sched: Add cpuset_t for FreeBSD compat
[dragonfly.git] / sys / vm / vm_page.c
blob42cefe47f8e61242ea5cdce444ffd36befeb4570
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
33 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
63 * Resident memory management module. The module manipulates 'VM pages'.
64 * A VM page is the core building block for memory management.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/proc.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/kernel.h>
74 #include <sys/alist.h>
75 #include <sys/sysctl.h>
76 #include <sys/cpu_topology.h>
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
91 #include <machine/inttypes.h>
92 #include <machine/md_var.h>
93 #include <machine/specialreg.h>
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
99 * Action hash for user umtx support.
101 #define VMACTION_HSIZE 256
102 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
105 * SET - Minimum required set associative size, must be a power of 2. We
106 * want this to match or exceed the set-associativeness of the cpu.
108 * GRP - A larger set that allows bleed-over into the domains of other
109 * nearby cpus. Also must be a power of 2. Used by the page zeroing
110 * code to smooth things out a bit.
112 #define PQ_SET_ASSOC 16
113 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
115 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
116 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
118 static void vm_page_queue_init(void);
119 static void vm_page_free_wakeup(void);
120 static vm_page_t vm_page_select_cache(u_short pg_color);
121 static vm_page_t _vm_page_list_find2(int basequeue, int index);
122 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
125 * Array of tailq lists
127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
129 LIST_HEAD(vm_page_action_list, vm_page_action);
130 struct vm_page_action_list action_list[VMACTION_HSIZE];
131 static volatile int vm_pages_waiting;
133 static struct alist vm_contig_alist;
134 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
135 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
137 static u_long vm_dma_reserved = 0;
138 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
139 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
140 "Memory reserved for DMA");
141 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
142 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
144 static int vm_contig_verbose = 0;
145 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
147 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
148 vm_pindex_t, pindex);
150 static void
151 vm_page_queue_init(void)
153 int i;
155 for (i = 0; i < PQ_L2_SIZE; i++)
156 vm_page_queues[PQ_FREE+i].cnt_offset =
157 offsetof(struct vmstats, v_free_count);
158 for (i = 0; i < PQ_L2_SIZE; i++)
159 vm_page_queues[PQ_CACHE+i].cnt_offset =
160 offsetof(struct vmstats, v_cache_count);
161 for (i = 0; i < PQ_L2_SIZE; i++)
162 vm_page_queues[PQ_INACTIVE+i].cnt_offset =
163 offsetof(struct vmstats, v_inactive_count);
164 for (i = 0; i < PQ_L2_SIZE; i++)
165 vm_page_queues[PQ_ACTIVE+i].cnt_offset =
166 offsetof(struct vmstats, v_active_count);
167 for (i = 0; i < PQ_L2_SIZE; i++)
168 vm_page_queues[PQ_HOLD+i].cnt_offset =
169 offsetof(struct vmstats, v_active_count);
170 /* PQ_NONE has no queue */
172 for (i = 0; i < PQ_COUNT; i++) {
173 TAILQ_INIT(&vm_page_queues[i].pl);
174 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
177 for (i = 0; i < VMACTION_HSIZE; i++)
178 LIST_INIT(&action_list[i]);
182 * note: place in initialized data section? Is this necessary?
184 long first_page = 0;
185 int vm_page_array_size = 0;
186 vm_page_t vm_page_array = NULL;
187 vm_paddr_t vm_low_phys_reserved;
190 * (low level boot)
192 * Sets the page size, perhaps based upon the memory size.
193 * Must be called before any use of page-size dependent functions.
195 void
196 vm_set_page_size(void)
198 if (vmstats.v_page_size == 0)
199 vmstats.v_page_size = PAGE_SIZE;
200 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
201 panic("vm_set_page_size: page size not a power of two");
205 * (low level boot)
207 * Add a new page to the freelist for use by the system. New pages
208 * are added to both the head and tail of the associated free page
209 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
210 * requests pull 'recent' adds (higher physical addresses) first.
212 * Beware that the page zeroing daemon will also be running soon after
213 * boot, moving pages from the head to the tail of the PQ_FREE queues.
215 * Must be called in a critical section.
217 static void
218 vm_add_new_page(vm_paddr_t pa)
220 struct vpgqueues *vpq;
221 vm_page_t m;
223 m = PHYS_TO_VM_PAGE(pa);
224 m->phys_addr = pa;
225 m->flags = 0;
226 m->pat_mode = PAT_WRITE_BACK;
227 m->pc = (pa >> PAGE_SHIFT);
230 * Twist for cpu localization in addition to page coloring, so
231 * different cpus selecting by m->queue get different page colors.
233 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
234 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
235 m->pc &= PQ_L2_MASK;
238 * Reserve a certain number of contiguous low memory pages for
239 * contigmalloc() to use.
241 if (pa < vm_low_phys_reserved) {
242 atomic_add_int(&vmstats.v_page_count, 1);
243 atomic_add_int(&vmstats.v_dma_pages, 1);
244 m->queue = PQ_NONE;
245 m->wire_count = 1;
246 atomic_add_int(&vmstats.v_wire_count, 1);
247 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
248 return;
252 * General page
254 m->queue = m->pc + PQ_FREE;
255 KKASSERT(m->dirty == 0);
257 atomic_add_int(&vmstats.v_page_count, 1);
258 atomic_add_int(&vmstats.v_free_count, 1);
259 vpq = &vm_page_queues[m->queue];
260 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
261 ++vpq->lcnt;
265 * (low level boot)
267 * Initializes the resident memory module.
269 * Preallocates memory for critical VM structures and arrays prior to
270 * kernel_map becoming available.
272 * Memory is allocated from (virtual2_start, virtual2_end) if available,
273 * otherwise memory is allocated from (virtual_start, virtual_end).
275 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
276 * large enough to hold vm_page_array & other structures for machines with
277 * large amounts of ram, so we want to use virtual2* when available.
279 void
280 vm_page_startup(void)
282 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
283 vm_offset_t mapped;
284 vm_size_t npages;
285 vm_paddr_t page_range;
286 vm_paddr_t new_end;
287 int i;
288 vm_paddr_t pa;
289 vm_paddr_t last_pa;
290 vm_paddr_t end;
291 vm_paddr_t biggestone, biggestsize;
292 vm_paddr_t total;
293 vm_page_t m;
295 total = 0;
296 biggestsize = 0;
297 biggestone = 0;
298 vaddr = round_page(vaddr);
301 * Make sure ranges are page-aligned.
303 for (i = 0; phys_avail[i].phys_end; ++i) {
304 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
305 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
306 if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
307 phys_avail[i].phys_end = phys_avail[i].phys_beg;
311 * Locate largest block
313 for (i = 0; phys_avail[i].phys_end; ++i) {
314 vm_paddr_t size = phys_avail[i].phys_end -
315 phys_avail[i].phys_beg;
317 if (size > biggestsize) {
318 biggestone = i;
319 biggestsize = size;
321 total += size;
323 --i; /* adjust to last entry for use down below */
325 end = phys_avail[biggestone].phys_end;
326 end = trunc_page(end);
329 * Initialize the queue headers for the free queue, the active queue
330 * and the inactive queue.
332 vm_page_queue_init();
334 #if !defined(_KERNEL_VIRTUAL)
336 * VKERNELs don't support minidumps and as such don't need
337 * vm_page_dump
339 * Allocate a bitmap to indicate that a random physical page
340 * needs to be included in a minidump.
342 * The amd64 port needs this to indicate which direct map pages
343 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
345 * However, i386 still needs this workspace internally within the
346 * minidump code. In theory, they are not needed on i386, but are
347 * included should the sf_buf code decide to use them.
349 page_range = phys_avail[i].phys_end / PAGE_SIZE;
350 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
351 end -= vm_page_dump_size;
352 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
353 VM_PROT_READ | VM_PROT_WRITE);
354 bzero((void *)vm_page_dump, vm_page_dump_size);
355 #endif
357 * Compute the number of pages of memory that will be available for
358 * use (taking into account the overhead of a page structure per
359 * page).
361 first_page = phys_avail[0].phys_beg / PAGE_SIZE;
362 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
363 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
365 #ifndef _KERNEL_VIRTUAL
367 * (only applies to real kernels)
369 * Reserve a large amount of low memory for potential 32-bit DMA
370 * space allocations. Once device initialization is complete we
371 * release most of it, but keep (vm_dma_reserved) memory reserved
372 * for later use. Typically for X / graphics. Through trial and
373 * error we find that GPUs usually requires ~60-100MB or so.
375 * By default, 128M is left in reserve on machines with 2G+ of ram.
377 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
378 if (vm_low_phys_reserved > total / 4)
379 vm_low_phys_reserved = total / 4;
380 if (vm_dma_reserved == 0) {
381 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
382 if (vm_dma_reserved > total / 16)
383 vm_dma_reserved = total / 16;
385 #endif
386 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
387 ALIST_RECORDS_65536);
390 * Initialize the mem entry structures now, and put them in the free
391 * queue.
393 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
394 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
395 vm_page_array = (vm_page_t)mapped;
397 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
399 * since pmap_map on amd64 returns stuff out of a direct-map region,
400 * we have to manually add these pages to the minidump tracking so
401 * that they can be dumped, including the vm_page_array.
403 for (pa = new_end;
404 pa < phys_avail[biggestone].phys_end;
405 pa += PAGE_SIZE) {
406 dump_add_page(pa);
408 #endif
411 * Clear all of the page structures, run basic initialization so
412 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
413 * map.
415 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
416 vm_page_array_size = page_range;
418 m = &vm_page_array[0];
419 pa = ptoa(first_page);
420 for (i = 0; i < page_range; ++i) {
421 spin_init(&m->spin, "vm_page");
422 m->phys_addr = pa;
423 pa += PAGE_SIZE;
424 ++m;
428 * Construct the free queue(s) in ascending order (by physical
429 * address) so that the first 16MB of physical memory is allocated
430 * last rather than first. On large-memory machines, this avoids
431 * the exhaustion of low physical memory before isa_dmainit has run.
433 vmstats.v_page_count = 0;
434 vmstats.v_free_count = 0;
435 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
436 pa = phys_avail[i].phys_beg;
437 if (i == biggestone)
438 last_pa = new_end;
439 else
440 last_pa = phys_avail[i].phys_end;
441 while (pa < last_pa && npages-- > 0) {
442 vm_add_new_page(pa);
443 pa += PAGE_SIZE;
446 if (virtual2_start)
447 virtual2_start = vaddr;
448 else
449 virtual_start = vaddr;
450 mycpu->gd_vmstats = vmstats;
454 * Reorganize VM pages based on numa data. May be called as many times as
455 * necessary. Will reorganize the vm_page_t page color and related queue(s)
456 * to allow vm_page_alloc() to choose pages based on socket affinity.
458 * NOTE: This function is only called while we are still in UP mode, so
459 * we only need a critical section to protect the queues (which
460 * saves a lot of time, there are likely a ton of pages).
