4 * Implements the architecture independant portion of the LWKT
7 * Types which must already be defined when this header is included by
8 * userland: struct md_thread
11 #ifndef _SYS_THREAD_H_
12 #define _SYS_THREAD_H_
14 #ifndef _SYS_STDINT_H_
15 #include <sys/stdint.h> /* __int types */
18 #include <sys/param.h> /* MAXCOMLEN */
21 #include <sys/queue.h> /* TAILQ_* macros */
23 #ifndef _SYS_MSGPORT_H_
24 #include <sys/msgport.h> /* lwkt_port */
27 #include <sys/time.h> /* struct timeval */
32 #ifndef _SYS_SPINLOCK_H_
33 #include <sys/spinlock.h>
35 #ifndef _SYS_IOSCHED_H_
36 #include <sys/iosched.h>
38 #include <machine/thread.h>
53 typedef struct lwkt_queue
*lwkt_queue_t
;
54 typedef struct lwkt_token
*lwkt_token_t
;
55 typedef struct lwkt_tokref
*lwkt_tokref_t
;
56 typedef struct lwkt_cpu_msg
*lwkt_cpu_msg_t
;
57 typedef struct lwkt_cpu_port
*lwkt_cpu_port_t
;
58 typedef struct lwkt_ipiq
*lwkt_ipiq_t
;
59 typedef struct lwkt_cpusync
*lwkt_cpusync_t
;
60 typedef struct thread
*thread_t
;
62 typedef TAILQ_HEAD(lwkt_queue
, thread
) lwkt_queue
;
65 * Differentiation between kernel threads and user threads. Userland
66 * programs which want to access to kernel structures have to define
67 * _KERNEL_STRUCTURES. This is a kinda safety valve to prevent badly
68 * written user programs from getting an LWKT thread that is neither the
69 * kernel nor the user version.
71 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
73 #include <machine/frame.h>
80 * Tokens are used to serialize access to information. They are 'soft'
81 * serialization entities that only stay in effect while a thread is
82 * running. If the thread blocks, other threads can run holding the same
83 * token(s). The tokens are reacquired when the original thread resumes.
85 * A thread can depend on its serialization remaining intact through a
86 * preemption. An interrupt which attempts to use the same token as the
87 * thread being preempted will reschedule itself for non-preemptive
88 * operation, so the new token code is capable of interlocking against
89 * interrupts as well as other cpus. This means that your token can only
90 * be (temporarily) lost if you *explicitly* block.
92 * Tokens are managed through a helper reference structure, lwkt_tokref. Each
93 * thread has a stack of tokref's to keep track of acquired tokens. Multiple
94 * tokref's may reference the same token.
96 * Tokens can be held shared or exclusive. An exclusive holder is able
97 * to set the TOK_EXCLUSIVE bit in t_count as long as no bit in the count
98 * mask is set. If unable to accomplish this TOK_EXCLREQ can be set instead
99 * which prevents any new shared acquisitions while the exclusive requestor
100 * spins in the scheduler. A shared holder can bump t_count by the increment
101 * value as long as neither TOK_EXCLUSIVE or TOK_EXCLREQ is set, else spin
104 * Multiple exclusive tokens are handled by treating the additional tokens
105 * as a special case of the shared token, incrementing the count value. This
106 * reduces the complexity of the token release code.
109 typedef struct lwkt_token
{
110 long t_count
; /* Shared/exclreq/exclusive access */
111 struct lwkt_tokref
*t_ref
; /* Exclusive ref */
112 long t_collisions
; /* Collision counter */
113 const char *t_desc
; /* Descriptive name */
116 #define TOK_EXCLUSIVE 0x00000001 /* Exclusive lock held */
117 #define TOK_EXCLREQ 0x00000002 /* Exclusive request pending */
118 #define TOK_INCR 4 /* Shared count increment */
119 #define TOK_COUNTMASK (~(long)(TOK_EXCLUSIVE|TOK_EXCLREQ))
122 * Static initialization for a lwkt_token.
