kernel - Move vm_page spin locks from pool to vm_page structure
[dragonfly.git] / sys / kern / lwkt_thread.c
blob267a9119b8bfe291492b4e006ca77465a8a26503
1 /*
2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
60 #include <sys/dsched.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 #include <machine/clock.h>
75 #ifdef _KERNEL_VIRTUAL
76 #include <pthread.h>
77 #endif
79 #define LOOPMASK
81 #if !defined(KTR_CTXSW)
82 #define KTR_CTXSW KTR_ALL
83 #endif
84 KTR_INFO_MASTER(ctxsw);
85 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
86 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
87 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
88 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
90 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
92 #ifdef INVARIANTS
93 static int panic_on_cscount = 0;
94 #endif
95 static int64_t switch_count = 0;
96 static int64_t preempt_hit = 0;
97 static int64_t preempt_miss = 0;
98 static int64_t preempt_weird = 0;
99 static int lwkt_use_spin_port;
100 static struct objcache *thread_cache;
101 int cpu_mwait_spin = 0;
103 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
104 static void lwkt_setcpu_remote(void *arg);
107 * We can make all thread ports use the spin backend instead of the thread
108 * backend. This should only be set to debug the spin backend.
110 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
112 #ifdef INVARIANTS
113 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
114 "Panic if attempting to switch lwkt's while mastering cpusync");
115 #endif
116 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
117 "Number of switched threads");
118 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
119 "Successful preemption events");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
121 "Failed preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
123 "Number of preempted threads.");
124 static int fairq_enable = 0;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
126 &fairq_enable, 0, "Turn on fairq priority accumulators");
127 static int fairq_bypass = -1;
128 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
129 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
130 extern int lwkt_sched_debug;
131 int lwkt_sched_debug = 0;
132 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
133 &lwkt_sched_debug, 0, "Scheduler debug");
134 static u_int lwkt_spin_loops = 10;
135 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
136 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
137 static int preempt_enable = 1;
138 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
139 &preempt_enable, 0, "Enable preemption");
140 static int lwkt_cache_threads = 0;
141 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
142 &lwkt_cache_threads, 0, "thread+kstack cache");
145 * These helper procedures handle the runq, they can only be called from
146 * within a critical section.
148 * WARNING! Prior to SMP being brought up it is possible to enqueue and
149 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
150 * instead of 'mycpu' when referencing the globaldata structure. Once
151 * SMP live enqueuing and dequeueing only occurs on the current cpu.
153 static __inline
154 void
155 _lwkt_dequeue(thread_t td)
157 if (td->td_flags & TDF_RUNQ) {
158 struct globaldata *gd = td->td_gd;
160 td->td_flags &= ~TDF_RUNQ;
161 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
162 --gd->gd_tdrunqcount;
163 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
164 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
169 * Priority enqueue.
171 * There are a limited number of lwkt threads runnable since user
172 * processes only schedule one at a time per cpu. However, there can
173 * be many user processes in kernel mode exiting from a tsleep() which
174 * become runnable.
176 * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
177 * will ignore user priority. This is to ensure that user threads in
178 * kernel mode get cpu at some point regardless of what the user
179 * scheduler thinks.
181 static __inline
182 void
183 _lwkt_enqueue(thread_t td)
185 thread_t xtd;
187 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
188 struct globaldata *gd = td->td_gd;
190 td->td_flags |= TDF_RUNQ;
191 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
192 if (xtd == NULL) {
193 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
194 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
195 } else {
197 * NOTE: td_upri - higher numbers more desireable, same sense
198 * as td_pri (typically reversed from lwp_upri).
200 * In the equal priority case we want the best selection
201 * at the beginning so the less desireable selections know
202 * that they have to setrunqueue/go-to-another-cpu, even
203 * though it means switching back to the 'best' selection.
204 * This also avoids degenerate situations when many threads
205 * are runnable or waking up at the same time.
207 * If upri matches exactly place at end/round-robin.
209 while (xtd &&
210 (xtd->td_pri >= td->td_pri ||
211 (xtd->td_pri == td->td_pri &&
212 xtd->td_upri >= td->td_upri))) {
213 xtd = TAILQ_NEXT(xtd, td_threadq);
215 if (xtd)
216 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
217 else
218 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
220 ++gd->gd_tdrunqcount;
223 * Request a LWKT reschedule if we are now at the head of the queue.
225 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
226 need_lwkt_resched();
230 static boolean_t
231 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
233 struct thread *td = (struct thread *)obj;
235 td->td_kstack = NULL;
236 td->td_kstack_size = 0;
237 td->td_flags = TDF_ALLOCATED_THREAD;
238 td->td_mpflags = 0;
239 return (1);
242 static void
243 _lwkt_thread_dtor(void *obj, void *privdata)
245 struct thread *td = (struct thread *)obj;
247 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
248 ("_lwkt_thread_dtor: not allocated from objcache"));
249 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
250 td->td_kstack_size > 0,
251 ("_lwkt_thread_dtor: corrupted stack"));
252 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
253 td->td_kstack = NULL;
254 td->td_flags = 0;
258 * Initialize the lwkt s/system.
260 * Nominally cache up to 32 thread + kstack structures. Cache more on
261 * systems with a lot of cpu cores.
263 static void
264 lwkt_init(void)
266 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
267 if (lwkt_cache_threads == 0) {
268 lwkt_cache_threads = ncpus * 4;
269 if (lwkt_cache_threads < 32)
270 lwkt_cache_threads = 32;
272 thread_cache = objcache_create_mbacked(
273 M_THREAD, sizeof(struct thread),
274 0, lwkt_cache_threads,
275 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
277 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
280 * Schedule a thread to run. As the current thread we can always safely
281 * schedule ourselves, and a shortcut procedure is provided for that
282 * function.