462 void
463 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
465 vm_paddr_t scan_beg;
466 vm_paddr_t scan_end;
467 vm_paddr_t ran_end;
468 struct vpgqueues *vpq;
469 vm_page_t m;
470 vm_page_t mend;
471 int i;
472 int socket_mod;
473 int socket_value;
476 * Check if no physical information, or there was only one socket
477 * (so don't waste time doing nothing!).
479 if (cpu_topology_phys_ids <= 1 ||
480 cpu_topology_core_ids == 0) {
481 return;
485 * Setup for our iteration. Note that ACPI may iterate CPU
486 * sockets starting at 0 or 1 or some other number. The
487 * cpu_topology code mod's it against the socket count.
489 ran_end = ran_beg + bytes;
490 physid %= cpu_topology_phys_ids;
492 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
493 socket_value = physid * socket_mod;
494 mend = &vm_page_array[vm_page_array_size];
496 crit_enter();
499 * Adjust vm_page->pc and requeue all affected pages. The
500 * allocator will then be able to localize memory allocations
501 * to some degree.
503 for (i = 0; phys_avail[i].phys_end; ++i) {
504 scan_beg = phys_avail[i].phys_beg;
505 scan_end = phys_avail[i].phys_end;
506 if (scan_end <= ran_beg)
507 continue;
508 if (scan_beg >= ran_end)
509 continue;
510 if (scan_beg < ran_beg)
511 scan_beg = ran_beg;
512 if (scan_end > ran_end)
513 scan_end = ran_end;
514 if (atop(scan_end) > first_page + vm_page_array_size)
515 scan_end = ptoa(first_page + vm_page_array_size);
517 m = PHYS_TO_VM_PAGE(scan_beg);
518 while (scan_beg < scan_end) {
519 KKASSERT(m < mend);
520 if (m->queue != PQ_NONE) {
521 vpq = &vm_page_queues[m->queue];
522 TAILQ_REMOVE(&vpq->pl, m, pageq);
523 --vpq->lcnt;
524 /* queue doesn't change, no need to adj cnt */
525 m->queue -= m->pc;
526 m->pc %= socket_mod;
527 m->pc += socket_value;
528 m->pc &= PQ_L2_MASK;
529 m->queue += m->pc;
530 vpq = &vm_page_queues[m->queue];
531 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
532 ++vpq->lcnt;
533 /* queue doesn't change, no need to adj cnt */
534 } else {
535 m->pc %= socket_mod;
536 m->pc += socket_value;
537 m->pc &= PQ_L2_MASK;
539 scan_beg += PAGE_SIZE;
540 ++m;
543 crit_exit();
547 * We tended to reserve a ton of memory for contigmalloc(). Now that most
548 * drivers have initialized we want to return most the remaining free
549 * reserve back to the VM page queues so they can be used for normal
550 * allocations.
552 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
554 static void
555 vm_page_startup_finish(void *dummy __unused)
557 alist_blk_t blk;
558 alist_blk_t rblk;
559 alist_blk_t count;
560 alist_blk_t xcount;
561 alist_blk_t bfree;
562 vm_page_t m;
564 spin_lock(&vm_contig_spin);
565 for (;;) {
566 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
567 if (bfree <= vm_dma_reserved / PAGE_SIZE)
568 break;
569 if (count == 0)
570 break;
573 * Figure out how much of the initial reserve we have to
574 * free in order to reach our target.
576 bfree -= vm_dma_reserved / PAGE_SIZE;
577 if (count > bfree) {
578 blk += count - bfree;
579 count = bfree;
583 * Calculate the nearest power of 2 <= count.
585 for (xcount = 1; xcount <= count; xcount <<= 1)
587 xcount >>= 1;
588 blk += count - xcount;
589 count = xcount;
592 * Allocate the pages from the alist, then free them to
593 * the normal VM page queues.
595 * Pages allocated from the alist are wired. We have to
596 * busy, unwire, and free them. We must also adjust
597 * vm_low_phys_reserved before freeing any pages to prevent
598 * confusion.
600 rblk = alist_alloc(&vm_contig_alist, blk, count);
601 if (rblk != blk) {
602 kprintf("vm_page_startup_finish: Unable to return "
603 "dma space @0x%08x/%d -> 0x%08x\n",
604 blk, count, rblk);
605 break;
607 atomic_add_int(&vmstats.v_dma_pages, -count);
608 spin_unlock(&vm_contig_spin);
610 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
611 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
612 while (count) {
613 vm_page_busy_wait(m, FALSE, "cpgfr");
614 vm_page_unwire(m, 0);
615 vm_page_free(m);
616 --count;
617 ++m;
619 spin_lock(&vm_contig_spin);
621 spin_unlock(&vm_contig_spin);
624 * Print out how much DMA space drivers have already allocated and
625 * how much is left over.
627 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
628 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
629 (PAGE_SIZE / 1024),
630 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
632 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
633 vm_page_startup_finish, NULL);
637 * Scan comparison function for Red-Black tree scans. An inclusive
638 * (start,end) is expected. Other fields are not used.
641 rb_vm_page_scancmp(struct vm_page *p, void *data)
643 struct rb_vm_page_scan_info *info = data;
645 if (p->pindex < info->start_pindex)
646 return(-1);
647 if (p->pindex > info->end_pindex)
648 return(1);
649 return(0);
653 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
655 if (p1->pindex < p2->pindex)
656 return(-1);
657 if (p1->pindex > p2->pindex)
658 return(1);
659 return(0);
662 void
663 vm_page_init(vm_page_t m)
665 /* do nothing for now. Called from pmap_page_init() */
669 * Each page queue has its own spin lock, which is fairly optimal for
670 * allocating and freeing pages at least.
672 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
673 * queue spinlock via this function. Also note that m->queue cannot change
674 * unless both the page and queue are locked.
676 static __inline
677 void
678 _vm_page_queue_spin_lock(vm_page_t m)
680 u_short queue;
682 queue = m->queue;
683 if (queue != PQ_NONE) {
684 spin_lock(&vm_page_queues[queue].spin);
685 KKASSERT(queue == m->queue);
689 static __inline
690 void
691 _vm_page_queue_spin_unlock(vm_page_t m)
693 u_short queue;
695 queue = m->queue;
696 cpu_ccfence();
697 if (queue != PQ_NONE)
698 spin_unlock(&vm_page_queues[queue].spin);
701 static __inline
702 void
703 _vm_page_queues_spin_lock(u_short queue)
705 cpu_ccfence();
706 if (queue != PQ_NONE)
707 spin_lock(&vm_page_queues[queue].spin);
711 static __inline
712 void
713 _vm_page_queues_spin_unlock(u_short queue)
715 cpu_ccfence();
716 if (queue != PQ_NONE)
717 spin_unlock(&vm_page_queues[queue].spin);
720 void
721 vm_page_queue_spin_lock(vm_page_t m)
723 _vm_page_queue_spin_lock(m);
726 void
727 vm_page_queues_spin_lock(u_short queue)
729 _vm_page_queues_spin_lock(queue);
732 void
733 vm_page_queue_spin_unlock(vm_page_t m)
735 _vm_page_queue_spin_unlock(m);
738 void
739 vm_page_queues_spin_unlock(u_short queue)
741 _vm_page_queues_spin_unlock(queue);
745 * This locks the specified vm_page and its queue in the proper order
746 * (page first, then queue). The queue may change so the caller must
747 * recheck on return.
749 static __inline
750 void
751 _vm_page_and_queue_spin_lock(vm_page_t m)
753 vm_page_spin_lock(m);
754 _vm_page_queue_spin_lock(m);
757 static __inline
758 void
759 _vm_page_and_queue_spin_unlock(vm_page_t m)
761 _vm_page_queues_spin_unlock(m->queue);
762 vm_page_spin_unlock(m);
765 void
766 vm_page_and_queue_spin_unlock(vm_page_t m)
768 _vm_page_and_queue_spin_unlock(m);
771 void
772 vm_page_and_queue_spin_lock(vm_page_t m)
774 _vm_page_and_queue_spin_lock(m);
778 * Helper function removes vm_page from its current queue.
779 * Returns the base queue the page used to be on.
781 * The vm_page and the queue must be spinlocked.
782 * This function will unlock the queue but leave the page spinlocked.
784 static __inline u_short
785 _vm_page_rem_queue_spinlocked(vm_page_t m)
787 struct vpgqueues *pq;
788 u_short queue;
789 u_short oqueue;
790 int *cnt;
792 queue = m->queue;
793 if (queue != PQ_NONE) {
794 pq = &vm_page_queues[queue];
795 TAILQ_REMOVE(&pq->pl, m, pageq);
798 * Adjust our pcpu stats. In order for the nominal low-memory
799 * algorithms to work properly we don't let any pcpu stat get
800 * too negative before we force it to be rolled-up into the
801 * global stats. Otherwise our pageout and vm_wait tests
802 * will fail badly.
804 * The idea here is to reduce unnecessary SMP cache
805 * mastership changes in the global vmstats, which can be
806 * particularly bad in multi-socket systems.
808 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
809 atomic_add_int(cnt, -1);
810 if (*cnt < -VMMETER_SLOP_COUNT) {
811 u_int copy = atomic_swap_int(cnt, 0);
812 cnt = (int *)((char *)&vmstats + pq->cnt_offset);
813 atomic_add_int(cnt, copy);
814 cnt = (int *)((char *)&mycpu->gd_vmstats +
815 pq->cnt_offset);
816 atomic_add_int(cnt, copy);
818 pq->lcnt--;
819 m->queue = PQ_NONE;
820 oqueue = queue;
821 queue -= m->pc;
822 vm_page_queues_spin_unlock(oqueue); /* intended */
824 return queue;
828 * Helper function places the vm_page on the specified queue.
830 * The vm_page must be spinlocked.
831 * This function will return with both the page and the queue locked.
833 static __inline void
834 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
836 struct vpgqueues *pq;
837 u_int *cnt;
839 KKASSERT(m->queue == PQ_NONE);
841 if (queue != PQ_NONE) {
842 vm_page_queues_spin_lock(queue);
843 pq = &vm_page_queues[queue];
844 ++pq->lcnt;
847 * Adjust our pcpu stats. If a system entity really needs
848 * to incorporate the count it will call vmstats_rollup()
849 * to roll it all up into the global vmstats strufture.
851 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
852 atomic_add_int(cnt, 1);
855 * PQ_FREE is always handled LIFO style to try to provide
856 * cache-hot pages to programs.
858 m->queue = queue;
859 if (queue - m->pc == PQ_FREE) {
860 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
861 } else if (athead) {
862 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
863 } else {
864 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
866 /* leave the queue spinlocked */
871 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
872 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
873 * did not. Only one sleep call will be made before returning.
875 * This function does NOT busy the page and on return the page is not
876 * guaranteed to be available.
878 void
879 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
881 u_int32_t flags;
883 for (;;) {
884 flags = m->flags;
885 cpu_ccfence();
887 if ((flags & PG_BUSY) == 0 &&
888 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
889 break;
891 tsleep_interlock(m, 0);
892 if (atomic_cmpset_int(&m->flags, flags,
893 flags | PG_WANTED | PG_REFERENCED)) {
894 tsleep(m, PINTERLOCKED, msg, 0);
895 break;
901 * This calculates and returns a page color given an optional VM object and
902 * either a pindex or an iterator. We attempt to return a cpu-localized
903 * pg_color that is still roughly 16-way set-associative. The CPU topology
904 * is used if it was probed.
