kernel - Cleanup macros
[dragonfly.git] / sys / kern / vfs_bio.c
blob1ead0d3ea7c52b62bb74e22dca826d1e9d1ba034
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
66 #include "opt_ddb.h"
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
72 * Buffer queues.
74 enum bufq_type {
75 BQUEUE_NONE, /* not on any queue */
76 BQUEUE_LOCKED, /* locked buffers */
77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
78 BQUEUE_DIRTY, /* B_DELWRI buffers */
79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
80 BQUEUE_EMPTY, /* empty buffer headers */
82 BUFFER_QUEUES /* number of buffer queues */
85 typedef enum bufq_type bufq_type_t;
87 #define BD_WAKE_SIZE 16384
88 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
90 TAILQ_HEAD(bqueues, buf);
92 struct bufpcpu {
93 struct spinlock spin;
94 struct bqueues bufqueues[BUFFER_QUEUES];
95 } __cachealign;
97 struct bufpcpu bufpcpu[MAXCPU];
99 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
101 struct buf *buf; /* buffer header pool */
103 static void vfs_clean_pages(struct buf *bp);
104 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
105 #if 0
106 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
107 #endif
108 static void vfs_vmio_release(struct buf *bp);
109 static int flushbufqueues(struct buf *marker, bufq_type_t q);
110 static void repurposebuf(struct buf *bp, int size);
111 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
112 vm_pindex_t pg, int deficit);
114 static void bd_signal(long totalspace);
115 static void buf_daemon(void);
116 static void buf_daemon_hw(void);
119 * bogus page -- for I/O to/from partially complete buffers
120 * this is a temporary solution to the problem, but it is not
121 * really that bad. it would be better to split the buffer
122 * for input in the case of buffers partially already in memory,
123 * but the code is intricate enough already.
125 vm_page_t bogus_page;
128 * These are all static, but make the ones we export globals so we do
129 * not need to use compiler magic.
131 long bufspace; /* atomic ops */
132 long maxbufspace;
133 static long bufmallocspace; /* atomic ops */
134 long maxbufmallocspace, lobufspace, hibufspace;
135 static long lorunningspace;
136 static long hirunningspace;
137 static long dirtykvaspace; /* atomic */
138 long dirtybufspace; /* atomic (global for systat) */
139 static long dirtybufcount; /* atomic */
140 static long dirtybufspacehw; /* atomic */
141 static long dirtybufcounthw; /* atomic */
142 static long runningbufspace; /* atomic */
143 static long runningbufcount; /* atomic */
144 static long repurposedspace;
145 long lodirtybufspace;
146 long hidirtybufspace;
147 static int getnewbufcalls;
148 static int recoverbufcalls;
149 static int needsbuffer; /* atomic */
150 static int runningbufreq; /* atomic */
151 static int bd_request; /* atomic */
152 static int bd_request_hw; /* atomic */
153 static u_int bd_wake_ary[BD_WAKE_SIZE];
154 static u_int bd_wake_index;
155 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
156 static int debug_commit;
157 static int debug_bufbio;
158 static long bufcache_bw = 200 * 1024 * 1024;
159 static long bufcache_bw_accum;
160 static int bufcache_bw_ticks;
162 static struct thread *bufdaemon_td;
163 static struct thread *bufdaemonhw_td;
164 static u_int lowmempgallocs;
165 static u_int lowmempgfails;
166 static u_int flushperqueue = 1024;
167 static int repurpose_enable;
170 * Sysctls for operational control of the buffer cache.
172 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
173 "Number of buffers to flush from each per-cpu queue");
174 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
175 "Number of dirty buffers to flush before bufdaemon becomes inactive");
176 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
177 "High watermark used to trigger explicit flushing of dirty buffers");
178 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
179 "Minimum amount of buffer space required for active I/O");
180 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
181 "Maximum amount of buffer space to usable for active I/O");
182 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
183 "Buffer-cache -> VM page cache transfer bandwidth");
184 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
185 "Page allocations done during periods of very low free memory");
186 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
187 "Page allocations which failed during periods of very low free memory");
188 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
189 "Recycle pages to active or inactive queue transition pt 0-64");
190 SYSCTL_UINT(_vfs, OID_AUTO, repurpose_enable, CTLFLAG_RW, &repurpose_enable, 0,
191 "Enable buffer cache VM repurposing for high-I/O");
193 * Sysctls determining current state of the buffer cache.
195 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
196 "Total number of buffers in buffer cache");
197 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
198 "KVA reserved by dirty buffers (all)");
199 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
200 "Pending bytes of dirty buffers (all)");
201 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
202 "Pending bytes of dirty buffers (heavy weight)");
203 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
204 "Pending number of dirty buffers");
205 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
206 "Pending number of dirty buffers (heavy weight)");
207 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
208 "I/O bytes currently in progress due to asynchronous writes");
209 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
210 "I/O buffers currently in progress due to asynchronous writes");
211 SYSCTL_LONG(_vfs, OID_AUTO, repurposedspace, CTLFLAG_RD, &repurposedspace, 0,
212 "Buffer-cache memory repurposed in-place");
213 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
214 "Hard limit on maximum amount of memory usable for buffer space");
215 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
216 "Soft limit on maximum amount of memory usable for buffer space");
217 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
218 "Minimum amount of memory to reserve for system buffer space");
219 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
220 "Amount of memory available for buffers");
221 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
222 0, "Maximum amount of memory reserved for buffers using malloc");
223 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
224 "Amount of memory left for buffers using malloc-scheme");
225 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
226 "New buffer header acquisition requests");
227 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
228 "Recover VM space in an emergency");
229 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
230 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
231 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
232 "sizeof(struct buf)");
234 char *buf_wmesg = BUF_WMESG;
236 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
237 #define VFS_BIO_NEED_UNUSED02 0x02
238 #define VFS_BIO_NEED_UNUSED04 0x04
239 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
242 * Called when buffer space is potentially available for recovery.
243 * getnewbuf() will block on this flag when it is unable to free
244 * sufficient buffer space. Buffer space becomes recoverable when
245 * bp's get placed back in the queues.
247 static __inline void
248 bufspacewakeup(void)
251 * If someone is waiting for BUF space, wake them up. Even
252 * though we haven't freed the kva space yet, the waiting
253 * process will be able to now.
255 for (;;) {
256 int flags = needsbuffer;
257 cpu_ccfence();
258 if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
259 break;
260 if (atomic_cmpset_int(&needsbuffer, flags,
261 flags & ~VFS_BIO_NEED_BUFSPACE)) {
262 wakeup(&needsbuffer);
263 break;
265 /* retry */
270 * runningbufwakeup:
272 * Accounting for I/O in progress.
275 static __inline void
276 runningbufwakeup(struct buf *bp)
278 long totalspace;
279 long flags;
281 if ((totalspace = bp->b_runningbufspace) != 0) {
282 atomic_add_long(&runningbufspace, -totalspace);
283 atomic_add_long(&runningbufcount, -1);
284 bp->b_runningbufspace = 0;
287 * see waitrunningbufspace() for limit test.
289 for (;;) {
290 flags = runningbufreq;
291 cpu_ccfence();
292 if (flags == 0)
293 break;
294 if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
295 wakeup(&runningbufreq);
296 break;
298 /* retry */
300 bd_signal(totalspace);
305 * bufcountwakeup:
307 * Called when a buffer has been added to one of the free queues to
308 * account for the buffer and to wakeup anyone waiting for free buffers.
309 * This typically occurs when large amounts of metadata are being handled
310 * by the buffer cache ( else buffer space runs out first, usually ).
312 static __inline void
313 bufcountwakeup(void)
315 long flags;
317 for (;;) {
318 flags = needsbuffer;
319 if (flags == 0)
320 break;
321 if (atomic_cmpset_int(&needsbuffer, flags,
322 (flags & ~VFS_BIO_NEED_ANY))) {
323 wakeup(&needsbuffer);
324 break;
326 /* retry */
331 * waitrunningbufspace()
333 * If runningbufspace exceeds 4/6 hirunningspace we block until
334 * runningbufspace drops to 3/6 hirunningspace. We also block if another
335 * thread blocked here in order to be fair, even if runningbufspace
336 * is now lower than the limit.
338 * The caller may be using this function to block in a tight loop, we
339 * must block while runningbufspace is greater than at least
340 * hirunningspace * 3 / 6.
342 void
343 waitrunningbufspace(void)
345 long limit = hirunningspace * 4 / 6;
346 long flags;
348 while (runningbufspace > limit || runningbufreq) {
349 tsleep_interlock(&runningbufreq, 0);
350 flags = atomic_fetchadd_int(&runningbufreq, 1);
351 if (runningbufspace > limit || flags)
352 tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
357 * buf_dirty_count_severe:
359 * Return true if we have too many dirty buffers.
362 buf_dirty_count_severe(void)
364 return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
365 dirtybufcount >= nbuf / 2);
369 * Return true if the amount of running I/O is severe and BIOQ should
370 * start bursting.
373 buf_runningbufspace_severe(void)
375 return (runningbufspace >= hirunningspace * 4 / 6);
379 * vfs_buf_test_cache:
381 * Called when a buffer is extended. This function clears the B_CACHE
382 * bit if the newly extended portion of the buffer does not contain
383 * valid data.
385 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
386 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
387 * them while a clean buffer was present.
389 static __inline__
390 void
391 vfs_buf_test_cache(struct buf *bp,
392 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
393 vm_page_t m)
395 if (bp->b_flags & B_CACHE) {
396 int base = (foff + off) & PAGE_MASK;
397 if (vm_page_is_valid(m, base, size) == 0)
398 bp->b_flags &= ~B_CACHE;
403 * bd_speedup()
405 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
406 * low water mark.
408 static __inline__
409 void
410 bd_speedup(void)
412 if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
413 return;
415 if (bd_request == 0 &&
416 (dirtykvaspace > lodirtybufspace / 2 ||
417 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
418 if (atomic_fetchadd_int(&bd_request, 1) == 0)
419 wakeup(&bd_request);
421 if (bd_request_hw == 0 &&
422 (dirtykvaspace > lodirtybufspace / 2 ||
423 dirtybufcounthw >= nbuf / 2)) {
424 if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
425 wakeup(&bd_request_hw);
430 * bd_heatup()
432 * Get the buf_daemon heated up when the number of running and dirty
433 * buffers exceeds the mid-point.
435 * Return the total number of dirty bytes past the second mid point
436 * as a measure of how much excess dirty data there is in the system.
438 long
439 bd_heatup(void)
441 long mid1;
442 long mid2;
443 long totalspace;
445 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
447 totalspace = runningbufspace + dirtykvaspace;
448 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
449 bd_speedup();
450 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
451 if (totalspace >= mid2)
452 return(totalspace - mid2);
454 return(0);
458 * bd_wait()
460 * Wait for the buffer cache to flush (totalspace) bytes worth of
461 * buffers, then return.
463 * Regardless this function blocks while the number of dirty buffers
464 * exceeds hidirtybufspace.
466 void
467 bd_wait(long totalspace)
469 u_int i;
470 u_int j;
471 u_int mi;
472 int count;
474 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
475 return;
477 while (totalspace > 0) {
478 bd_heatup();
481 * Order is important. Suppliers adjust bd_wake_index after
482 * updating runningbufspace/dirtykvaspace. We want to fetch
483 * bd_wake_index before accessing. Any error should thus
484 * be in our favor.
486 i = atomic_fetchadd_int(&bd_wake_index, 0);
487 if (totalspace > runningbufspace + dirtykvaspace)
488 totalspace = runningbufspace + dirtykvaspace;
489 count = totalspace / MAXBSIZE;
490 if (count >= BD_WAKE_SIZE / 2)
491 count = BD_WAKE_SIZE / 2;
492 i = i + count;
493 mi = i & BD_WAKE_MASK;
496 * This is not a strict interlock, so we play a bit loose
497 * with locking access to dirtybufspace*. We have to re-check
498 * bd_wake_index to ensure that it hasn't passed us.
500 tsleep_interlock(&bd_wake_ary[mi], 0);
501 atomic_add_int(&bd_wake_ary[mi], 1);
502 j = atomic_fetchadd_int(&bd_wake_index, 0);
503 if ((int)(i - j) >= 0)
504 tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
506 totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
511 * bd_signal()
513 * This function is called whenever runningbufspace or dirtykvaspace
514 * is reduced. Track threads waiting for run+dirty buffer I/O
515 * complete.