284 * (non-blocking, self contained on a per cpu basis)
286 void
287 lwkt_schedule_self(thread_t td)
289 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
290 crit_enter_quick(td);
291 KASSERT(td != &td->td_gd->gd_idlethread,
292 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
293 KKASSERT(td->td_lwp == NULL ||
294 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
295 _lwkt_enqueue(td);
296 crit_exit_quick(td);
300 * Deschedule a thread.
302 * (non-blocking, self contained on a per cpu basis)
304 void
305 lwkt_deschedule_self(thread_t td)
307 crit_enter_quick(td);
308 _lwkt_dequeue(td);
309 crit_exit_quick(td);
313 * LWKTs operate on a per-cpu basis
315 * WARNING! Called from early boot, 'mycpu' may not work yet.
317 void
318 lwkt_gdinit(struct globaldata *gd)
320 TAILQ_INIT(&gd->gd_tdrunq);
321 TAILQ_INIT(&gd->gd_tdallq);
325 * Create a new thread. The thread must be associated with a process context
326 * or LWKT start address before it can be scheduled. If the target cpu is
327 * -1 the thread will be created on the current cpu.
329 * If you intend to create a thread without a process context this function
330 * does everything except load the startup and switcher function.
332 thread_t
333 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
335 static int cpu_rotator;
336 globaldata_t gd = mycpu;
337 void *stack;
340 * If static thread storage is not supplied allocate a thread. Reuse
341 * a cached free thread if possible. gd_freetd is used to keep an exiting
342 * thread intact through the exit.
344 if (td == NULL) {
345 crit_enter_gd(gd);
346 if ((td = gd->gd_freetd) != NULL) {
347 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
348 TDF_RUNQ)) == 0);
349 gd->gd_freetd = NULL;
350 } else {
351 td = objcache_get(thread_cache, M_WAITOK);
352 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
353 TDF_RUNQ)) == 0);
355 crit_exit_gd(gd);
356 KASSERT((td->td_flags &
357 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
358 TDF_ALLOCATED_THREAD,
359 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
360 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
364 * Try to reuse cached stack.
366 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
367 if (flags & TDF_ALLOCATED_STACK) {
368 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
369 stack = NULL;
372 if (stack == NULL) {
373 if (cpu < 0)
374 stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
375 else
376 stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
377 KM_CPU(cpu));
378 flags |= TDF_ALLOCATED_STACK;
380 if (cpu < 0) {
381 cpu = ++cpu_rotator;
382 cpu_ccfence();
383 cpu %= ncpus;
385 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
386 return(td);
390 * Initialize a preexisting thread structure. This function is used by
391 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
393 * All threads start out in a critical section at a priority of
394 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
395 * appropriate. This function may send an IPI message when the
396 * requested cpu is not the current cpu and consequently gd_tdallq may
397 * not be initialized synchronously from the point of view of the originating
398 * cpu.
400 * NOTE! we have to be careful in regards to creating threads for other cpus
401 * if SMP has not yet been activated.
403 static void
404 lwkt_init_thread_remote(void *arg)
406 thread_t td = arg;
409 * Protected by critical section held by IPI dispatch
411 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
415 * lwkt core thread structural initialization.
417 * NOTE: All threads are initialized as mpsafe threads.
419 void
420 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
421 struct globaldata *gd)
423 globaldata_t mygd = mycpu;
425 bzero(td, sizeof(struct thread));
426 td->td_kstack = stack;
427 td->td_kstack_size = stksize;
428 td->td_flags = flags;
429 td->td_mpflags = 0;
430 td->td_type = TD_TYPE_GENERIC;
431 td->td_gd = gd;
432 td->td_pri = TDPRI_KERN_DAEMON;
433 td->td_critcount = 1;
434 td->td_toks_have = NULL;
435 td->td_toks_stop = &td->td_toks_base;
436 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
437 lwkt_initport_spin(&td->td_msgport, td,
438 (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
439 } else {
440 lwkt_initport_thread(&td->td_msgport, td);
442 pmap_init_thread(td);
444 * Normally initializing a thread for a remote cpu requires sending an
445 * IPI. However, the idlethread is setup before the other cpus are
446 * activated so we have to treat it as a special case. XXX manipulation
447 * of gd_tdallq requires the BGL.
449 if (gd == mygd || td == &gd->gd_idlethread) {
450 crit_enter_gd(mygd);
451 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
452 crit_exit_gd(mygd);
453 } else {
454 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
456 dsched_enter_thread(td);
459 void
460 lwkt_set_comm(thread_t td, const char *ctl, ...)
462 __va_list va;
464 __va_start(va, ctl);
465 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
466 __va_end(va);
467 KTR_LOG(ctxsw_newtd, td, td->td_comm);
471 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
472 * this does not prevent the thread from migrating to another cpu so the
473 * gd_tdallq state is not protected by this.
475 void
476 lwkt_hold(thread_t td)
478 atomic_add_int(&td->td_refs, 1);
481 void
482 lwkt_rele(thread_t td)
484 KKASSERT(td->td_refs > 0);
485 atomic_add_int(&td->td_refs, -1);
488 void
489 lwkt_free_thread(thread_t td)
491 KKASSERT(td->td_refs == 0);
492 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
493 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
494 if (td->td_flags & TDF_ALLOCATED_THREAD) {
495 objcache_put(thread_cache, td);
496 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
497 /* client-allocated struct with internally allocated stack */
498 KASSERT(td->td_kstack && td->td_kstack_size > 0,
499 ("lwkt_free_thread: corrupted stack"));
500 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
501 td->td_kstack = NULL;
502 td->td_kstack_size = 0;
505 KTR_LOG(ctxsw_deadtd, td);
510 * Switch to the next runnable lwkt. If no LWKTs are runnable then
511 * switch to the idlethread. Switching must occur within a critical
512 * section to avoid races with the scheduling queue.
