2235 ffs_blkfree(&tip, bn, fs->fs_bsize);
2236 blocksreleased += nblocks;
2239 * All direct blocks or frags.
2241 for (i = (NDADDR - 1); i >= 0; i--) {
2242 if ((bn = freeblks->fb_dblks[i]) == 0)
2243 continue;
2244 bsize = blksize(fs, &tip, i);
2245 ffs_blkfree(&tip, bn, bsize);
2246 blocksreleased += btodb(bsize);
2249 #ifdef DIAGNOSTIC
2250 if (freeblks->fb_chkcnt != blocksreleased)
2251 kprintf("handle_workitem_freeblocks: block count\n");
2252 if (allerror)
2253 softdep_error("handle_workitem_freeblks", allerror);
2254 #endif /* DIAGNOSTIC */
2255 WORKITEM_FREE(freeblks, D_FREEBLKS);
2259 * Release blocks associated with the inode ip and stored in the indirect
2260 * block at doffset. If level is greater than SINGLE, the block is an
2261 * indirect block and recursive calls to indirtrunc must be used to
2262 * cleanse other indirect blocks.
2264 static int
2265 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2266 long *countp)
2268 struct buf *bp;
2269 ufs_daddr_t *bap;
2270 ufs_daddr_t nb;
2271 struct fs *fs;
2272 struct worklist *wk;
2273 struct indirdep *indirdep;
2274 int i, lbnadd, nblocks;
2275 int error, allerror = 0;
2277 fs = ip->i_fs;
2278 lbnadd = 1;
2279 for (i = level; i > 0; i--)
2280 lbnadd *= NINDIR(fs);
2282 * Get buffer of block pointers to be freed. This routine is not
2283 * called until the zero'ed inode has been written, so it is safe
2284 * to free blocks as they are encountered. Because the inode has
2285 * been zero'ed, calls to bmap on these blocks will fail. So, we
2286 * have to use the on-disk address and the block device for the
2287 * filesystem to look them up. If the file was deleted before its
2288 * indirect blocks were all written to disk, the routine that set
2289 * us up (deallocate_dependencies) will have arranged to leave
2290 * a complete copy of the indirect block in memory for our use.
2291 * Otherwise we have to read the blocks in from the disk.
2293 ACQUIRE_LOCK(&lk);
2294 if ((bp = findblk(ip->i_devvp, doffset)) != NULL &&
2295 (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2297 * bp must be ir_savebp, which is held locked for our use.
2299 if (wk->wk_type != D_INDIRDEP ||
2300 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2301 (indirdep->ir_state & GOINGAWAY) == 0) {
2302 FREE_LOCK(&lk);
2303 panic("indir_trunc: lost indirdep");
2305 WORKLIST_REMOVE(wk);
2306 WORKITEM_FREE(indirdep, D_INDIRDEP);
2307 if (LIST_FIRST(&bp->b_dep) != NULL) {
2308 FREE_LOCK(&lk);
2309 panic("indir_trunc: dangling dep");
2311 FREE_LOCK(&lk);
2312 } else {
2313 FREE_LOCK(&lk);
2314 error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2315 if (error)
2316 return (error);
2319 * Recursively free indirect blocks.
2321 bap = (ufs_daddr_t *)bp->b_data;
2322 nblocks = btodb(fs->fs_bsize);
2323 for (i = NINDIR(fs) - 1; i >= 0; i--) {
2324 if ((nb = bap[i]) == 0)
2325 continue;
2326 if (level != 0) {
2327 if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2328 level - 1, lbn + (i * lbnadd), countp)) != 0)
2329 allerror = error;
2331 ffs_blkfree(ip, nb, fs->fs_bsize);
2332 *countp += nblocks;
2334 bp->b_flags |= B_INVAL | B_NOCACHE;
2335 brelse(bp);
2336 return (allerror);
2340 * Free an allocindir.
2341 * This routine must be called with splbio interrupts blocked.
2343 static void
2344 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2346 struct freefrag *freefrag;
2348 #ifdef DEBUG
2349 if (lk.lkt_held == NOHOLDER)
2350 panic("free_allocindir: lock not held");
2351 #endif
2352 if ((aip->ai_state & DEPCOMPLETE) == 0)
2353 LIST_REMOVE(aip, ai_deps);
2354 if (aip->ai_state & ONWORKLIST)
2355 WORKLIST_REMOVE(&aip->ai_list);
2356 LIST_REMOVE(aip, ai_next);
2357 if ((freefrag = aip->ai_freefrag) != NULL) {
2358 if (inodedep == NULL)
2359 add_to_worklist(&freefrag->ff_list);
2360 else
2361 WORKLIST_INSERT(&inodedep->id_bufwait,
2362 &freefrag->ff_list);
2364 WORKITEM_FREE(aip, D_ALLOCINDIR);
2368 * Directory entry addition dependencies.
2370 * When adding a new directory entry, the inode (with its incremented link
2371 * count) must be written to disk before the directory entry's pointer to it.
2372 * Also, if the inode is newly allocated, the corresponding freemap must be
2373 * updated (on disk) before the directory entry's pointer. These requirements
2374 * are met via undo/redo on the directory entry's pointer, which consists
2375 * simply of the inode number.
2377 * As directory entries are added and deleted, the free space within a
2378 * directory block can become fragmented. The ufs filesystem will compact
2379 * a fragmented directory block to make space for a new entry. When this
2380 * occurs, the offsets of previously added entries change. Any "diradd"
2381 * dependency structures corresponding to these entries must be updated with
2382 * the new offsets.
2386 * This routine is called after the in-memory inode's link
2387 * count has been incremented, but before the directory entry's
2388 * pointer to the inode has been set.
2390 * Parameters:
2391 * bp: buffer containing directory block
2392 * dp: inode for directory
2393 * diroffset: offset of new entry in directory
2394 * newinum: inode referenced by new directory entry
2395 * newdirbp: non-NULL => contents of new mkdir
2397 void
2398 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2399 ino_t newinum, struct buf *newdirbp)
2401 int offset; /* offset of new entry within directory block */
2402 ufs_lbn_t lbn; /* block in directory containing new entry */
2403 struct fs *fs;
2404 struct diradd *dap;
2405 struct pagedep *pagedep;
2406 struct inodedep *inodedep;
2407 struct mkdir *mkdir1, *mkdir2;
2410 * Whiteouts have no dependencies.
2412 if (newinum == WINO) {
2413 if (newdirbp != NULL)
2414 bdwrite(newdirbp);
2415 return;
2418 fs = dp->i_fs;
2419 lbn = lblkno(fs, diroffset);
2420 offset = blkoff(fs, diroffset);
2421 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2422 M_SOFTDEP_FLAGS);
2423 bzero(dap, sizeof(struct diradd));
2424 dap->da_list.wk_type = D_DIRADD;
2425 dap->da_offset = offset;
2426 dap->da_newinum = newinum;
2427 dap->da_state = ATTACHED;
2428 if (newdirbp == NULL) {
2429 dap->da_state |= DEPCOMPLETE;
2430 ACQUIRE_LOCK(&lk);
2431 } else {
2432 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2433 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2434 M_SOFTDEP_FLAGS);
2435 mkdir1->md_list.wk_type = D_MKDIR;
2436 mkdir1->md_state = MKDIR_BODY;
2437 mkdir1->md_diradd = dap;
2438 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2439 M_SOFTDEP_FLAGS);
2440 mkdir2->md_list.wk_type = D_MKDIR;
2441 mkdir2->md_state = MKDIR_PARENT;
2442 mkdir2->md_diradd = dap;
2444 * Dependency on "." and ".." being written to disk.
2446 mkdir1->md_buf = newdirbp;
2447 ACQUIRE_LOCK(&lk);
2448 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2449 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2450 FREE_LOCK(&lk);
2451 bdwrite(newdirbp);
2453 * Dependency on link count increase for parent directory
2455 ACQUIRE_LOCK(&lk);
2456 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2457 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2458 dap->da_state &= ~MKDIR_PARENT;
2459 WORKITEM_FREE(mkdir2, D_MKDIR);
2460 } else {
2461 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2462 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2466 * Link into parent directory pagedep to await its being written.
2468 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2469 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2470 dap->da_pagedep = pagedep;
2471 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2472 da_pdlist);
2474 * Link into its inodedep. Put it on the id_bufwait list if the inode
2475 * is not yet written. If it is written, do the post-inode write
2476 * processing to put it on the id_pendinghd list.
2478 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2479 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2480 diradd_inode_written(dap, inodedep);
2481 else
2482 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2483 FREE_LOCK(&lk);
2487 * This procedure is called to change the offset of a directory
2488 * entry when compacting a directory block which must be owned
2489 * exclusively by the caller. Note that the actual entry movement
2490 * must be done in this procedure to ensure that no I/O completions
2491 * occur while the move is in progress.
2493 * Parameters:
2494 * dp: inode for directory
2495 * base: address of dp->i_offset
2496 * oldloc: address of old directory location
2497 * newloc: address of new directory location
2498 * entrysize: size of directory entry
2500 void
2501 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2502 caddr_t oldloc, caddr_t newloc,
2503 int entrysize)
2505 int offset, oldoffset, newoffset;
2506 struct pagedep *pagedep;
2507 struct diradd *dap;
2508 ufs_lbn_t lbn;
2510 ACQUIRE_LOCK(&lk);
2511 lbn = lblkno(dp->i_fs, dp->i_offset);
2512 offset = blkoff(dp->i_fs, dp->i_offset);
2513 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2514 goto done;
2515 oldoffset = offset + (oldloc - base);
2516 newoffset = offset + (newloc - base);
2518 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2519 if (dap->da_offset != oldoffset)
2520 continue;
2521 dap->da_offset = newoffset;
2522 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2523 break;
2524 LIST_REMOVE(dap, da_pdlist);
2525 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2526 dap, da_pdlist);
2527 break;
2529 if (dap == NULL) {
2531 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2532 if (dap->da_offset == oldoffset) {
2533 dap->da_offset = newoffset;
2534 break;
2538 done:
2539 bcopy(oldloc, newloc, entrysize);
2540 FREE_LOCK(&lk);
2544 * Free a diradd dependency structure. This routine must be called
2545 * with splbio interrupts blocked.
2547 static void
2548 free_diradd(struct diradd *dap)
2550 struct dirrem *dirrem;
2551 struct pagedep *pagedep;
2552 struct inodedep *inodedep;
2553 struct mkdir *mkdir, *nextmd;
2555 #ifdef DEBUG
2556 if (lk.lkt_held == NOHOLDER)
2557 panic("free_diradd: lock not held");
2558 #endif
2559 WORKLIST_REMOVE(&dap->da_list);
2560 LIST_REMOVE(dap, da_pdlist);
2561 if ((dap->da_state & DIRCHG) == 0) {
2562 pagedep = dap->da_pagedep;
2563 } else {
2564 dirrem = dap->da_previous;
2565 pagedep = dirrem->dm_pagedep;
2566 dirrem->dm_dirinum = pagedep->pd_ino;
2567 add_to_worklist(&dirrem->dm_list);
2569 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2570 0, &inodedep) != 0)
2571 (void) free_inodedep(inodedep);
2572 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2573 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2574 nextmd = LIST_NEXT(mkdir, md_mkdirs);
2575 if (mkdir->md_diradd != dap)
2576 continue;
2577 dap->da_state &= ~mkdir->md_state;
2578 WORKLIST_REMOVE(&mkdir->md_list);
2579 LIST_REMOVE(mkdir, md_mkdirs);
2580 WORKITEM_FREE(mkdir, D_MKDIR);
2582 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2583 FREE_LOCK(&lk);
2584 panic("free_diradd: unfound ref");
2587 WORKITEM_FREE(dap, D_DIRADD);
2591 * Directory entry removal dependencies.