517 static void
518 bd_signal(long totalspace)
520 u_int i;
522 if (totalspace > 0) {
523 if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
524 totalspace = MAXBSIZE * BD_WAKE_SIZE;
525 while (totalspace > 0) {
526 i = atomic_fetchadd_int(&bd_wake_index, 1);
527 i &= BD_WAKE_MASK;
528 if (atomic_readandclear_int(&bd_wake_ary[i]))
529 wakeup(&bd_wake_ary[i]);
530 totalspace -= MAXBSIZE;
536 * BIO tracking support routines.
538 * Release a ref on a bio_track. Wakeup requests are atomically released
539 * along with the last reference so bk_active will never wind up set to
540 * only 0x80000000.
542 static
543 void
544 bio_track_rel(struct bio_track *track)
546 int active;
547 int desired;
550 * Shortcut
552 active = track->bk_active;
553 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
554 return;
557 * Full-on. Note that the wait flag is only atomically released on
558 * the 1->0 count transition.
560 * We check for a negative count transition using bit 30 since bit 31
561 * has a different meaning.
563 for (;;) {
564 desired = (active & 0x7FFFFFFF) - 1;
565 if (desired)
566 desired |= active & 0x80000000;
567 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
568 if (desired & 0x40000000)
569 panic("bio_track_rel: bad count: %p", track);
570 if (active & 0x80000000)
571 wakeup(track);
572 break;
574 active = track->bk_active;
579 * Wait for the tracking count to reach 0.
581 * Use atomic ops such that the wait flag is only set atomically when
582 * bk_active is non-zero.
585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
587 int active;
588 int desired;
589 int error;
592 * Shortcut
594 if (track->bk_active == 0)
595 return(0);
598 * Full-on. Note that the wait flag may only be atomically set if
599 * the active count is non-zero.
601 * NOTE: We cannot optimize active == desired since a wakeup could
602 * clear active prior to our tsleep_interlock().
604 error = 0;
605 while ((active = track->bk_active) != 0) {
606 cpu_ccfence();
607 desired = active | 0x80000000;
608 tsleep_interlock(track, slp_flags);
609 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
610 error = tsleep(track, slp_flags | PINTERLOCKED,
611 "trwait", slp_timo);
612 if (error)
613 break;
616 return (error);
620 * bufinit:
622 * Load time initialisation of the buffer cache, called from machine
623 * dependant initialization code.
625 static
626 void
627 bufinit(void *dummy __unused)
629 struct bufpcpu *pcpu;
630 struct buf *bp;
631 vm_offset_t bogus_offset;
632 int i;
633 int j;
634 long n;
636 /* next, make a null set of free lists */
637 for (i = 0; i < ncpus; ++i) {
638 pcpu = &bufpcpu[i];
639 spin_init(&pcpu->spin, "bufinit");
640 for (j = 0; j < BUFFER_QUEUES; j++)
641 TAILQ_INIT(&pcpu->bufqueues[j]);
645 * Finally, initialize each buffer header and stick on empty q.
646 * Each buffer gets its own KVA reservation.
648 i = 0;
649 pcpu = &bufpcpu[i];
651 for (n = 0; n < nbuf; n++) {
652 bp = &buf[n];
653 bzero(bp, sizeof *bp);
654 bp->b_flags = B_INVAL; /* we're just an empty header */
655 bp->b_cmd = BUF_CMD_DONE;
656 bp->b_qindex = BQUEUE_EMPTY;
657 bp->b_qcpu = i;
658 bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
659 MAXBSIZE * n);
660 bp->b_kvasize = MAXBSIZE;
661 initbufbio(bp);
662 xio_init(&bp->b_xio);
663 buf_dep_init(bp);
664 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
665 bp, b_freelist);
667 i = (i + 1) % ncpus;
668 pcpu = &bufpcpu[i];
672 * maxbufspace is the absolute maximum amount of buffer space we are
673 * allowed to reserve in KVM and in real terms. The absolute maximum
674 * is nominally used by buf_daemon. hibufspace is the nominal maximum
675 * used by most other processes. The differential is required to
676 * ensure that buf_daemon is able to run when other processes might
677 * be blocked waiting for buffer space.
679 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
680 * too large or we might lockup a cpu for too long a period of
681 * time in our tight loop.
683 maxbufspace = nbuf * NBUFCALCSIZE;
684 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
685 lobufspace = hibufspace * 7 / 8;
686 if (hibufspace - lobufspace > 64 * 1024 * 1024)
687 lobufspace = hibufspace - 64 * 1024 * 1024;
688 if (lobufspace > hibufspace - MAXBSIZE)
689 lobufspace = hibufspace - MAXBSIZE;
691 lorunningspace = 512 * 1024;
692 /* hirunningspace -- see below */
695 * Limit the amount of malloc memory since it is wired permanently
696 * into the kernel space. Even though this is accounted for in
697 * the buffer allocation, we don't want the malloced region to grow
698 * uncontrolled. The malloc scheme improves memory utilization
699 * significantly on average (small) directories.
701 maxbufmallocspace = hibufspace / 20;
704 * Reduce the chance of a deadlock occuring by limiting the number
705 * of delayed-write dirty buffers we allow to stack up.
707 * We don't want too much actually queued to the device at once
708 * (XXX this needs to be per-mount!), because the buffers will
709 * wind up locked for a very long period of time while the I/O
710 * drains.
712 hidirtybufspace = hibufspace / 2; /* dirty + running */
713 hirunningspace = hibufspace / 16; /* locked & queued to device */
714 if (hirunningspace < 1024 * 1024)
715 hirunningspace = 1024 * 1024;
717 dirtykvaspace = 0;
718 dirtybufspace = 0;
719 dirtybufspacehw = 0;
721 lodirtybufspace = hidirtybufspace / 2;
724 * Maximum number of async ops initiated per buf_daemon loop. This is
725 * somewhat of a hack at the moment, we really need to limit ourselves
726 * based on the number of bytes of I/O in-transit that were initiated
727 * from buf_daemon.
730 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
731 vm_object_hold(&kernel_object);
732 bogus_page = vm_page_alloc(&kernel_object,
733 (bogus_offset >> PAGE_SHIFT),
734 VM_ALLOC_NORMAL);
735 vm_object_drop(&kernel_object);
736 vmstats.v_wire_count++;
740 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
743 * Initialize the embedded bio structures, typically used by
744 * deprecated code which tries to allocate its own struct bufs.
746 void
747 initbufbio(struct buf *bp)
749 bp->b_bio1.bio_buf = bp;
750 bp->b_bio1.bio_prev = NULL;
751 bp->b_bio1.bio_offset = NOOFFSET;
752 bp->b_bio1.bio_next = &bp->b_bio2;
753 bp->b_bio1.bio_done = NULL;
754 bp->b_bio1.bio_flags = 0;
756 bp->b_bio2.bio_buf = bp;
757 bp->b_bio2.bio_prev = &bp->b_bio1;
758 bp->b_bio2.bio_offset = NOOFFSET;
759 bp->b_bio2.bio_next = NULL;
760 bp->b_bio2.bio_done = NULL;
761 bp->b_bio2.bio_flags = 0;
763 BUF_LOCKINIT(bp);
767 * Reinitialize the embedded bio structures as well as any additional
768 * translation cache layers.
770 void
771 reinitbufbio(struct buf *bp)
773 struct bio *bio;
775 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
776 bio->bio_done = NULL;
777 bio->bio_offset = NOOFFSET;
782 * Undo the effects of an initbufbio().
784 void
785 uninitbufbio(struct buf *bp)
787 dsched_buf_exit(bp);
788 BUF_LOCKFREE(bp);
792 * Push another BIO layer onto an existing BIO and return it. The new
793 * BIO layer may already exist, holding cached translation data.
795 struct bio *
796 push_bio(struct bio *bio)
798 struct bio *nbio;
800 if ((nbio = bio->bio_next) == NULL) {
801 int index = bio - &bio->bio_buf->b_bio_array[0];
802 if (index >= NBUF_BIO - 1) {
803 panic("push_bio: too many layers %d for bp %p",
804 index, bio->bio_buf);
806 nbio = &bio->bio_buf->b_bio_array[index + 1];
807 bio->bio_next = nbio;
808 nbio->bio_prev = bio;
809 nbio->bio_buf = bio->bio_buf;
810 nbio->bio_offset = NOOFFSET;
811 nbio->bio_done = NULL;
812 nbio->bio_next = NULL;
814 KKASSERT(nbio->bio_done == NULL);
815 return(nbio);
819 * Pop a BIO translation layer, returning the previous layer. The
820 * must have been previously pushed.
822 struct bio *
823 pop_bio(struct bio *bio)
825 return(bio->bio_prev);
828 void
829 clearbiocache(struct bio *bio)
831 while (bio) {
832 bio->bio_offset = NOOFFSET;
833 bio = bio->bio_next;
838 * Remove the buffer from the appropriate free list.
839 * (caller must be locked)
841 static __inline void
842 _bremfree(struct buf *bp)
844 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
846 if (bp->b_qindex != BQUEUE_NONE) {
847 KASSERT(BUF_REFCNTNB(bp) == 1,
848 ("bremfree: bp %p not locked",bp));
849 TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
850 bp->b_qindex = BQUEUE_NONE;
851 } else {
852 if (BUF_REFCNTNB(bp) <= 1)
853 panic("bremfree: removing a buffer not on a queue");
858 * bremfree() - must be called with a locked buffer
860 void
861 bremfree(struct buf *bp)
863 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
865 spin_lock(&pcpu->spin);
866 _bremfree(bp);
867 spin_unlock(&pcpu->spin);
871 * bremfree_locked - must be called with pcpu->spin locked
873 static void
874 bremfree_locked(struct buf *bp)
876 _bremfree(bp);
880 * This version of bread issues any required I/O asyncnronously and
881 * makes a callback on completion.
883 * The callback must check whether BIO_DONE is set in the bio and issue
884 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
885 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
887 void
888 breadcb(struct vnode *vp, off_t loffset, int size,
889 void (*func)(struct bio *), void *arg)
891 struct buf *bp;
893 bp = getblk(vp, loffset, size, 0, 0);
895 /* if not found in cache, do some I/O */
896 if ((bp->b_flags & B_CACHE) == 0) {
897 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
898 bp->b_cmd = BUF_CMD_READ;
899 bp->b_bio1.bio_done = func;
900 bp->b_bio1.bio_caller_info1.ptr = arg;
901 vfs_busy_pages(vp, bp);
902 BUF_KERNPROC(bp);
903 vn_strategy(vp, &bp->b_bio1);
904 } else if (func) {
906 * Since we are issuing the callback synchronously it cannot
907 * race the BIO_DONE, so no need for atomic ops here.
909 /*bp->b_bio1.bio_done = func;*/
910 bp->b_bio1.bio_caller_info1.ptr = arg;
911 bp->b_bio1.bio_flags |= BIO_DONE;
912 func(&bp->b_bio1);
913 } else {
914 bqrelse(bp);
919 * breadnx() - Terminal function for bread() and breadn().
921 * This function will start asynchronous I/O on read-ahead blocks as well
922 * as satisfy the primary request.
924 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
925 * set, the buffer is valid and we do not have to do anything.
928 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
929 int *rabsize, int cnt, struct buf **bpp)
931 struct buf *bp, *rabp;
932 int i;
933 int rv = 0, readwait = 0;
935 if (*bpp)
936 bp = *bpp;
937 else
938 *bpp = bp = getblk(vp, loffset, size, 0, 0);
940 /* if not found in cache, do some I/O */
941 if ((bp->b_flags & B_CACHE) == 0) {
942 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
943 bp->b_cmd = BUF_CMD_READ;
944 bp->b_bio1.bio_done = biodone_sync;
945 bp->b_bio1.bio_flags |= BIO_SYNC;
946 vfs_busy_pages(vp, bp);
947 vn_strategy(vp, &bp->b_bio1);
948 ++readwait;
951 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
952 if (inmem(vp, *raoffset))
953 continue;
954 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
956 if ((rabp->b_flags & B_CACHE) == 0) {
957 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
958 rabp->b_cmd = BUF_CMD_READ;
959 vfs_busy_pages(vp, rabp);
960 BUF_KERNPROC(rabp);
961 vn_strategy(vp, &rabp->b_bio1);
962 } else {
963 brelse(rabp);
966 if (readwait)
967 rv = biowait(&bp->b_bio1, "biord");
968 return (rv);
972 * bwrite:
974 * Synchronous write, waits for completion.
976 * Write, release buffer on completion. (Done by iodone
977 * if async). Do not bother writing anything if the buffer
978 * is invalid.