124 #define LWKT_TOKEN_INITIALIZER(name) \
133 * Assert that a particular token is held
135 #define LWKT_TOKEN_HELD_ANY(tok) _lwkt_token_held_any(tok, curthread)
136 #define LWKT_TOKEN_HELD_EXCL(tok) _lwkt_token_held_excl(tok, curthread)
138 #define ASSERT_LWKT_TOKEN_HELD(tok) \
139 KKASSERT(LWKT_TOKEN_HELD_ANY(tok))
141 #define ASSERT_LWKT_TOKEN_HELD_EXCL(tok) \
142 KKASSERT(LWKT_TOKEN_HELD_EXCL(tok))
144 #define ASSERT_NO_TOKENS_HELD(td) \
145 KKASSERT((td)->td_toks_stop == &td->td_toks_array[0])
148 * Assert that a particular token is held and we are in a hard
149 * code execution section (interrupt, ipi, or hard code section).
150 * Hard code sections are not allowed to block or potentially block.
151 * e.g. lwkt_gettoken() would only be ok if the token were already
154 #define ASSERT_LWKT_TOKEN_HARD(tok) \
156 globaldata_t zgd __debugvar = mycpu; \
157 KKASSERT((tok)->t_ref && \
158 (tok)->t_ref->tr_owner == zgd->gd_curthread && \
159 zgd->gd_intr_nesting_level > 0); \
163 * Assert that a particular token is held and we are in a normal
164 * critical section. Critical sections will not be preempted but
165 * can explicitly block (tsleep, lwkt_gettoken, etc).
167 #define ASSERT_LWKT_TOKEN_CRIT(tok) \
169 globaldata_t zgd __debugvar = mycpu; \
170 KKASSERT((tok)->t_ref && \
171 (tok)->t_ref->tr_owner == zgd->gd_curthread && \
172 zgd->gd_curthread->td_critcount > 0); \
176 lwkt_token_t tr_tok
; /* token in question */
177 long tr_count
; /* TOK_EXCLUSIVE|TOK_EXCLREQ or 0 */
178 struct thread
*tr_owner
; /* me */
181 #define MAXCPUFIFO 32 /* power of 2 */
182 #define MAXCPUFIFO_MASK (MAXCPUFIFO - 1)
183 #define LWKT_MAXTOKENS 32 /* max tokens beneficially held by thread */
186 * Always cast to ipifunc_t when registering an ipi. The actual ipi function
187 * is called with both the data and an interrupt frame, but the ipi function
188 * that is registered might only declare a data argument.
190 typedef void (*ipifunc1_t
)(void *arg
);
191 typedef void (*ipifunc2_t
)(void *arg
, int arg2
);
192 typedef void (*ipifunc3_t
)(void *arg
, int arg2
, struct intrframe
*frame
);
195 int ip_rindex
; /* only written by target cpu */
196 int ip_xindex
; /* written by target, indicates completion */
197 int ip_windex
; /* only written by source cpu */
198 int ip_drain
; /* drain source limit */
203 char filler
[32 - sizeof(int) - sizeof(void *) * 2];
204 } ip_info
[MAXCPUFIFO
];
208 * CPU Synchronization structure. See lwkt_cpusync_start() and
209 * lwkt_cpusync_finish() for more information.
211 typedef void (*cpusync_func_t
)(void *arg
);
213 struct lwkt_cpusync
{
214 cpumask_t cs_mask
; /* cpus running the sync */
215 cpumask_t cs_mack
; /* mask acknowledge */
216 cpusync_func_t cs_func
; /* function to execute */
217 void *cs_data
; /* function data */
221 * The standard message and queue structure used for communications between
222 * cpus. Messages are typically queued via a machine-specific non-linked
223 * FIFO matrix allowing any cpu to send a message to any other cpu without
226 typedef struct lwkt_cpu_msg
{
227 void (*cm_func
)(lwkt_cpu_msg_t msg
); /* primary dispatch function */
228 int cm_code
; /* request code if applicable */
229 int cm_cpu
; /* reply to cpu */
230 thread_t cm_originator
; /* originating thread for wakeup */
234 * Thread structure. Note that ownership of a thread structure is special
235 * cased and there is no 'token'. A thread is always owned by the cpu
236 * represented by td_gd, any manipulation of the thread by some other cpu
237 * must be done through cpu_*msg() functions. e.g. you could request
238 * ownership of a thread that way, or hand a thread off to another cpu.