2593 * When removing a directory entry, the entry's inode pointer must be
2594 * zero'ed on disk before the corresponding inode's link count is decremented
2595 * (possibly freeing the inode for re-use). This dependency is handled by
2596 * updating the directory entry but delaying the inode count reduction until
2597 * after the directory block has been written to disk. After this point, the
2598 * inode count can be decremented whenever it is convenient.
2602 * This routine should be called immediately after removing
2603 * a directory entry. The inode's link count should not be
2604 * decremented by the calling procedure -- the soft updates
2605 * code will do this task when it is safe.
2607 * Parameters:
2608 * bp: buffer containing directory block
2609 * dp: inode for the directory being modified
2610 * ip: inode for directory entry being removed
2611 * isrmdir: indicates if doing RMDIR
2613 void
2614 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2615 int isrmdir)
2617 struct dirrem *dirrem, *prevdirrem;
2620 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2622 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2625 * If the COMPLETE flag is clear, then there were no active
2626 * entries and we want to roll back to a zeroed entry until
2627 * the new inode is committed to disk. If the COMPLETE flag is
2628 * set then we have deleted an entry that never made it to
2629 * disk. If the entry we deleted resulted from a name change,
2630 * then the old name still resides on disk. We cannot delete
2631 * its inode (returned to us in prevdirrem) until the zeroed
2632 * directory entry gets to disk. The new inode has never been
2633 * referenced on the disk, so can be deleted immediately.
2635 if ((dirrem->dm_state & COMPLETE) == 0) {
2636 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2637 dm_next);
2638 FREE_LOCK(&lk);
2639 } else {
2640 if (prevdirrem != NULL)
2641 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2642 prevdirrem, dm_next);
2643 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2644 FREE_LOCK(&lk);
2645 handle_workitem_remove(dirrem);
2650 * Allocate a new dirrem if appropriate and return it along with
2651 * its associated pagedep. Called without a lock, returns with lock.
2653 static long num_dirrem; /* number of dirrem allocated */
2656 * Parameters:
2657 * bp: buffer containing directory block
2658 * dp: inode for the directory being modified
2659 * ip: inode for directory entry being removed
2660 * isrmdir: indicates if doing RMDIR
2661 * prevdirremp: previously referenced inode, if any
2663 static struct dirrem *
2664 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2665 int isrmdir, struct dirrem **prevdirremp)
2667 int offset;
2668 ufs_lbn_t lbn;
2669 struct diradd *dap;
2670 struct dirrem *dirrem;
2671 struct pagedep *pagedep;
2674 * Whiteouts have no deletion dependencies.
2676 if (ip == NULL)
2677 panic("newdirrem: whiteout");
2679 * If we are over our limit, try to improve the situation.
2680 * Limiting the number of dirrem structures will also limit
2681 * the number of freefile and freeblks structures.
2683 if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2684 (void) request_cleanup(FLUSH_REMOVE, 0);
2685 num_dirrem += 1;
2686 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2687 M_DIRREM, M_SOFTDEP_FLAGS);
2688 bzero(dirrem, sizeof(struct dirrem));
2689 dirrem->dm_list.wk_type = D_DIRREM;
2690 dirrem->dm_state = isrmdir ? RMDIR : 0;
2691 dirrem->dm_mnt = ITOV(ip)->v_mount;
2692 dirrem->dm_oldinum = ip->i_number;
2693 *prevdirremp = NULL;
2695 ACQUIRE_LOCK(&lk);
2696 lbn = lblkno(dp->i_fs, dp->i_offset);
2697 offset = blkoff(dp->i_fs, dp->i_offset);
2698 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2699 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2700 dirrem->dm_pagedep = pagedep;
2702 * Check for a diradd dependency for the same directory entry.
2703 * If present, then both dependencies become obsolete and can
2704 * be de-allocated. Check for an entry on both the pd_dirraddhd
2705 * list and the pd_pendinghd list.
2708 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2709 if (dap->da_offset == offset)
2710 break;
2711 if (dap == NULL) {
2713 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2714 if (dap->da_offset == offset)
2715 break;
2716 if (dap == NULL)
2717 return (dirrem);
2720 * Must be ATTACHED at this point.
2722 if ((dap->da_state & ATTACHED) == 0) {
2723 FREE_LOCK(&lk);
2724 panic("newdirrem: not ATTACHED");
2726 if (dap->da_newinum != ip->i_number) {
2727 FREE_LOCK(&lk);
2728 panic("newdirrem: inum %"PRId64" should be %"PRId64,
2729 ip->i_number, dap->da_newinum);
2732 * If we are deleting a changed name that never made it to disk,
2733 * then return the dirrem describing the previous inode (which
2734 * represents the inode currently referenced from this entry on disk).
2736 if ((dap->da_state & DIRCHG) != 0) {
2737 *prevdirremp = dap->da_previous;
2738 dap->da_state &= ~DIRCHG;
2739 dap->da_pagedep = pagedep;
2742 * We are deleting an entry that never made it to disk.
2743 * Mark it COMPLETE so we can delete its inode immediately.
2745 dirrem->dm_state |= COMPLETE;
2746 free_diradd(dap);
2747 return (dirrem);
2751 * Directory entry change dependencies.
2753 * Changing an existing directory entry requires that an add operation
2754 * be completed first followed by a deletion. The semantics for the addition
2755 * are identical to the description of adding a new entry above except
2756 * that the rollback is to the old inode number rather than zero. Once
2757 * the addition dependency is completed, the removal is done as described
2758 * in the removal routine above.
2762 * This routine should be called immediately after changing
2763 * a directory entry. The inode's link count should not be
2764 * decremented by the calling procedure -- the soft updates
2765 * code will perform this task when it is safe.
2767 * Parameters:
2768 * bp: buffer containing directory block
2769 * dp: inode for the directory being modified
2770 * ip: inode for directory entry being removed
2771 * newinum: new inode number for changed entry
2772 * isrmdir: indicates if doing RMDIR
2774 void
2775 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2776 struct inode *ip, ino_t newinum,
2777 int isrmdir)
2779 int offset;
2780 struct diradd *dap = NULL;
2781 struct dirrem *dirrem, *prevdirrem;
2782 struct pagedep *pagedep;
2783 struct inodedep *inodedep;
2785 offset = blkoff(dp->i_fs, dp->i_offset);
2788 * Whiteouts do not need diradd dependencies.
2790 if (newinum != WINO) {
2791 MALLOC(dap, struct diradd *, sizeof(struct diradd),
2792 M_DIRADD, M_SOFTDEP_FLAGS);
2793 bzero(dap, sizeof(struct diradd));
2794 dap->da_list.wk_type = D_DIRADD;
2795 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2796 dap->da_offset = offset;
2797 dap->da_newinum = newinum;
2801 * Allocate a new dirrem and ACQUIRE_LOCK.
2803 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2804 pagedep = dirrem->dm_pagedep;
2806 * The possible values for isrmdir:
2807 * 0 - non-directory file rename
2808 * 1 - directory rename within same directory
2809 * inum - directory rename to new directory of given inode number
2810 * When renaming to a new directory, we are both deleting and
2811 * creating a new directory entry, so the link count on the new
2812 * directory should not change. Thus we do not need the followup
2813 * dirrem which is usually done in handle_workitem_remove. We set
2814 * the DIRCHG flag to tell handle_workitem_remove to skip the
2815 * followup dirrem.
2817 if (isrmdir > 1)
2818 dirrem->dm_state |= DIRCHG;
2821 * Whiteouts have no additional dependencies,
2822 * so just put the dirrem on the correct list.
2824 if (newinum == WINO) {
2825 if ((dirrem->dm_state & COMPLETE) == 0) {
2826 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2827 dm_next);
2828 } else {
2829 dirrem->dm_dirinum = pagedep->pd_ino;
2830 add_to_worklist(&dirrem->dm_list);
2832 FREE_LOCK(&lk);
2833 return;
2837 * If the COMPLETE flag is clear, then there were no active
2838 * entries and we want to roll back to the previous inode until
2839 * the new inode is committed to disk. If the COMPLETE flag is
2840 * set, then we have deleted an entry that never made it to disk.
2841 * If the entry we deleted resulted from a name change, then the old
2842 * inode reference still resides on disk. Any rollback that we do
2843 * needs to be to that old inode (returned to us in prevdirrem). If
2844 * the entry we deleted resulted from a create, then there is
2845 * no entry on the disk, so we want to roll back to zero rather
2846 * than the uncommitted inode. In either of the COMPLETE cases we
2847 * want to immediately free the unwritten and unreferenced inode.
2849 if ((dirrem->dm_state & COMPLETE) == 0) {
2850 dap->da_previous = dirrem;
2851 } else {
2852 if (prevdirrem != NULL) {
2853 dap->da_previous = prevdirrem;
2854 } else {
2855 dap->da_state &= ~DIRCHG;
2856 dap->da_pagedep = pagedep;
2858 dirrem->dm_dirinum = pagedep->pd_ino;
2859 add_to_worklist(&dirrem->dm_list);
2862 * Link into its inodedep. Put it on the id_bufwait list if the inode
2863 * is not yet written. If it is written, do the post-inode write
2864 * processing to put it on the id_pendinghd list.
2866 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2867 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2868 dap->da_state |= COMPLETE;
2869 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2870 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2871 } else {
2872 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2873 dap, da_pdlist);
2874 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2876 FREE_LOCK(&lk);
2880 * Called whenever the link count on an inode is changed.
2881 * It creates an inode dependency so that the new reference(s)
2882 * to the inode cannot be committed to disk until the updated
2883 * inode has been written.
2885 * Parameters:
2886 * ip: the inode with the increased link count
2888 void
2889 softdep_change_linkcnt(struct inode *ip)
2891 struct inodedep *inodedep;
2893 ACQUIRE_LOCK(&lk);
2894 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2895 if (ip->i_nlink < ip->i_effnlink) {
2896 FREE_LOCK(&lk);
2897 panic("softdep_change_linkcnt: bad delta");
2899 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2900 FREE_LOCK(&lk);
2904 * This workitem decrements the inode's link count.
2905 * If the link count reaches zero, the file is removed.
2907 static void
2908 handle_workitem_remove(struct dirrem *dirrem)
2910 struct inodedep *inodedep;
2911 struct vnode *vp;
2912 struct inode *ip;
2913 ino_t oldinum;
2914 int error;
2916 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
2917 softdep_error("handle_workitem_remove: vget", error);
2918 return;
2920 ip = VTOI(vp);
2921 ACQUIRE_LOCK(&lk);
2922 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2923 FREE_LOCK(&lk);
2924 panic("handle_workitem_remove: lost inodedep");
2927 * Normal file deletion.