980 * Note that we set B_CACHE here, indicating that buffer is
981 * fully valid and thus cacheable. This is true even of NFS
982 * now so we set it generally. This could be set either here
983 * or in biodone() since the I/O is synchronous. We put it
984 * here.
987 bwrite(struct buf *bp)
989 int error;
991 if (bp->b_flags & B_INVAL) {
992 brelse(bp);
993 return (0);
995 if (BUF_REFCNTNB(bp) == 0)
996 panic("bwrite: buffer is not busy???");
999 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1000 * call because it will remove the buffer from the vnode's
1001 * dirty buffer list prematurely and possibly cause filesystem
1002 * checks to race buffer flushes. This is now handled in
1003 * bpdone().
1005 * bundirty(bp); REMOVED
1008 bp->b_flags &= ~(B_ERROR | B_EINTR);
1009 bp->b_flags |= B_CACHE;
1010 bp->b_cmd = BUF_CMD_WRITE;
1011 bp->b_bio1.bio_done = biodone_sync;
1012 bp->b_bio1.bio_flags |= BIO_SYNC;
1013 vfs_busy_pages(bp->b_vp, bp);
1016 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1017 * valid for vnode-backed buffers.
1019 bsetrunningbufspace(bp, bp->b_bufsize);
1020 vn_strategy(bp->b_vp, &bp->b_bio1);
1021 error = biowait(&bp->b_bio1, "biows");
1022 brelse(bp);
1024 return (error);
1028 * bawrite:
1030 * Asynchronous write. Start output on a buffer, but do not wait for
1031 * it to complete. The buffer is released when the output completes.
1033 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1034 * B_INVAL buffers. Not us.
1036 void
1037 bawrite(struct buf *bp)
1039 if (bp->b_flags & B_INVAL) {
1040 brelse(bp);
1041 return;
1043 if (BUF_REFCNTNB(bp) == 0)
1044 panic("bawrite: buffer is not busy???");
1047 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1048 * call because it will remove the buffer from the vnode's
1049 * dirty buffer list prematurely and possibly cause filesystem
1050 * checks to race buffer flushes. This is now handled in
1051 * bpdone().
1053 * bundirty(bp); REMOVED
1055 bp->b_flags &= ~(B_ERROR | B_EINTR);
1056 bp->b_flags |= B_CACHE;
1057 bp->b_cmd = BUF_CMD_WRITE;
1058 KKASSERT(bp->b_bio1.bio_done == NULL);
1059 vfs_busy_pages(bp->b_vp, bp);
1062 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1063 * valid for vnode-backed buffers.
1065 bsetrunningbufspace(bp, bp->b_bufsize);
1066 BUF_KERNPROC(bp);
1067 vn_strategy(bp->b_vp, &bp->b_bio1);
1071 * bowrite:
1073 * Ordered write. Start output on a buffer, and flag it so that the
1074 * device will write it in the order it was queued. The buffer is
1075 * released when the output completes. bwrite() ( or the VOP routine
1076 * anyway ) is responsible for handling B_INVAL buffers.
1079 bowrite(struct buf *bp)
1081 bp->b_flags |= B_ORDERED;
1082 bawrite(bp);
1083 return (0);
1087 * bdwrite:
1089 * Delayed write. (Buffer is marked dirty). Do not bother writing
1090 * anything if the buffer is marked invalid.
1092 * Note that since the buffer must be completely valid, we can safely
1093 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1094 * biodone() in order to prevent getblk from writing the buffer
1095 * out synchronously.
1097 void
1098 bdwrite(struct buf *bp)
1100 if (BUF_REFCNTNB(bp) == 0)
1101 panic("bdwrite: buffer is not busy");
1103 if (bp->b_flags & B_INVAL) {
1104 brelse(bp);
1105 return;
1107 bdirty(bp);
1109 dsched_buf_enter(bp); /* might stack */
1112 * Set B_CACHE, indicating that the buffer is fully valid. This is
1113 * true even of NFS now.
1115 bp->b_flags |= B_CACHE;
1118 * This bmap keeps the system from needing to do the bmap later,
1119 * perhaps when the system is attempting to do a sync. Since it
1120 * is likely that the indirect block -- or whatever other datastructure
1121 * that the filesystem needs is still in memory now, it is a good
1122 * thing to do this. Note also, that if the pageout daemon is
1123 * requesting a sync -- there might not be enough memory to do
1124 * the bmap then... So, this is important to do.
1126 if (bp->b_bio2.bio_offset == NOOFFSET) {
1127 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1128 NULL, NULL, BUF_CMD_WRITE);
1132 * Because the underlying pages may still be mapped and
1133 * writable trying to set the dirty buffer (b_dirtyoff/end)
1134 * range here will be inaccurate.
1136 * However, we must still clean the pages to satisfy the
1137 * vnode_pager and pageout daemon, so they think the pages
1138 * have been "cleaned". What has really occured is that
1139 * they've been earmarked for later writing by the buffer
1140 * cache.
1142 * So we get the b_dirtyoff/end update but will not actually
1143 * depend on it (NFS that is) until the pages are busied for
1144 * writing later on.
1146 vfs_clean_pages(bp);
1147 bqrelse(bp);
1150 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1151 * due to the softdep code.
1156 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1157 * This is used by tmpfs.
1159 * It is important for any VFS using this routine to NOT use it for
1160 * IO_SYNC or IO_ASYNC operations which occur when the system really
1161 * wants to flush VM pages to backing store.
1163 void
1164 buwrite(struct buf *bp)
1166 vm_page_t m;
1167 int i;
1170 * Only works for VMIO buffers. If the buffer is already
1171 * marked for delayed-write we can't avoid the bdwrite().
1173 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1174 bdwrite(bp);
1175 return;
1179 * Mark as needing a commit.
1181 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1182 m = bp->b_xio.xio_pages[i];
1183 vm_page_need_commit(m);
1185 bqrelse(bp);
1189 * bdirty:
1191 * Turn buffer into delayed write request by marking it B_DELWRI.
1192 * B_RELBUF and B_NOCACHE must be cleared.
1194 * We reassign the buffer to itself to properly update it in the
1195 * dirty/clean lists.
1197 * Must be called from a critical section.
1198 * The buffer must be on BQUEUE_NONE.
1200 void
1201 bdirty(struct buf *bp)
1203 KASSERT(bp->b_qindex == BQUEUE_NONE,
1204 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1205 if (bp->b_flags & B_NOCACHE) {
1206 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1207 bp->b_flags &= ~B_NOCACHE;
1209 if (bp->b_flags & B_INVAL) {
1210 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1212 bp->b_flags &= ~B_RELBUF;
1214 if ((bp->b_flags & B_DELWRI) == 0) {
1215 lwkt_gettoken(&bp->b_vp->v_token);
1216 bp->b_flags |= B_DELWRI;
1217 reassignbuf(bp);
1218 lwkt_reltoken(&bp->b_vp->v_token);
1220 atomic_add_long(&dirtybufcount, 1);
1221 atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1222 atomic_add_long(&dirtybufspace, bp->b_bufsize);
1223 if (bp->b_flags & B_HEAVY) {
1224 atomic_add_long(&dirtybufcounthw, 1);
1225 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1227 bd_heatup();
1232 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1233 * needs to be flushed with a different buf_daemon thread to avoid
1234 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1236 void
1237 bheavy(struct buf *bp)
1239 if ((bp->b_flags & B_HEAVY) == 0) {
1240 bp->b_flags |= B_HEAVY;
1241 if (bp->b_flags & B_DELWRI) {
1242 atomic_add_long(&dirtybufcounthw, 1);
1243 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1249 * bundirty:
1251 * Clear B_DELWRI for buffer.
1253 * Must be called from a critical section.
1255 * The buffer is typically on BQUEUE_NONE but there is one case in
1256 * brelse() that calls this function after placing the buffer on
1257 * a different queue.
1259 void
1260 bundirty(struct buf *bp)
1262 if (bp->b_flags & B_DELWRI) {
1263 lwkt_gettoken(&bp->b_vp->v_token);
1264 bp->b_flags &= ~B_DELWRI;
1265 reassignbuf(bp);
1266 lwkt_reltoken(&bp->b_vp->v_token);
1268 atomic_add_long(&dirtybufcount, -1);
1269 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1270 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1271 if (bp->b_flags & B_HEAVY) {
1272 atomic_add_long(&dirtybufcounthw, -1);
1273 atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1275 bd_signal(bp->b_bufsize);
1278 * Since it is now being written, we can clear its deferred write flag.
1280 bp->b_flags &= ~B_DEFERRED;
1284 * Set the b_runningbufspace field, used to track how much I/O is
1285 * in progress at any given moment.
1287 void
1288 bsetrunningbufspace(struct buf *bp, int bytes)
1290 bp->b_runningbufspace = bytes;
1291 if (bytes) {
1292 atomic_add_long(&runningbufspace, bytes);
1293 atomic_add_long(&runningbufcount, 1);
1298 * brelse:
1300 * Release a busy buffer and, if requested, free its resources. The
1301 * buffer will be stashed in the appropriate bufqueue[] allowing it
1302 * to be accessed later as a cache entity or reused for other purposes.
1304 void
1305 brelse(struct buf *bp)
1307 struct bufpcpu *pcpu;
1308 #ifdef INVARIANTS
1309 int saved_flags = bp->b_flags;
1310 #endif
1312 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1313 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1316 * If B_NOCACHE is set we are being asked to destroy the buffer and
1317 * its backing store. Clear B_DELWRI.
1319 * B_NOCACHE is set in two cases: (1) when the caller really wants
1320 * to destroy the buffer and backing store and (2) when the caller
1321 * wants to destroy the buffer and backing store after a write
1322 * completes.
1324 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1325 bundirty(bp);
1328 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1330 * A re-dirtied buffer is only subject to destruction
1331 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1333 /* leave buffer intact */
1334 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1335 (bp->b_bufsize <= 0)) {
1337 * Either a failed read or we were asked to free or not
1338 * cache the buffer. This path is reached with B_DELWRI
1339 * set only if B_INVAL is already set. B_NOCACHE governs
1340 * backing store destruction.
1342 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1343 * buffer cannot be immediately freed.
1345 bp->b_flags |= B_INVAL;
1346 if (LIST_FIRST(&bp->b_dep) != NULL)
1347 buf_deallocate(bp);
1348 if (bp->b_flags & B_DELWRI) {
1349 atomic_add_long(&dirtybufcount, -1);
1350 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1351 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1352 if (bp->b_flags & B_HEAVY) {
1353 atomic_add_long(&dirtybufcounthw, -1);
1354 atomic_add_long(&dirtybufspacehw,
1355 -bp->b_bufsize);
1357 bd_signal(bp->b_bufsize);
1359 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1363 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1364 * or if b_refs is non-zero.
1366 * If vfs_vmio_release() is called with either bit set, the
1367 * underlying pages may wind up getting freed causing a previous
1368 * write (bdwrite()) to get 'lost' because pages associated with
1369 * a B_DELWRI bp are marked clean. Pages associated with a
1370 * B_LOCKED buffer may be mapped by the filesystem.
1372 * If we want to release the buffer ourselves (rather then the
1373 * originator asking us to release it), give the originator a
1374 * chance to countermand the release by setting B_LOCKED.
1376 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1377 * if B_DELWRI is set.
1379 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1380 * on pages to return pages to the VM page queues.
1382 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1383 bp->b_flags &= ~B_RELBUF;
1384 } else if (vm_page_count_min(0)) {
1385 if (LIST_FIRST(&bp->b_dep) != NULL)
1386 buf_deallocate(bp); /* can set B_LOCKED */
1387 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1388 bp->b_flags &= ~B_RELBUF;
1389 else
1390 bp->b_flags |= B_RELBUF;
1394 * Make sure b_cmd is clear. It may have already been cleared by
1395 * biodone().
1397 * At this point destroying the buffer is governed by the B_INVAL
1398 * or B_RELBUF flags.
1400 bp->b_cmd = BUF_CMD_DONE;
1401 dsched_buf_exit(bp);
1404 * VMIO buffer rundown. Make sure the VM page array is restored
1405 * after an I/O may have replaces some of the pages with bogus pages
1406 * in order to not destroy dirty pages in a fill-in read.
1408 * Note that due to the code above, if a buffer is marked B_DELWRI
1409 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1410 * B_INVAL may still be set, however.
1412 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1413 * but not the backing store. B_NOCACHE will destroy the backing
1414 * store.