906 * The caller may use the returned value to index into e.g. PQ_FREE when
907 * allocating a page in order to nominally obtain pages that are hopefully
908 * already localized to the requesting cpu. This function is not able to
909 * provide any sort of guarantee of this, but does its best to improve
910 * hardware cache management performance.
912 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
914 u_short
915 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
917 u_short pg_color;
918 int phys_id;
919 int core_id;
920 int object_pg_color;
922 phys_id = get_cpu_phys_id(cpuid);
923 core_id = get_cpu_core_id(cpuid);
924 object_pg_color = object ? object->pg_color : 0;
926 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
927 int grpsize;
930 * Break us down by socket and cpu
932 pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
933 pg_color += core_id * PQ_L2_SIZE /
934 (cpu_topology_core_ids * cpu_topology_phys_ids);
937 * Calculate remaining component for object/queue color
939 grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
940 cpu_topology_phys_ids);
941 if (grpsize >= 8) {
942 pg_color += (pindex + object_pg_color) % grpsize;
943 } else {
944 if (grpsize <= 2) {
945 grpsize = 8;
946 } else {
947 /* 3->9, 4->8, 5->10, 6->12, 7->14 */
948 grpsize += grpsize;
949 if (grpsize < 8)
950 grpsize += grpsize;
952 pg_color += (pindex + object_pg_color) % grpsize;
954 } else {
956 * Unknown topology, distribute things evenly.
958 pg_color = cpuid * PQ_L2_SIZE / ncpus;
959 pg_color += pindex + object_pg_color;
961 return (pg_color & PQ_L2_MASK);
965 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
966 * also wait for m->busy to become 0 before setting PG_BUSY.
968 void
969 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
970 int also_m_busy, const char *msg
971 VM_PAGE_DEBUG_ARGS)
973 u_int32_t flags;
975 for (;;) {
976 flags = m->flags;
977 cpu_ccfence();
978 if (flags & PG_BUSY) {
979 tsleep_interlock(m, 0);
980 if (atomic_cmpset_int(&m->flags, flags,
981 flags | PG_WANTED | PG_REFERENCED)) {
982 tsleep(m, PINTERLOCKED, msg, 0);
984 } else if (also_m_busy && (flags & PG_SBUSY)) {
985 tsleep_interlock(m, 0);
986 if (atomic_cmpset_int(&m->flags, flags,
987 flags | PG_WANTED | PG_REFERENCED)) {
988 tsleep(m, PINTERLOCKED, msg, 0);
990 } else {
991 if (atomic_cmpset_int(&m->flags, flags,
992 flags | PG_BUSY)) {
993 #ifdef VM_PAGE_DEBUG
994 m->busy_func = func;
995 m->busy_line = lineno;
996 #endif
997 break;
1004 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
1005 * is also 0.
1007 * Returns non-zero on failure.
1010 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1011 VM_PAGE_DEBUG_ARGS)
1013 u_int32_t flags;
1015 for (;;) {
1016 flags = m->flags;
1017 cpu_ccfence();
1018 if (flags & PG_BUSY)
1019 return TRUE;
1020 if (also_m_busy && (flags & PG_SBUSY))
1021 return TRUE;
1022 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1023 #ifdef VM_PAGE_DEBUG
1024 m->busy_func = func;
1025 m->busy_line = lineno;
1026 #endif
1027 return FALSE;
1033 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
1034 * that a wakeup() should be performed.
1036 * The vm_page must be spinlocked and will remain spinlocked on return.
1037 * The related queue must NOT be spinlocked (which could deadlock us).
1039 * (inline version)
1041 static __inline
1043 _vm_page_wakeup(vm_page_t m)
1045 u_int32_t flags;
1047 for (;;) {
1048 flags = m->flags;
1049 cpu_ccfence();
1050 if (atomic_cmpset_int(&m->flags, flags,
1051 flags & ~(PG_BUSY | PG_WANTED))) {
1052 break;
1055 return(flags & PG_WANTED);
1059 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
1060 * is typically the last call you make on a page before moving onto
1061 * other things.
1063 void
1064 vm_page_wakeup(vm_page_t m)
1066 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
1067 vm_page_spin_lock(m);
1068 if (_vm_page_wakeup(m)) {
1069 vm_page_spin_unlock(m);
1070 wakeup(m);
1071 } else {
1072 vm_page_spin_unlock(m);
1077 * Holding a page keeps it from being reused. Other parts of the system
1078 * can still disassociate the page from its current object and free it, or
1079 * perform read or write I/O on it and/or otherwise manipulate the page,
1080 * but if the page is held the VM system will leave the page and its data
1081 * intact and not reuse the page for other purposes until the last hold
1082 * reference is released. (see vm_page_wire() if you want to prevent the
1083 * page from being disassociated from its object too).
1085 * The caller must still validate the contents of the page and, if necessary,
1086 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1087 * before manipulating the page.
1089 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1091 void
1092 vm_page_hold(vm_page_t m)
1094 vm_page_spin_lock(m);
1095 atomic_add_int(&m->hold_count, 1);
1096 if (m->queue - m->pc == PQ_FREE) {
1097 _vm_page_queue_spin_lock(m);
1098 _vm_page_rem_queue_spinlocked(m);
1099 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1100 _vm_page_queue_spin_unlock(m);
1102 vm_page_spin_unlock(m);
1106 * The opposite of vm_page_hold(). If the page is on the HOLD queue
1107 * it was freed while held and must be moved back to the FREE queue.
1109 void
1110 vm_page_unhold(vm_page_t m)
1112 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1113 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1114 m, m->hold_count, m->queue - m->pc));
1115 vm_page_spin_lock(m);
1116 atomic_add_int(&m->hold_count, -1);
1117 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1118 _vm_page_queue_spin_lock(m);
1119 _vm_page_rem_queue_spinlocked(m);
1120 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
1121 _vm_page_queue_spin_unlock(m);
1123 vm_page_spin_unlock(m);
1127 * vm_page_getfake:
1129 * Create a fictitious page with the specified physical address and
1130 * memory attribute. The memory attribute is the only the machine-
1131 * dependent aspect of a fictitious page that must be initialized.
1134 void
1135 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1138 if ((m->flags & PG_FICTITIOUS) != 0) {
1140 * The page's memattr might have changed since the
1141 * previous initialization. Update the pmap to the
1142 * new memattr.
1144 goto memattr;
1146 m->phys_addr = paddr;
1147 m->queue = PQ_NONE;
1148 /* Fictitious pages don't use "segind". */
1149 /* Fictitious pages don't use "order" or "pool". */
1150 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
1151 m->wire_count = 1;
1152 spin_init(&m->spin, "fake_page");
1153 pmap_page_init(m);
1154 memattr:
1155 pmap_page_set_memattr(m, memattr);
1159 * Inserts the given vm_page into the object and object list.
1161 * The pagetables are not updated but will presumably fault the page
1162 * in if necessary, or if a kernel page the caller will at some point
1163 * enter the page into the kernel's pmap. We are not allowed to block
1164 * here so we *can't* do this anyway.
1166 * This routine may not block.
1167 * This routine must be called with the vm_object held.
1168 * This routine must be called with a critical section held.
1170 * This routine returns TRUE if the page was inserted into the object
1171 * successfully, and FALSE if the page already exists in the object.
1174 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1176 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1177 if (m->object != NULL)
1178 panic("vm_page_insert: already inserted");
1180 object->generation++;
1183 * Record the object/offset pair in this page and add the
1184 * pv_list_count of the page to the object.
1186 * The vm_page spin lock is required for interactions with the pmap.
1188 vm_page_spin_lock(m);
1189 m->object = object;
1190 m->pindex = pindex;
1191 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1192 m->object = NULL;
1193 m->pindex = 0;
1194 vm_page_spin_unlock(m);
1195 return FALSE;
1197 ++object->resident_page_count;
1198 ++mycpu->gd_vmtotal.t_rm;
1199 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
1200 vm_page_spin_unlock(m);
1203 * Since we are inserting a new and possibly dirty page,
1204 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1206 if ((m->valid & m->dirty) ||
1207 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1208 vm_object_set_writeable_dirty(object);
1211 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1213 swap_pager_page_inserted(m);
1214 return TRUE;
1218 * Removes the given vm_page_t from the (object,index) table
1220 * The underlying pmap entry (if any) is NOT removed here.
1221 * This routine may not block.
1223 * The page must be BUSY and will remain BUSY on return.
1224 * No other requirements.
1226 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1227 * it busy.
1229 void
1230 vm_page_remove(vm_page_t m)
1232 vm_object_t object;
1234 if (m->object == NULL) {
1235 return;
1238 if ((m->flags & PG_BUSY) == 0)
1239 panic("vm_page_remove: page not busy");
1241 object = m->object;
1243 vm_object_hold(object);
1246 * Remove the page from the object and update the object.
1248 * The vm_page spin lock is required for interactions with the pmap.
1250 vm_page_spin_lock(m);
1251 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1252 --object->resident_page_count;
1253 --mycpu->gd_vmtotal.t_rm;
1254 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1255 m->object = NULL;
1256 vm_page_spin_unlock(m);
1258 object->generation++;
1260 vm_object_drop(object);
1264 * Locate and return the page at (object, pindex), or NULL if the
1265 * page could not be found.
1267 * The caller must hold the vm_object token.
1269 vm_page_t
1270 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1272 vm_page_t m;
1275 * Search the hash table for this object/offset pair
1277 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1278 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1279 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1280 return(m);
1283 vm_page_t
1284 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1285 vm_pindex_t pindex,
1286 int also_m_busy, const char *msg
1287 VM_PAGE_DEBUG_ARGS)
1289 u_int32_t flags;
1290 vm_page_t m;
1292 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1293 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1294 while (m) {
1295 KKASSERT(m->object == object && m->pindex == pindex);
1296 flags = m->flags;
1297 cpu_ccfence();
1298 if (flags & PG_BUSY) {
1299 tsleep_interlock(m, 0);
1300 if (atomic_cmpset_int(&m->flags, flags,
1301 flags | PG_WANTED | PG_REFERENCED)) {
1302 tsleep(m, PINTERLOCKED, msg, 0);
1303 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1304 pindex);
1306 } else if (also_m_busy && (flags & PG_SBUSY)) {
1307 tsleep_interlock(m, 0);
1308 if (atomic_cmpset_int(&m->flags, flags,
1309 flags | PG_WANTED | PG_REFERENCED)) {
1310 tsleep(m, PINTERLOCKED, msg, 0);
1311 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1312 pindex);
1314 } else if (atomic_cmpset_int(&m->flags, flags,
1315 flags | PG_BUSY)) {
1316 #ifdef VM_PAGE_DEBUG
1317 m->busy_func = func;
1318 m->busy_line = lineno;
1319 #endif
1320 break;
1323 return m;
1327 * Attempt to lookup and busy a page.