2929 if ((dirrem->dm_state & RMDIR) == 0) {
2930 ip->i_nlink--;
2931 ip->i_flag |= IN_CHANGE;
2932 if (ip->i_nlink < ip->i_effnlink) {
2933 FREE_LOCK(&lk);
2934 panic("handle_workitem_remove: bad file delta");
2936 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2937 FREE_LOCK(&lk);
2938 vput(vp);
2939 num_dirrem -= 1;
2940 WORKITEM_FREE(dirrem, D_DIRREM);
2941 return;
2944 * Directory deletion. Decrement reference count for both the
2945 * just deleted parent directory entry and the reference for ".".
2946 * Next truncate the directory to length zero. When the
2947 * truncation completes, arrange to have the reference count on
2948 * the parent decremented to account for the loss of "..".
2950 ip->i_nlink -= 2;
2951 ip->i_flag |= IN_CHANGE;
2952 if (ip->i_nlink < ip->i_effnlink) {
2953 FREE_LOCK(&lk);
2954 panic("handle_workitem_remove: bad dir delta");
2956 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2957 FREE_LOCK(&lk);
2958 if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2959 softdep_error("handle_workitem_remove: truncate", error);
2961 * Rename a directory to a new parent. Since, we are both deleting
2962 * and creating a new directory entry, the link count on the new
2963 * directory should not change. Thus we skip the followup dirrem.
2965 if (dirrem->dm_state & DIRCHG) {
2966 vput(vp);
2967 num_dirrem -= 1;
2968 WORKITEM_FREE(dirrem, D_DIRREM);
2969 return;
2972 * If the inodedep does not exist, then the zero'ed inode has
2973 * been written to disk. If the allocated inode has never been
2974 * written to disk, then the on-disk inode is zero'ed. In either
2975 * case we can remove the file immediately.
2977 ACQUIRE_LOCK(&lk);
2978 dirrem->dm_state = 0;
2979 oldinum = dirrem->dm_oldinum;
2980 dirrem->dm_oldinum = dirrem->dm_dirinum;
2981 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2982 check_inode_unwritten(inodedep)) {
2983 FREE_LOCK(&lk);
2984 vput(vp);
2985 handle_workitem_remove(dirrem);
2986 return;
2988 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2989 FREE_LOCK(&lk);
2990 ip->i_flag |= IN_CHANGE;
2991 ffs_update(vp, 0);
2992 vput(vp);
2996 * Inode de-allocation dependencies.
2998 * When an inode's link count is reduced to zero, it can be de-allocated. We
2999 * found it convenient to postpone de-allocation until after the inode is
3000 * written to disk with its new link count (zero). At this point, all of the
3001 * on-disk inode's block pointers are nullified and, with careful dependency
3002 * list ordering, all dependencies related to the inode will be satisfied and
3003 * the corresponding dependency structures de-allocated. So, if/when the
3004 * inode is reused, there will be no mixing of old dependencies with new
3005 * ones. This artificial dependency is set up by the block de-allocation
3006 * procedure above (softdep_setup_freeblocks) and completed by the
3007 * following procedure.
3009 static void
3010 handle_workitem_freefile(struct freefile *freefile)
3012 struct vnode vp;
3013 struct inode tip;
3014 struct inodedep *idp;
3015 int error;
3017 #ifdef DEBUG
3018 ACQUIRE_LOCK(&lk);
3019 error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
3020 FREE_LOCK(&lk);
3021 if (error)
3022 panic("handle_workitem_freefile: inodedep survived");
3023 #endif
3024 tip.i_devvp = freefile->fx_devvp;
3025 tip.i_dev = freefile->fx_devvp->v_rdev;
3026 tip.i_fs = freefile->fx_fs;
3027 vp.v_data = &tip;
3028 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3029 softdep_error("handle_workitem_freefile", error);
3030 WORKITEM_FREE(freefile, D_FREEFILE);
3034 * Helper function which unlinks marker element from work list and returns
3035 * the next element on the list.
3037 static __inline struct worklist *
3038 markernext(struct worklist *marker)
3040 struct worklist *next;
3042 next = LIST_NEXT(marker, wk_list);
3043 LIST_REMOVE(marker, wk_list);
3044 return next;
3048 * Disk writes.
3050 * The dependency structures constructed above are most actively used when file
3051 * system blocks are written to disk. No constraints are placed on when a
3052 * block can be written, but unsatisfied update dependencies are made safe by
3053 * modifying (or replacing) the source memory for the duration of the disk
3054 * write. When the disk write completes, the memory block is again brought
3055 * up-to-date.
3057 * In-core inode structure reclamation.
3059 * Because there are a finite number of "in-core" inode structures, they are
3060 * reused regularly. By transferring all inode-related dependencies to the
3061 * in-memory inode block and indexing them separately (via "inodedep"s), we
3062 * can allow "in-core" inode structures to be reused at any time and avoid
3063 * any increase in contention.
3065 * Called just before entering the device driver to initiate a new disk I/O.
3066 * The buffer must be locked, thus, no I/O completion operations can occur
3067 * while we are manipulating its associated dependencies.
3069 * Parameters:
3070 * bp: structure describing disk write to occur
3072 static void
3073 softdep_disk_io_initiation(struct buf *bp)
3075 struct worklist *wk;
3076 struct worklist marker;
3077 struct indirdep *indirdep;
3080 * We only care about write operations. There should never
3081 * be dependencies for reads.
3083 if (bp->b_cmd == BUF_CMD_READ)
3084 panic("softdep_disk_io_initiation: read");
3086 marker.wk_type = D_LAST + 1; /* Not a normal workitem */
3089 * Do any necessary pre-I/O processing.
3091 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3092 LIST_INSERT_AFTER(wk, &marker, wk_list);
3094 switch (wk->wk_type) {
3096 case D_PAGEDEP:
3097 initiate_write_filepage(WK_PAGEDEP(wk), bp);
3098 continue;
3100 case D_INODEDEP:
3101 initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3102 continue;
3104 case D_INDIRDEP:
3105 indirdep = WK_INDIRDEP(wk);
3106 if (indirdep->ir_state & GOINGAWAY)
3107 panic("disk_io_initiation: indirdep gone");
3109 * If there are no remaining dependencies, this
3110 * will be writing the real pointers, so the
3111 * dependency can be freed.
3113 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3114 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3115 brelse(indirdep->ir_savebp);
3116 /* inline expand WORKLIST_REMOVE(wk); */
3117 wk->wk_state &= ~ONWORKLIST;
3118 LIST_REMOVE(wk, wk_list);
3119 WORKITEM_FREE(indirdep, D_INDIRDEP);
3120 continue;
3123 * Replace up-to-date version with safe version.
3125 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3126 M_INDIRDEP, M_SOFTDEP_FLAGS);
3127 ACQUIRE_LOCK(&lk);
3128 indirdep->ir_state &= ~ATTACHED;
3129 indirdep->ir_state |= UNDONE;
3130 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3131 bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3132 bp->b_bcount);
3133 FREE_LOCK(&lk);
3134 continue;
3136 case D_MKDIR:
3137 case D_BMSAFEMAP:
3138 case D_ALLOCDIRECT:
3139 case D_ALLOCINDIR:
3140 continue;
3142 default:
3143 panic("handle_disk_io_initiation: Unexpected type %s",
3144 TYPENAME(wk->wk_type));
3145 /* NOTREACHED */
3151 * Called from within the procedure above to deal with unsatisfied
3152 * allocation dependencies in a directory. The buffer must be locked,
3153 * thus, no I/O completion operations can occur while we are
3154 * manipulating its associated dependencies.
3156 static void
3157 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3159 struct diradd *dap;
3160 struct direct *ep;
3161 int i;
3163 if (pagedep->pd_state & IOSTARTED) {
3165 * This can only happen if there is a driver that does not
3166 * understand chaining. Here biodone will reissue the call
3167 * to strategy for the incomplete buffers.
3169 kprintf("initiate_write_filepage: already started\n");
3170 return;
3172 pagedep->pd_state |= IOSTARTED;
3173 ACQUIRE_LOCK(&lk);
3174 for (i = 0; i < DAHASHSZ; i++) {
3175 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3176 ep = (struct direct *)
3177 ((char *)bp->b_data + dap->da_offset);
3178 if (ep->d_ino != dap->da_newinum) {
3179 FREE_LOCK(&lk);
3180 panic("%s: dir inum %d != new %"PRId64,
3181 "initiate_write_filepage",
3182 ep->d_ino, dap->da_newinum);
3184 if (dap->da_state & DIRCHG)
3185 ep->d_ino = dap->da_previous->dm_oldinum;
3186 else
3187 ep->d_ino = 0;
3188 dap->da_state &= ~ATTACHED;
3189 dap->da_state |= UNDONE;
3192 FREE_LOCK(&lk);
3196 * Called from within the procedure above to deal with unsatisfied
3197 * allocation dependencies in an inodeblock. The buffer must be
3198 * locked, thus, no I/O completion operations can occur while we
3199 * are manipulating its associated dependencies.
3201 * Parameters:
3202 * bp: The inode block
3204 static void
3205 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3207 struct allocdirect *adp, *lastadp;
3208 struct ufs1_dinode *dp;
3209 struct ufs1_dinode *sip;
3210 struct fs *fs;
3211 ufs_lbn_t prevlbn = 0;
3212 int i, deplist;
3214 if (inodedep->id_state & IOSTARTED)
3215 panic("initiate_write_inodeblock: already started");
3216 inodedep->id_state |= IOSTARTED;
3217 fs = inodedep->id_fs;
3218 dp = (struct ufs1_dinode *)bp->b_data +
3219 ino_to_fsbo(fs, inodedep->id_ino);
3221 * If the bitmap is not yet written, then the allocated
3222 * inode cannot be written to disk.
3224 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3225 if (inodedep->id_savedino != NULL)
3226 panic("initiate_write_inodeblock: already doing I/O");
3227 MALLOC(sip, struct ufs1_dinode *,
3228 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3229 inodedep->id_savedino = sip;
3230 *inodedep->id_savedino = *dp;
3231 bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3232 dp->di_gen = inodedep->id_savedino->di_gen;
3233 return;
3236 * If no dependencies, then there is nothing to roll back.
3238 inodedep->id_savedsize = dp->di_size;
3239 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3240 return;
3242 * Set the dependencies to busy.