514 * We always have full control over our cpu's run queue. Other cpus
515 * that wish to manipulate our queue must use the cpu_*msg() calls to
516 * talk to our cpu, so a critical section is all that is needed and
517 * the result is very, very fast thread switching.
519 * The LWKT scheduler uses a fixed priority model and round-robins at
520 * each priority level. User process scheduling is a totally
521 * different beast and LWKT priorities should not be confused with
522 * user process priorities.
524 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
525 * is not called by the current thread in the preemption case, only when
526 * the preempting thread blocks (in order to return to the original thread).
528 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
529 * migration and tsleep deschedule the current lwkt thread and call
530 * lwkt_switch(). In particular, the target cpu of the migration fully
531 * expects the thread to become non-runnable and can deadlock against
532 * cpusync operations if we run any IPIs prior to switching the thread out.
534 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
535 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
537 void
538 lwkt_switch(void)
540 globaldata_t gd = mycpu;
541 thread_t td = gd->gd_curthread;
542 thread_t ntd;
543 int upri;
544 #ifdef LOOPMASK
545 uint64_t tsc_base = rdtsc();
546 #endif
548 KKASSERT(gd->gd_processing_ipiq == 0);
549 KKASSERT(td->td_flags & TDF_RUNNING);
552 * Switching from within a 'fast' (non thread switched) interrupt or IPI
553 * is illegal. However, we may have to do it anyway if we hit a fatal
554 * kernel trap or we have paniced.
556 * If this case occurs save and restore the interrupt nesting level.
558 if (gd->gd_intr_nesting_level) {
559 int savegdnest;
560 int savegdtrap;
562 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
563 panic("lwkt_switch: Attempt to switch from a "
564 "fast interrupt, ipi, or hard code section, "
565 "td %p\n",
566 td);
567 } else {
568 savegdnest = gd->gd_intr_nesting_level;
569 savegdtrap = gd->gd_trap_nesting_level;
570 gd->gd_intr_nesting_level = 0;
571 gd->gd_trap_nesting_level = 0;
572 if ((td->td_flags & TDF_PANICWARN) == 0) {
573 td->td_flags |= TDF_PANICWARN;
574 kprintf("Warning: thread switch from interrupt, IPI, "
575 "or hard code section.\n"
576 "thread %p (%s)\n", td, td->td_comm);
577 print_backtrace(-1);
579 lwkt_switch();
580 gd->gd_intr_nesting_level = savegdnest;
581 gd->gd_trap_nesting_level = savegdtrap;
582 return;
587 * Release our current user process designation if we are blocking
588 * or if a user reschedule was requested.
590 * NOTE: This function is NOT called if we are switching into or
591 * returning from a preemption.
593 * NOTE: Releasing our current user process designation may cause
594 * it to be assigned to another thread, which in turn will
595 * cause us to block in the usched acquire code when we attempt
596 * to return to userland.
598 * NOTE: On SMP systems this can be very nasty when heavy token
599 * contention is present so we want to be careful not to
600 * release the designation gratuitously.
602 if (td->td_release &&
603 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
604 td->td_release(td);
608 * Release all tokens. Once we do this we must remain in the critical
609 * section and cannot run IPIs or other interrupts until we switch away
610 * because they may implode if they try to get a token using our thread
611 * context.
613 crit_enter_gd(gd);
614 if (TD_TOKS_HELD(td))
615 lwkt_relalltokens(td);
618 * We had better not be holding any spin locks, but don't get into an
619 * endless panic loop.
621 KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
622 ("lwkt_switch: still holding %d exclusive spinlocks!",
623 gd->gd_spinlocks));
625 #ifdef INVARIANTS
626 if (td->td_cscount) {
627 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
628 td);
629 if (panic_on_cscount)
630 panic("switching while mastering cpusync");
632 #endif
635 * If we had preempted another thread on this cpu, resume the preempted
636 * thread. This occurs transparently, whether the preempted thread
637 * was scheduled or not (it may have been preempted after descheduling
638 * itself).
640 * We have to setup the MP lock for the original thread after backing
641 * out the adjustment that was made to curthread when the original
642 * was preempted.
644 if ((ntd = td->td_preempted) != NULL) {
645 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
646 ntd->td_flags |= TDF_PREEMPT_DONE;
647 ntd->td_contended = 0; /* reset contended */
650 * The interrupt may have woken a thread up, we need to properly
651 * set the reschedule flag if the originally interrupted thread is
652 * at a lower priority.
654 * The interrupt may not have descheduled.
656 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
657 need_lwkt_resched();
658 goto havethread_preempted;
662 * Figure out switch target. If we cannot switch to our desired target
663 * look for a thread that we can switch to.
665 * NOTE! The limited spin loop and related parameters are extremely
666 * important for system performance, particularly for pipes and
667 * concurrent conflicting VM faults.