1329 * Returns NULL if the page could not be found
1331 * Returns a vm_page and error == TRUE if the page exists but could not
1332 * be busied.
1334 * Returns a vm_page and error == FALSE on success.
1336 vm_page_t
1337 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1338 vm_pindex_t pindex,
1339 int also_m_busy, int *errorp
1340 VM_PAGE_DEBUG_ARGS)
1342 u_int32_t flags;
1343 vm_page_t m;
1345 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1346 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1347 *errorp = FALSE;
1348 while (m) {
1349 KKASSERT(m->object == object && m->pindex == pindex);
1350 flags = m->flags;
1351 cpu_ccfence();
1352 if (flags & PG_BUSY) {
1353 *errorp = TRUE;
1354 break;
1356 if (also_m_busy && (flags & PG_SBUSY)) {
1357 *errorp = TRUE;
1358 break;
1360 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1361 #ifdef VM_PAGE_DEBUG
1362 m->busy_func = func;
1363 m->busy_line = lineno;
1364 #endif
1365 break;
1368 return m;
1372 * Attempt to repurpose the passed-in page. If the passed-in page cannot
1373 * be repurposed it will be released, *must_reenter will be set to 1, and
1374 * this function will fall-through to vm_page_lookup_busy_try().
1376 * The passed-in page must be wired and not busy. The returned page will
1377 * be busied and not wired.
1379 * A different page may be returned. The returned page will be busied and
1380 * not wired.
1382 * NULL can be returned. If so, the required page could not be busied.
1383 * The passed-in page will be unwired.
1385 vm_page_t
1386 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1387 int also_m_busy, int *errorp, vm_page_t m,
1388 int *must_reenter, int *iswired)
1390 if (m) {
1392 * Do not mess with pages in a complex state, such as pages
1393 * which are mapped, as repurposing such pages can be more
1394 * expensive than simply allocatin a new one.
1396 * NOTE: Soft-busying can deadlock against putpages or I/O
1397 * so we only allow hard-busying here.
1399 KKASSERT(also_m_busy == FALSE);
1400 vm_page_busy_wait(m, also_m_busy, "biodep");
1402 if ((m->flags & (PG_UNMANAGED | PG_MAPPED |
1403 PG_FICTITIOUS | PG_SBUSY)) ||
1404 m->busy || m->wire_count != 1 || m->hold_count) {
1405 vm_page_unwire(m, 0);
1406 vm_page_wakeup(m);
1407 /* fall through to normal lookup */
1408 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1409 vm_page_unwire(m, 0);
1410 vm_page_deactivate(m);
1411 vm_page_wakeup(m);
1412 /* fall through to normal lookup */
1413 } else {
1415 * We can safely repurpose the page. It should
1416 * already be unqueued.
1418 KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1419 vm_page_remove(m);
1420 m->valid = 0;
1421 m->act_count = 0;
1422 if (vm_page_insert(m, object, pindex)) {
1423 *errorp = 0;
1424 *iswired = 1;
1426 return m;
1428 vm_page_unwire(m, 0);
1429 vm_page_free(m);
1430 /* fall through to normal lookup */
1435 * Cannot repurpose page, attempt to locate the desired page. May
1436 * return NULL.
1438 *must_reenter = 1;
1439 *iswired = 0;
1440 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1442 return m;
1446 * Caller must hold the related vm_object
1448 vm_page_t
1449 vm_page_next(vm_page_t m)
1451 vm_page_t next;
1453 next = vm_page_rb_tree_RB_NEXT(m);
1454 if (next && next->pindex != m->pindex + 1)
1455 next = NULL;
1456 return (next);
1460 * vm_page_rename()
1462 * Move the given vm_page from its current object to the specified
1463 * target object/offset. The page must be busy and will remain so
1464 * on return.
1466 * new_object must be held.
1467 * This routine might block. XXX ?
1469 * NOTE: Swap associated with the page must be invalidated by the move. We
1470 * have to do this for several reasons: (1) we aren't freeing the
1471 * page, (2) we are dirtying the page, (3) the VM system is probably
1472 * moving the page from object A to B, and will then later move
1473 * the backing store from A to B and we can't have a conflict.
1475 * NOTE: We *always* dirty the page. It is necessary both for the
1476 * fact that we moved it, and because we may be invalidating
1477 * swap. If the page is on the cache, we have to deactivate it
1478 * or vm_page_dirty() will panic. Dirty pages are not allowed
1479 * on the cache.
1481 void
1482 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1484 KKASSERT(m->flags & PG_BUSY);
1485 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1486 if (m->object) {
1487 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1488 vm_page_remove(m);
1490 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1491 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1492 new_object, new_pindex);
1494 if (m->queue - m->pc == PQ_CACHE)
1495 vm_page_deactivate(m);
1496 vm_page_dirty(m);
1500 * vm_page_unqueue() without any wakeup. This routine is used when a page
1501 * is to remain BUSYied by the caller.
1503 * This routine may not block.
1505 void
1506 vm_page_unqueue_nowakeup(vm_page_t m)
1508 vm_page_and_queue_spin_lock(m);
1509 (void)_vm_page_rem_queue_spinlocked(m);
1510 vm_page_spin_unlock(m);
1514 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1515 * if necessary.
1517 * This routine may not block.
1519 void
1520 vm_page_unqueue(vm_page_t m)
1522 u_short queue;
1524 vm_page_and_queue_spin_lock(m);
1525 queue = _vm_page_rem_queue_spinlocked(m);
1526 if (queue == PQ_FREE || queue == PQ_CACHE) {
1527 vm_page_spin_unlock(m);
1528 pagedaemon_wakeup();
1529 } else {
1530 vm_page_spin_unlock(m);
1535 * vm_page_list_find()
1537 * Find a page on the specified queue with color optimization.
1539 * The page coloring optimization attempts to locate a page that does
1540 * not overload other nearby pages in the object in the cpu's L1 or L2
1541 * caches. We need this optimization because cpu caches tend to be
1542 * physical caches, while object spaces tend to be virtual.
1544 * The page coloring optimization also, very importantly, tries to localize
1545 * memory to cpus and physical sockets.
1547 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1548 * and the algorithm is adjusted to localize allocations on a per-core basis.
1549 * This is done by 'twisting' the colors.
1551 * The page is returned spinlocked and removed from its queue (it will
1552 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1553 * is responsible for dealing with the busy-page case (usually by
1554 * deactivating the page and looping).
1556 * NOTE: This routine is carefully inlined. A non-inlined version
1557 * is available for outside callers but the only critical path is
1558 * from within this source file.
1560 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1561 * represent stable storage, allowing us to order our locks vm_page
1562 * first, then queue.
1564 static __inline
1565 vm_page_t
1566 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1568 vm_page_t m;
1570 for (;;) {
1571 if (prefer_zero) {
1572 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl,
1573 pglist);
1574 } else {
1575 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1577 if (m == NULL) {
1578 m = _vm_page_list_find2(basequeue, index);
1579 return(m);
1581 vm_page_and_queue_spin_lock(m);
1582 if (m->queue == basequeue + index) {
1583 _vm_page_rem_queue_spinlocked(m);
1584 /* vm_page_t spin held, no queue spin */
1585 break;
1587 vm_page_and_queue_spin_unlock(m);
1589 return(m);
1593 * If we could not find the page in the desired queue try to find it in
1594 * a nearby queue.
1596 static vm_page_t
1597 _vm_page_list_find2(int basequeue, int index)
1599 struct vpgqueues *pq;
1600 vm_page_t m = NULL;
1601 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1602 int pqi;
1603 int i;
1605 index &= PQ_L2_MASK;
1606 pq = &vm_page_queues[basequeue];
1609 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1610 * else fails (PQ_L2_MASK which is 255).
1612 do {
1613 pqmask = (pqmask << 1) | 1;
1614 for (i = 0; i <= pqmask; ++i) {
1615 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1616 m = TAILQ_FIRST(&pq[pqi].pl);
1617 if (m) {
1618 _vm_page_and_queue_spin_lock(m);
1619 if (m->queue == basequeue + pqi) {
1620 _vm_page_rem_queue_spinlocked(m);
1621 return(m);
1623 _vm_page_and_queue_spin_unlock(m);
1624 --i;
1625 continue;
1628 } while (pqmask != PQ_L2_MASK);
1630 return(m);
1634 * Returns a vm_page candidate for allocation. The page is not busied so
1635 * it can move around. The caller must busy the page (and typically
1636 * deactivate it if it cannot be busied!)
1638 * Returns a spinlocked vm_page that has been removed from its queue.
1640 vm_page_t
1641 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1643 return(_vm_page_list_find(basequeue, index, prefer_zero));
1647 * Find a page on the cache queue with color optimization, remove it
1648 * from the queue, and busy it. The returned page will not be spinlocked.
1650 * A candidate failure will be deactivated. Candidates can fail due to
1651 * being busied by someone else, in which case they will be deactivated.
1653 * This routine may not block.
1656 static vm_page_t
1657 vm_page_select_cache(u_short pg_color)
1659 vm_page_t m;
1661 for (;;) {
1662 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1663 if (m == NULL)
1664 break;
1666 * (m) has been removed from its queue and spinlocked
1668 if (vm_page_busy_try(m, TRUE)) {
1669 _vm_page_deactivate_locked(m, 0);
1670 vm_page_spin_unlock(m);
1671 } else {
1673 * We successfully busied the page
1675 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1676 m->hold_count == 0 &&
1677 m->wire_count == 0 &&
1678 (m->dirty & m->valid) == 0) {
1679 vm_page_spin_unlock(m);
1680 pagedaemon_wakeup();
1681 return(m);
1685 * The page cannot be recycled, deactivate it.
1687 _vm_page_deactivate_locked(m, 0);
1688 if (_vm_page_wakeup(m)) {
1689 vm_page_spin_unlock(m);
1690 wakeup(m);
1691 } else {
1692 vm_page_spin_unlock(m);
1696 return (m);
1700 * Find a free or zero page, with specified preference. We attempt to
1701 * inline the nominal case and fall back to _vm_page_select_free()
1702 * otherwise. A busied page is removed from the queue and returned.
1704 * This routine may not block.
1706 static __inline vm_page_t
1707 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1709 vm_page_t m;
1711 for (;;) {
1712 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1713 prefer_zero);
1714 if (m == NULL)
1715 break;
1716 if (vm_page_busy_try(m, TRUE)) {
1718 * Various mechanisms such as a pmap_collect can
1719 * result in a busy page on the free queue. We
1720 * have to move the page out of the way so we can
1721 * retry the allocation. If the other thread is not
1722 * allocating the page then m->valid will remain 0 and
1723 * the pageout daemon will free the page later on.
1725 * Since we could not busy the page, however, we
1726 * cannot make assumptions as to whether the page
1727 * will be allocated by the other thread or not,
1728 * so all we can do is deactivate it to move it out
1729 * of the way. In particular, if the other thread
1730 * wires the page it may wind up on the inactive
1731 * queue and the pageout daemon will have to deal
1732 * with that case too.