1416 * Note that dirty NFS buffers contain byte-granular write ranges
1417 * and should not be destroyed w/ B_INVAL even if the backing store
1418 * is left intact.
1420 if (bp->b_flags & B_VMIO) {
1422 * Rundown for VMIO buffers which are not dirty NFS buffers.
1424 int i, j, resid;
1425 vm_page_t m;
1426 off_t foff;
1427 vm_pindex_t poff;
1428 vm_object_t obj;
1429 struct vnode *vp;
1431 vp = bp->b_vp;
1434 * Get the base offset and length of the buffer. Note that
1435 * in the VMIO case if the buffer block size is not
1436 * page-aligned then b_data pointer may not be page-aligned.
1437 * But our b_xio.xio_pages array *IS* page aligned.
1439 * block sizes less then DEV_BSIZE (usually 512) are not
1440 * supported due to the page granularity bits (m->valid,
1441 * m->dirty, etc...).
1443 * See man buf(9) for more information
1446 resid = bp->b_bufsize;
1447 foff = bp->b_loffset;
1449 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1450 m = bp->b_xio.xio_pages[i];
1453 * If we hit a bogus page, fixup *all* of them
1454 * now. Note that we left these pages wired
1455 * when we removed them so they had better exist,
1456 * and they cannot be ripped out from under us so
1457 * no critical section protection is necessary.
1459 if (m == bogus_page) {
1460 obj = vp->v_object;
1461 poff = OFF_TO_IDX(bp->b_loffset);
1463 vm_object_hold(obj);
1464 for (j = i; j < bp->b_xio.xio_npages; j++) {
1465 vm_page_t mtmp;
1467 mtmp = bp->b_xio.xio_pages[j];
1468 if (mtmp == bogus_page) {
1469 if ((bp->b_flags & B_HASBOGUS) == 0)
1470 panic("brelse: bp %p corrupt bogus", bp);
1471 mtmp = vm_page_lookup(obj, poff + j);
1472 if (!mtmp)
1473 panic("brelse: bp %p page %d missing", bp, j);
1474 bp->b_xio.xio_pages[j] = mtmp;
1477 vm_object_drop(obj);
1479 if ((bp->b_flags & B_HASBOGUS) || (bp->b_flags & B_INVAL) == 0) {
1480 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1481 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1482 bp->b_flags &= ~B_HASBOGUS;
1484 m = bp->b_xio.xio_pages[i];
1488 * Invalidate the backing store if B_NOCACHE is set
1489 * (e.g. used with vinvalbuf()). If this is NFS
1490 * we impose a requirement that the block size be
1491 * a multiple of PAGE_SIZE and create a temporary
1492 * hack to basically invalidate the whole page. The
1493 * problem is that NFS uses really odd buffer sizes
1494 * especially when tracking piecemeal writes and
1495 * it also vinvalbuf()'s a lot, which would result
1496 * in only partial page validation and invalidation
1497 * here. If the file page is mmap()'d, however,
1498 * all the valid bits get set so after we invalidate
1499 * here we would end up with weird m->valid values
1500 * like 0xfc. nfs_getpages() can't handle this so
1501 * we clear all the valid bits for the NFS case
1502 * instead of just some of them.
1504 * The real bug is the VM system having to set m->valid
1505 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1506 * itself is an artifact of the whole 512-byte
1507 * granular mess that exists to support odd block
1508 * sizes and UFS meta-data block sizes (e.g. 6144).
1509 * A complete rewrite is required.
1511 * XXX
1513 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1514 int poffset = foff & PAGE_MASK;
1515 int presid;
1517 presid = PAGE_SIZE - poffset;
1518 if (bp->b_vp->v_tag == VT_NFS &&
1519 bp->b_vp->v_type == VREG) {
1520 ; /* entire page */
1521 } else if (presid > resid) {
1522 presid = resid;
1524 KASSERT(presid >= 0, ("brelse: extra page"));
1525 vm_page_set_invalid(m, poffset, presid);
1528 * Also make sure any swap cache is removed
1529 * as it is now stale (HAMMER in particular
1530 * uses B_NOCACHE to deal with buffer
1531 * aliasing).
1533 swap_pager_unswapped(m);
1535 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1536 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1538 if (bp->b_flags & (B_INVAL | B_RELBUF))
1539 vfs_vmio_release(bp);
1540 } else {
1542 * Rundown for non-VMIO buffers.
1544 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1545 if (bp->b_bufsize)
1546 allocbuf(bp, 0);
1547 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1548 if (bp->b_vp)
1549 brelvp(bp);
1553 if (bp->b_qindex != BQUEUE_NONE)
1554 panic("brelse: free buffer onto another queue???");
1555 if (BUF_REFCNTNB(bp) > 1) {
1556 /* Temporary panic to verify exclusive locking */
1557 /* This panic goes away when we allow shared refs */
1558 panic("brelse: multiple refs");
1559 /* NOT REACHED */
1560 return;
1564 * Figure out the correct queue to place the cleaned up buffer on.
1565 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1566 * disassociated from their vnode.
1568 * Return the buffer to its original pcpu area
1570 pcpu = &bufpcpu[bp->b_qcpu];
1571 spin_lock(&pcpu->spin);
1573 if (bp->b_flags & B_LOCKED) {
1575 * Buffers that are locked are placed in the locked queue
1576 * immediately, regardless of their state.
1578 bp->b_qindex = BQUEUE_LOCKED;
1579 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1580 bp, b_freelist);
1581 } else if (bp->b_bufsize == 0) {
1583 * Buffers with no memory. Due to conditionals near the top
1584 * of brelse() such buffers should probably already be
1585 * marked B_INVAL and disassociated from their vnode.
1587 bp->b_flags |= B_INVAL;
1588 KASSERT(bp->b_vp == NULL,
1589 ("bp1 %p flags %08x/%08x vnode %p "
1590 "unexpectededly still associated!",
1591 bp, saved_flags, bp->b_flags, bp->b_vp));
1592 KKASSERT((bp->b_flags & B_HASHED) == 0);
1593 bp->b_qindex = BQUEUE_EMPTY;
1594 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1595 bp, b_freelist);
1596 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1598 * Buffers with junk contents. Again these buffers had better
1599 * already be disassociated from their vnode.
1601 KASSERT(bp->b_vp == NULL,
1602 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1603 "still associated!",
1604 bp, saved_flags, bp->b_flags, bp->b_vp));
1605 KKASSERT((bp->b_flags & B_HASHED) == 0);
1606 bp->b_flags |= B_INVAL;
1607 bp->b_qindex = BQUEUE_CLEAN;
1608 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1609 bp, b_freelist);
1610 } else {
1612 * Remaining buffers. These buffers are still associated with
1613 * their vnode.
1615 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1616 case B_DELWRI:
1617 bp->b_qindex = BQUEUE_DIRTY;
1618 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1619 bp, b_freelist);
1620 break;
1621 case B_DELWRI | B_HEAVY:
1622 bp->b_qindex = BQUEUE_DIRTY_HW;
1623 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1624 bp, b_freelist);
1625 break;
1626 default:
1628 * NOTE: Buffers are always placed at the end of the
1629 * queue. If B_AGE is not set the buffer will cycle
1630 * through the queue twice.
1632 bp->b_qindex = BQUEUE_CLEAN;
1633 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1634 bp, b_freelist);
1635 break;
1638 spin_unlock(&pcpu->spin);
1641 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1642 * on the correct queue but we have not yet unlocked it.
1644 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1645 bundirty(bp);
1648 * The bp is on an appropriate queue unless locked. If it is not
1649 * locked or dirty we can wakeup threads waiting for buffer space.
1651 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1652 * if B_INVAL is set ).
1654 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1655 bufcountwakeup();
1658 * Something we can maybe free or reuse
1660 if (bp->b_bufsize || bp->b_kvasize)
1661 bufspacewakeup();
1664 * Clean up temporary flags and unlock the buffer.
1666 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1667 BUF_UNLOCK(bp);
1671 * bqrelse:
1673 * Release a buffer back to the appropriate queue but do not try to free
1674 * it. The buffer is expected to be used again soon.
1676 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1677 * biodone() to requeue an async I/O on completion. It is also used when
1678 * known good buffers need to be requeued but we think we may need the data
1679 * again soon.
1681 * XXX we should be able to leave the B_RELBUF hint set on completion.
1683 void
1684 bqrelse(struct buf *bp)
1686 struct bufpcpu *pcpu;
1688 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1689 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1691 if (bp->b_qindex != BQUEUE_NONE)
1692 panic("bqrelse: free buffer onto another queue???");
1693 if (BUF_REFCNTNB(bp) > 1) {
1694 /* do not release to free list */
1695 panic("bqrelse: multiple refs");
1696 return;
1699 buf_act_advance(bp);
1701 pcpu = &bufpcpu[bp->b_qcpu];
1702 spin_lock(&pcpu->spin);
1704 if (bp->b_flags & B_LOCKED) {
1706 * Locked buffers are released to the locked queue. However,
1707 * if the buffer is dirty it will first go into the dirty
1708 * queue and later on after the I/O completes successfully it
1709 * will be released to the locked queue.
1711 bp->b_qindex = BQUEUE_LOCKED;
1712 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1713 bp, b_freelist);
1714 } else if (bp->b_flags & B_DELWRI) {
1715 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1716 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1717 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1718 bp, b_freelist);
1719 } else if (vm_page_count_min(0)) {
1721 * We are too low on memory, we have to try to free the
1722 * buffer (most importantly: the wired pages making up its
1723 * backing store) *now*.
1725 spin_unlock(&pcpu->spin);
1726 brelse(bp);
1727 return;
1728 } else {
1729 bp->b_qindex = BQUEUE_CLEAN;
1730 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1731 bp, b_freelist);
1733 spin_unlock(&pcpu->spin);
1736 * We have now placed the buffer on the proper queue, but have yet
1737 * to unlock it.
1739 if ((bp->b_flags & B_LOCKED) == 0 &&
1740 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1741 bufcountwakeup();
1745 * Something we can maybe free or reuse.
1747 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1748 bufspacewakeup();
1751 * Final cleanup and unlock. Clear bits that are only used while a
1752 * buffer is actively locked.
1754 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1755 dsched_buf_exit(bp);
1756 BUF_UNLOCK(bp);
1760 * Hold a buffer, preventing it from being reused. This will prevent
1761 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1762 * operations. If a B_INVAL operation occurs the buffer will remain held
1763 * but the underlying pages may get ripped out.
1765 * These functions are typically used in VOP_READ/VOP_WRITE functions
1766 * to hold a buffer during a copyin or copyout, preventing deadlocks
1767 * or recursive lock panics when read()/write() is used over mmap()'d
1768 * space.
1770 * NOTE: bqhold() requires that the buffer be locked at the time of the
1771 * hold. bqdrop() has no requirements other than the buffer having
1772 * previously been held.
1774 void
1775 bqhold(struct buf *bp)
1777 atomic_add_int(&bp->b_refs, 1);
1780 void
1781 bqdrop(struct buf *bp)
1783 KKASSERT(bp->b_refs > 0);
1784 atomic_add_int(&bp->b_refs, -1);
1788 * Return backing pages held by the buffer 'bp' back to the VM system.
1789 * This routine is called when the bp is invalidated, released, or
1790 * reused.
1792 * The KVA mapping (b_data) for the underlying pages is removed by
1793 * this function.
1795 * WARNING! This routine is integral to the low memory critical path
1796 * when a buffer is B_RELBUF'd. If the system has a severe page
1797 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1798 * queues so they can be reused in the current pageout daemon
1799 * pass.
1801 static void
1802 vfs_vmio_release(struct buf *bp)
1804 int i;
1805 vm_page_t m;
1807 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1808 m = bp->b_xio.xio_pages[i];
1809 bp->b_xio.xio_pages[i] = NULL;
1812 * We need to own the page in order to safely unwire it.
1814 vm_page_busy_wait(m, FALSE, "vmiopg");
1817 * The VFS is telling us this is not a meta-data buffer
1818 * even if it is backed by a block device.
1820 if (bp->b_flags & B_NOTMETA)
1821 vm_page_flag_set(m, PG_NOTMETA);
1824 * This is a very important bit of code. We try to track
1825 * VM page use whether the pages are wired into the buffer
1826 * cache or not. While wired into the buffer cache the
1827 * bp tracks the act_count.
1829 * We can choose to place unwired pages on the inactive
1830 * queue (0) or active queue (1). If we place too many
1831 * on the active queue the queue will cycle the act_count
1832 * on pages we'd like to keep, just from single-use pages
1833 * (such as when doing a tar-up or file scan).