669 clear_lwkt_resched();
670 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
672 if (ntd) {
673 do {
674 if (TD_TOKS_NOT_HELD(ntd) ||
675 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
677 goto havethread;
679 ++gd->gd_cnt.v_lock_colls;
680 ++ntd->td_contended; /* overflow ok */
681 #ifdef LOOPMASK
682 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
683 kprintf("lwkt_switch: excessive contended %d "
684 "thread %p\n", ntd->td_contended, ntd);
685 tsc_base = rdtsc();
687 #endif
688 } while (ntd->td_contended < (lwkt_spin_loops >> 1));
689 upri = ntd->td_upri;
692 * Bleh, the thread we wanted to switch to has a contended token.
693 * See if we can switch to another thread.
695 * We generally don't want to do this because it represents a
696 * priority inversion. Do not allow the case if the thread
697 * is returning to userland (not a kernel thread) AND the thread
698 * has a lower upri.
700 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
701 if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
702 break;
703 upri = ntd->td_upri;
706 * Try this one.
708 if (TD_TOKS_NOT_HELD(ntd) ||
709 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
710 goto havethread;
712 ++ntd->td_contended; /* overflow ok */
713 ++gd->gd_cnt.v_lock_colls;
717 * Fall through, switch to idle thread to get us out of the current
718 * context. Since we were contended, prevent HLT by flagging a
719 * LWKT reschedule.
721 need_lwkt_resched();
725 * We either contended on ntd or the runq is empty. We must switch
726 * through the idle thread to get out of the current context.
728 ntd = &gd->gd_idlethread;
729 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
730 ASSERT_NO_TOKENS_HELD(ntd);
731 cpu_time.cp_msg[0] = 0;
732 goto haveidle;
734 havethread:
736 * Clear gd_idle_repeat when doing a normal switch to a non-idle
737 * thread.
739 ntd->td_wmesg = NULL;
740 ntd->td_contended = 0; /* reset once scheduled */
741 ++gd->gd_cnt.v_swtch;
742 gd->gd_idle_repeat = 0;
744 havethread_preempted:
746 * If the new target does not need the MP lock and we are holding it,
747 * release the MP lock. If the new target requires the MP lock we have
748 * already acquired it for the target.
751 haveidle:
752 KASSERT(ntd->td_critcount,
753 ("priority problem in lwkt_switch %d %d",
754 td->td_critcount, ntd->td_critcount));
756 if (td != ntd) {
758 * Execute the actual thread switch operation. This function
759 * returns to the current thread and returns the previous thread
760 * (which may be different from the thread we switched to).
762 * We are responsible for marking ntd as TDF_RUNNING.
764 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
765 ++switch_count;
766 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
767 ntd->td_flags |= TDF_RUNNING;
768 lwkt_switch_return(td->td_switch(ntd));
769 /* ntd invalid, td_switch() can return a different thread_t */
773 * catch-all. XXX is this strictly needed?
775 splz_check();
777 /* NOTE: current cpu may have changed after switch */
778 crit_exit_quick(td);
782 * Called by assembly in the td_switch (thread restore path) for thread
783 * bootstrap cases which do not 'return' to lwkt_switch().
785 void
786 lwkt_switch_return(thread_t otd)
788 globaldata_t rgd;
789 #ifdef LOOPMASK
790 uint64_t tsc_base = rdtsc();
791 #endif
792 int exiting;
794 exiting = otd->td_flags & TDF_EXITING;
795 cpu_ccfence();
798 * Check if otd was migrating. Now that we are on ntd we can finish
799 * up the migration. This is a bit messy but it is the only place
800 * where td is known to be fully descheduled.
802 * We can only activate the migration if otd was migrating but not
803 * held on the cpu due to a preemption chain. We still have to
804 * clear TDF_RUNNING on the old thread either way.
806 * We are responsible for clearing the previously running thread's
807 * TDF_RUNNING.
809 if ((rgd = otd->td_migrate_gd) != NULL &&
810 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
811 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
812 (TDF_MIGRATING | TDF_RUNNING));
813 otd->td_migrate_gd = NULL;
814 otd->td_flags &= ~TDF_RUNNING;
815 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
816 } else {
817 otd->td_flags &= ~TDF_RUNNING;
821 * Final exit validations (see lwp_wait()). Note that otd becomes
822 * invalid the *instant* we set TDF_MP_EXITSIG.
824 * Use the EXITING status loaded from before we clear TDF_RUNNING,
825 * because if it is not set otd becomes invalid the instant we clear
826 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
827 * might 'steal' TDF_EXITING from another switch-return!).
829 while (exiting) {
830 u_int mpflags;
832 mpflags = otd->td_mpflags;
833 cpu_ccfence();
835 if (mpflags & TDF_MP_EXITWAIT) {
836 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
837 mpflags | TDF_MP_EXITSIG)) {
838 wakeup(otd);
839 break;
841 } else {
842 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
843 mpflags | TDF_MP_EXITSIG)) {
844 wakeup(otd);
845 break;
849 #ifdef LOOPMASK
850 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
851 kprintf("lwkt_switch_return: excessive TDF_EXITING "
852 "thread %p\n", otd);
853 tsc_base = rdtsc();
855 #endif
860 * Request that the target thread preempt the current thread. Preemption
861 * can only occur if our only critical section is the one that we were called
862 * with, the relative priority of the target thread is higher, and the target
863 * thread holds no tokens. This also only works if we are not holding any
864 * spinlocks (obviously).
866 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
867 * this is called via lwkt_schedule() through the td_preemptable callback.
868 * critcount is the managed critical priority that we should ignore in order
869 * to determine whether preemption is possible (aka usually just the crit
870 * priority of lwkt_schedule() itself).
872 * Preemption is typically limited to interrupt threads.