240 * NOTE: td_ucred is synchronized from the p_ucred on user->kernel syscall,
241 * trap, and AST/signal transitions to provide a stable ucred for
242 * (primarily) system calls. This field will be NULL for pure kernel
248 TAILQ_ENTRY(thread
) td_threadq
;
249 TAILQ_ENTRY(thread
) td_allq
;
250 TAILQ_ENTRY(thread
) td_sleepq
;
251 lwkt_port td_msgport
; /* built-in message port for replies */
252 struct lwp
*td_lwp
; /* (optional) associated lwp */
253 struct proc
*td_proc
; /* (optional) associated process */
254 struct pcb
*td_pcb
; /* points to pcb and top of kstack */
255 struct globaldata
*td_gd
; /* associated with this cpu */
256 const char *td_wmesg
; /* string name for blockage */
257 const volatile void *td_wchan
; /* waiting on channel */
258 int td_pri
; /* 0-31, 31=highest priority (note 1) */
259 int td_critcount
; /* critical section priority */
260 u_int td_flags
; /* TDF flags */
261 int td_wdomain
; /* domain for wchan address (typ 0) */
262 void (*td_preemptable
)(struct thread
*td
, int critcount
);
263 void (*td_release
)(struct thread
*td
);
264 char *td_kstack
; /* kernel stack */
265 int td_kstack_size
; /* size of kernel stack */
266 char *td_sp
; /* kernel stack pointer for LWKT restore */
267 thread_t (*td_switch
)(struct thread
*ntd
);
268 __uint64_t td_uticks
; /* Statclock hits in user mode (uS) */
269 __uint64_t td_sticks
; /* Statclock hits in system mode (uS) */
270 __uint64_t td_iticks
; /* Statclock hits processing intr (uS) */
271 int td_locks
; /* lockmgr lock debugging */
272 void *td_unused01
; /* (future I/O scheduler heuristic) */
273 int td_refs
; /* hold position in gd_tdallq / hold free */
274 int td_nest_count
; /* prevent splz nesting */
275 u_int td_contended
; /* token contention count */
276 u_int td_mpflags
; /* flags can be set by foreign cpus */
277 int td_cscount
; /* cpu synchronization master */
278 int td_wakefromcpu
; /* who woke me up? */
279 int td_upri
; /* user priority (sub-priority under td_pri) */
280 int td_type
; /* thread type, TD_TYPE_ */
281 int td_tracker
; /* for callers to debug lock counts */
282 int td_unused03
[4]; /* for future fields */
283 struct iosched_data td_iosdata
; /* Dynamic I/O scheduling data */
284 struct timeval td_start
; /* start time for a thread/process */
285 char td_comm
[MAXCOMLEN
+1]; /* typ 16+1 bytes */
286 struct thread
*td_preempted
; /* we preempted this thread */
287 struct ucred
*td_ucred
; /* synchronized from p_ucred */
288 void *td_vmm
; /* vmm private data */
289 lwkt_tokref_t td_toks_have
; /* tokens we own */
290 lwkt_tokref_t td_toks_stop
; /* tokens we want */
291 struct lwkt_tokref td_toks_array
[LWKT_MAXTOKENS
];
292 int td_fairq_load
; /* fairq */
293 int td_fairq_count
; /* fairq */
294 struct globaldata
*td_migrate_gd
; /* target gd for thread migration */
295 #ifdef DEBUG_CRIT_SECTIONS
296 #define CRIT_DEBUG_ARRAY_SIZE 32
297 #define CRIT_DEBUG_ARRAY_MASK (CRIT_DEBUG_ARRAY_SIZE - 1)
298 const char *td_crit_debug_array
[CRIT_DEBUG_ARRAY_SIZE
];
299 int td_crit_debug_index
;
300 int td_in_crit_report