3244 ACQUIRE_LOCK(&lk);
3245 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3246 adp = TAILQ_NEXT(adp, ad_next)) {
3247 #ifdef DIAGNOSTIC
3248 if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3249 FREE_LOCK(&lk);
3250 panic("softdep_write_inodeblock: lbn order");
3252 prevlbn = adp->ad_lbn;
3253 if (adp->ad_lbn < NDADDR &&
3254 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3255 FREE_LOCK(&lk);
3256 panic("%s: direct pointer #%ld mismatch %d != %d",
3257 "softdep_write_inodeblock", adp->ad_lbn,
3258 dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3260 if (adp->ad_lbn >= NDADDR &&
3261 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3262 FREE_LOCK(&lk);
3263 panic("%s: indirect pointer #%ld mismatch %d != %d",
3264 "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3265 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3267 deplist |= 1 << adp->ad_lbn;
3268 if ((adp->ad_state & ATTACHED) == 0) {
3269 FREE_LOCK(&lk);
3270 panic("softdep_write_inodeblock: Unknown state 0x%x",
3271 adp->ad_state);
3273 #endif /* DIAGNOSTIC */
3274 adp->ad_state &= ~ATTACHED;
3275 adp->ad_state |= UNDONE;
3278 * The on-disk inode cannot claim to be any larger than the last
3279 * fragment that has been written. Otherwise, the on-disk inode
3280 * might have fragments that were not the last block in the file
3281 * which would corrupt the filesystem.
3283 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3284 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3285 if (adp->ad_lbn >= NDADDR)
3286 break;
3287 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3288 /* keep going until hitting a rollback to a frag */
3289 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3290 continue;
3291 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3292 for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3293 #ifdef DIAGNOSTIC
3294 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3295 FREE_LOCK(&lk);
3296 panic("softdep_write_inodeblock: lost dep1");
3298 #endif /* DIAGNOSTIC */
3299 dp->di_db[i] = 0;
3301 for (i = 0; i < NIADDR; i++) {
3302 #ifdef DIAGNOSTIC
3303 if (dp->di_ib[i] != 0 &&
3304 (deplist & ((1 << NDADDR) << i)) == 0) {
3305 FREE_LOCK(&lk);
3306 panic("softdep_write_inodeblock: lost dep2");
3308 #endif /* DIAGNOSTIC */
3309 dp->di_ib[i] = 0;
3311 FREE_LOCK(&lk);
3312 return;
3315 * If we have zero'ed out the last allocated block of the file,
3316 * roll back the size to the last currently allocated block.
3317 * We know that this last allocated block is a full-sized as
3318 * we already checked for fragments in the loop above.
3320 if (lastadp != NULL &&
3321 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3322 for (i = lastadp->ad_lbn; i >= 0; i--)
3323 if (dp->di_db[i] != 0)
3324 break;
3325 dp->di_size = (i + 1) * fs->fs_bsize;
3328 * The only dependencies are for indirect blocks.
3330 * The file size for indirect block additions is not guaranteed.
3331 * Such a guarantee would be non-trivial to achieve. The conventional
3332 * synchronous write implementation also does not make this guarantee.
3333 * Fsck should catch and fix discrepancies. Arguably, the file size
3334 * can be over-estimated without destroying integrity when the file
3335 * moves into the indirect blocks (i.e., is large). If we want to
3336 * postpone fsck, we are stuck with this argument.
3338 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3339 dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3340 FREE_LOCK(&lk);
3344 * This routine is called during the completion interrupt
3345 * service routine for a disk write (from the procedure called
3346 * by the device driver to inform the filesystem caches of
3347 * a request completion). It should be called early in this
3348 * procedure, before the block is made available to other
3349 * processes or other routines are called.
3351 * Parameters:
3352 * bp: describes the completed disk write
3354 static void
3355 softdep_disk_write_complete(struct buf *bp)
3357 struct worklist *wk;
3358 struct workhead reattach;
3359 struct newblk *newblk;
3360 struct allocindir *aip;
3361 struct allocdirect *adp;
3362 struct indirdep *indirdep;
3363 struct inodedep *inodedep;
3364 struct bmsafemap *bmsafemap;
3366 #ifdef DEBUG
3367 if (lk.lkt_held != NOHOLDER)
3368 panic("softdep_disk_write_complete: lock is held");
3369 lk.lkt_held = SPECIAL_FLAG;
3370 #endif
3371 LIST_INIT(&reattach);
3372 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3373 WORKLIST_REMOVE(wk);
3374 switch (wk->wk_type) {
3376 case D_PAGEDEP:
3377 if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3378 WORKLIST_INSERT(&reattach, wk);
3379 continue;
3381 case D_INODEDEP:
3382 if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3383 WORKLIST_INSERT(&reattach, wk);
3384 continue;
3386 case D_BMSAFEMAP:
3387 bmsafemap = WK_BMSAFEMAP(wk);
3388 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3389 newblk->nb_state |= DEPCOMPLETE;
3390 newblk->nb_bmsafemap = NULL;
3391 LIST_REMOVE(newblk, nb_deps);
3393 while ((adp =
3394 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3395 adp->ad_state |= DEPCOMPLETE;
3396 adp->ad_buf = NULL;
3397 LIST_REMOVE(adp, ad_deps);
3398 handle_allocdirect_partdone(adp);
3400 while ((aip =
3401 LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3402 aip->ai_state |= DEPCOMPLETE;
3403 aip->ai_buf = NULL;
3404 LIST_REMOVE(aip, ai_deps);
3405 handle_allocindir_partdone(aip);
3407 while ((inodedep =
3408 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3409 inodedep->id_state |= DEPCOMPLETE;
3410 LIST_REMOVE(inodedep, id_deps);
3411 inodedep->id_buf = NULL;
3413 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3414 continue;
3416 case D_MKDIR:
3417 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3418 continue;
3420 case D_ALLOCDIRECT:
3421 adp = WK_ALLOCDIRECT(wk);
3422 adp->ad_state |= COMPLETE;
3423 handle_allocdirect_partdone(adp);
3424 continue;
3426 case D_ALLOCINDIR:
3427 aip = WK_ALLOCINDIR(wk);
3428 aip->ai_state |= COMPLETE;
3429 handle_allocindir_partdone(aip);
3430 continue;
3432 case D_INDIRDEP:
3433 indirdep = WK_INDIRDEP(wk);
3434 if (indirdep->ir_state & GOINGAWAY) {
3435 lk.lkt_held = NOHOLDER;
3436 panic("disk_write_complete: indirdep gone");
3438 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3439 FREE(indirdep->ir_saveddata, M_INDIRDEP);
3440 indirdep->ir_saveddata = 0;
3441 indirdep->ir_state &= ~UNDONE;
3442 indirdep->ir_state |= ATTACHED;
3443 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3444 handle_allocindir_partdone(aip);
3445 if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3446 lk.lkt_held = NOHOLDER;
3447 panic("disk_write_complete: not gone");
3450 WORKLIST_INSERT(&reattach, wk);
3451 if ((bp->b_flags & B_DELWRI) == 0)
3452 stat_indir_blk_ptrs++;
3453 bdirty(bp);
3454 continue;
3456 default:
3457 lk.lkt_held = NOHOLDER;
3458 panic("handle_disk_write_complete: Unknown type %s",
3459 TYPENAME(wk->wk_type));
3460 /* NOTREACHED */
3464 * Reattach any requests that must be redone.
3466 while ((wk = LIST_FIRST(&reattach)) != NULL) {
3467 WORKLIST_REMOVE(wk);
3468 WORKLIST_INSERT(&bp->b_dep, wk);
3470 #ifdef DEBUG
3471 if (lk.lkt_held != SPECIAL_FLAG)
3472 panic("softdep_disk_write_complete: lock lost");
3473 lk.lkt_held = NOHOLDER;
3474 #endif
3478 * Called from within softdep_disk_write_complete above. Note that
3479 * this routine is always called from interrupt level with further
3480 * splbio interrupts blocked.
3482 * Parameters:
3483 * adp: the completed allocdirect
3485 static void
3486 handle_allocdirect_partdone(struct allocdirect *adp)
3488 struct allocdirect *listadp;
3489 struct inodedep *inodedep;
3490 long bsize;
3492 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3493 return;
3494 if (adp->ad_buf != NULL) {
3495 lk.lkt_held = NOHOLDER;
3496 panic("handle_allocdirect_partdone: dangling dep");
3499 * The on-disk inode cannot claim to be any larger than the last
3500 * fragment that has been written. Otherwise, the on-disk inode
3501 * might have fragments that were not the last block in the file
3502 * which would corrupt the filesystem. Thus, we cannot free any
3503 * allocdirects after one whose ad_oldblkno claims a fragment as
3504 * these blocks must be rolled back to zero before writing the inode.
3505 * We check the currently active set of allocdirects in id_inoupdt.
3507 inodedep = adp->ad_inodedep;
3508 bsize = inodedep->id_fs->fs_bsize;
3509 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3510 /* found our block */
3511 if (listadp == adp)
3512 break;
3513 /* continue if ad_oldlbn is not a fragment */
3514 if (listadp->ad_oldsize == 0 ||
3515 listadp->ad_oldsize == bsize)
3516 continue;
3517 /* hit a fragment */
3518 return;
3521 * If we have reached the end of the current list without
3522 * finding the just finished dependency, then it must be
3523 * on the future dependency list. Future dependencies cannot
3524 * be freed until they are moved to the current list.
3526 if (listadp == NULL) {
3527 #ifdef DEBUG
3528 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3529 /* found our block */
3530 if (listadp == adp)
3531 break;
3532 if (listadp == NULL) {
3533 lk.lkt_held = NOHOLDER;
3534 panic("handle_allocdirect_partdone: lost dep");
3536 #endif /* DEBUG */
3537 return;
3540 * If we have found the just finished dependency, then free
3541 * it along with anything that follows it that is complete.
3543 for (; adp; adp = listadp) {
3544 listadp = TAILQ_NEXT(adp, ad_next);
3545 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3546 return;
3547 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3552 * Called from within softdep_disk_write_complete above. Note that
3553 * this routine is always called from interrupt level with further
3554 * splbio interrupts blocked.
3556 * Parameters:
3557 * aip: the completed allocindir
3559 static void
3560 handle_allocindir_partdone(struct allocindir *aip)
3562 struct indirdep *indirdep;
3564 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3565 return;
3566 if (aip->ai_buf != NULL) {
3567 lk.lkt_held = NOHOLDER;
3568 panic("handle_allocindir_partdone: dangling dependency");
3570 indirdep = aip->ai_indirdep;
3571 if (indirdep->ir_state & UNDONE) {
3572 LIST_REMOVE(aip, ai_next);
3573 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3574 return;
3576 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3577 aip->ai_newblkno;
3578 LIST_REMOVE(aip, ai_next);
3579 if (aip->ai_freefrag != NULL)
3580 add_to_worklist(&aip->ai_freefrag->ff_list);
3581 WORKITEM_FREE(aip, D_ALLOCINDIR);
3585 * Called from within softdep_disk_write_complete above to restore
3586 * in-memory inode block contents to their most up-to-date state. Note
3587 * that this routine is always called from interrupt level with further
3588 * splbio interrupts blocked.
3590 * Parameters:
3591 * bp: buffer containing the inode block
3593 static int
3594 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3596 struct worklist *wk, *filefree;
3597 struct allocdirect *adp, *nextadp;
3598 struct ufs1_dinode *dp;
3599 int hadchanges;
3601 if ((inodedep->id_state & IOSTARTED) == 0) {
3602 lk.lkt_held = NOHOLDER;
3603 panic("handle_written_inodeblock: not started");
3605 inodedep->id_state &= ~IOSTARTED;
3606 dp = (struct ufs1_dinode *)bp->b_data +
3607 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3609 * If we had to rollback the inode allocation because of
3610 * bitmaps being incomplete, then simply restore it.