874 * Operation works in a fairly straight-forward manner. The normal
875 * scheduling code is bypassed and we switch directly to the target
876 * thread. When the target thread attempts to block or switch away
877 * code at the base of lwkt_switch() will switch directly back to our
878 * thread. Our thread is able to retain whatever tokens it holds and
879 * if the target needs one of them the target will switch back to us
880 * and reschedule itself normally.
882 void
883 lwkt_preempt(thread_t ntd, int critcount)
885 struct globaldata *gd = mycpu;
886 thread_t xtd;
887 thread_t td;
888 int save_gd_intr_nesting_level;
891 * The caller has put us in a critical section. We can only preempt
892 * if the caller of the caller was not in a critical section (basically
893 * a local interrupt), as determined by the 'critcount' parameter. We
894 * also can't preempt if the caller is holding any spinlocks (even if
895 * he isn't in a critical section). This also handles the tokens test.
897 * YYY The target thread must be in a critical section (else it must
898 * inherit our critical section? I dunno yet).
900 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
902 td = gd->gd_curthread;
903 if (preempt_enable == 0) {
904 ++preempt_miss;
905 return;
907 if (ntd->td_pri <= td->td_pri) {
908 ++preempt_miss;
909 return;
911 if (td->td_critcount > critcount) {
912 ++preempt_miss;
913 return;
915 if (td->td_cscount) {
916 ++preempt_miss;
917 return;
919 if (ntd->td_gd != gd) {
920 ++preempt_miss;
921 return;
925 * We don't have to check spinlocks here as they will also bump
926 * td_critcount.
928 * Do not try to preempt if the target thread is holding any tokens.
929 * We could try to acquire the tokens but this case is so rare there
930 * is no need to support it.
932 KKASSERT(gd->gd_spinlocks == 0);
934 if (TD_TOKS_HELD(ntd)) {
935 ++preempt_miss;
936 return;
938 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
939 ++preempt_weird;
940 return;
942 if (ntd->td_preempted) {
943 ++preempt_hit;
944 return;
946 KKASSERT(gd->gd_processing_ipiq == 0);
949 * Since we are able to preempt the current thread, there is no need to
950 * call need_lwkt_resched().
952 * We must temporarily clear gd_intr_nesting_level around the switch
953 * since switchouts from the target thread are allowed (they will just
954 * return to our thread), and since the target thread has its own stack.
956 * A preemption must switch back to the original thread, assert the
957 * case.
959 ++preempt_hit;
960 ntd->td_preempted = td;
961 td->td_flags |= TDF_PREEMPT_LOCK;
962 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
963 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
964 gd->gd_intr_nesting_level = 0;
966 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
967 ntd->td_flags |= TDF_RUNNING;
968 xtd = td->td_switch(ntd);
969 KKASSERT(xtd == ntd);
970 lwkt_switch_return(xtd);
971 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
973 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
974 ntd->td_preempted = NULL;
975 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
979 * Conditionally call splz() if gd_reqflags indicates work is pending.
980 * This will work inside a critical section but not inside a hard code
981 * section.
983 * (self contained on a per cpu basis)
985 void
986 splz_check(void)
988 globaldata_t gd = mycpu;
989 thread_t td = gd->gd_curthread;
991 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
992 gd->gd_intr_nesting_level == 0 &&
993 td->td_nest_count < 2)
995 splz();
1000 * This version is integrated into crit_exit, reqflags has already
1001 * been tested but td_critcount has not.
1003 * We only want to execute the splz() on the 1->0 transition of
1004 * critcount and not in a hard code section or if too deeply nested.
1006 * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1008 void
1009 lwkt_maybe_splz(thread_t td)
1011 globaldata_t gd = td->td_gd;
1013 if (td->td_critcount == 0 &&
1014 gd->gd_intr_nesting_level == 0 &&
1015 td->td_nest_count < 2)
1017 splz();
1022 * Drivers which set up processing co-threads can call this function to
1023 * run the co-thread at a higher priority and to allow it to preempt
1024 * normal threads.
1026 void
1027 lwkt_set_interrupt_support_thread(void)
1029 thread_t td = curthread;
1031 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1032 td->td_flags |= TDF_INTTHREAD;
1033 td->td_preemptable = lwkt_preempt;
1038 * This function is used to negotiate a passive release of the current
1039 * process/lwp designation with the user scheduler, allowing the user
1040 * scheduler to schedule another user thread. The related kernel thread
1041 * (curthread) continues running in the released state.
1043 void
1044 lwkt_passive_release(struct thread *td)
1046 struct lwp *lp = td->td_lwp;
1048 td->td_release = NULL;
1049 lwkt_setpri_self(TDPRI_KERN_USER);
1051 lp->lwp_proc->p_usched->release_curproc(lp);
1056 * This implements a LWKT yield, allowing a kernel thread to yield to other
1057 * kernel threads at the same or higher priority. This function can be
1058 * called in a tight loop and will typically only yield once per tick.
1060 * Most kernel threads run at the same priority in order to allow equal
1061 * sharing.
1063 * (self contained on a per cpu basis)
1065 void
1066 lwkt_yield(void)
1068 globaldata_t gd = mycpu;
1069 thread_t td = gd->gd_curthread;
1072 * Should never be called with spinlocks held but there is a path
1073 * via ACPI where it might happen.
1075 if (gd->gd_spinlocks)
1076 return;
1079 * Safe to call splz if we are not too-heavily nested.
1081 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1082 splz();
1085 * Caller allows switching
1087 if (lwkt_resched_wanted()) {
1088 lwkt_schedule_self(curthread);
1089 lwkt_switch();
1094 * The quick version processes pending interrupts and higher-priority
1095 * LWKT threads but will not round-robin same-priority LWKT threads.