;
302 struct md_thread td_mach
;
304 #define SPINLOCK_DEBUG_ARRAY_SIZE 32
305 int td_spinlock_stack_id
[SPINLOCK_DEBUG_ARRAY_SIZE
];
306 struct spinlock
*td_spinlock_stack
[SPINLOCK_DEBUG_ARRAY_SIZE
];
307 void *td_spinlock_caller_pc
[SPINLOCK_DEBUG_ARRAY_SIZE
];
310 * Track lockmgr locks held; lk->lk_filename:lk->lk_lineno is the holder
312 #define LOCKMGR_DEBUG_ARRAY_SIZE 8
313 int td_lockmgr_stack_id
[LOCKMGR_DEBUG_ARRAY_SIZE
];
314 struct lock
*td_lockmgr_stack
[LOCKMGR_DEBUG_ARRAY_SIZE
];
318 #define td_toks_base td_toks_array[0]
319 #define td_toks_end td_toks_array[LWKT_MAXTOKENS]
321 #define TD_TOKS_HELD(td) ((td)->td_toks_stop != &(td)->td_toks_base)
322 #define TD_TOKS_NOT_HELD(td) ((td)->td_toks_stop == &(td)->td_toks_base)
325 * Thread flags. Note that TDF_RUNNING is cleared on the old thread after
326 * we switch to the new one, which is necessary because LWKTs don't need
327 * to hold the BGL. This flag is used by the exit code and the managed
328 * thread migration code. Note in addition that preemption will cause
329 * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
330 * must also check TDF_PREEMPT_LOCK.
332 * LWKT threads stay on their (per-cpu) run queue while running, not to
333 * be confused with user processes which are removed from the user scheduling
334 * run queue while actually running.
336 * td_threadq can represent the thread on one of three queues... the LWKT
337 * run queue, a tsleep queue, or an lwkt blocking queue. The LWKT subsystem
338 * does not allow a thread to be scheduled if it already resides on some
341 #define TDF_RUNNING 0x00000001 /* thread still active */
342 #define TDF_RUNQ 0x00000002 /* on an LWKT run queue */
343 #define TDF_PREEMPT_LOCK 0x00000004 /* I have been preempted */
344 #define TDF_PREEMPT_DONE 0x00000008 /* ac preemption complete */
345 #define TDF_NOSTART 0x00000010 /* do not schedule on create */
346 #define TDF_MIGRATING 0x00000020 /* thread is being migrated */
347 #define TDF_SINTR 0x00000040 /* interruptability for 'ps' */
348 #define TDF_TSLEEPQ 0x00000080 /* on a tsleep wait queue */
350 #define TDF_SYSTHREAD 0x00000100 /* reserve memory may be used */
351 #define TDF_ALLOCATED_THREAD 0x00000200 /* objcache allocated thread */
352 #define TDF_ALLOCATED_STACK 0x00000400 /* objcache allocated stack */
353 #define TDF_VERBOSE 0x00000800 /* verbose on exit */
354 #define TDF_DEADLKTREAT 0x00001000 /* special lockmgr treatment */
355 #define TDF_MARKER 0x00002000 /* tdallq list scan marker */
356 #define TDF_TIMEOUT_RUNNING 0x00004000 /* tsleep timeout race */
357 #define TDF_TIMEOUT 0x00008000 /* tsleep timeout */
358 #define TDF_INTTHREAD 0x00010000 /* interrupt thread */
359 #define TDF_TSLEEP_DESCHEDULED 0x00020000 /* tsleep core deschedule */
360 #define TDF_BLOCKED 0x00040000 /* Thread is blocked */
361 #define TDF_PANICWARN 0x00080000 /* panic warning in switch */
362 #define TDF_BLOCKQ 0x00100000 /* on block queue */
363 #define TDF_FORCE_SPINPORT 0x00200000
364 #define TDF_EXITING 0x00400000 /* thread exiting */