1835 if (bp->b_act_count < vm_cycle_point)
1836 vm_page_unwire(m, 0);
1837 else
1838 vm_page_unwire(m, 1);
1841 * If the wire_count has dropped to 0 we may need to take
1842 * further action before unbusying the page.
1844 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1846 if (m->wire_count == 0) {
1847 if (bp->b_flags & B_DIRECT) {
1849 * Attempt to free the page if B_DIRECT is
1850 * set, the caller does not desire the page
1851 * to be cached.
1853 vm_page_wakeup(m);
1854 vm_page_try_to_free(m);
1855 } else if ((bp->b_flags & B_NOTMETA) ||
1856 vm_page_count_min(0)) {
1858 * Attempt to move the page to PQ_CACHE
1859 * if B_NOTMETA is set. This flag is set
1860 * by HAMMER to remove one of the two pages
1861 * present when double buffering is enabled.
1863 * Attempt to move the page to PQ_CACHE
1864 * If we have a severe page deficit. This
1865 * will cause buffer cache operations related
1866 * to pageouts to recycle the related pages
1867 * in order to avoid a low memory deadlock.
1869 m->act_count = bp->b_act_count;
1870 vm_page_wakeup(m);
1871 vm_page_try_to_cache(m);
1872 } else {
1874 * Nominal case, leave the page on the
1875 * queue the original unwiring placed it on
1876 * (active or inactive).
1878 m->act_count = bp->b_act_count;
1879 vm_page_wakeup(m);
1881 } else {
1882 vm_page_wakeup(m);
1887 * Zero out the pmap pte's for the mapping, but don't bother
1888 * invalidating the TLB. The range will be properly invalidating
1889 * when new pages are entered into the mapping.
1891 * This in particular reduces tmpfs tear-down overhead and reduces
1892 * buffer cache re-use overhead (one invalidation sequence instead
1893 * of two per re-use).
1895 pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1896 bp->b_xio.xio_npages);
1897 if (bp->b_bufsize) {
1898 atomic_add_long(&bufspace, -bp->b_bufsize);
1899 bp->b_bufsize = 0;
1900 bufspacewakeup();
1902 bp->b_xio.xio_npages = 0;
1903 bp->b_flags &= ~B_VMIO;
1904 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1905 if (bp->b_vp)
1906 brelvp(bp);
1910 * Find and initialize a new buffer header, freeing up existing buffers
1911 * in the bufqueues as necessary. The new buffer is returned locked.
1913 * If repurpose is non-NULL getnewbuf() is allowed to re-purpose an existing
1914 * buffer. The buffer will be disassociated, its page and page mappings
1915 * left intact, and returned with *repurpose set to 1. Else *repurpose is set
1916 * to 0. If 1, the caller must repurpose the underlying VM pages.
1918 * If repurpose is NULL getnewbuf() is not allowed to re-purpose an
1919 * existing buffer. That is, it must completely initialize the returned
1920 * buffer.
1922 * Important: B_INVAL is not set. If the caller wishes to throw the
1923 * buffer away, the caller must set B_INVAL prior to calling brelse().
1925 * We block if:
1926 * We have insufficient buffer headers
1927 * We have insufficient buffer space
1929 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1930 * Instead we ask the buf daemon to do it for us. We attempt to
1931 * avoid piecemeal wakeups of the pageout daemon.
1933 struct buf *
1934 getnewbuf(int blkflags, int slptimeo, int size, int maxsize,
1935 struct vm_object **repurposep)
1937 struct bufpcpu *pcpu;
1938 struct buf *bp;
1939 struct buf *nbp;
1940 int nqindex;
1941 int nqcpu;
1942 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1943 int maxloops = 200000;
1944 int restart_reason = 0;
1945 struct buf *restart_bp = NULL;
1946 static char flushingbufs[MAXCPU];
1947 char *flushingp;
1950 * We can't afford to block since we might be holding a vnode lock,
1951 * which may prevent system daemons from running. We deal with
1952 * low-memory situations by proactively returning memory and running
1953 * async I/O rather then sync I/O.
1956 ++getnewbufcalls;
1957 nqcpu = mycpu->gd_cpuid;
1958 flushingp = &flushingbufs[nqcpu];
1959 restart:
1960 if (bufspace < lobufspace)
1961 *flushingp = 0;
1963 if (debug_bufbio && --maxloops == 0)
1964 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1965 mycpu->gd_cpuid, restart_reason, restart_bp);
1968 * Setup for scan. If we do not have enough free buffers,
1969 * we setup a degenerate case that immediately fails. Note
1970 * that if we are specially marked process, we are allowed to
1971 * dip into our reserves.
1973 * The scanning sequence is nominally: EMPTY->CLEAN
1975 pcpu = &bufpcpu[nqcpu];
1976 spin_lock(&pcpu->spin);
1979 * Determine if repurposing should be disallowed. Generally speaking
1980 * do not repurpose buffers if the buffer cache hasn't capped. Also
1981 * control repurposing based on buffer-cache -> main-memory bandwidth.
1982 * That is, we want to recycle buffers normally up until the buffer
1983 * cache bandwidth (new-buffer bw) exceeds bufcache_bw.
1985 * (This is heuristical, SMP collisions are ok)
1987 if (repurposep) {
1988 int delta = ticks - bufcache_bw_ticks;
1989 if (delta < 0 || delta >= hz) {
1990 atomic_swap_long(&bufcache_bw_accum, 0);
1991 atomic_swap_int(&bufcache_bw_ticks, ticks);
1993 atomic_add_long(&bufcache_bw_accum, size);
1994 if (bufspace < lobufspace) {
1995 repurposep = NULL;
1996 } else if (bufcache_bw_accum < bufcache_bw) {
1997 repurposep = NULL;
2002 * Prime the scan for this cpu. Locate the first buffer to
2003 * check. If we are flushing buffers we must skip the
2004 * EMPTY queue.
2006 nqindex = BQUEUE_EMPTY;
2007 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
2008 if (nbp == NULL || *flushingp || repurposep) {
2009 nqindex = BQUEUE_CLEAN;
2010 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
2014 * Run scan, possibly freeing data and/or kva mappings on the fly,
2015 * depending.
2017 * WARNING! spin is held!
2019 while ((bp = nbp) != NULL) {
2020 int qindex = nqindex;
2022 nbp = TAILQ_NEXT(bp, b_freelist);
2025 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2026 * cycles through the queue twice before being selected.
2028 if (qindex == BQUEUE_CLEAN &&
2029 (bp->b_flags & B_AGE) == 0 && nbp) {
2030 bp->b_flags |= B_AGE;
2031 TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2032 bp, b_freelist);
2033 TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2034 bp, b_freelist);
2035 continue;
2039 * Calculate next bp ( we can only use it if we do not block
2040 * or do other fancy things ).
2042 if (nbp == NULL) {
2043 switch(qindex) {
2044 case BQUEUE_EMPTY:
2045 nqindex = BQUEUE_CLEAN;
2046 if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2047 break;
2048 /* fall through */
2049 case BQUEUE_CLEAN:
2051 * nbp is NULL.
2053 break;
2058 * Sanity Checks
2060 KASSERT(bp->b_qindex == qindex,
2061 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2064 * Note: we no longer distinguish between VMIO and non-VMIO
2065 * buffers.
2067 KASSERT((bp->b_flags & B_DELWRI) == 0,
2068 ("delwri buffer %p found in queue %d", bp, qindex));
2071 * Do not try to reuse a buffer with a non-zero b_refs.
2072 * This is an unsynchronized test. A synchronized test
2073 * is also performed after we lock the buffer.
2075 if (bp->b_refs)
2076 continue;
2079 * Start freeing the bp. This is somewhat involved. nbp
2080 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2081 * on the clean list must be disassociated from their
2082 * current vnode. Buffers on the empty lists have
2083 * already been disassociated.
2085 * b_refs is checked after locking along with queue changes.
2086 * We must check here to deal with zero->nonzero transitions
2087 * made by the owner of the buffer lock, which is used by
2088 * VFS's to hold the buffer while issuing an unlocked
2089 * uiomove()s. We cannot invalidate the buffer's pages
2090 * for this case. Once we successfully lock a buffer the
2091 * only 0->1 transitions of b_refs will occur via findblk().
2093 * We must also check for queue changes after successful
2094 * locking as the current lock holder may dispose of the
2095 * buffer and change its queue.
2097 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2098 spin_unlock(&pcpu->spin);
2099 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2100 restart_reason = 1;
2101 restart_bp = bp;
2102 goto restart;
2104 if (bp->b_qindex != qindex || bp->b_refs) {
2105 spin_unlock(&pcpu->spin);
2106 BUF_UNLOCK(bp);
2107 restart_reason = 2;
2108 restart_bp = bp;
2109 goto restart;
2111 bremfree_locked(bp);
2112 spin_unlock(&pcpu->spin);
2115 * Dependancies must be handled before we disassociate the
2116 * vnode.
2118 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2119 * be immediately disassociated. HAMMER then becomes
2120 * responsible for releasing the buffer.
2122 * NOTE: spin is UNLOCKED now.
2124 if (LIST_FIRST(&bp->b_dep) != NULL) {
2125 buf_deallocate(bp);
2126 if (bp->b_flags & B_LOCKED) {
2127 bqrelse(bp);
2128 restart_reason = 3;
2129 restart_bp = bp;
2130 goto restart;
2132 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2136 * CLEAN buffers have content or associations that must be
2137 * cleaned out if not repurposing.
2139 if (qindex == BQUEUE_CLEAN) {
2140 if (bp->b_flags & B_VMIO) {
2141 if (repurpose_enable &&
2142 repurposep && bp->b_bufsize &&
2143 (bp->b_flags & (B_DELWRI | B_MALLOC)) == 0) {
2144 *repurposep = bp->b_vp->v_object;
2145 vm_object_hold(*repurposep);
2146 } else {
2147 vfs_vmio_release(bp);
2150 if (bp->b_vp)
2151 brelvp(bp);
2155 * NOTE: nbp is now entirely invalid. We can only restart
2156 * the scan from this point on.
2158 * Get the rest of the buffer freed up. b_kva* is still
2159 * valid after this operation.
2161 KASSERT(bp->b_vp == NULL,
2162 ("bp3 %p flags %08x vnode %p qindex %d "
2163 "unexpectededly still associated!",
2164 bp, bp->b_flags, bp->b_vp, qindex));
2165 KKASSERT((bp->b_flags & B_HASHED) == 0);
2167 if (repurposep == NULL || *repurposep == NULL) {
2168 if (bp->b_bufsize)
2169 allocbuf(bp, 0);
2172 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2173 kprintf("getnewbuf: caught bug vp queue "
2174 "%p/%08x qidx %d\n",
2175 bp, bp->b_flags, qindex);
2176 brelvp(bp);
2178 bp->b_flags = B_BNOCLIP;
2179 bp->b_cmd = BUF_CMD_DONE;
2180 bp->b_vp = NULL;
2181 bp->b_error = 0;
2182 bp->b_resid = 0;
2183 bp->b_bcount = 0;
2184 if (repurposep == NULL || *repurposep == NULL)
2185 bp->b_xio.xio_npages = 0;
2186 bp->b_dirtyoff = bp->b_dirtyend = 0;
2187 bp->b_act_count = ACT_INIT;
2188 reinitbufbio(bp);
2189 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2190 buf_dep_init(bp);
2191 if (blkflags & GETBLK_BHEAVY)
2192 bp->b_flags |= B_HEAVY;
2194 if (bufspace >= hibufspace)
2195 *flushingp = 1;
2196 if (bufspace < lobufspace)
2197 *flushingp = 0;
2198 if (*flushingp) {
2199 if (repurposep && *repurposep != NULL) {
2200 bp->b_flags |= B_VMIO;
2201 vfs_vmio_release(bp);
2202 if (bp->b_bufsize)
2203 allocbuf(bp, 0);
2204 vm_object_drop(*repurposep);
2205 *repurposep = NULL;
2207 bp->b_flags |= B_INVAL;
2208 brelse(bp);
2209 restart_reason = 5;
2210 restart_bp = bp;
2211 goto restart;
2215 * b_refs can transition to a non-zero value while we hold
2216 * the buffer locked due to a findblk(). Our brelvp() above
2217 * interlocked any future possible transitions due to
2218 * findblk()s.
2220 * If we find b_refs to be non-zero we can destroy the
2221 * buffer's contents but we cannot yet reuse the buffer.