1097 * When called while attempting to return to userland the only same-pri
1098 * threads are the ones which have already tried to become the current
1099 * user process.
1101 void
1102 lwkt_yield_quick(void)
1104 globaldata_t gd = mycpu;
1105 thread_t td = gd->gd_curthread;
1107 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1108 splz();
1109 if (lwkt_resched_wanted()) {
1110 crit_enter();
1111 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1112 clear_lwkt_resched();
1113 } else {
1114 lwkt_schedule_self(curthread);
1115 lwkt_switch();
1117 crit_exit();
1122 * This yield is designed for kernel threads with a user context.
1124 * The kernel acting on behalf of the user is potentially cpu-bound,
1125 * this function will efficiently allow other threads to run and also
1126 * switch to other processes by releasing.
1128 * The lwkt_user_yield() function is designed to have very low overhead
1129 * if no yield is determined to be needed.
1131 void
1132 lwkt_user_yield(void)
1134 globaldata_t gd = mycpu;
1135 thread_t td = gd->gd_curthread;
1138 * Should never be called with spinlocks held but there is a path
1139 * via ACPI where it might happen.
1141 if (gd->gd_spinlocks)
1142 return;
1145 * Always run any pending interrupts in case we are in a critical
1146 * section.
1148 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1149 splz();
1152 * Switch (which forces a release) if another kernel thread needs
1153 * the cpu, if userland wants us to resched, or if our kernel
1154 * quantum has run out.
1156 if (lwkt_resched_wanted() ||
1157 user_resched_wanted())
1159 lwkt_switch();
1162 #if 0
1164 * Reacquire the current process if we are released.
1166 * XXX not implemented atm. The kernel may be holding locks and such,
1167 * so we want the thread to continue to receive cpu.
1169 if (td->td_release == NULL && lp) {
1170 lp->lwp_proc->p_usched->acquire_curproc(lp);
1171 td->td_release = lwkt_passive_release;
1172 lwkt_setpri_self(TDPRI_USER_NORM);
1174 #endif
1178 * Generic schedule. Possibly schedule threads belonging to other cpus and
1179 * deal with threads that might be blocked on a wait queue.
1181 * We have a little helper inline function which does additional work after
1182 * the thread has been enqueued, including dealing with preemption and
1183 * setting need_lwkt_resched() (which prevents the kernel from returning
1184 * to userland until it has processed higher priority threads).
1186 * It is possible for this routine to be called after a failed _enqueue
1187 * (due to the target thread migrating, sleeping, or otherwise blocked).
1188 * We have to check that the thread is actually on the run queue!
1190 static __inline
1191 void
1192 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1194 if (ntd->td_flags & TDF_RUNQ) {
1195 if (ntd->td_preemptable) {
1196 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1201 static __inline
1202 void
1203 _lwkt_schedule(thread_t td)
1205 globaldata_t mygd = mycpu;
1207 KASSERT(td != &td->td_gd->gd_idlethread,
1208 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1209 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1210 crit_enter_gd(mygd);
1211 KKASSERT(td->td_lwp == NULL ||
1212 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1214 if (td == mygd->gd_curthread) {
1215 _lwkt_enqueue(td);
1216 } else {
1218 * If we own the thread, there is no race (since we are in a
1219 * critical section). If we do not own the thread there might
1220 * be a race but the target cpu will deal with it.
1222 if (td->td_gd == mygd) {
1223 _lwkt_enqueue(td);
1224 _lwkt_schedule_post(mygd, td, 1);
1225 } else {
1226 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1229 crit_exit_gd(mygd);
1232 void
1233 lwkt_schedule(thread_t td)
1235 _lwkt_schedule(td);
1238 void
1239 lwkt_schedule_noresched(thread_t td) /* XXX not impl */
1241 _lwkt_schedule(td);
1245 * When scheduled remotely if frame != NULL the IPIQ is being
1246 * run via doreti or an interrupt then preemption can be allowed.
1248 * To allow preemption we have to drop the critical section so only
1249 * one is present in _lwkt_schedule_post.
1251 static void
1252 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1254 thread_t td = curthread;
1255 thread_t ntd = arg;
1257 if (frame && ntd->td_preemptable) {
1258 crit_exit_noyield(td);
1259 _lwkt_schedule(ntd);
1260 crit_enter_quick(td);
1261 } else {
1262 _lwkt_schedule(ntd);
1267 * Thread migration using a 'Pull' method. The thread may or may not be
1268 * the current thread. It MUST be descheduled and in a stable state.
1269 * lwkt_giveaway() must be called on the cpu owning the thread.
1271 * At any point after lwkt_giveaway() is called, the target cpu may
1272 * 'pull' the thread by calling lwkt_acquire().
1274 * We have to make sure the thread is not sitting on a per-cpu tsleep
1275 * queue or it will blow up when it moves to another cpu.
1277 * MPSAFE - must be called under very specific conditions.