1734 _vm_page_deactivate_locked(m, 0);
1735 vm_page_spin_unlock(m);
1736 } else {
1738 * Theoretically if we are able to busy the page
1739 * atomic with the queue removal (using the vm_page
1740 * lock) nobody else should be able to mess with the
1741 * page before us.
1743 KKASSERT((m->flags & (PG_UNMANAGED |
1744 PG_NEED_COMMIT)) == 0);
1745 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1746 "pg %p q=%d flags=%08x hold=%d wire=%d",
1747 m, m->queue, m->flags, m->hold_count, m->wire_count));
1748 KKASSERT(m->wire_count == 0);
1749 vm_page_spin_unlock(m);
1750 pagedaemon_wakeup();
1752 /* return busied and removed page */
1753 return(m);
1756 return(m);
1760 * vm_page_alloc()
1762 * Allocate and return a memory cell associated with this VM object/offset
1763 * pair. If object is NULL an unassociated page will be allocated.
1765 * The returned page will be busied and removed from its queues. This
1766 * routine can block and may return NULL if a race occurs and the page
1767 * is found to already exist at the specified (object, pindex).
1769 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1770 * VM_ALLOC_QUICK like normal but cannot use cache
1771 * VM_ALLOC_SYSTEM greater free drain
1772 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1773 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1774 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1775 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1776 * (see vm_page_grab())
1777 * VM_ALLOC_USE_GD ok to use per-gd cache
1779 * VM_ALLOC_CPU(n) allocate using specified cpu localization
1781 * The object must be held if not NULL
1782 * This routine may not block
1784 * Additional special handling is required when called from an interrupt
1785 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1786 * in this case.
1788 vm_page_t
1789 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1791 globaldata_t gd;
1792 vm_object_t obj;
1793 vm_page_t m;
1794 u_short pg_color;
1795 int cpuid_local;
1797 #if 0
1799 * Special per-cpu free VM page cache. The pages are pre-busied
1800 * and pre-zerod for us.
1802 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1803 crit_enter_gd(gd);
1804 if (gd->gd_vmpg_count) {
1805 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1806 crit_exit_gd(gd);
1807 goto done;
1809 crit_exit_gd(gd);
1811 #endif
1812 m = NULL;
1815 * CPU LOCALIZATION
1817 * CPU localization algorithm. Break the page queues up by physical
1818 * id and core id (note that two cpu threads will have the same core
1819 * id, and core_id != gd_cpuid).
1821 * This is nowhere near perfect, for example the last pindex in a
1822 * subgroup will overflow into the next cpu or package. But this
1823 * should get us good page reuse locality in heavy mixed loads.
1825 * (may be executed before the APs are started, so other GDs might
1826 * not exist!)
1828 if (page_req & VM_ALLOC_CPU_SPEC)
1829 cpuid_local = VM_ALLOC_GETCPU(page_req);
1830 else
1831 cpuid_local = mycpu->gd_cpuid;
1833 pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1835 KKASSERT(page_req &
1836 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1837 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1840 * Certain system threads (pageout daemon, buf_daemon's) are
1841 * allowed to eat deeper into the free page list.
1843 if (curthread->td_flags & TDF_SYSTHREAD)
1844 page_req |= VM_ALLOC_SYSTEM;
1847 * Impose various limitations. Note that the v_free_reserved test
1848 * must match the opposite of vm_page_count_target() to avoid
1849 * livelocks, be careful.
1851 loop:
1852 gd = mycpu;
1853 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1854 ((page_req & VM_ALLOC_INTERRUPT) &&
1855 gd->gd_vmstats.v_free_count > 0) ||
1856 ((page_req & VM_ALLOC_SYSTEM) &&
1857 gd->gd_vmstats.v_cache_count == 0 &&
1858 gd->gd_vmstats.v_free_count >
1859 gd->gd_vmstats.v_interrupt_free_min)
1862 * The free queue has sufficient free pages to take one out.
1864 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1865 m = vm_page_select_free(pg_color, TRUE);
1866 else
1867 m = vm_page_select_free(pg_color, FALSE);
1868 } else if (page_req & VM_ALLOC_NORMAL) {
1870 * Allocatable from the cache (non-interrupt only). On
1871 * success, we must free the page and try again, thus
1872 * ensuring that vmstats.v_*_free_min counters are replenished.
1874 #ifdef INVARIANTS
1875 if (curthread->td_preempted) {
1876 kprintf("vm_page_alloc(): warning, attempt to allocate"
1877 " cache page from preempting interrupt\n");
1878 m = NULL;
1879 } else {
1880 m = vm_page_select_cache(pg_color);
1882 #else
1883 m = vm_page_select_cache(pg_color);
1884 #endif
1886 * On success move the page into the free queue and loop.
1888 * Only do this if we can safely acquire the vm_object lock,
1889 * because this is effectively a random page and the caller
1890 * might be holding the lock shared, we don't want to
1891 * deadlock.
1893 if (m != NULL) {
1894 KASSERT(m->dirty == 0,
1895 ("Found dirty cache page %p", m));
1896 if ((obj = m->object) != NULL) {
1897 if (vm_object_hold_try(obj)) {
1898 vm_page_protect(m, VM_PROT_NONE);
1899 vm_page_free(m);
1900 /* m->object NULL here */
1901 vm_object_drop(obj);
1902 } else {
1903 vm_page_deactivate(m);
1904 vm_page_wakeup(m);
1906 } else {
1907 vm_page_protect(m, VM_PROT_NONE);
1908 vm_page_free(m);
1910 goto loop;
1914 * On failure return NULL
1916 atomic_add_int(&vm_pageout_deficit, 1);
1917 pagedaemon_wakeup();
1918 return (NULL);
1919 } else {
1921 * No pages available, wakeup the pageout daemon and give up.
1923 atomic_add_int(&vm_pageout_deficit, 1);
1924 pagedaemon_wakeup();
1925 return (NULL);
1929 * v_free_count can race so loop if we don't find the expected
1930 * page.
1932 if (m == NULL) {
1933 vmstats_rollup();
1934 goto loop;
1938 * Good page found. The page has already been busied for us and
1939 * removed from its queues.
1941 KASSERT(m->dirty == 0,
1942 ("vm_page_alloc: free/cache page %p was dirty", m));
1943 KKASSERT(m->queue == PQ_NONE);
1945 #if 0
1946 done:
1947 #endif
1949 * Initialize the structure, inheriting some flags but clearing
1950 * all the rest. The page has already been busied for us.
1952 vm_page_flag_clear(m, ~(PG_BUSY | PG_SBUSY));
1953 KKASSERT(m->wire_count == 0);
1954 KKASSERT(m->busy == 0);
1955 m->act_count = 0;
1956 m->valid = 0;
1959 * Caller must be holding the object lock (asserted by
1960 * vm_page_insert()).
1962 * NOTE: Inserting a page here does not insert it into any pmaps
1963 * (which could cause us to block allocating memory).
1965 * NOTE: If no object an unassociated page is allocated, m->pindex
1966 * can be used by the caller for any purpose.
1968 if (object) {
1969 if (vm_page_insert(m, object, pindex) == FALSE) {
1970 vm_page_free(m);
1971 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1972 panic("PAGE RACE %p[%ld]/%p",
1973 object, (long)pindex, m);
1974 m = NULL;
1976 } else {
1977 m->pindex = pindex;
1981 * Don't wakeup too often - wakeup the pageout daemon when
1982 * we would be nearly out of memory.
1984 pagedaemon_wakeup();
1987 * A PG_BUSY page is returned.
1989 return (m);
1993 * Returns number of pages available in our DMA memory reserve
1994 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1996 vm_size_t
1997 vm_contig_avail_pages(void)
1999 alist_blk_t blk;
2000 alist_blk_t count;
2001 alist_blk_t bfree;
2002 spin_lock(&vm_contig_spin);
2003 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2004 spin_unlock(&vm_contig_spin);
2006 return bfree;
2010 * Attempt to allocate contiguous physical memory with the specified
2011 * requirements.
2013 vm_page_t
2014 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2015 unsigned long alignment, unsigned long boundary,
2016 unsigned long size, vm_memattr_t memattr)
2018 alist_blk_t blk;
2019 vm_page_t m;
2020 int i;
2022 alignment >>= PAGE_SHIFT;
2023 if (alignment == 0)
2024 alignment = 1;
2025 boundary >>= PAGE_SHIFT;
2026 if (boundary == 0)
2027 boundary = 1;
2028 size = (size + PAGE_MASK) >> PAGE_SHIFT;
2030 spin_lock(&vm_contig_spin);
2031 blk = alist_alloc(&vm_contig_alist, 0, size);
2032 if (blk == ALIST_BLOCK_NONE) {
2033 spin_unlock(&vm_contig_spin);
2034 if (bootverbose) {
2035 kprintf("vm_page_alloc_contig: %ldk nospace\n",
2036 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
2038 return(NULL);
2040 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2041 alist_free(&vm_contig_alist, blk, size);
2042 spin_unlock(&vm_contig_spin);
2043 if (bootverbose) {
2044 kprintf("vm_page_alloc_contig: %ldk high "
2045 "%016jx failed\n",
2046 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
2047 (intmax_t)high);
2049 return(NULL);
2051 spin_unlock(&vm_contig_spin);
2052 if (vm_contig_verbose) {
2053 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
2054 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
2055 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
2058 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2059 if (memattr != VM_MEMATTR_DEFAULT)
2060 for (i = 0;i < size;i++)
2061 pmap_page_set_memattr(&m[i], memattr);
2062 return m;
2066 * Free contiguously allocated pages. The pages will be wired but not busy.
2067 * When freeing to the alist we leave them wired and not busy.
2069 void
2070 vm_page_free_contig(vm_page_t m, unsigned long size)
2072 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2073 vm_pindex_t start = pa >> PAGE_SHIFT;
2074 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2076 if (vm_contig_verbose) {
2077 kprintf("vm_page_free_contig: %016jx/%ldk\n",
2078 (intmax_t)pa, size / 1024);
2080 if (pa < vm_low_phys_reserved) {
2081 KKASSERT(pa + size <= vm_low_phys_reserved);
2082 spin_lock(&vm_contig_spin);
2083 alist_free(&vm_contig_alist, start, pages);
2084 spin_unlock(&vm_contig_spin);
2085 } else {
2086 while (pages) {
2087 vm_page_busy_wait(m, FALSE, "cpgfr");
2088 vm_page_unwire(m, 0);
2089 vm_page_free(m);
2090 --pages;
2091 ++m;
2099 * Wait for sufficient free memory for nominal heavy memory use kernel
2100 * operations.
2102 * WARNING! Be sure never to call this in any vm_pageout code path, which
2103 * will trivially deadlock the system.
2105 void
2106 vm_wait_nominal(void)
2108 while (vm_page_count_min(0))
2109 vm_wait(0);
2113 * Test if vm_wait_nominal() would block.