3611 * Keep the block dirty so that it will not be reclaimed until
3612 * all associated dependencies have been cleared and the
3613 * corresponding updates written to disk.
3615 if (inodedep->id_savedino != NULL) {
3616 *dp = *inodedep->id_savedino;
3617 FREE(inodedep->id_savedino, M_INODEDEP);
3618 inodedep->id_savedino = NULL;
3619 if ((bp->b_flags & B_DELWRI) == 0)
3620 stat_inode_bitmap++;
3621 bdirty(bp);
3622 return (1);
3624 inodedep->id_state |= COMPLETE;
3626 * Roll forward anything that had to be rolled back before
3627 * the inode could be updated.
3629 hadchanges = 0;
3630 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3631 nextadp = TAILQ_NEXT(adp, ad_next);
3632 if (adp->ad_state & ATTACHED) {
3633 lk.lkt_held = NOHOLDER;
3634 panic("handle_written_inodeblock: new entry");
3636 if (adp->ad_lbn < NDADDR) {
3637 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3638 lk.lkt_held = NOHOLDER;
3639 panic("%s: %s #%ld mismatch %d != %d",
3640 "handle_written_inodeblock",
3641 "direct pointer", adp->ad_lbn,
3642 dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3644 dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3645 } else {
3646 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3647 lk.lkt_held = NOHOLDER;
3648 panic("%s: %s #%ld allocated as %d",
3649 "handle_written_inodeblock",
3650 "indirect pointer", adp->ad_lbn - NDADDR,
3651 dp->di_ib[adp->ad_lbn - NDADDR]);
3653 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3655 adp->ad_state &= ~UNDONE;
3656 adp->ad_state |= ATTACHED;
3657 hadchanges = 1;
3659 if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3660 stat_direct_blk_ptrs++;
3662 * Reset the file size to its most up-to-date value.
3664 if (inodedep->id_savedsize == -1) {
3665 lk.lkt_held = NOHOLDER;
3666 panic("handle_written_inodeblock: bad size");
3668 if (dp->di_size != inodedep->id_savedsize) {
3669 dp->di_size = inodedep->id_savedsize;
3670 hadchanges = 1;
3672 inodedep->id_savedsize = -1;
3674 * If there were any rollbacks in the inode block, then it must be
3675 * marked dirty so that its will eventually get written back in
3676 * its correct form.
3678 if (hadchanges)
3679 bdirty(bp);
3681 * Process any allocdirects that completed during the update.
3683 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3684 handle_allocdirect_partdone(adp);
3686 * Process deallocations that were held pending until the
3687 * inode had been written to disk. Freeing of the inode
3688 * is delayed until after all blocks have been freed to
3689 * avoid creation of new <vfsid, inum, lbn> triples
3690 * before the old ones have been deleted.
3692 filefree = NULL;
3693 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3694 WORKLIST_REMOVE(wk);
3695 switch (wk->wk_type) {
3697 case D_FREEFILE:
3699 * We defer adding filefree to the worklist until
3700 * all other additions have been made to ensure
3701 * that it will be done after all the old blocks
3702 * have been freed.
3704 if (filefree != NULL) {
3705 lk.lkt_held = NOHOLDER;
3706 panic("handle_written_inodeblock: filefree");
3708 filefree = wk;
3709 continue;
3711 case D_MKDIR:
3712 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3713 continue;
3715 case D_DIRADD:
3716 diradd_inode_written(WK_DIRADD(wk), inodedep);
3717 continue;
3719 case D_FREEBLKS:
3720 wk->wk_state |= COMPLETE;
3721 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE)
3722 continue;
3723 /* -- fall through -- */
3724 case D_FREEFRAG:
3725 case D_DIRREM:
3726 add_to_worklist(wk);
3727 continue;
3729 default:
3730 lk.lkt_held = NOHOLDER;
3731 panic("handle_written_inodeblock: Unknown type %s",
3732 TYPENAME(wk->wk_type));
3733 /* NOTREACHED */
3736 if (filefree != NULL) {
3737 if (free_inodedep(inodedep) == 0) {
3738 lk.lkt_held = NOHOLDER;
3739 panic("handle_written_inodeblock: live inodedep");
3741 add_to_worklist(filefree);
3742 return (0);
3746 * If no outstanding dependencies, free it.
3748 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3749 return (0);
3750 return (hadchanges);
3754 * Process a diradd entry after its dependent inode has been written.
3755 * This routine must be called with splbio interrupts blocked.
3757 static void
3758 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3760 struct pagedep *pagedep;
3762 dap->da_state |= COMPLETE;
3763 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3764 if (dap->da_state & DIRCHG)
3765 pagedep = dap->da_previous->dm_pagedep;
3766 else
3767 pagedep = dap->da_pagedep;
3768 LIST_REMOVE(dap, da_pdlist);
3769 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3771 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3775 * Handle the completion of a mkdir dependency.
3777 static void
3778 handle_written_mkdir(struct mkdir *mkdir, int type)
3780 struct diradd *dap;
3781 struct pagedep *pagedep;
3783 if (mkdir->md_state != type) {
3784 lk.lkt_held = NOHOLDER;
3785 panic("handle_written_mkdir: bad type");
3787 dap = mkdir->md_diradd;
3788 dap->da_state &= ~type;
3789 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3790 dap->da_state |= DEPCOMPLETE;
3791 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3792 if (dap->da_state & DIRCHG)
3793 pagedep = dap->da_previous->dm_pagedep;
3794 else
3795 pagedep = dap->da_pagedep;
3796 LIST_REMOVE(dap, da_pdlist);
3797 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3799 LIST_REMOVE(mkdir, md_mkdirs);
3800 WORKITEM_FREE(mkdir, D_MKDIR);
3804 * Called from within softdep_disk_write_complete above.
3805 * A write operation was just completed. Removed inodes can
3806 * now be freed and associated block pointers may be committed.
3807 * Note that this routine is always called from interrupt level
3808 * with further splbio interrupts blocked.
3810 * Parameters:
3811 * bp: buffer containing the written page
3813 static int
3814 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3816 struct dirrem *dirrem;
3817 struct diradd *dap, *nextdap;
3818 struct direct *ep;
3819 int i, chgs;
3821 if ((pagedep->pd_state & IOSTARTED) == 0) {
3822 lk.lkt_held = NOHOLDER;
3823 panic("handle_written_filepage: not started");
3825 pagedep->pd_state &= ~IOSTARTED;
3827 * Process any directory removals that have been committed.
3829 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3830 LIST_REMOVE(dirrem, dm_next);
3831 dirrem->dm_dirinum = pagedep->pd_ino;
3832 add_to_worklist(&dirrem->dm_list);
3835 * Free any directory additions that have been committed.
3837 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3838 free_diradd(dap);
3840 * Uncommitted directory entries must be restored.
3842 for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3843 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3844 dap = nextdap) {
3845 nextdap = LIST_NEXT(dap, da_pdlist);
3846 if (dap->da_state & ATTACHED) {
3847 lk.lkt_held = NOHOLDER;
3848 panic("handle_written_filepage: attached");
3850 ep = (struct direct *)
3851 ((char *)bp->b_data + dap->da_offset);
3852 ep->d_ino = dap->da_newinum;
3853 dap->da_state &= ~UNDONE;
3854 dap->da_state |= ATTACHED;
3855 chgs = 1;
3857 * If the inode referenced by the directory has
3858 * been written out, then the dependency can be
3859 * moved to the pending list.
3861 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3862 LIST_REMOVE(dap, da_pdlist);
3863 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3864 da_pdlist);
3869 * If there were any rollbacks in the directory, then it must be
3870 * marked dirty so that its will eventually get written back in
3871 * its correct form.
3873 if (chgs) {
3874 if ((bp->b_flags & B_DELWRI) == 0)
3875 stat_dir_entry++;
3876 bdirty(bp);
3879 * If no dependencies remain, the pagedep will be freed.
3880 * Otherwise it will remain to update the page before it
3881 * is written back to disk.
3883 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3884 for (i = 0; i < DAHASHSZ; i++)
3885 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3886 break;
3887 if (i == DAHASHSZ) {
3888 LIST_REMOVE(pagedep, pd_hash);
3889 WORKITEM_FREE(pagedep, D_PAGEDEP);
3890 return (0);
3893 return (1);
3897 * Writing back in-core inode structures.
3899 * The filesystem only accesses an inode's contents when it occupies an
3900 * "in-core" inode structure. These "in-core" structures are separate from
3901 * the page frames used to cache inode blocks. Only the latter are
3902 * transferred to/from the disk. So, when the updated contents of the
3903 * "in-core" inode structure are copied to the corresponding in-memory inode
3904 * block, the dependencies are also transferred. The following procedure is
3905 * called when copying a dirty "in-core" inode to a cached inode block.
3909 * Called when an inode is loaded from disk. If the effective link count
3910 * differed from the actual link count when it was last flushed, then we
3911 * need to ensure that the correct effective link count is put back.
3913 * Parameters:
3914 * ip: the "in_core" copy of the inode
3916 void
3917 softdep_load_inodeblock(struct inode *ip)
3919 struct inodedep *inodedep;
3922 * Check for alternate nlink count.
3924 ip->i_effnlink = ip->i_nlink;
3925 ACQUIRE_LOCK(&lk);
3926 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3927 FREE_LOCK(&lk);
3928 return;
3930 ip->i_effnlink -= inodedep->id_nlinkdelta;
3931 FREE_LOCK(&lk);
3935 * This routine is called just before the "in-core" inode
3936 * information is to be copied to the in-memory inode block.
3937 * Recall that an inode block contains several inodes. If
3938 * the force flag is set, then the dependencies will be
3939 * cleared so that the update can always be made. Note that
3940 * the buffer is locked when this routine is called, so we
3941 * will never be in the middle of writing the inode block
3942 * to disk.
3944 * Parameters:
3945 * ip: the "in_core" copy of the inode
3946 * bp: the buffer containing the inode block
3947 * waitfor: nonzero => update must be allowed
3949 void
3950 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3951 int waitfor)
3953 struct inodedep *inodedep;
3954 struct worklist *wk;
3955 int error, gotit;
3958 * If the effective link count is not equal to the actual link
3959 * count, then we must track the difference in an inodedep while
3960 * the inode is (potentially) tossed out of the cache. Otherwise,
3961 * if there is no existing inodedep, then there are no dependencies
3962 * to track.
3964 ACQUIRE_LOCK(&lk);
3965 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3966 FREE_LOCK(&lk);
3967 if (ip->i_effnlink != ip->i_nlink)
3968 panic("softdep_update_inodeblock: bad link count");
3969 return;
3971 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3972 FREE_LOCK(&lk);
3973 panic("softdep_update_inodeblock: bad delta");
3976 * Changes have been initiated. Anything depending on these
3977 * changes cannot occur until this inode has been written.