1279 void
1280 lwkt_giveaway(thread_t td)
1282 globaldata_t gd = mycpu;
1284 crit_enter_gd(gd);
1285 if (td->td_flags & TDF_TSLEEPQ)
1286 tsleep_remove(td);
1287 KKASSERT(td->td_gd == gd);
1288 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1289 td->td_flags |= TDF_MIGRATING;
1290 crit_exit_gd(gd);
1293 void
1294 lwkt_acquire(thread_t td)
1296 globaldata_t gd;
1297 globaldata_t mygd;
1299 KKASSERT(td->td_flags & TDF_MIGRATING);
1300 gd = td->td_gd;
1301 mygd = mycpu;
1302 if (gd != mycpu) {
1303 #ifdef LOOPMASK
1304 uint64_t tsc_base = rdtsc();
1305 #endif
1306 cpu_lfence();
1307 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1308 crit_enter_gd(mygd);
1309 DEBUG_PUSH_INFO("lwkt_acquire");
1310 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1311 lwkt_process_ipiq();
1312 cpu_lfence();
1313 #ifdef _KERNEL_VIRTUAL
1314 pthread_yield();
1315 #endif
1316 #ifdef LOOPMASK
1317 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1318 kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1319 td, td->td_flags);
1320 tsc_base = rdtsc();
1322 #endif
1324 DEBUG_POP_INFO();
1325 cpu_mfence();
1326 td->td_gd = mygd;
1327 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1328 td->td_flags &= ~TDF_MIGRATING;
1329 crit_exit_gd(mygd);
1330 } else {
1331 crit_enter_gd(mygd);
1332 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1333 td->td_flags &= ~TDF_MIGRATING;
1334 crit_exit_gd(mygd);
1339 * Generic deschedule. Descheduling threads other then your own should be
1340 * done only in carefully controlled circumstances. Descheduling is
1341 * asynchronous.
1343 * This function may block if the cpu has run out of messages.
1345 void
1346 lwkt_deschedule(thread_t td)
1348 crit_enter();
1349 if (td == curthread) {
1350 _lwkt_dequeue(td);
1351 } else {
1352 if (td->td_gd == mycpu) {
1353 _lwkt_dequeue(td);
1354 } else {
1355 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1358 crit_exit();
1362 * Set the target thread's priority. This routine does not automatically
1363 * switch to a higher priority thread, LWKT threads are not designed for
1364 * continuous priority changes. Yield if you want to switch.
1366 void
1367 lwkt_setpri(thread_t td, int pri)
1369 if (td->td_pri != pri) {
1370 KKASSERT(pri >= 0);
1371 crit_enter();
1372 if (td->td_flags & TDF_RUNQ) {
1373 KKASSERT(td->td_gd == mycpu);
1374 _lwkt_dequeue(td);
1375 td->td_pri = pri;
1376 _lwkt_enqueue(td);
1377 } else {
1378 td->td_pri = pri;
1380 crit_exit();
1385 * Set the initial priority for a thread prior to it being scheduled for
1386 * the first time. The thread MUST NOT be scheduled before or during
1387 * this call. The thread may be assigned to a cpu other then the current
1388 * cpu.
1390 * Typically used after a thread has been created with TDF_STOPPREQ,
1391 * and before the thread is initially scheduled.
1393 void
1394 lwkt_setpri_initial(thread_t td, int pri)
1396 KKASSERT(pri >= 0);
1397 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1398 td->td_pri = pri;
1401 void
1402 lwkt_setpri_self(int pri)
1404 thread_t td = curthread;
1406 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1407 crit_enter();
1408 if (td->td_flags & TDF_RUNQ) {
1409 _lwkt_dequeue(td);
1410 td->td_pri = pri;
1411 _lwkt_enqueue(td);
1412 } else {
1413 td->td_pri = pri;
1415 crit_exit();
1419 * hz tick scheduler clock for LWKT threads
1421 void
1422 lwkt_schedulerclock(thread_t td)
1424 globaldata_t gd = td->td_gd;
1425 thread_t xtd;
1427 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1429 * If the current thread is at the head of the runq shift it to the
1430 * end of any equal-priority threads and request a LWKT reschedule
1431 * if it moved.
1433 * Ignore upri in this situation. There will only be one user thread
1434 * in user mode, all others will be user threads running in kernel
1435 * mode and we have to make sure they get some cpu.
1437 xtd = TAILQ_NEXT(td, td_threadq);
1438 if (xtd && xtd->td_pri == td->td_pri) {
1439 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1440 while (xtd && xtd->td_pri == td->td_pri)
1441 xtd = TAILQ_NEXT(xtd, td_threadq);
1442 if (xtd)
1443 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1444 else
1445 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1446 need_lwkt_resched();
1448 } else {
1450 * If we scheduled a thread other than the one at the head of the
1451 * queue always request a reschedule every tick.
1453 need_lwkt_resched();
1458 * Migrate the current thread to the specified cpu.
1460 * This is accomplished by descheduling ourselves from the current cpu
1461 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1462 * 'old' thread wants to migrate after it has been completely switched out
1463 * and will complete the migration.
1465 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1467 * We must be sure to release our current process designation (if a user
1468 * process) before clearing out any tsleepq we are on because the release
1469 * code may re-add us.
1471 * We must be sure to remove ourselves from the current cpu's tsleepq
1472 * before potentially moving to another queue. The thread can be on
1473 * a tsleepq due to a left-over tsleep_interlock().
1476 void
1477 lwkt_setcpu_self(globaldata_t rgd)
1479 thread_t td = curthread;
1481 if (td->td_gd != rgd) {
1482 crit_enter_quick(td);
1484 if (td->td_release)
1485 td->td_release(td);
1486 if (td->td_flags & TDF_TSLEEPQ)
1487 tsleep_remove(td);
1490 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1491 * trying to deschedule ourselves and switch away, then deschedule
1492 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1493 * call lwkt_switch() to complete the operation.