2116 vm_test_nominal(void)
2118 if (vm_page_count_min(0))
2119 return(1);
2120 return(0);
2124 * Block until free pages are available for allocation, called in various
2125 * places before memory allocations.
2127 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2128 * more generous then that.
2130 void
2131 vm_wait(int timo)
2134 * never wait forever
2136 if (timo == 0)
2137 timo = hz;
2138 lwkt_gettoken(&vm_token);
2140 if (curthread == pagethread) {
2142 * The pageout daemon itself needs pages, this is bad.
2144 if (vm_page_count_min(0)) {
2145 vm_pageout_pages_needed = 1;
2146 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2148 } else {
2150 * Wakeup the pageout daemon if necessary and wait.
2152 * Do not wait indefinitely for the target to be reached,
2153 * as load might prevent it from being reached any time soon.
2154 * But wait a little to try to slow down page allocations
2155 * and to give more important threads (the pagedaemon)
2156 * allocation priority.
2158 if (vm_page_count_target()) {
2159 if (vm_pages_needed == 0) {
2160 vm_pages_needed = 1;
2161 wakeup(&vm_pages_needed);
2163 ++vm_pages_waiting; /* SMP race ok */
2164 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2167 lwkt_reltoken(&vm_token);
2171 * Block until free pages are available for allocation
2173 * Called only from vm_fault so that processes page faulting can be
2174 * easily tracked.
2176 void
2177 vm_wait_pfault(void)
2180 * Wakeup the pageout daemon if necessary and wait.
2182 * Do not wait indefinitely for the target to be reached,
2183 * as load might prevent it from being reached any time soon.
2184 * But wait a little to try to slow down page allocations
2185 * and to give more important threads (the pagedaemon)
2186 * allocation priority.
2188 if (vm_page_count_min(0)) {
2189 lwkt_gettoken(&vm_token);
2190 while (vm_page_count_severe()) {
2191 if (vm_page_count_target()) {
2192 thread_t td;
2194 if (vm_pages_needed == 0) {
2195 vm_pages_needed = 1;
2196 wakeup(&vm_pages_needed);
2198 ++vm_pages_waiting; /* SMP race ok */
2199 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2202 * Do not stay stuck in the loop if the system is trying
2203 * to kill the process.
2205 td = curthread;
2206 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2207 break;
2210 lwkt_reltoken(&vm_token);
2215 * Put the specified page on the active list (if appropriate). Ensure
2216 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2218 * The caller should be holding the page busied ? XXX
2219 * This routine may not block.
2221 void
2222 vm_page_activate(vm_page_t m)
2224 u_short oqueue;
2226 vm_page_spin_lock(m);
2227 if (m->queue - m->pc != PQ_ACTIVE) {
2228 _vm_page_queue_spin_lock(m);
2229 oqueue = _vm_page_rem_queue_spinlocked(m);
2230 /* page is left spinlocked, queue is unlocked */
2232 if (oqueue == PQ_CACHE)
2233 mycpu->gd_cnt.v_reactivated++;
2234 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2235 if (m->act_count < ACT_INIT)
2236 m->act_count = ACT_INIT;
2237 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2239 _vm_page_and_queue_spin_unlock(m);
2240 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2241 pagedaemon_wakeup();
2242 } else {
2243 if (m->act_count < ACT_INIT)
2244 m->act_count = ACT_INIT;
2245 vm_page_spin_unlock(m);
2250 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2251 * routine is called when a page has been added to the cache or free
2252 * queues.
2254 * This routine may not block.
2256 static __inline void
2257 vm_page_free_wakeup(void)
2259 globaldata_t gd = mycpu;
2262 * If the pageout daemon itself needs pages, then tell it that
2263 * there are some free.
2265 if (vm_pageout_pages_needed &&
2266 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2267 gd->gd_vmstats.v_pageout_free_min
2269 vm_pageout_pages_needed = 0;
2270 wakeup(&vm_pageout_pages_needed);
2274 * Wakeup processes that are waiting on memory.
2276 * Generally speaking we want to wakeup stuck processes as soon as
2277 * possible. !vm_page_count_min(0) is the absolute minimum point
2278 * where we can do this. Wait a bit longer to reduce degenerate
2279 * re-blocking (vm_page_free_hysteresis). The target check is just
2280 * to make sure the min-check w/hysteresis does not exceed the
2281 * normal target.
2283 if (vm_pages_waiting) {
2284 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2285 !vm_page_count_target()) {
2286 vm_pages_waiting = 0;
2287 wakeup(&vmstats.v_free_count);
2288 ++mycpu->gd_cnt.v_ppwakeups;
2290 #if 0
2291 if (!vm_page_count_target()) {
2293 * Plenty of pages are free, wakeup everyone.
2295 vm_pages_waiting = 0;
2296 wakeup(&vmstats.v_free_count);
2297 ++mycpu->gd_cnt.v_ppwakeups;
2298 } else if (!vm_page_count_min(0)) {
2300 * Some pages are free, wakeup someone.
2302 int wcount = vm_pages_waiting;
2303 if (wcount > 0)
2304 --wcount;
2305 vm_pages_waiting = wcount;
2306 wakeup_one(&vmstats.v_free_count);
2307 ++mycpu->gd_cnt.v_ppwakeups;
2309 #endif
2314 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2315 * it from its VM object.
2317 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2318 * return (the page will have been freed).
2320 void
2321 vm_page_free_toq(vm_page_t m)
2323 mycpu->gd_cnt.v_tfree++;
2324 KKASSERT((m->flags & PG_MAPPED) == 0);
2325 KKASSERT(m->flags & PG_BUSY);
2327 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2328 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2329 "PG_BUSY(%d), hold(%d)\n",
2330 (u_long)m->pindex, m->busy,
2331 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2332 if ((m->queue - m->pc) == PQ_FREE)
2333 panic("vm_page_free: freeing free page");
2334 else
2335 panic("vm_page_free: freeing busy page");
2339 * Remove from object, spinlock the page and its queues and
2340 * remove from any queue. No queue spinlock will be held
2341 * after this section (because the page was removed from any
2342 * queue).
2344 vm_page_remove(m);
2345 vm_page_and_queue_spin_lock(m);
2346 _vm_page_rem_queue_spinlocked(m);
2349 * No further management of fictitious pages occurs beyond object
2350 * and queue removal.
2352 if ((m->flags & PG_FICTITIOUS) != 0) {
2353 vm_page_spin_unlock(m);
2354 vm_page_wakeup(m);
2355 return;
2358 m->valid = 0;
2359 vm_page_undirty(m);
2361 if (m->wire_count != 0) {
2362 if (m->wire_count > 1) {
2363 panic(
2364 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2365 m->wire_count, (long)m->pindex);
2367 panic("vm_page_free: freeing wired page");
2371 * Clear the UNMANAGED flag when freeing an unmanaged page.
2372 * Clear the NEED_COMMIT flag
2374 if (m->flags & PG_UNMANAGED)
2375 vm_page_flag_clear(m, PG_UNMANAGED);
2376 if (m->flags & PG_NEED_COMMIT)
2377 vm_page_flag_clear(m, PG_NEED_COMMIT);
2379 if (m->hold_count != 0) {
2380 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2381 } else {
2382 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2386 * This sequence allows us to clear PG_BUSY while still holding
2387 * its spin lock, which reduces contention vs allocators. We
2388 * must not leave the queue locked or _vm_page_wakeup() may
2389 * deadlock.
2391 _vm_page_queue_spin_unlock(m);
2392 if (_vm_page_wakeup(m)) {
2393 vm_page_spin_unlock(m);
2394 wakeup(m);
2395 } else {
2396 vm_page_spin_unlock(m);
2398 vm_page_free_wakeup();
2402 * vm_page_unmanage()
2404 * Prevent PV management from being done on the page. The page is
2405 * removed from the paging queues as if it were wired, and as a
2406 * consequence of no longer being managed the pageout daemon will not
2407 * touch it (since there is no way to locate the pte mappings for the
2408 * page). madvise() calls that mess with the pmap will also no longer
2409 * operate on the page.
2411 * Beyond that the page is still reasonably 'normal'. Freeing the page
2412 * will clear the flag.
2414 * This routine is used by OBJT_PHYS objects - objects using unswappable
2415 * physical memory as backing store rather then swap-backed memory and
2416 * will eventually be extended to support 4MB unmanaged physical
2417 * mappings.
2419 * Caller must be holding the page busy.
2421 void
2422 vm_page_unmanage(vm_page_t m)
2424 KKASSERT(m->flags & PG_BUSY);
2425 if ((m->flags & PG_UNMANAGED) == 0) {
2426 if (m->wire_count == 0)
2427 vm_page_unqueue(m);
2429 vm_page_flag_set(m, PG_UNMANAGED);
2433 * Mark this page as wired down by yet another map, removing it from
2434 * paging queues as necessary.
2436 * Caller must be holding the page busy.
2438 void
2439 vm_page_wire(vm_page_t m)
2442 * Only bump the wire statistics if the page is not already wired,
2443 * and only unqueue the page if it is on some queue (if it is unmanaged
2444 * it is already off the queues). Don't do anything with fictitious
2445 * pages because they are always wired.
2447 KKASSERT(m->flags & PG_BUSY);
2448 if ((m->flags & PG_FICTITIOUS) == 0) {
2449 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2450 if ((m->flags & PG_UNMANAGED) == 0)
2451 vm_page_unqueue(m);
2452 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2454 KASSERT(m->wire_count != 0,
2455 ("vm_page_wire: wire_count overflow m=%p", m));
2460 * Release one wiring of this page, potentially enabling it to be paged again.
2462 * Many pages placed on the inactive queue should actually go
2463 * into the cache, but it is difficult to figure out which. What
2464 * we do instead, if the inactive target is well met, is to put
2465 * clean pages at the head of the inactive queue instead of the tail.
2466 * This will cause them to be moved to the cache more quickly and
2467 * if not actively re-referenced, freed more quickly. If we just
2468 * stick these pages at the end of the inactive queue, heavy filesystem
2469 * meta-data accesses can cause an unnecessary paging load on memory bound
2470 * processes. This optimization causes one-time-use metadata to be
2471 * reused more quickly.
2473 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2474 * the inactive queue. This helps the pageout daemon determine memory
2475 * pressure and act on out-of-memory situations more quickly.
2477 * BUT, if we are in a low-memory situation we have no choice but to
2478 * put clean pages on the cache queue.
2480 * A number of routines use vm_page_unwire() to guarantee that the page
2481 * will go into either the inactive or active queues, and will NEVER
2482 * be placed in the cache - for example, just after dirtying a page.
2483 * dirty pages in the cache are not allowed.
2485 * This routine may not block.