365 #define TDF_USINGFP 0x00800000 /* thread using fp coproc */
366 #define TDF_KERNELFP 0x01000000 /* kernel using fp coproc */
367 #define TDF_DELAYED_WAKEUP 0x02000000
368 #define TDF_FIXEDCPU 0x04000000 /* running cpu is fixed */
369 #define TDF_USERMODE 0x08000000 /* in or entering user mode */
370 #define TDF_NOFAULT 0x10000000 /* force onfault on fault */
372 #define TDF_MP_STOPREQ 0x00000001 /* suspend_kproc */
373 #define TDF_MP_WAKEREQ 0x00000002 /* resume_kproc */
374 #define TDF_MP_EXITWAIT 0x00000004 /* reaper, see lwp_wait() */
375 #define TDF_MP_EXITSIG 0x00000008 /* reaper, see lwp_wait() */
376 #define TDF_MP_BATCH_DEMARC 0x00000010 /* batch mode handling */
377 #define TDF_MP_DIDYIELD 0x00000020 /* effects scheduling */
379 #define TD_TYPE_GENERIC 0 /* generic thread */
380 #define TD_TYPE_CRYPTO 1 /* crypto thread */
381 #define TD_TYPE_NETISR 2 /* netisr thread */
384 * Thread priorities. Typically only one thread from any given
385 * user process scheduling queue is on the LWKT run queue at a time.
386 * Remember that there is one LWKT run queue per cpu.
388 * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
389 * causes interrupts to be masked as they occur. When this occurs a
390 * rollup flag will be set in mycpu->gd_reqflags.
392 #define TDPRI_IDLE_THREAD 0 /* the idle thread */
393 #define TDPRI_IDLE_WORK 1 /* idle work (page zero, etc) */
394 #define TDPRI_USER_SCHEDULER 2 /* user scheduler helper */
395 #define TDPRI_USER_IDLE 4 /* user scheduler idle */
396 #define TDPRI_USER_NORM 6 /* user scheduler normal */
397 #define TDPRI_USER_REAL 8 /* user scheduler real time */
398 #define TDPRI_KERN_LPSCHED 9 /* (comparison point only) */
399 #define TDPRI_KERN_USER 10 /* kernel / block in syscall */
400 #define TDPRI_KERN_DAEMON 12 /* kernel daemon (pageout, etc) */
401 #define TDPRI_SOFT_NORM 14 /* kernel / normal */
402 #define TDPRI_SOFT_TIMER 16 /* kernel / timer */
403 #define TDPRI_UNUSED19 19
404 #define TDPRI_INT_SUPPORT 20 /* kernel / high priority support */
405 #define TDPRI_INT_LOW 27 /* low priority interrupt */
406 #define TDPRI_INT_MED 28 /* medium priority interrupt */
407 #define TDPRI_INT_HIGH 29 /* high priority interrupt */
410 #define LWKT_THREAD_STACK (UPAGES * PAGE_SIZE)
412 #define IN_CRITICAL_SECT(td) ((td)->td_critcount)
419 extern struct lwkt_token mp_token
;
420 extern struct lwkt_token pmap_token
;
421 extern struct lwkt_token dev_token
;
422 extern struct lwkt_token vm_token
;
423 extern struct lwkt_token vmspace_token
;
424 extern struct lwkt_token kvm_token
;
425 extern struct lwkt_token sigio_token
;
426 extern struct lwkt_token tty_token
;
427 extern struct lwkt_token vnode_token
;
428 extern struct lwkt_token revoke_token
;
433 extern struct thread
*lwkt_alloc_thread(struct thread
*, int, int, int);
434 extern void lwkt_init_thread(struct thread
*, void *, int, int,
435 struct globaldata
*);
436 extern void lwkt_set_interrupt_support_thread(void);
437 extern void lwkt_set_comm(thread_t
, const char *, ...) __printflike(2, 3);
438 extern void lwkt_free_thread(struct thread