3979 inodedep->id_state &= ~COMPLETE;
3980 if ((inodedep->id_state & ONWORKLIST) == 0)
3981 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
3983 * Any new dependencies associated with the incore inode must
3984 * now be moved to the list associated with the buffer holding
3985 * the in-memory copy of the inode. Once merged process any
3986 * allocdirects that are completed by the merger.
3988 merge_inode_lists(inodedep);
3989 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3990 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3992 * Now that the inode has been pushed into the buffer, the
3993 * operations dependent on the inode being written to disk
3994 * can be moved to the id_bufwait so that they will be
3995 * processed when the buffer I/O completes.
3997 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3998 WORKLIST_REMOVE(wk);
3999 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4002 * Newly allocated inodes cannot be written until the bitmap
4003 * that allocates them have been written (indicated by
4004 * DEPCOMPLETE being set in id_state). If we are doing a
4005 * forced sync (e.g., an fsync on a file), we force the bitmap
4006 * to be written so that the update can be done.
4008 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4009 FREE_LOCK(&lk);
4010 return;
4012 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4013 FREE_LOCK(&lk);
4014 if (gotit &&
4015 (error = bwrite(inodedep->id_buf)) != 0)
4016 softdep_error("softdep_update_inodeblock: bwrite", error);
4020 * Merge the new inode dependency list (id_newinoupdt) into the old
4021 * inode dependency list (id_inoupdt). This routine must be called
4022 * with splbio interrupts blocked.
4024 static void
4025 merge_inode_lists(struct inodedep *inodedep)
4027 struct allocdirect *listadp, *newadp;
4029 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4030 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4031 if (listadp->ad_lbn < newadp->ad_lbn) {
4032 listadp = TAILQ_NEXT(listadp, ad_next);
4033 continue;
4035 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4036 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4037 if (listadp->ad_lbn == newadp->ad_lbn) {
4038 allocdirect_merge(&inodedep->id_inoupdt, newadp,
4039 listadp);
4040 listadp = newadp;
4042 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4044 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4045 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4046 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4051 * If we are doing an fsync, then we must ensure that any directory
4052 * entries for the inode have been written after the inode gets to disk.
4054 * Parameters:
4055 * vp: the "in_core" copy of the inode
4057 static int
4058 softdep_fsync(struct vnode *vp)
4060 struct inodedep *inodedep;
4061 struct pagedep *pagedep;
4062 struct worklist *wk;
4063 struct diradd *dap;
4064 struct mount *mnt;
4065 struct vnode *pvp;
4066 struct inode *ip;
4067 struct buf *bp;
4068 struct fs *fs;
4069 int error, flushparent;
4070 ino_t parentino;
4071 ufs_lbn_t lbn;
4073 ip = VTOI(vp);
4074 fs = ip->i_fs;
4075 ACQUIRE_LOCK(&lk);
4076 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4077 FREE_LOCK(&lk);
4078 return (0);
4080 if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4081 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4082 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4083 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4084 FREE_LOCK(&lk);
4085 panic("softdep_fsync: pending ops");
4087 for (error = 0, flushparent = 0; ; ) {
4088 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4089 break;
4090 if (wk->wk_type != D_DIRADD) {
4091 FREE_LOCK(&lk);
4092 panic("softdep_fsync: Unexpected type %s",
4093 TYPENAME(wk->wk_type));
4095 dap = WK_DIRADD(wk);
4097 * Flush our parent if this directory entry
4098 * has a MKDIR_PARENT dependency.
4100 if (dap->da_state & DIRCHG)
4101 pagedep = dap->da_previous->dm_pagedep;
4102 else
4103 pagedep = dap->da_pagedep;
4104 mnt = pagedep->pd_mnt;
4105 parentino = pagedep->pd_ino;
4106 lbn = pagedep->pd_lbn;
4107 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4108 FREE_LOCK(&lk);
4109 panic("softdep_fsync: dirty");
4111 flushparent = dap->da_state & MKDIR_PARENT;
4113 * If we are being fsync'ed as part of vgone'ing this vnode,
4114 * then we will not be able to release and recover the
4115 * vnode below, so we just have to give up on writing its
4116 * directory entry out. It will eventually be written, just
4117 * not now, but then the user was not asking to have it
4118 * written, so we are not breaking any promises.
4120 if (vp->v_flag & VRECLAIMED)
4121 break;
4123 * We prevent deadlock by always fetching inodes from the
4124 * root, moving down the directory tree. Thus, when fetching
4125 * our parent directory, we must unlock ourselves before
4126 * requesting the lock on our parent. See the comment in
4127 * ufs_lookup for details on possible races.
4129 FREE_LOCK(&lk);
4130 vn_unlock(vp);
4131 error = VFS_VGET(mnt, parentino, &pvp);
4132 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4133 if (error != 0)
4134 return (error);
4135 if (flushparent) {
4136 if ((error = ffs_update(pvp, 1)) != 0) {
4137 vput(pvp);
4138 return (error);
4142 * Flush directory page containing the inode's name.
4144 error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4145 if (error == 0)
4146 error = bwrite(bp);
4147 vput(pvp);
4148 if (error != 0)
4149 return (error);
4150 ACQUIRE_LOCK(&lk);
4151 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4152 break;
4154 FREE_LOCK(&lk);
4155 return (0);
4159 * Flush all the dirty bitmaps associated with the block device
4160 * before flushing the rest of the dirty blocks so as to reduce
4161 * the number of dependencies that will have to be rolled back.
4163 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4165 void
4166 softdep_fsync_mountdev(struct vnode *vp)
4168 if (!vn_isdisk(vp, NULL))
4169 panic("softdep_fsync_mountdev: vnode not a disk");
4170 ACQUIRE_LOCK(&lk);
4171 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4172 softdep_fsync_mountdev_bp, vp);
4173 drain_output(vp, 1);
4174 FREE_LOCK(&lk);
4177 static int
4178 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4180 struct worklist *wk;
4181 struct vnode *vp = data;
4184 * If it is already scheduled, skip to the next buffer.
4186 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4187 return(0);
4188 if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4189 BUF_UNLOCK(bp);
4190 kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4191 return(0);
4194 * We are only interested in bitmaps with outstanding
4195 * dependencies.
4197 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4198 wk->wk_type != D_BMSAFEMAP) {
4199 BUF_UNLOCK(bp);
4200 return(0);
4202 bremfree(bp);
4203 FREE_LOCK(&lk);
4204 (void) bawrite(bp);
4205 ACQUIRE_LOCK(&lk);
4206 return(0);
4210 * This routine is called when we are trying to synchronously flush a
4211 * file. This routine must eliminate any filesystem metadata dependencies
4212 * so that the syncing routine can succeed by pushing the dirty blocks
4213 * associated with the file. If any I/O errors occur, they are returned.
4215 struct softdep_sync_metadata_info {
4216 struct vnode *vp;
4217 int waitfor;
4220 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4223 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4225 struct softdep_sync_metadata_info info;
4226 int error, waitfor;
4229 * Check whether this vnode is involved in a filesystem
4230 * that is doing soft dependency processing.
4232 if (!vn_isdisk(vp, NULL)) {
4233 if (!DOINGSOFTDEP(vp))
4234 return (0);
4235 } else
4236 if (vp->v_rdev->si_mountpoint == NULL ||
4237 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4238 return (0);
4240 * Ensure that any direct block dependencies have been cleared.
4242 ACQUIRE_LOCK(&lk);
4243 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4244 FREE_LOCK(&lk);
4245 return (error);
4248 * For most files, the only metadata dependencies are the
4249 * cylinder group maps that allocate their inode or blocks.
4250 * The block allocation dependencies can be found by traversing
4251 * the dependency lists for any buffers that remain on their
4252 * dirty buffer list. The inode allocation dependency will
4253 * be resolved when the inode is updated with MNT_WAIT.
4254 * This work is done in two passes. The first pass grabs most
4255 * of the buffers and begins asynchronously writing them. The
4256 * only way to wait for these asynchronous writes is to sleep
4257 * on the filesystem vnode which may stay busy for a long time
4258 * if the filesystem is active. So, instead, we make a second
4259 * pass over the dependencies blocking on each write. In the
4260 * usual case we will be blocking against a write that we
4261 * initiated, so when it is done the dependency will have been
4262 * resolved. Thus the second pass is expected to end quickly.
4264 waitfor = MNT_NOWAIT;
4265 top:
4267 * We must wait for any I/O in progress to finish so that
4268 * all potential buffers on the dirty list will be visible.
4270 drain_output(vp, 1);
4271 info.vp = vp;
4272 info.waitfor = waitfor;
4273 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4274 softdep_sync_metadata_bp, &info);
4275 if (error < 0) {
4276 FREE_LOCK(&lk);
4277 return(-error); /* error code */
4281 * The brief unlock is to allow any pent up dependency
4282 * processing to be done. Then proceed with the second pass.
4284 if (waitfor == MNT_NOWAIT) {
4285 waitfor = MNT_WAIT;
4286 FREE_LOCK(&lk);
4287 ACQUIRE_LOCK(&lk);
4288 goto top;
4292 * If we have managed to get rid of all the dirty buffers,
4293 * then we are done. For certain directories and block
4294 * devices, we may need to do further work.
4296 * We must wait for any I/O in progress to finish so that
4297 * all potential buffers on the dirty list will be visible.
4299 drain_output(vp, 1);
4300 if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4301 FREE_LOCK(&lk);
4302 return (0);
4305 FREE_LOCK(&lk);
4307 * If we are trying to sync a block device, some of its buffers may
4308 * contain metadata that cannot be written until the contents of some
4309 * partially written files have been written to disk. The only easy
4310 * way to accomplish this is to sync the entire filesystem (luckily
4311 * this happens rarely).
4313 if (vn_isdisk(vp, NULL) &&
4314 vp->v_rdev &&
4315 vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4316 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4317 return (error);
4318 return (0);
4321 static int
4322 softdep_sync_metadata_bp(struct buf *bp, void *data)
4324 struct softdep_sync_metadata_info *info = data;
4325 struct pagedep *pagedep;
4326 struct allocdirect *adp;
4327 struct allocindir *aip;
4328 struct worklist *wk;
4329 struct buf *nbp;
4330 int error;
4331 int i;
4333 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4334 kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4335 return (1);
4337 if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4338 kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4339 BUF_UNLOCK(bp);
4340 return(1);
4344 * As we hold the buffer locked, none of its dependencies
4345 * will disappear.