2487 void
2488 vm_page_unwire(vm_page_t m, int activate)
2490 KKASSERT(m->flags & PG_BUSY);
2491 if (m->flags & PG_FICTITIOUS) {
2492 /* do nothing */
2493 } else if (m->wire_count <= 0) {
2494 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2495 } else {
2496 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2497 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1);
2498 if (m->flags & PG_UNMANAGED) {
2500 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2501 vm_page_spin_lock(m);
2502 _vm_page_add_queue_spinlocked(m,
2503 PQ_ACTIVE + m->pc, 0);
2504 _vm_page_and_queue_spin_unlock(m);
2505 } else {
2506 vm_page_spin_lock(m);
2507 vm_page_flag_clear(m, PG_WINATCFLS);
2508 _vm_page_add_queue_spinlocked(m,
2509 PQ_INACTIVE + m->pc, 0);
2510 ++vm_swapcache_inactive_heuristic;
2511 _vm_page_and_queue_spin_unlock(m);
2518 * Move the specified page to the inactive queue. If the page has
2519 * any associated swap, the swap is deallocated.
2521 * Normally athead is 0 resulting in LRU operation. athead is set
2522 * to 1 if we want this page to be 'as if it were placed in the cache',
2523 * except without unmapping it from the process address space.
2525 * vm_page's spinlock must be held on entry and will remain held on return.
2526 * This routine may not block.
2528 static void
2529 _vm_page_deactivate_locked(vm_page_t m, int athead)
2531 u_short oqueue;
2534 * Ignore if already inactive.
2536 if (m->queue - m->pc == PQ_INACTIVE)
2537 return;
2538 _vm_page_queue_spin_lock(m);
2539 oqueue = _vm_page_rem_queue_spinlocked(m);
2541 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2542 if (oqueue == PQ_CACHE)
2543 mycpu->gd_cnt.v_reactivated++;
2544 vm_page_flag_clear(m, PG_WINATCFLS);
2545 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2546 if (athead == 0)
2547 ++vm_swapcache_inactive_heuristic;
2549 /* NOTE: PQ_NONE if condition not taken */
2550 _vm_page_queue_spin_unlock(m);
2551 /* leaves vm_page spinlocked */
2555 * Attempt to deactivate a page.
2557 * No requirements.
2559 void
2560 vm_page_deactivate(vm_page_t m)
2562 vm_page_spin_lock(m);
2563 _vm_page_deactivate_locked(m, 0);
2564 vm_page_spin_unlock(m);
2567 void
2568 vm_page_deactivate_locked(vm_page_t m)
2570 _vm_page_deactivate_locked(m, 0);
2574 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2576 * This function returns non-zero if it successfully moved the page to
2577 * PQ_CACHE.
2579 * This function unconditionally unbusies the page on return.
2582 vm_page_try_to_cache(vm_page_t m)
2584 vm_page_spin_lock(m);
2585 if (m->dirty || m->hold_count || m->wire_count ||
2586 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2587 if (_vm_page_wakeup(m)) {
2588 vm_page_spin_unlock(m);
2589 wakeup(m);
2590 } else {
2591 vm_page_spin_unlock(m);
2593 return(0);
2595 vm_page_spin_unlock(m);
2598 * Page busied by us and no longer spinlocked. Dirty pages cannot
2599 * be moved to the cache.
2601 vm_page_test_dirty(m);
2602 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2603 vm_page_wakeup(m);
2604 return(0);
2606 vm_page_cache(m);
2607 return(1);
2611 * Attempt to free the page. If we cannot free it, we do nothing.
2612 * 1 is returned on success, 0 on failure.
2614 * No requirements.
2617 vm_page_try_to_free(vm_page_t m)
2619 vm_page_spin_lock(m);
2620 if (vm_page_busy_try(m, TRUE)) {
2621 vm_page_spin_unlock(m);
2622 return(0);
2626 * The page can be in any state, including already being on the free
2627 * queue. Check to see if it really can be freed.
2629 if (m->dirty || /* can't free if it is dirty */
2630 m->hold_count || /* or held (XXX may be wrong) */
2631 m->wire_count || /* or wired */
2632 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2633 PG_NEED_COMMIT)) || /* or needs a commit */
2634 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2635 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2636 if (_vm_page_wakeup(m)) {
2637 vm_page_spin_unlock(m);
2638 wakeup(m);
2639 } else {
2640 vm_page_spin_unlock(m);
2642 return(0);
2644 vm_page_spin_unlock(m);
2647 * We can probably free the page.
2649 * Page busied by us and no longer spinlocked. Dirty pages will
2650 * not be freed by this function. We have to re-test the
2651 * dirty bit after cleaning out the pmaps.
2653 vm_page_test_dirty(m);
2654 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2655 vm_page_wakeup(m);
2656 return(0);
2658 vm_page_protect(m, VM_PROT_NONE);
2659 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2660 vm_page_wakeup(m);
2661 return(0);
2663 vm_page_free(m);
2664 return(1);
2668 * vm_page_cache
2670 * Put the specified page onto the page cache queue (if appropriate).
2672 * The page must be busy, and this routine will release the busy and
2673 * possibly even free the page.
2675 void
2676 vm_page_cache(vm_page_t m)
2679 * Not suitable for the cache
2681 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2682 m->busy || m->wire_count || m->hold_count) {
2683 vm_page_wakeup(m);
2684 return;
2688 * Already in the cache (and thus not mapped)
2690 if ((m->queue - m->pc) == PQ_CACHE) {
2691 KKASSERT((m->flags & PG_MAPPED) == 0);
2692 vm_page_wakeup(m);
2693 return;
2697 * Caller is required to test m->dirty, but note that the act of
2698 * removing the page from its maps can cause it to become dirty
2699 * on an SMP system due to another cpu running in usermode.
2701 if (m->dirty) {
2702 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2703 (long)m->pindex);
2707 * Remove all pmaps and indicate that the page is not
2708 * writeable or mapped. Our vm_page_protect() call may
2709 * have blocked (especially w/ VM_PROT_NONE), so recheck
2710 * everything.
2712 vm_page_protect(m, VM_PROT_NONE);
2713 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2714 m->busy || m->wire_count || m->hold_count) {
2715 vm_page_wakeup(m);
2716 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2717 vm_page_deactivate(m);
2718 vm_page_wakeup(m);
2719 } else {
2720 _vm_page_and_queue_spin_lock(m);
2721 _vm_page_rem_queue_spinlocked(m);
2722 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2723 _vm_page_queue_spin_unlock(m);
2724 if (_vm_page_wakeup(m)) {
2725 vm_page_spin_unlock(m);
2726 wakeup(m);
2727 } else {
2728 vm_page_spin_unlock(m);
2730 vm_page_free_wakeup();
2735 * vm_page_dontneed()
2737 * Cache, deactivate, or do nothing as appropriate. This routine
2738 * is typically used by madvise() MADV_DONTNEED.
2740 * Generally speaking we want to move the page into the cache so
2741 * it gets reused quickly. However, this can result in a silly syndrome
2742 * due to the page recycling too quickly. Small objects will not be
2743 * fully cached. On the otherhand, if we move the page to the inactive
2744 * queue we wind up with a problem whereby very large objects
2745 * unnecessarily blow away our inactive and cache queues.
2747 * The solution is to move the pages based on a fixed weighting. We
2748 * either leave them alone, deactivate them, or move them to the cache,
2749 * where moving them to the cache has the highest weighting.
2750 * By forcing some pages into other queues we eventually force the
2751 * system to balance the queues, potentially recovering other unrelated
2752 * space from active. The idea is to not force this to happen too
2753 * often.
2755 * The page must be busied.
2757 void
2758 vm_page_dontneed(vm_page_t m)
2760 static int dnweight;
2761 int dnw;
2762 int head;
2764 dnw = ++dnweight;
2767 * occassionally leave the page alone
2769 if ((dnw & 0x01F0) == 0 ||
2770 m->queue - m->pc == PQ_INACTIVE ||
2771 m->queue - m->pc == PQ_CACHE
2773 if (m->act_count >= ACT_INIT)
2774 --m->act_count;
2775 return;
2779 * If vm_page_dontneed() is inactivating a page, it must clear
2780 * the referenced flag; otherwise the pagedaemon will see references
2781 * on the page in the inactive queue and reactivate it. Until the
2782 * page can move to the cache queue, madvise's job is not done.
2784 vm_page_flag_clear(m, PG_REFERENCED);
2785 pmap_clear_reference(m);
2787 if (m->dirty == 0)
2788 vm_page_test_dirty(m);
2790 if (m->dirty || (dnw & 0x0070) == 0) {
2792 * Deactivate the page 3 times out of 32.
2794 head = 0;
2795 } else {
2797 * Cache the page 28 times out of every 32. Note that
2798 * the page is deactivated instead of cached, but placed
2799 * at the head of the queue instead of the tail.
2801 head = 1;
2803 vm_page_spin_lock(m);
2804 _vm_page_deactivate_locked(m, head);
2805 vm_page_spin_unlock(m);
2809 * These routines manipulate the 'soft busy' count for a page. A soft busy
2810 * is almost like PG_BUSY except that it allows certain compatible operations
2811 * to occur on the page while it is busy. For example, a page undergoing a
2812 * write can still be mapped read-only.
2814 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2815 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2816 * busy bit is cleared.
2818 void
2819 vm_page_io_start(vm_page_t m)
2821 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2822 atomic_add_char(&m->busy, 1);
2823 vm_page_flag_set(m, PG_SBUSY);
2826 void
2827 vm_page_io_finish(vm_page_t m)
2829 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2830 atomic_subtract_char(&m->busy, 1);
2831 if (m->busy == 0)
2832 vm_page_flag_clear(m, PG_SBUSY);
2836 * Indicate that a clean VM page requires a filesystem commit and cannot
2837 * be reused. Used by tmpfs.
2839 void
2840 vm_page_need_commit(vm_page_t m)
2842 vm_page_flag_set(m, PG_NEED_COMMIT);
2843 vm_object_set_writeable_dirty(m->object);
2846 void
2847 vm_page_clear_commit(vm_page_t m)
2849 vm_page_flag_clear(m, PG_NEED_COMMIT);
2853 * Grab a page, blocking if it is busy and allocating a page if necessary.
2854 * A busy page is returned or NULL. The page may or may not be valid and
2855 * might not be on a queue (the caller is responsible for the disposition of
2856 * the page).
2858 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2859 * page will be zero'd and marked valid.
2861 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2862 * valid even if it already exists.
2864 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2865 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2866 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2868 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2869 * always returned if we had blocked.
2871 * This routine may not be called from an interrupt.
2873 * No other requirements.
2875 vm_page_t
2876 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2878 vm_page_t m;
2879 int error;
2880 int shared = 1;
2882 KKASSERT(allocflags &
2883 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2884 vm_object_hold_shared(object);
2885 for (;;) {
2886 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2887 if (error) {
2888 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2889 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2890 m = NULL;
2891 break;
2893 /* retry */
2894 } else if (m == NULL) {
2895 if (shared) {
2896 vm_object_upgrade(object);
2897 shared = 0;
2899 if (allocflags & VM_ALLOC_RETRY)
2900 allocflags |= VM_ALLOC_NULL_OK;
2901 m = vm_page_alloc(object, pindex,
2902 allocflags & ~VM_ALLOC_RETRY);
2903 if (m)
2904 break;
2905 vm_wait(0);
2906 if ((allocflags & VM_ALLOC_RETRY) == 0)
2907 goto failed;
2908 } else {
2909 /* m found */
2910 break;
2915 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2917 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2918 * valid even if already valid.