1495 td->td_flags |= TDF_MIGRATING;
1496 lwkt_deschedule_self(td);
1497 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1498 td->td_migrate_gd = rgd;
1499 lwkt_switch();
1502 * We are now on the target cpu
1504 KKASSERT(rgd == mycpu);
1505 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1506 crit_exit_quick(td);
1510 void
1511 lwkt_migratecpu(int cpuid)
1513 globaldata_t rgd;
1515 rgd = globaldata_find(cpuid);
1516 lwkt_setcpu_self(rgd);
1520 * Remote IPI for cpu migration (called while in a critical section so we
1521 * do not have to enter another one).
1523 * The thread (td) has already been completely descheduled from the
1524 * originating cpu and we can simply assert the case. The thread is
1525 * assigned to the new cpu and enqueued.
1527 * The thread will re-add itself to tdallq when it resumes execution.
1529 static void
1530 lwkt_setcpu_remote(void *arg)
1532 thread_t td = arg;
1533 globaldata_t gd = mycpu;
1535 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1536 td->td_gd = gd;
1537 cpu_mfence();
1538 td->td_flags &= ~TDF_MIGRATING;
1539 KKASSERT(td->td_migrate_gd == NULL);
1540 KKASSERT(td->td_lwp == NULL ||
1541 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1542 _lwkt_enqueue(td);
1545 struct lwp *
1546 lwkt_preempted_proc(void)
1548 thread_t td = curthread;
1549 while (td->td_preempted)
1550 td = td->td_preempted;
1551 return(td->td_lwp);
1555 * Create a kernel process/thread/whatever. It shares it's address space
1556 * with proc0 - ie: kernel only.
1558 * If the cpu is not specified one will be selected. In the future
1559 * specifying a cpu of -1 will enable kernel thread migration between
1560 * cpus.
1563 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1564 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1566 thread_t td;
1567 __va_list ap;
1569 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1570 tdflags);
1571 if (tdp)
1572 *tdp = td;
1573 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1576 * Set up arg0 for 'ps' etc
1578 __va_start(ap, fmt);
1579 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1580 __va_end(ap);
1583 * Schedule the thread to run
1585 if (td->td_flags & TDF_NOSTART)
1586 td->td_flags &= ~TDF_NOSTART;
1587 else
1588 lwkt_schedule(td);
1589 return 0;
1593 * Destroy an LWKT thread. Warning! This function is not called when
1594 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1595 * uses a different reaping mechanism.
1597 void
1598 lwkt_exit(void)
1600 thread_t td = curthread;
1601 thread_t std;
1602 globaldata_t gd;
1605 * Do any cleanup that might block here
1607 if (td->td_flags & TDF_VERBOSE)
1608 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1609 biosched_done(td);
1610 dsched_exit_thread(td);
1613 * Get us into a critical section to interlock gd_freetd and loop
1614 * until we can get it freed.
1616 * We have to cache the current td in gd_freetd because objcache_put()ing
1617 * it would rip it out from under us while our thread is still active.
1619 * We are the current thread so of course our own TDF_RUNNING bit will
1620 * be set, so unlike the lwp reap code we don't wait for it to clear.
1622 gd = mycpu;
1623 crit_enter_quick(td);
1624 for (;;) {
1625 if (td->td_refs) {
1626 tsleep(td, 0, "tdreap", 1);
1627 continue;
1629 if ((std = gd->gd_freetd) != NULL) {
1630 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1631 gd->gd_freetd = NULL;
1632 objcache_put(thread_cache, std);
1633 continue;
1635 break;
1639 * Remove thread resources from kernel lists and deschedule us for
1640 * the last time. We cannot block after this point or we may end
1641 * up with a stale td on the tsleepq.
1643 * None of this may block, the critical section is the only thing
1644 * protecting tdallq and the only thing preventing new lwkt_hold()
1645 * thread refs now.
1647 if (td->td_flags & TDF_TSLEEPQ)
1648 tsleep_remove(td);
1649 lwkt_deschedule_self(td);
1650 lwkt_remove_tdallq(td);
1651 KKASSERT(td->td_refs == 0);
1654 * Final cleanup
1656 KKASSERT(gd->gd_freetd == NULL);
1657 if (td->td_flags & TDF_ALLOCATED_THREAD)
1658 gd->gd_freetd = td;
1659 cpu_thread_exit();
1662 void
1663 lwkt_remove_tdallq(thread_t td)
1665 KKASSERT(td->td_gd == mycpu);
1666 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1670 * Code reduction and branch prediction improvements. Call/return
1671 * overhead on modern cpus often degenerates into 0 cycles due to
1672 * the cpu's branch prediction hardware and return pc cache. We
1673 * can take advantage of this by not inlining medium-complexity
1674 * functions and we can also reduce the branch prediction impact
1675 * by collapsing perfectly predictable branches into a single
1676 * procedure instead of duplicating it.
1678 * Is any of this noticeable? Probably not, so I'll take the
1679 * smaller code size.
1681 void
1682 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1684 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1687 void
1688 crit_panic(void)
1690 thread_t td = curthread;
1691 int lcrit = td->td_critcount;
1693 td->td_critcount = 0;
1694 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1695 /* NOT REACHED */
1699 * Called from debugger/panic on cpus which have been stopped. We must still
1700 * process the IPIQ while stopped.
1702 * If we are dumping also try to process any pending interrupts. This may
1703 * or may not work depending on the state of the cpu at the point it was
1704 * stopped.
1706 void
1707 lwkt_smp_stopped(void)
1709 globaldata_t gd = mycpu;
1711 if (dumping) {
1712 lwkt_process_ipiq();
1713 --gd->gd_intr_nesting_level;
1714 splz();
1715 ++gd->gd_intr_nesting_level;
1716 } else {
1717 lwkt_process_ipiq();
1719 cpu_smp_stopped();