4347 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4348 switch (wk->wk_type) {
4350 case D_ALLOCDIRECT:
4351 adp = WK_ALLOCDIRECT(wk);
4352 if (adp->ad_state & DEPCOMPLETE)
4353 break;
4354 nbp = adp->ad_buf;
4355 if (getdirtybuf(&nbp, info->waitfor) == 0)
4356 break;
4357 FREE_LOCK(&lk);
4358 if (info->waitfor == MNT_NOWAIT) {
4359 bawrite(nbp);
4360 } else if ((error = bwrite(nbp)) != 0) {
4361 bawrite(bp);
4362 ACQUIRE_LOCK(&lk);
4363 return (-error);
4365 ACQUIRE_LOCK(&lk);
4366 break;
4368 case D_ALLOCINDIR:
4369 aip = WK_ALLOCINDIR(wk);
4370 if (aip->ai_state & DEPCOMPLETE)
4371 break;
4372 nbp = aip->ai_buf;
4373 if (getdirtybuf(&nbp, info->waitfor) == 0)
4374 break;
4375 FREE_LOCK(&lk);
4376 if (info->waitfor == MNT_NOWAIT) {
4377 bawrite(nbp);
4378 } else if ((error = bwrite(nbp)) != 0) {
4379 bawrite(bp);
4380 ACQUIRE_LOCK(&lk);
4381 return (-error);
4383 ACQUIRE_LOCK(&lk);
4384 break;
4386 case D_INDIRDEP:
4387 restart:
4389 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4390 if (aip->ai_state & DEPCOMPLETE)
4391 continue;
4392 nbp = aip->ai_buf;
4393 if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4394 goto restart;
4395 FREE_LOCK(&lk);
4396 if ((error = bwrite(nbp)) != 0) {
4397 bawrite(bp);
4398 ACQUIRE_LOCK(&lk);
4399 return (-error);
4401 ACQUIRE_LOCK(&lk);
4402 goto restart;
4404 break;
4406 case D_INODEDEP:
4407 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4408 WK_INODEDEP(wk)->id_ino)) != 0) {
4409 FREE_LOCK(&lk);
4410 bawrite(bp);
4411 ACQUIRE_LOCK(&lk);
4412 return (-error);
4414 break;
4416 case D_PAGEDEP:
4418 * We are trying to sync a directory that may
4419 * have dependencies on both its own metadata
4420 * and/or dependencies on the inodes of any
4421 * recently allocated files. We walk its diradd
4422 * lists pushing out the associated inode.
4424 pagedep = WK_PAGEDEP(wk);
4425 for (i = 0; i < DAHASHSZ; i++) {
4426 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4427 continue;
4428 if ((error =
4429 flush_pagedep_deps(info->vp,
4430 pagedep->pd_mnt,
4431 &pagedep->pd_diraddhd[i]))) {
4432 FREE_LOCK(&lk);
4433 bawrite(bp);
4434 ACQUIRE_LOCK(&lk);
4435 return (-error);
4438 break;
4440 case D_MKDIR:
4442 * This case should never happen if the vnode has
4443 * been properly sync'ed. However, if this function
4444 * is used at a place where the vnode has not yet
4445 * been sync'ed, this dependency can show up. So,
4446 * rather than panic, just flush it.
4448 nbp = WK_MKDIR(wk)->md_buf;
4449 if (getdirtybuf(&nbp, info->waitfor) == 0)
4450 break;
4451 FREE_LOCK(&lk);
4452 if (info->waitfor == MNT_NOWAIT) {
4453 bawrite(nbp);
4454 } else if ((error = bwrite(nbp)) != 0) {
4455 bawrite(bp);
4456 ACQUIRE_LOCK(&lk);
4457 return (-error);
4459 ACQUIRE_LOCK(&lk);
4460 break;
4462 case D_BMSAFEMAP:
4464 * This case should never happen if the vnode has
4465 * been properly sync'ed. However, if this function
4466 * is used at a place where the vnode has not yet
4467 * been sync'ed, this dependency can show up. So,
4468 * rather than panic, just flush it.
4470 * nbp can wind up == bp if a device node for the
4471 * same filesystem is being fsynced at the same time,
4472 * leading to a panic if we don't catch the case.
4474 nbp = WK_BMSAFEMAP(wk)->sm_buf;
4475 if (nbp == bp)
4476 break;
4477 if (getdirtybuf(&nbp, info->waitfor) == 0)
4478 break;
4479 FREE_LOCK(&lk);
4480 if (info->waitfor == MNT_NOWAIT) {
4481 bawrite(nbp);
4482 } else if ((error = bwrite(nbp)) != 0) {
4483 bawrite(bp);
4484 ACQUIRE_LOCK(&lk);
4485 return (-error);
4487 ACQUIRE_LOCK(&lk);
4488 break;
4490 default:
4491 FREE_LOCK(&lk);
4492 panic("softdep_sync_metadata: Unknown type %s",
4493 TYPENAME(wk->wk_type));
4494 /* NOTREACHED */
4497 FREE_LOCK(&lk);
4498 bawrite(bp);
4499 ACQUIRE_LOCK(&lk);
4500 return(0);
4504 * Flush the dependencies associated with an inodedep.
4505 * Called with splbio blocked.
4507 static int
4508 flush_inodedep_deps(struct fs *fs, ino_t ino)
4510 struct inodedep *inodedep;
4511 struct allocdirect *adp;
4512 int error, waitfor;
4513 struct buf *bp;
4516 * This work is done in two passes. The first pass grabs most
4517 * of the buffers and begins asynchronously writing them. The
4518 * only way to wait for these asynchronous writes is to sleep
4519 * on the filesystem vnode which may stay busy for a long time
4520 * if the filesystem is active. So, instead, we make a second
4521 * pass over the dependencies blocking on each write. In the
4522 * usual case we will be blocking against a write that we
4523 * initiated, so when it is done the dependency will have been
4524 * resolved. Thus the second pass is expected to end quickly.
4525 * We give a brief window at the top of the loop to allow
4526 * any pending I/O to complete.
4528 for (waitfor = MNT_NOWAIT; ; ) {
4529 FREE_LOCK(&lk);
4530 ACQUIRE_LOCK(&lk);
4531 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4532 return (0);
4533 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4534 if (adp->ad_state & DEPCOMPLETE)
4535 continue;
4536 bp = adp->ad_buf;
4537 if (getdirtybuf(&bp, waitfor) == 0) {
4538 if (waitfor == MNT_NOWAIT)
4539 continue;
4540 break;
4542 FREE_LOCK(&lk);
4543 if (waitfor == MNT_NOWAIT) {
4544 bawrite(bp);
4545 } else if ((error = bwrite(bp)) != 0) {
4546 ACQUIRE_LOCK(&lk);
4547 return (error);
4549 ACQUIRE_LOCK(&lk);
4550 break;
4552 if (adp != NULL)
4553 continue;
4554 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4555 if (adp->ad_state & DEPCOMPLETE)
4556 continue;
4557 bp = adp->ad_buf;
4558 if (getdirtybuf(&bp, waitfor) == 0) {
4559 if (waitfor == MNT_NOWAIT)
4560 continue;
4561 break;
4563 FREE_LOCK(&lk);
4564 if (waitfor == MNT_NOWAIT) {
4565 bawrite(bp);
4566 } else if ((error = bwrite(bp)) != 0) {
4567 ACQUIRE_LOCK(&lk);
4568 return (error);
4570 ACQUIRE_LOCK(&lk);
4571 break;
4573 if (adp != NULL)
4574 continue;
4576 * If pass2, we are done, otherwise do pass 2.
4578 if (waitfor == MNT_WAIT)
4579 break;
4580 waitfor = MNT_WAIT;
4583 * Try freeing inodedep in case all dependencies have been removed.
4585 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4586 (void) free_inodedep(inodedep);
4587 return (0);
4591 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4592 * Called with splbio blocked.
4594 static int
4595 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4596 struct diraddhd *diraddhdp)
4598 struct inodedep *inodedep;
4599 struct ufsmount *ump;
4600 struct diradd *dap;
4601 struct vnode *vp;
4602 int gotit, error = 0;
4603 struct buf *bp;
4604 ino_t inum;
4606 ump = VFSTOUFS(mp);
4607 while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4609 * Flush ourselves if this directory entry
4610 * has a MKDIR_PARENT dependency.
4612 if (dap->da_state & MKDIR_PARENT) {
4613 FREE_LOCK(&lk);
4614 if ((error = ffs_update(pvp, 1)) != 0)
4615 break;
4616 ACQUIRE_LOCK(&lk);
4618 * If that cleared dependencies, go on to next.
4620 if (dap != LIST_FIRST(diraddhdp))
4621 continue;
4622 if (dap->da_state & MKDIR_PARENT) {
4623 FREE_LOCK(&lk);
4624 panic("flush_pagedep_deps: MKDIR_PARENT");
4628 * A newly allocated directory must have its "." and
4629 * ".." entries written out before its name can be
4630 * committed in its parent. We do not want or need
4631 * the full semantics of a synchronous VOP_FSYNC as
4632 * that may end up here again, once for each directory
4633 * level in the filesystem. Instead, we push the blocks
4634 * and wait for them to clear. We have to fsync twice
4635 * because the first call may choose to defer blocks
4636 * that still have dependencies, but deferral will
4637 * happen at most once.
4639 inum = dap->da_newinum;
4640 if (dap->da_state & MKDIR_BODY) {
4641 FREE_LOCK(&lk);
4642 if ((error = VFS_VGET(mp, inum, &vp)) != 0)
4643 break;
4644 if ((error=VOP_FSYNC(vp, MNT_NOWAIT)) ||
4645 (error=VOP_FSYNC(vp, MNT_NOWAIT))) {
4646 vput(vp);
4647 break;
4649 drain_output(vp, 0);
4650 vput(vp);
4651 ACQUIRE_LOCK(&lk);
4653 * If that cleared dependencies, go on to next.
4655 if (dap != LIST_FIRST(diraddhdp))
4656 continue;
4657 if (dap->da_state & MKDIR_BODY) {
4658 FREE_LOCK(&lk);
4659 panic("flush_pagedep_deps: MKDIR_BODY");
4663 * Flush the inode on which the directory entry depends.
4664 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4665 * the only remaining dependency is that the updated inode
4666 * count must get pushed to disk. The inode has already
4667 * been pushed into its inode buffer (via VOP_UPDATE) at
4668 * the time of the reference count change. So we need only
4669 * locate that buffer, ensure that there will be no rollback
4670 * caused by a bitmap dependency, then write the inode buffer.
4672 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4673 FREE_LOCK(&lk);
4674 panic("flush_pagedep_deps: lost inode");
4677 * If the inode still has bitmap dependencies,
4678 * push them to disk.
4680 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4681 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4682 FREE_LOCK(&lk);
4683 if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4684 break;
4685 ACQUIRE_LOCK(&lk);
4686 if (dap != LIST_FIRST(diraddhdp))
4687 continue;
4690 * If the inode is still sitting in a buffer waiting
4691 * to be written, push it to disk.
4693 FREE_LOCK(&lk);
4694 if ((error = bread(ump->um_devvp,
4695 fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4696 (int)ump->um_fs->fs_bsize, &bp)) != 0)
4697 break;
4698 if ((error = bwrite(bp)) != 0)
4699 break;
4700 ACQUIRE_LOCK(&lk);
4702 * If we have failed to get rid of all the dependencies
4703 * then something is seriously wrong.
4705 if (dap == LIST_FIRST(diraddhdp)) {
4706 FREE_LOCK(&lk);
4707 panic("flush_pagedep_deps: flush failed");
4710 if (error)
4711 ACQUIRE_LOCK(&lk);
4712 return (error);
4716 * A large burst of file addition or deletion activity can drive the
4717 * memory load excessively high. First attempt to slow things down
4718 * using the techniques below. If that fails, this routine requests
4719 * the offending operations to fall back to running synchronously
4720 * until the memory load returns to a reasonable level.