2920 * NOTE! We have removed all of the PG_ZERO optimizations and also
2921 * removed the idle zeroing code. These optimizations actually
2922 * slow things down on modern cpus because the zerod area is
2923 * likely uncached, placing a memory-access burden on the
2924 * accesors taking the fault.
2926 * By always zeroing the page in-line with the fault, no
2927 * dynamic ram reads are needed and the caches are hot, ready
2928 * for userland to access the memory.
2930 if (m->valid == 0) {
2931 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2932 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2933 m->valid = VM_PAGE_BITS_ALL;
2935 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2936 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2937 m->valid = VM_PAGE_BITS_ALL;
2939 failed:
2940 vm_object_drop(object);
2941 return(m);
2945 * Mapping function for valid bits or for dirty bits in
2946 * a page. May not block.
2948 * Inputs are required to range within a page.
2950 * No requirements.
2951 * Non blocking.
2954 vm_page_bits(int base, int size)
2956 int first_bit;
2957 int last_bit;
2959 KASSERT(
2960 base + size <= PAGE_SIZE,
2961 ("vm_page_bits: illegal base/size %d/%d", base, size)
2964 if (size == 0) /* handle degenerate case */
2965 return(0);
2967 first_bit = base >> DEV_BSHIFT;
2968 last_bit = (base + size - 1) >> DEV_BSHIFT;
2970 return ((2 << last_bit) - (1 << first_bit));
2974 * Sets portions of a page valid and clean. The arguments are expected
2975 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2976 * of any partial chunks touched by the range. The invalid portion of
2977 * such chunks will be zero'd.
2979 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2980 * align base to DEV_BSIZE so as not to mark clean a partially
2981 * truncated device block. Otherwise the dirty page status might be
2982 * lost.
2984 * This routine may not block.
2986 * (base + size) must be less then or equal to PAGE_SIZE.
2988 static void
2989 _vm_page_zero_valid(vm_page_t m, int base, int size)
2991 int frag;
2992 int endoff;
2994 if (size == 0) /* handle degenerate case */
2995 return;
2998 * If the base is not DEV_BSIZE aligned and the valid
2999 * bit is clear, we have to zero out a portion of the
3000 * first block.
3003 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3004 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3006 pmap_zero_page_area(
3007 VM_PAGE_TO_PHYS(m),
3008 frag,
3009 base - frag
3014 * If the ending offset is not DEV_BSIZE aligned and the
3015 * valid bit is clear, we have to zero out a portion of
3016 * the last block.
3019 endoff = base + size;
3021 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3022 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3024 pmap_zero_page_area(
3025 VM_PAGE_TO_PHYS(m),
3026 endoff,
3027 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3033 * Set valid, clear dirty bits. If validating the entire
3034 * page we can safely clear the pmap modify bit. We also
3035 * use this opportunity to clear the PG_NOSYNC flag. If a process
3036 * takes a write fault on a MAP_NOSYNC memory area the flag will
3037 * be set again.
3039 * We set valid bits inclusive of any overlap, but we can only
3040 * clear dirty bits for DEV_BSIZE chunks that are fully within
3041 * the range.
3043 * Page must be busied?
3044 * No other requirements.
3046 void
3047 vm_page_set_valid(vm_page_t m, int base, int size)
3049 _vm_page_zero_valid(m, base, size);
3050 m->valid |= vm_page_bits(base, size);
3055 * Set valid bits and clear dirty bits.
3057 * NOTE: This function does not clear the pmap modified bit.
3058 * Also note that e.g. NFS may use a byte-granular base
3059 * and size.
3061 * WARNING: Page must be busied? But vfs_clean_one_page() will call
3062 * this without necessarily busying the page (via bdwrite()).
3063 * So for now vm_token must also be held.
3065 * No other requirements.
3067 void
3068 vm_page_set_validclean(vm_page_t m, int base, int size)
3070 int pagebits;
3072 _vm_page_zero_valid(m, base, size);
3073 pagebits = vm_page_bits(base, size);
3074 m->valid |= pagebits;
3075 m->dirty &= ~pagebits;
3076 if (base == 0 && size == PAGE_SIZE) {
3077 /*pmap_clear_modify(m);*/
3078 vm_page_flag_clear(m, PG_NOSYNC);
3083 * Set valid & dirty. Used by buwrite()
3085 * WARNING: Page must be busied? But vfs_dirty_one_page() will
3086 * call this function in buwrite() so for now vm_token must
3087 * be held.
3089 * No other requirements.
3091 void
3092 vm_page_set_validdirty(vm_page_t m, int base, int size)
3094 int pagebits;
3096 pagebits = vm_page_bits(base, size);
3097 m->valid |= pagebits;
3098 m->dirty |= pagebits;
3099 if (m->object)
3100 vm_object_set_writeable_dirty(m->object);
3104 * Clear dirty bits.
3106 * NOTE: This function does not clear the pmap modified bit.
3107 * Also note that e.g. NFS may use a byte-granular base
3108 * and size.
3110 * Page must be busied?
3111 * No other requirements.
3113 void
3114 vm_page_clear_dirty(vm_page_t m, int base, int size)
3116 m->dirty &= ~vm_page_bits(base, size);
3117 if (base == 0 && size == PAGE_SIZE) {
3118 /*pmap_clear_modify(m);*/
3119 vm_page_flag_clear(m, PG_NOSYNC);
3124 * Make the page all-dirty.
3126 * Also make sure the related object and vnode reflect the fact that the
3127 * object may now contain a dirty page.
3129 * Page must be busied?
3130 * No other requirements.
3132 void
3133 vm_page_dirty(vm_page_t m)
3135 #ifdef INVARIANTS
3136 int pqtype = m->queue - m->pc;
3137 #endif
3138 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3139 ("vm_page_dirty: page in free/cache queue!"));
3140 if (m->dirty != VM_PAGE_BITS_ALL) {
3141 m->dirty = VM_PAGE_BITS_ALL;
3142 if (m->object)
3143 vm_object_set_writeable_dirty(m->object);
3148 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3149 * valid and dirty bits for the effected areas are cleared.
3151 * Page must be busied?
3152 * Does not block.
3153 * No other requirements.
3155 void
3156 vm_page_set_invalid(vm_page_t m, int base, int size)
3158 int bits;
3160 bits = vm_page_bits(base, size);
3161 m->valid &= ~bits;
3162 m->dirty &= ~bits;
3163 m->object->generation++;
3167 * The kernel assumes that the invalid portions of a page contain
3168 * garbage, but such pages can be mapped into memory by user code.
3169 * When this occurs, we must zero out the non-valid portions of the
3170 * page so user code sees what it expects.
3172 * Pages are most often semi-valid when the end of a file is mapped
3173 * into memory and the file's size is not page aligned.
3175 * Page must be busied?
3176 * No other requirements.
3178 void
3179 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3181 int b;
3182 int i;
3185 * Scan the valid bits looking for invalid sections that
3186 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3187 * valid bit may be set ) have already been zerod by
3188 * vm_page_set_validclean().
3190 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3191 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3192 (m->valid & (1 << i))
3194 if (i > b) {
3195 pmap_zero_page_area(
3196 VM_PAGE_TO_PHYS(m),
3197 b << DEV_BSHIFT,
3198 (i - b) << DEV_BSHIFT
3201 b = i + 1;
3206 * setvalid is TRUE when we can safely set the zero'd areas
3207 * as being valid. We can do this if there are no cache consistency
3208 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3210 if (setvalid)
3211 m->valid = VM_PAGE_BITS_ALL;
3215 * Is a (partial) page valid? Note that the case where size == 0
3216 * will return FALSE in the degenerate case where the page is entirely
3217 * invalid, and TRUE otherwise.
3219 * Does not block.
3220 * No other requirements.
3223 vm_page_is_valid(vm_page_t m, int base, int size)
3225 int bits = vm_page_bits(base, size);
3227 if (m->valid && ((m->valid & bits) == bits))
3228 return 1;
3229 else
3230 return 0;
3234 * update dirty bits from pmap/mmu. May not block.
3236 * Caller must hold the page busy
3238 void
3239 vm_page_test_dirty(vm_page_t m)
3241 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3242 vm_page_dirty(m);
3247 * Register an action, associating it with its vm_page
3249 void
3250 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3252 struct vm_page_action_list *list;
3253 int hv;
3255 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3256 list = &action_list[hv];
3258 lwkt_gettoken(&vm_token);
3259 vm_page_flag_set(action->m, PG_ACTIONLIST);
3260 action->event = event;
3261 LIST_INSERT_HEAD(list, action, entry);
3262 lwkt_reltoken(&vm_token);
3266 * Unregister an action, disassociating it from its related vm_page
3268 void
3269 vm_page_unregister_action(vm_page_action_t action)
3271 struct vm_page_action_list *list;
3272 int hv;
3274 lwkt_gettoken(&vm_token);
3275 if (action->event != VMEVENT_NONE) {
3276 action->event = VMEVENT_NONE;
3277 LIST_REMOVE(action, entry);
3279 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3280 list = &action_list[hv];
3281 if (LIST_EMPTY(list))
3282 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3284 lwkt_reltoken(&vm_token);
3288 * Issue an event on a VM page. Corresponding action structures are
3289 * removed from the page's list and called.
3291 * If the vm_page has no more pending action events we clear its
3292 * PG_ACTIONLIST flag.
3294 void
3295 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3297 struct vm_page_action_list *list;
3298 struct vm_page_action *scan;
3299 struct vm_page_action *next;
3300 int hv;
3301 int all;
3303 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3304 list = &action_list[hv];
3305 all = 1;
3307 lwkt_gettoken(&vm_token);
3308 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3309 if (scan->m == m) {
3310 if (scan->event == event) {
3311 scan->event = VMEVENT_NONE;
3312 LIST_REMOVE(scan, entry);
3313 scan->func(m, scan);
3314 /* XXX */
3315 } else {
3316 all = 0;
3320 if (all)
3321 vm_page_flag_clear(m, PG_ACTIONLIST);
3322 lwkt_reltoken(&vm_token);
3325 #include "opt_ddb.h"
3326 #ifdef DDB
3327 #include <sys/kernel.h>
3329 #include <ddb/ddb.h>
3331 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3333 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3334 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3335 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3336 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3337 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3338 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3339 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3340 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3341 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3342 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3345 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3347 int i;
3348 db_printf("PQ_FREE:");
3349 for (i = 0; i < PQ_L2_SIZE; i++) {
3350 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3352 db_printf("\n");
3354 db_printf("PQ_CACHE:");
3355 for(i = 0; i < PQ_L2_SIZE; i++) {
3356 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3358 db_printf("\n");
3360 db_printf("PQ_ACTIVE:");
3361 for(i = 0; i < PQ_L2_SIZE; i++) {
3362 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3364 db_printf("\n");
3366 db_printf("PQ_INACTIVE:");
3367 for(i = 0; i < PQ_L2_SIZE; i++) {
3368 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3370 db_printf("\n");
3372 #endif /* DDB */