*);
439 extern void lwkt_gdinit(struct globaldata
*);
440 extern void lwkt_switch(void);
441 extern void lwkt_switch_return(struct thread
*);
442 extern void lwkt_preempt(thread_t
, int);
443 extern void lwkt_schedule(thread_t
);
444 extern void lwkt_schedule_noresched(thread_t
);
445 extern void lwkt_schedule_self(thread_t
);
446 extern void lwkt_deschedule(thread_t
);
447 extern void lwkt_deschedule_self(thread_t
);
448 extern void lwkt_yield(void);
449 extern void lwkt_yield_quick(void);
450 extern void lwkt_user_yield(void);
451 extern void lwkt_hold(thread_t
);
452 extern void lwkt_rele(thread_t
);
453 extern void lwkt_passive_release(thread_t
);
454 extern void lwkt_maybe_splz(thread_t
);
456 extern void lwkt_gettoken(lwkt_token_t
);
457 extern void lwkt_gettoken_shared(lwkt_token_t
);
458 extern void lwkt_gettoken_hard(lwkt_token_t
);
459 extern int lwkt_trytoken(lwkt_token_t
);
460 extern void lwkt_reltoken(lwkt_token_t
);
461 extern void lwkt_reltoken_hard(lwkt_token_t
);
462 extern int lwkt_cnttoken(lwkt_token_t
, thread_t
);
463 extern int lwkt_getalltokens(thread_t
, int);
464 extern void lwkt_relalltokens(thread_t
);
465 extern void lwkt_token_init(lwkt_token_t
, const char *);
466 extern void lwkt_token_uninit(lwkt_token_t
);
468 extern void lwkt_token_pool_init(void);
469 extern lwkt_token_t
lwkt_token_pool_lookup(void *);
470 extern lwkt_token_t
lwkt_getpooltoken(void *);
471 extern void lwkt_relpooltoken(void *);
473 extern void lwkt_token_swap(void);
475 extern void lwkt_setpri(thread_t
, int);
476 extern void lwkt_setpri_initial(thread_t
, int);
477 extern void lwkt_setpri_self(int);
478 extern void lwkt_schedulerclock(thread_t td
);
479 extern void lwkt_setcpu_self(struct globaldata
*);
480 extern void lwkt_migratecpu(int);
482 extern void lwkt_giveaway(struct thread
*);
483 extern void lwkt_acquire(struct thread
*);
484 extern int lwkt_send_ipiq3(struct globaldata
*, ipifunc3_t
, void *, int);
485 extern int lwkt_send_ipiq3_passive(struct globaldata
*, ipifunc3_t
,
487 extern int lwkt_send_ipiq3_bycpu(int, ipifunc3_t
, void *, int);
488 extern int lwkt_send_ipiq3_mask(cpumask_t
, ipifunc3_t
, void *, int);
489 extern void lwkt_wait_ipiq(struct globaldata
*, int);
490 extern void lwkt_process_ipiq(void);
491 extern void lwkt_process_ipiq_frame(struct intrframe
*);
492 extern void lwkt_smp_stopped(void);
493 extern void lwkt_synchronize_ipiqs(const char *);
495 /* lwkt_cpusync_init() - inline function in sys/thread2.h */
496 extern void lwkt_cpusync_simple(cpumask_t
, cpusync_func_t
, void *);
497 extern void lwkt_cpusync_interlock(lwkt_cpusync_t
);
498 extern void lwkt_cpusync_deinterlock(lwkt_cpusync_t
);
499 extern void lwkt_cpusync_quick(lwkt_cpusync_t
);
501 extern void crit_panic(void) __dead2
;
502 extern struct lwp
*lwkt_preempted_proc(void);
504 extern int lwkt_create (void (*func
)(void *), void *, struct thread
**,
505 struct thread
*, int, int,
506 const char *, ...) __printflike(7, 8);
507 extern void lwkt_exit (void) __dead2
;
508 extern void lwkt_remove_tdallq (struct thread
*);