4723 softdep_slowdown(struct vnode *vp)
4725 int max_softdeps_hard;
4727 max_softdeps_hard = max_softdeps * 11 / 10;
4728 if (num_dirrem < max_softdeps_hard / 2 &&
4729 num_inodedep < max_softdeps_hard)
4730 return (0);
4731 stat_sync_limit_hit += 1;
4732 return (1);
4736 * If memory utilization has gotten too high, deliberately slow things
4737 * down and speed up the I/O processing.
4739 static int
4740 request_cleanup(int resource, int islocked)
4742 struct thread *td = curthread; /* XXX */
4745 * We never hold up the filesystem syncer process.
4747 if (td == filesys_syncer)
4748 return (0);
4750 * First check to see if the work list has gotten backlogged.
4751 * If it has, co-opt this process to help clean up two entries.
4752 * Because this process may hold inodes locked, we cannot
4753 * handle any remove requests that might block on a locked
4754 * inode as that could lead to deadlock.
4756 if (num_on_worklist > max_softdeps / 10) {
4757 if (islocked)
4758 FREE_LOCK(&lk);
4759 process_worklist_item(NULL, LK_NOWAIT);
4760 process_worklist_item(NULL, LK_NOWAIT);
4761 stat_worklist_push += 2;
4762 if (islocked)
4763 ACQUIRE_LOCK(&lk);
4764 return(1);
4768 * If we are resource constrained on inode dependencies, try
4769 * flushing some dirty inodes. Otherwise, we are constrained
4770 * by file deletions, so try accelerating flushes of directories
4771 * with removal dependencies. We would like to do the cleanup
4772 * here, but we probably hold an inode locked at this point and
4773 * that might deadlock against one that we try to clean. So,
4774 * the best that we can do is request the syncer daemon to do
4775 * the cleanup for us.
4777 switch (resource) {
4779 case FLUSH_INODES:
4780 stat_ino_limit_push += 1;
4781 req_clear_inodedeps += 1;
4782 stat_countp = &stat_ino_limit_hit;
4783 break;
4785 case FLUSH_REMOVE:
4786 stat_blk_limit_push += 1;
4787 req_clear_remove += 1;
4788 stat_countp = &stat_blk_limit_hit;
4789 break;
4791 default:
4792 if (islocked)
4793 FREE_LOCK(&lk);
4794 panic("request_cleanup: unknown type");
4797 * Hopefully the syncer daemon will catch up and awaken us.
4798 * We wait at most tickdelay before proceeding in any case.
4800 if (islocked == 0)
4801 ACQUIRE_LOCK(&lk);
4802 proc_waiting += 1;
4803 if (!callout_active(&handle))
4804 callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4805 pause_timer, NULL);
4806 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4807 "softupdate", 0);
4808 proc_waiting -= 1;
4809 if (islocked == 0)
4810 FREE_LOCK(&lk);
4811 return (1);
4815 * Awaken processes pausing in request_cleanup and clear proc_waiting
4816 * to indicate that there is no longer a timer running.
4818 void
4819 pause_timer(void *arg)
4821 *stat_countp += 1;
4822 wakeup_one(&proc_waiting);
4823 if (proc_waiting > 0)
4824 callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4825 pause_timer, NULL);
4826 else
4827 callout_deactivate(&handle);
4831 * Flush out a directory with at least one removal dependency in an effort to
4832 * reduce the number of dirrem, freefile, and freeblks dependency structures.
4834 static void
4835 clear_remove(struct thread *td)
4837 struct pagedep_hashhead *pagedephd;
4838 struct pagedep *pagedep;
4839 static int next = 0;
4840 struct mount *mp;
4841 struct vnode *vp;
4842 int error, cnt;
4843 ino_t ino;
4845 ACQUIRE_LOCK(&lk);
4846 for (cnt = 0; cnt < pagedep_hash; cnt++) {
4847 pagedephd = &pagedep_hashtbl[next++];
4848 if (next >= pagedep_hash)
4849 next = 0;
4850 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4851 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4852 continue;
4853 mp = pagedep->pd_mnt;
4854 ino = pagedep->pd_ino;
4855 FREE_LOCK(&lk);
4856 if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4857 softdep_error("clear_remove: vget", error);
4858 return;
4860 if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
4861 softdep_error("clear_remove: fsync", error);
4862 drain_output(vp, 0);
4863 vput(vp);
4864 return;
4867 FREE_LOCK(&lk);
4871 * Clear out a block of dirty inodes in an effort to reduce
4872 * the number of inodedep dependency structures.
4874 struct clear_inodedeps_info {
4875 struct fs *fs;
4876 struct mount *mp;
4879 static int
4880 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4882 struct clear_inodedeps_info *info = data;
4884 if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4885 info->mp = mp;
4886 return(-1);
4888 return(0);
4891 static void
4892 clear_inodedeps(struct thread *td)
4894 struct clear_inodedeps_info info;
4895 struct inodedep_hashhead *inodedephd;
4896 struct inodedep *inodedep;
4897 static int next = 0;
4898 struct vnode *vp;
4899 struct fs *fs;
4900 int error, cnt;
4901 ino_t firstino, lastino, ino;
4903 ACQUIRE_LOCK(&lk);
4905 * Pick a random inode dependency to be cleared.
4906 * We will then gather up all the inodes in its block
4907 * that have dependencies and flush them out.
4909 for (cnt = 0; cnt < inodedep_hash; cnt++) {
4910 inodedephd = &inodedep_hashtbl[next++];
4911 if (next >= inodedep_hash)
4912 next = 0;
4913 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4914 break;
4916 if (inodedep == NULL) {
4917 FREE_LOCK(&lk);
4918 return;
4921 * Ugly code to find mount point given pointer to superblock.
4923 fs = inodedep->id_fs;
4924 info.mp = NULL;
4925 info.fs = fs;
4926 mountlist_scan(clear_inodedeps_mountlist_callback,
4927 &info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4929 * Find the last inode in the block with dependencies.
4931 firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4932 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4933 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4934 break;
4936 * Asynchronously push all but the last inode with dependencies.
4937 * Synchronously push the last inode with dependencies to ensure
4938 * that the inode block gets written to free up the inodedeps.
4940 for (ino = firstino; ino <= lastino; ino++) {
4941 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4942 continue;
4943 FREE_LOCK(&lk);
4944 if ((error = VFS_VGET(info.mp, ino, &vp)) != 0) {
4945 softdep_error("clear_inodedeps: vget", error);
4946 return;
4948 if (ino == lastino) {
4949 if ((error = VOP_FSYNC(vp, MNT_WAIT)))
4950 softdep_error("clear_inodedeps: fsync1", error);
4951 } else {
4952 if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
4953 softdep_error("clear_inodedeps: fsync2", error);
4954 drain_output(vp, 0);
4956 vput(vp);
4957 ACQUIRE_LOCK(&lk);
4959 FREE_LOCK(&lk);
4963 * Function to determine if the buffer has outstanding dependencies
4964 * that will cause a roll-back if the buffer is written. If wantcount
4965 * is set, return number of dependencies, otherwise just yes or no.
4967 static int
4968 softdep_count_dependencies(struct buf *bp, int wantcount)
4970 struct worklist *wk;
4971 struct inodedep *inodedep;
4972 struct indirdep *indirdep;
4973 struct allocindir *aip;
4974 struct pagedep *pagedep;
4975 struct diradd *dap;
4976 int i, retval;
4978 retval = 0;
4979 ACQUIRE_LOCK(&lk);
4980 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4981 switch (wk->wk_type) {
4983 case D_INODEDEP:
4984 inodedep = WK_INODEDEP(wk);
4985 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4986 /* bitmap allocation dependency */
4987 retval += 1;
4988 if (!wantcount)
4989 goto out;
4991 if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4992 /* direct block pointer dependency */
4993 retval += 1;
4994 if (!wantcount)
4995 goto out;
4997 continue;
4999 case D_INDIRDEP:
5000 indirdep = WK_INDIRDEP(wk);
5002 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5003 /* indirect block pointer dependency */
5004 retval += 1;
5005 if (!wantcount)
5006 goto out;
5008 continue;
5010 case D_PAGEDEP:
5011 pagedep = WK_PAGEDEP(wk);
5012 for (i = 0; i < DAHASHSZ; i++) {
5014 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5015 /* directory entry dependency */
5016 retval += 1;
5017 if (!wantcount)
5018 goto out;
5021 continue;
5023 case D_BMSAFEMAP:
5024 case D_ALLOCDIRECT:
5025 case D_ALLOCINDIR:
5026 case D_MKDIR:
5027 /* never a dependency on these blocks */
5028 continue;
5030 default:
5031 FREE_LOCK(&lk);
5032 panic("softdep_check_for_rollback: Unexpected type %s",
5033 TYPENAME(wk->wk_type));
5034 /* NOTREACHED */
5037 out:
5038 FREE_LOCK(&lk);
5039 return retval;
5043 * Acquire exclusive access to a buffer.
5044 * Must be called with splbio blocked.
5045 * Return 1 if buffer was acquired.
5047 static int
5048 getdirtybuf(struct buf **bpp, int waitfor)
5050 struct buf *bp;
5051 int error;
5053 for (;;) {
5054 if ((bp = *bpp) == NULL)
5055 return (0);
5056 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
5057 break;
5058 if (waitfor != MNT_WAIT)
5059 return (0);
5060 error = interlocked_sleep(&lk, LOCKBUF, bp,
5061 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5062 if (error != ENOLCK) {
5063 FREE_LOCK(&lk);
5064 panic("getdirtybuf: inconsistent lock");
5067 if ((bp->b_flags & B_DELWRI) == 0) {
5068 BUF_UNLOCK(bp);
5069 return (0);
5071 bremfree(bp);
5072 return (1);
5076 * Wait for pending output on a vnode to complete.
5077 * Must be called with vnode locked.
5079 static void
5080 drain_output(struct vnode *vp, int islocked)
5083 if (!islocked)
5084 ACQUIRE_LOCK(&lk);
5085 while (vp->v_track_write.bk_active) {
5086 vp->v_track_write.bk_waitflag = 1;
5087 interlocked_sleep(&lk, SLEEP, &vp->v_track_write,
5088 0, "drainvp", 0);
5090 if (!islocked)
5091 FREE_LOCK(&lk);
5095 * Called whenever a buffer that is being invalidated or reallocated
5096 * contains dependencies. This should only happen if an I/O error has
5097 * occurred. The routine is called with the buffer locked.
5099 static void
5100 softdep_deallocate_dependencies(struct buf *bp)
5103 if ((bp->b_flags & B_ERROR) == 0)
5104 panic("softdep_deallocate_dependencies: dangling deps");
5105 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5106 panic("softdep_deallocate_dependencies: unrecovered I/O error");
5110 * Function to handle asynchronous write errors in the filesystem.
5112 void
5113 softdep_error(char *func, int error)
5116 /* XXX should do something better! */
5117 kprintf("%s: got error %d while accessing filesystem\n", func, error);