2223 if (bp->b_refs) {
2224 if (repurposep && *repurposep != NULL) {
2225 bp->b_flags |= B_VMIO;
2226 vfs_vmio_release(bp);
2227 if (bp->b_bufsize)
2228 allocbuf(bp, 0);
2229 vm_object_drop(*repurposep);
2230 *repurposep = NULL;
2232 bp->b_flags |= B_INVAL;
2233 brelse(bp);
2234 restart_reason = 6;
2235 restart_bp = bp;
2237 goto restart;
2241 * We found our buffer!
2243 break;
2247 * If we exhausted our list, iterate other cpus. If that fails,
2248 * sleep as appropriate. We may have to wakeup various daemons
2249 * and write out some dirty buffers.
2251 * Generally we are sleeping due to insufficient buffer space.
2253 * NOTE: spin is held if bp is NULL, else it is not held.
2255 if (bp == NULL) {
2256 int flags;
2257 char *waitmsg;
2259 spin_unlock(&pcpu->spin);
2261 nqcpu = (nqcpu + 1) % ncpus;
2262 if (nqcpu != mycpu->gd_cpuid) {
2263 restart_reason = 7;
2264 restart_bp = bp;
2265 goto restart;
2268 if (bufspace >= hibufspace) {
2269 waitmsg = "bufspc";
2270 flags = VFS_BIO_NEED_BUFSPACE;
2271 } else {
2272 waitmsg = "newbuf";
2273 flags = VFS_BIO_NEED_ANY;
2276 bd_speedup(); /* heeeelp */
2277 atomic_set_int(&needsbuffer, flags);
2278 while (needsbuffer & flags) {
2279 int value;
2281 tsleep_interlock(&needsbuffer, 0);
2282 value = atomic_fetchadd_int(&needsbuffer, 0);
2283 if (value & flags) {
2284 if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2285 waitmsg, slptimeo)) {
2286 return (NULL);
2290 } else {
2292 * We finally have a valid bp. Reset b_data.
2294 * (spin is not held)
2296 bp->b_data = bp->b_kvabase;
2298 return(bp);
2302 * buf_daemon:
2304 * Buffer flushing daemon. Buffers are normally flushed by the
2305 * update daemon but if it cannot keep up this process starts to
2306 * take the load in an attempt to prevent getnewbuf() from blocking.
2308 * Once a flush is initiated it does not stop until the number
2309 * of buffers falls below lodirtybuffers, but we will wake up anyone
2310 * waiting at the mid-point.
2312 static struct kproc_desc buf_kp = {
2313 "bufdaemon",
2314 buf_daemon,
2315 &bufdaemon_td
2317 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2318 kproc_start, &buf_kp);
2320 static struct kproc_desc bufhw_kp = {
2321 "bufdaemon_hw",
2322 buf_daemon_hw,
2323 &bufdaemonhw_td
2325 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2326 kproc_start, &bufhw_kp);
2328 static void
2329 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2330 int *bd_req)
2332 long limit;
2333 struct buf *marker;
2335 marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2336 marker->b_flags |= B_MARKER;
2337 marker->b_qindex = BQUEUE_NONE;
2338 marker->b_qcpu = 0;
2341 * This process needs to be suspended prior to shutdown sync.
2343 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2344 td, SHUTDOWN_PRI_LAST);
2345 curthread->td_flags |= TDF_SYSTHREAD;
2348 * This process is allowed to take the buffer cache to the limit
2350 for (;;) {
2351 kproc_suspend_loop();
2354 * Do the flush as long as the number of dirty buffers
2355 * (including those running) exceeds lodirtybufspace.
2357 * When flushing limit running I/O to hirunningspace
2358 * Do the flush. Limit the amount of in-transit I/O we
2359 * allow to build up, otherwise we would completely saturate
2360 * the I/O system. Wakeup any waiting processes before we
2361 * normally would so they can run in parallel with our drain.
2363 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2364 * but because we split the operation into two threads we
2365 * have to cut it in half for each thread.
2367 waitrunningbufspace();
2368 limit = lodirtybufspace / 2;
2369 while (buf_limit_fn(limit)) {
2370 if (flushbufqueues(marker, queue) == 0)
2371 break;
2372 if (runningbufspace < hirunningspace)
2373 continue;
2374 waitrunningbufspace();
2378 * We reached our low water mark, reset the
2379 * request and sleep until we are needed again.
2380 * The sleep is just so the suspend code works.
2382 tsleep_interlock(bd_req, 0);
2383 if (atomic_swap_int(bd_req, 0) == 0)
2384 tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2386 /* NOT REACHED */
2387 /*kfree(marker, M_BIOBUF);*/
2390 static int
2391 buf_daemon_limit(long limit)
2393 return (runningbufspace + dirtykvaspace > limit ||
2394 dirtybufcount - dirtybufcounthw >= nbuf / 2);
2397 static int
2398 buf_daemon_hw_limit(long limit)
2400 return (runningbufspace + dirtykvaspace > limit ||
2401 dirtybufcounthw >= nbuf / 2);
2404 static void
2405 buf_daemon(void)
2407 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2408 &bd_request);
2411 static void
2412 buf_daemon_hw(void)
2414 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2415 &bd_request_hw);
2419 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2420 * localized version of the queue. Each call made to this function iterates
2421 * to another cpu. It is desireable to flush several buffers from the same
2422 * cpu's queue at once, as these are likely going to be linear.
2424 * We must be careful to free up B_INVAL buffers instead of write them, which
2425 * NFS is particularly sensitive to.
2427 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2428 * really want to try to get the buffer out and reuse it due to the write
2429 * load on the machine.
2431 * We must lock the buffer in order to check its validity before we can mess
2432 * with its contents. spin isn't enough.
2434 static int
2435 flushbufqueues(struct buf *marker, bufq_type_t q)
2437 struct bufpcpu *pcpu;
2438 struct buf *bp;
2439 int r = 0;
2440 u_int loops = flushperqueue;
2441 int lcpu = marker->b_qcpu;
2443 KKASSERT(marker->b_qindex == BQUEUE_NONE);
2444 KKASSERT(marker->b_flags & B_MARKER);
2446 again:
2448 * Spinlock needed to perform operations on the queue and may be
2449 * held through a non-blocking BUF_LOCK(), but cannot be held when
2450 * BUF_UNLOCK()ing or through any other major operation.
2452 pcpu = &bufpcpu[marker->b_qcpu];
2453 spin_lock(&pcpu->spin);
2454 marker->b_qindex = q;
2455 TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2456 bp = marker;
2458 while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2460 * NOTE: spinlock is always held at the top of the loop
2462 if (bp->b_flags & B_MARKER)
2463 continue;
2464 if ((bp->b_flags & B_DELWRI) == 0) {
2465 kprintf("Unexpected clean buffer %p\n", bp);
2466 continue;
2468 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2469 continue;
2470 KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2473 * Once the buffer is locked we will have no choice but to
2474 * unlock the spinlock around a later BUF_UNLOCK and re-set
2475 * bp = marker when looping. Move the marker now to make
2476 * things easier.
2478 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2479 TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2482 * Must recheck B_DELWRI after successfully locking
2483 * the buffer.
2485 if ((bp->b_flags & B_DELWRI) == 0) {
2486 spin_unlock(&pcpu->spin);
2487 BUF_UNLOCK(bp);
2488 spin_lock(&pcpu->spin);
2489 bp = marker;
2490 continue;
2494 * Remove the buffer from its queue. We still own the
2495 * spinlock here.
2497 _bremfree(bp);
2500 * Disposing of an invalid buffer counts as a flush op
2502 if (bp->b_flags & B_INVAL) {
2503 spin_unlock(&pcpu->spin);
2504 brelse(bp);
2505 goto doloop;
2509 * Release the spinlock for the more complex ops we
2510 * are now going to do.
2512 spin_unlock(&pcpu->spin);
2513 lwkt_yield();
2516 * This is a bit messy
2518 if (LIST_FIRST(&bp->b_dep) != NULL &&
2519 (bp->b_flags & B_DEFERRED) == 0 &&
2520 buf_countdeps(bp, 0)) {
2521 spin_lock(&pcpu->spin);
2522 TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2523 bp->b_qindex = q;
2524 bp->b_flags |= B_DEFERRED;
2525 spin_unlock(&pcpu->spin);
2526 BUF_UNLOCK(bp);
2527 spin_lock(&pcpu->spin);
2528 bp = marker;
2529 continue;
2533 * spinlock not held here.
2535 * If the buffer has a dependancy, buf_checkwrite() must
2536 * also return 0 for us to be able to initate the write.
2538 * If the buffer is flagged B_ERROR it may be requeued
2539 * over and over again, we try to avoid a live lock.
2541 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2542 brelse(bp);
2543 } else if (bp->b_flags & B_ERROR) {
2544 tsleep(bp, 0, "bioer", 1);
2545 bp->b_flags &= ~B_AGE;
2546 cluster_awrite(bp);
2547 } else {
2548 bp->b_flags |= B_AGE;
2549 cluster_awrite(bp);
2551 /* bp invalid but needs to be NULL-tested if we break out */
2552 doloop:
2553 spin_lock(&pcpu->spin);
2554 ++r;
2555 if (--loops == 0)
2556 break;
2557 bp = marker;
2559 /* bp is invalid here but can be NULL-tested to advance */
2561 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2562 marker->b_qindex = BQUEUE_NONE;
2563 spin_unlock(&pcpu->spin);
2566 * Advance the marker to be fair.
2568 marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2569 if (bp == NULL) {
2570 if (marker->b_qcpu != lcpu)
2571 goto again;
2574 return (r);
2578 * inmem:
2580 * Returns true if no I/O is needed to access the associated VM object.
2581 * This is like findblk except it also hunts around in the VM system for
2582 * the data.
2584 * Note that we ignore vm_page_free() races from interrupts against our
2585 * lookup, since if the caller is not protected our return value will not
2586 * be any more valid then otherwise once we exit the critical section.
2589 inmem(struct vnode *vp, off_t loffset)
2591 vm_object_t obj;
2592 vm_offset_t toff, tinc, size;
2593 vm_page_t m;
2594 int res = 1;
2596 if (findblk(vp, loffset, FINDBLK_TEST))
2597 return 1;
2598 if (vp->v_mount == NULL)
2599 return 0;
2600 if ((obj = vp->v_object) == NULL)
2601 return 0;
2603 size = PAGE_SIZE;
2604 if (size > vp->v_mount->mnt_stat.f_iosize)
2605 size = vp->v_mount->mnt_stat.f_iosize;
2607 vm_object_hold(obj);
2608 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2609 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2610 if (m == NULL) {
2611 res = 0;
2612 break;
2614 tinc = size;
2615 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2616 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2617 if (vm_page_is_valid(m,
2618 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2619 res = 0;
2620 break;
2623 vm_object_drop(obj);
2624 return (res);
2628 * findblk:
2630 * Locate and return the specified buffer. Unless flagged otherwise,
2631 * a locked buffer will be returned if it exists or NULL if it does not.
2633 * findblk()'d buffers are still on the bufqueues and if you intend
2634 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2635 * and possibly do other stuff to it.
2637 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2638 * for locking the buffer and ensuring that it remains
2639 * the desired buffer after locking.
2641 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2642 * to acquire the lock we return NULL, even if the
2643 * buffer exists.
2645 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2646 * reuse by getnewbuf() but does not prevent
2647 * disassociation (B_INVAL). Used to avoid deadlocks
2648 * against random (vp,loffset)s due to reassignment.
2650 * (0) - Lock the buffer blocking.
2652 struct buf *
2653 findblk(struct vnode *vp, off_t loffset, int flags)
2655 struct buf *bp;
2656 int lkflags;
2658 lkflags = LK_EXCLUSIVE;
2659 if (flags & FINDBLK_NBLOCK)
2660 lkflags |= LK_NOWAIT;
2662 for (;;) {
2664 * Lookup. Ref the buf while holding v_token to prevent
2665 * reuse (but does not prevent diassociation).
2667 lwkt_gettoken_shared(&vp->v_token);
2668 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2669 if (bp == NULL) {
2670 lwkt_reltoken(&vp->v_token);
2671 return(NULL);
2673 bqhold(bp);
2674 lwkt_reltoken(&vp->v_token);
2677 * If testing only break and return bp, do not lock.
2679 if (flags & FINDBLK_TEST)
2680 break;
2683 * Lock the buffer, return an error if the lock fails.
2684 * (only FINDBLK_NBLOCK can cause the lock to fail).
2686 if (BUF_LOCK(bp, lkflags)) {
2687 atomic_subtract_int(&bp->b_refs, 1);
2688 /* bp = NULL; not needed */
2689 return(NULL);
2693 * Revalidate the locked buf before allowing it to be
2694 * returned.
2696 if (bp->b_vp == vp && bp->b_loffset == loffset)
2697 break;
2698 atomic_subtract_int(&bp->b_refs, 1);
2699 BUF_UNLOCK(bp);
2703 * Success
2705 if ((flags & FINDBLK_REF) == 0)
2706 atomic_subtract_int(&bp->b_refs, 1);
2707 return(bp);
2711 * getcacheblk:
2713 * Similar to getblk() except only returns the buffer if it is
2714 * B_CACHE and requires no other manipulation. Otherwise NULL
2715 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2716 * and the getblk() would block.
2718 * If B_RAM is set the buffer might be just fine, but we return
2719 * NULL anyway because we want the code to fall through to the
2720 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2722 * If blksize is 0 the buffer cache buffer must already be fully
2723 * cached.
2725 * If blksize is non-zero getblk() will be used, allowing a buffer
2726 * to be reinstantiated from its VM backing store. The buffer must
2727 * still be fully cached after reinstantiation to be returned.
2729 struct buf *
2730 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2732 struct buf *bp;
2733 int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2735 if (blksize) {
2736 bp = getblk(vp, loffset, blksize, blkflags, 0);
2737 if (bp) {
2738 if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2739 bp->b_flags &= ~B_AGE;
2740 if (bp->b_flags & B_RAM) {
2741 bqrelse(bp);
2742 bp = NULL;
2744 } else {
2745 brelse(bp);
2746 bp = NULL;
2749 } else {
2750 bp = findblk(vp, loffset, fndflags);
2751 if (bp) {
2752 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2753 B_CACHE) {
2754 bp->b_flags &= ~B_AGE;
2755 bremfree(bp);
2756 } else {
2757 BUF_UNLOCK(bp);
2758 bp = NULL;
2762 return (bp);
2766 * getblk:
2768 * Get a block given a specified block and offset into a file/device.
2769 * B_INVAL may or may not be set on return. The caller should clear
2770 * B_INVAL prior to initiating a READ.
2772 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2773 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2774 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2775 * without doing any of those things the system will likely believe
2776 * the buffer to be valid (especially if it is not B_VMIO), and the
2777 * next getblk() will return the buffer with B_CACHE set.
2779 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2780 * an existing buffer.
2782 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2783 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2784 * and then cleared based on the backing VM. If the previous buffer is
2785 * non-0-sized but invalid, B_CACHE will be cleared.
2787 * If getblk() must create a new buffer, the new buffer is returned with
2788 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2789 * case it is returned with B_INVAL clear and B_CACHE set based on the
2790 * backing VM.
2792 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2793 * B_CACHE bit is clear.
2795 * What this means, basically, is that the caller should use B_CACHE to
2796 * determine whether the buffer is fully valid or not and should clear
2797 * B_INVAL prior to issuing a read. If the caller intends to validate
2798 * the buffer by loading its data area with something, the caller needs
2799 * to clear B_INVAL. If the caller does this without issuing an I/O,
2800 * the caller should set B_CACHE ( as an optimization ), else the caller
2801 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2802 * a write attempt or if it was a successfull read. If the caller
2803 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2804 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2806 * getblk flags:
2808 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2809 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2811 struct buf *
2812 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2814 struct buf *bp;
2815 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2816 int error;
2817 int lkflags;
2819 if (size > MAXBSIZE)
2820 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2821 if (vp->v_object == NULL)
2822 panic("getblk: vnode %p has no object!", vp);
2824 loop:
2825 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2827 * The buffer was found in the cache, but we need to lock it.
2828 * We must acquire a ref on the bp to prevent reuse, but
2829 * this will not prevent disassociation (brelvp()) so we
2830 * must recheck (vp,loffset) after acquiring the lock.
2832 * Without the ref the buffer could potentially be reused
2833 * before we acquire the lock and create a deadlock
2834 * situation between the thread trying to reuse the buffer
2835 * and us due to the fact that we would wind up blocking
2836 * on a random (vp,loffset).
2838 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2839 if (blkflags & GETBLK_NOWAIT) {
2840 bqdrop(bp);
2841 return(NULL);
2843 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2844 if (blkflags & GETBLK_PCATCH)
2845 lkflags |= LK_PCATCH;
2846 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2847 if (error) {
2848 bqdrop(bp);
2849 if (error == ENOLCK)
2850 goto loop;
2851 return (NULL);
2853 /* buffer may have changed on us */
2855 bqdrop(bp);
2858 * Once the buffer has been locked, make sure we didn't race
2859 * a buffer recyclement. Buffers that are no longer hashed
2860 * will have b_vp == NULL, so this takes care of that check
2861 * as well.
2863 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2864 #if 0
2865 kprintf("Warning buffer %p (vp %p loffset %lld) "
2866 "was recycled\n",
2867 bp, vp, (long long)loffset);
2868 #endif
2869 BUF_UNLOCK(bp);
2870 goto loop;
2874 * If SZMATCH any pre-existing buffer must be of the requested
2875 * size or NULL is returned. The caller absolutely does not
2876 * want getblk() to bwrite() the buffer on a size mismatch.
2878 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2879 BUF_UNLOCK(bp);
2880 return(NULL);
2884 * All vnode-based buffers must be backed by a VM object.
2886 KKASSERT(bp->b_flags & B_VMIO);
2887 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2888 bp->b_flags &= ~B_AGE;
2891 * Make sure that B_INVAL buffers do not have a cached
2892 * block number translation.
2894 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2895 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2896 " did not have cleared bio_offset cache\n",
2897 bp, vp, (long long)loffset);
2898 clearbiocache(&bp->b_bio2);
2902 * The buffer is locked. B_CACHE is cleared if the buffer is
2903 * invalid.
2905 if (bp->b_flags & B_INVAL)
2906 bp->b_flags &= ~B_CACHE;
2907 bremfree(bp);
2910 * Any size inconsistancy with a dirty buffer or a buffer
2911 * with a softupdates dependancy must be resolved. Resizing
2912 * the buffer in such circumstances can lead to problems.
2914 * Dirty or dependant buffers are written synchronously.
2915 * Other types of buffers are simply released and
2916 * reconstituted as they may be backed by valid, dirty VM
2917 * pages (but not marked B_DELWRI).
2919 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2920 * and may be left over from a prior truncation (and thus
2921 * no longer represent the actual EOF point), so we
2922 * definitely do not want to B_NOCACHE the backing store.
2924 if (size != bp->b_bcount) {
2925 if (bp->b_flags & B_DELWRI) {
2926 bp->b_flags |= B_RELBUF;
2927 bwrite(bp);
2928 } else if (LIST_FIRST(&bp->b_dep)) {
2929 bp->b_flags |= B_RELBUF;
2930 bwrite(bp);
2931 } else {
2932 bp->b_flags |= B_RELBUF;
2933 brelse(bp);
2935 goto loop;
2937 KKASSERT(size <= bp->b_kvasize);
2938 KASSERT(bp->b_loffset != NOOFFSET,
2939 ("getblk: no buffer offset"));
2942 * A buffer with B_DELWRI set and B_CACHE clear must
2943 * be committed before we can return the buffer in
2944 * order to prevent the caller from issuing a read
2945 * ( due to B_CACHE not being set ) and overwriting
2946 * it.
2948 * Most callers, including NFS and FFS, need this to
2949 * operate properly either because they assume they
2950 * can issue a read if B_CACHE is not set, or because
2951 * ( for example ) an uncached B_DELWRI might loop due
2952 * to softupdates re-dirtying the buffer. In the latter
2953 * case, B_CACHE is set after the first write completes,
2954 * preventing further loops.
2956 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2957 * above while extending the buffer, we cannot allow the
2958 * buffer to remain with B_CACHE set after the write
2959 * completes or it will represent a corrupt state. To
2960 * deal with this we set B_NOCACHE to scrap the buffer
2961 * after the write.
2963 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2964 * I'm not even sure this state is still possible
2965 * now that getblk() writes out any dirty buffers
2966 * on size changes.
2968 * We might be able to do something fancy, like setting
2969 * B_CACHE in bwrite() except if B_DELWRI is already set,
2970 * so the below call doesn't set B_CACHE, but that gets real
2971 * confusing. This is much easier.
2974 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2975 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2976 "and CACHE clear, b_flags %08x\n",
2977 bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2978 bp->b_flags |= B_NOCACHE;
2979 bwrite(bp);
2980 goto loop;
2982 } else {
2984 * Buffer is not in-core, create new buffer. The buffer
2985 * returned by getnewbuf() is locked. Note that the returned
2986 * buffer is also considered valid (not marked B_INVAL).
2988 * Calculating the offset for the I/O requires figuring out
2989 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2990 * the mount's f_iosize otherwise. If the vnode does not
2991 * have an associated mount we assume that the passed size is
2992 * the block size.
2994 * Note that vn_isdisk() cannot be used here since it may
2995 * return a failure for numerous reasons. Note that the
2996 * buffer size may be larger then the block size (the caller
2997 * will use block numbers with the proper multiple). Beware
2998 * of using any v_* fields which are part of unions. In
2999 * particular, in DragonFly the mount point overloading
3000 * mechanism uses the namecache only and the underlying
3001 * directory vnode is not a special case.
3003 int bsize, maxsize;
3004 vm_object_t repurpose;
3006 if (vp->v_type == VBLK || vp->v_type == VCHR)
3007 bsize = DEV_BSIZE;
3008 else if (vp->v_mount)
3009 bsize = vp->v_mount->mnt_stat.f_iosize;
3010 else
3011 bsize = size;
3013 maxsize = size + (loffset & PAGE_MASK);
3014 maxsize = imax(maxsize, bsize);
3015 repurpose = NULL;
3018 * Allow repurposing. The returned buffer may contain VM
3019 * pages associated with its previous incarnation. These
3020 * pages must be repurposed for the new buffer (hopefully
3021 * without disturbing the KVM mapping).
3023 * WARNING! If repurpose != NULL on return, the buffer will
3024 * still contain some data from its prior
3025 * incarnation. We MUST properly dispose of this
3026 * data.
3028 bp = getnewbuf(blkflags, slptimeo, size, maxsize, &repurpose);
3029 if (bp == NULL) {
3030 if (slpflags || slptimeo)
3031 return NULL;
3032 goto loop;
3036 * Atomically insert the buffer into the hash, so that it can
3037 * be found by findblk().
3039 * If bgetvp() returns non-zero a collision occured, and the
3040 * bp will not be associated with the vnode.
3042 * Make sure the translation layer has been cleared.
3044 bp->b_loffset = loffset;
3045 bp->b_bio2.bio_offset = NOOFFSET;
3046 /* bp->b_bio2.bio_next = NULL; */
3048 if (bgetvp(vp, bp, size)) {
3049 if (repurpose) {
3050 bp->b_flags |= B_VMIO;
3051 repurposebuf(bp, 0);
3052 vm_object_drop(repurpose);
3054 bp->b_flags |= B_INVAL;
3055 brelse(bp);
3056 goto loop;
3060 * All vnode-based buffers must be backed by a VM object.
3062 KKASSERT(vp->v_object != NULL);
3063 bp->b_flags |= B_VMIO;
3064 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3067 * If we allowed repurposing of the buffer it will contain
3068 * free-but-held vm_page's, already kmapped, that can be
3069 * repurposed. The repurposebuf() code handles reassigning
3070 * those pages to the new (object, offsets) and dealing with
3071 * the case where the pages already exist.
3073 if (repurpose) {
3074 repurposebuf(bp, size);
3075 vm_object_drop(repurpose);
3076 } else {
3077 allocbuf(bp, size);
3080 return (bp);
3084 * regetblk(bp)
3086 * Reacquire a buffer that was previously released to the locked queue,
3087 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3088 * set B_LOCKED (which handles the acquisition race).
3090 * To this end, either B_LOCKED must be set or the dependancy list must be
3091 * non-empty.
3093 void
3094 regetblk(struct buf *bp)
3096 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3097 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3098 bremfree(bp);
3102 * geteblk:
3104 * Get an empty, disassociated buffer of given size. The buffer is
3105 * initially set to B_INVAL.
3107 * critical section protection is not required for the allocbuf()
3108 * call because races are impossible here.
3110 struct buf *
3111 geteblk(int size)
3113 struct buf *bp;
3115 while ((bp = getnewbuf(0, 0, size, MAXBSIZE, NULL)) == NULL)
3117 allocbuf(bp, size);
3118 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3120 return (bp);
3124 * allocbuf:
3126 * This code constitutes the buffer memory from either anonymous system
3127 * memory (in the case of non-VMIO operations) or from an associated
3128 * VM object (in the case of VMIO operations). This code is able to
3129 * resize a buffer up or down.
3131 * Note that this code is tricky, and has many complications to resolve
3132 * deadlock or inconsistant data situations. Tread lightly!!!
3133 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3134 * the caller. Calling this code willy nilly can result in the loss of
3135 * data.
3137 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3138 * B_CACHE for the non-VMIO case.
3140 * This routine does not need to be called from a critical section but you
3141 * must own the buffer.
3143 void
3144 allocbuf(struct buf *bp, int size)
3146 int newbsize, mbsize;
3147 int i;
3149 if (BUF_REFCNT(bp) == 0)
3150 panic("allocbuf: buffer not busy");
3152 if (bp->b_kvasize < size)
3153 panic("allocbuf: buffer too small");
3155 if ((bp->b_flags & B_VMIO) == 0) {
3156 caddr_t origbuf;
3157 int origbufsize;
3159 * Just get anonymous memory from the kernel. Don't
3160 * mess with B_CACHE.
3162 mbsize = roundup2(size, DEV_BSIZE);
3163 if (bp->b_flags & B_MALLOC)
3164 newbsize = mbsize;
3165 else
3166 newbsize = round_page(size);
3168 if (newbsize < bp->b_bufsize) {
3170 * Malloced buffers are not shrunk
3172 if (bp->b_flags & B_MALLOC) {
3173 if (newbsize) {
3174 bp->b_bcount = size;
3175 } else {
3176 kfree(bp->b_data, M_BIOBUF);
3177 if (bp->b_bufsize) {
3178 atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3179 bp->b_bufsize = 0;
3180 bufspacewakeup();
3182 bp->b_data = bp->b_kvabase;
3183 bp->b_bcount = 0;
3184 bp->b_flags &= ~B_MALLOC;
3186 return;
3188 vm_hold_free_pages(
3190 (vm_offset_t) bp->b_data + newbsize,
3191 (vm_offset_t) bp->b_data + bp->b_bufsize);
3192 } else if (newbsize > bp->b_bufsize) {
3194 * We only use malloced memory on the first allocation.
3195 * and revert to page-allocated memory when the buffer
3196 * grows.
3198 if ((bufmallocspace < maxbufmallocspace) &&
3199 (bp->b_bufsize == 0) &&
3200 (mbsize <= PAGE_SIZE/2)) {
3202 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3203 bp->b_bufsize = mbsize;
3204 bp->b_bcount = size;
3205 bp->b_flags |= B_MALLOC;
3206 atomic_add_long(&bufmallocspace, mbsize);
3207 return;
3209 origbuf = NULL;
3210 origbufsize = 0;
3212 * If the buffer is growing on its other-than-first
3213 * allocation, then we revert to the page-allocation
3214 * scheme.
3216 if (bp->b_flags & B_MALLOC) {
3217 origbuf = bp->b_data;
3218 origbufsize = bp->b_bufsize;
3219 bp->b_data = bp->b_kvabase;
3220 if (bp->b_bufsize) {
3221 atomic_subtract_long(&bufmallocspace,
3222 bp->b_bufsize);
3223 bp->b_bufsize = 0;
3224 bufspacewakeup();
3226 bp->b_flags &= ~B_MALLOC;
3227 newbsize = round_page(newbsize);
3229 vm_hold_load_pages(
3231 (vm_offset_t) bp->b_data + bp->b_bufsize,
3232 (vm_offset_t) bp->b_data + newbsize);
3233 if (origbuf) {
3234 bcopy(origbuf, bp->b_data, origbufsize);
3235 kfree(origbuf, M_BIOBUF);
3238 } else {
3239 vm_page_t m;
3240 int desiredpages;
3242 newbsize = roundup2(size, DEV_BSIZE);
3243 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3244 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3245 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3247 if (bp->b_flags & B_MALLOC)
3248 panic("allocbuf: VMIO buffer can't be malloced");
3250 * Set B_CACHE initially if buffer is 0 length or will become
3251 * 0-length.
3253 if (size == 0 || bp->b_bufsize == 0)
3254 bp->b_flags |= B_CACHE;
3256 if (newbsize < bp->b_bufsize) {
3258 * DEV_BSIZE aligned new buffer size is less then the
3259 * DEV_BSIZE aligned existing buffer size. Figure out
3260 * if we have to remove any pages.
3262 if (desiredpages < bp->b_xio.xio_npages) {
3263 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3265 * the page is not freed here -- it
3266 * is the responsibility of
3267 * vnode_pager_setsize
3269 m = bp->b_xio.xio_pages[i];
3270 KASSERT(m != bogus_page,
3271 ("allocbuf: bogus page found"));
3272 vm_page_busy_wait(m, TRUE, "biodep");
3273 bp->b_xio.xio_pages[i] = NULL;
3274 vm_page_unwire(m, 0);
3275 vm_page_wakeup(m);
3277 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3278 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3279 bp->b_xio.xio_npages = desiredpages;
3281 } else if (size > bp->b_bcount) {
3283 * We are growing the buffer, possibly in a
3284 * byte-granular fashion.
3286 struct vnode *vp;
3287 vm_object_t obj;
3288 vm_offset_t toff;
3289 vm_offset_t tinc;
3292 * Step 1, bring in the VM pages from the object,
3293 * allocating them if necessary. We must clear
3294 * B_CACHE if these pages are not valid for the
3295 * range covered by the buffer.
3297 vp = bp->b_vp;
3298 obj = vp->v_object;
3300 vm_object_hold(obj);
3301 while (bp->b_xio.xio_npages < desiredpages) {
3302 vm_page_t m;
3303 vm_pindex_t pi;
3304 int error;
3306 pi = OFF_TO_IDX(bp->b_loffset) +
3307 bp->b_xio.xio_npages;
3310 * Blocking on m->busy might lead to a
3311 * deadlock:
3313 * vm_fault->getpages->cluster_read->allocbuf
3315 m = vm_page_lookup_busy_try(obj, pi, FALSE,
3316 &error);
3317 if (error) {
3318 vm_page_sleep_busy(m, FALSE, "pgtblk");
3319 continue;
3321 if (m == NULL) {
3323 * note: must allocate system pages
3324 * since blocking here could intefere
3325 * with paging I/O, no matter which
3326 * process we are.
3328 m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3329 if (m) {
3330 vm_page_wire(m);
3331 vm_page_wakeup(m);
3332 bp->b_flags &= ~B_CACHE;
3333 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3334 ++bp->b_xio.xio_npages;
3336 continue;
3340 * We found a page and were able to busy it.
3342 vm_page_wire(m);
3343 vm_page_wakeup(m);
3344 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3345 ++bp->b_xio.xio_npages;
3346 if (bp->b_act_count < m->act_count)
3347 bp->b_act_count = m->act_count;
3349 vm_object_drop(obj);
3352 * Step 2. We've loaded the pages into the buffer,
3353 * we have to figure out if we can still have B_CACHE
3354 * set. Note that B_CACHE is set according to the
3355 * byte-granular range ( bcount and size ), not the
3356 * aligned range ( newbsize ).
3358 * The VM test is against m->valid, which is DEV_BSIZE
3359 * aligned. Needless to say, the validity of the data
3360 * needs to also be DEV_BSIZE aligned. Note that this
3361 * fails with NFS if the server or some other client
3362 * extends the file's EOF. If our buffer is resized,
3363 * B_CACHE may remain set! XXX
3366 toff = bp->b_bcount;
3367 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3369 while ((bp->b_flags & B_CACHE) && toff < size) {
3370 vm_pindex_t pi;
3372 if (tinc > (size - toff))
3373 tinc = size - toff;
3375 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3376 PAGE_SHIFT;
3378 vfs_buf_test_cache(
3379 bp,
3380 bp->b_loffset,
3381 toff,
3382 tinc,
3383 bp->b_xio.xio_pages[pi]
3385 toff += tinc;
3386 tinc = PAGE_SIZE;
3390 * Step 3, fixup the KVM pmap. Remember that
3391 * bp->b_data is relative to bp->b_loffset, but
3392 * bp->b_loffset may be offset into the first page.
3394 bp->b_data = (caddr_t)
3395 trunc_page((vm_offset_t)bp->b_data);
3396 pmap_qenter((vm_offset_t)bp->b_data,
3397 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3398 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3399 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3401 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3404 /* adjust space use on already-dirty buffer */
3405 if (bp->b_flags & B_DELWRI) {
3406 /* dirtykvaspace unchanged */
3407 atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3408 if (bp->b_flags & B_HEAVY) {
3409 atomic_add_long(&dirtybufspacehw,
3410 newbsize - bp->b_bufsize);
3413 bp->b_bufsize = newbsize; /* actual buffer allocation */
3414 bp->b_bcount = size; /* requested buffer size */
3415 bufspacewakeup();
3419 * repurposebuf() (VMIO only)
3421 * This performs a function similar to allocbuf() but the passed-in buffer
3422 * may contain some detrius from its previous incarnation in the form of
3423 * the page array. We try to repurpose the underlying pages.
3425 * This code is nominally called to recycle buffer cache buffers AND (if
3426 * they are clean) to also recycle their underlying pages. We currently
3427 * can only recycle unmapped, clean pages. The code is called when buffer
3428 * cache 'newbuf' bandwidth exceeds (bufrate_cache) bytes per second.
3430 static
3431 void
3432 repurposebuf(struct buf *bp, int size)
3434 int newbsize;
3435 int desiredpages;
3436 vm_offset_t toff;
3437 vm_offset_t tinc;
3438 vm_object_t obj;
3439 vm_page_t m;
3440 int i;
3441 int must_reenter = 0;
3442 long deaccumulate = 0;
3445 KKASSERT((bp->b_flags & (B_VMIO | B_DELWRI | B_MALLOC)) == B_VMIO);
3446 if (BUF_REFCNT(bp) == 0)
3447 panic("repurposebuf: buffer not busy");
3449 if (bp->b_kvasize < size)
3450 panic("repurposebuf: buffer too small");
3452 newbsize = roundup2(size, DEV_BSIZE);
3453 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3454 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3455 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3458 * Buffer starts out 0-length with B_CACHE set. We will clear
3459 * As we check the backing store we will clear B_CACHE if necessary.
3461 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3462 bp->b_bufsize = 0;
3463 bp->b_bcount = 0;
3464 bp->b_flags |= B_CACHE;
3466 if (desiredpages) {
3467 obj = bp->b_vp->v_object;
3468 vm_object_hold(obj);
3469 } else {
3470 obj = NULL;
3474 * Step 1, bring in the VM pages from the object, repurposing or
3475 * allocating them if necessary. We must clear B_CACHE if these
3476 * pages are not valid for the range covered by the buffer.
3478 * We are growing the buffer, possibly in a byte-granular fashion.
3480 for (i = 0; i < desiredpages; ++i) {
3481 vm_pindex_t pi;
3482 int error;
3483 int iswired;
3485 pi = OFF_TO_IDX(bp->b_loffset) + i;
3488 * Blocking on m->busy might lead to a
3489 * deadlock:
3491 * vm_fault->getpages->cluster_read->allocbuf
3493 m = (i < bp->b_xio.xio_npages) ? bp->b_xio.xio_pages[i] : NULL;
3494 bp->b_xio.xio_pages[i] = NULL;
3495 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3496 m = vm_page_repurpose(obj, pi, FALSE, &error, m,
3497 &must_reenter, &iswired);
3499 if (error) {
3500 vm_page_sleep_busy(m, FALSE, "pgtblk");
3501 --i; /* retry */
3502 continue;
3504 if (m == NULL) {
3506 * note: must allocate system pages
3507 * since blocking here could intefere
3508 * with paging I/O, no matter which
3509 * process we are.
3511 must_reenter = 1;
3512 m = bio_page_alloc(bp, obj, pi, desiredpages - i);
3513 if (m) {
3514 vm_page_wire(m);
3515 vm_page_wakeup(m);
3516 bp->b_flags &= ~B_CACHE;
3517 bp->b_xio.xio_pages[i] = m;
3518 if (m->valid)
3519 deaccumulate += PAGE_SIZE;
3520 } else {
3521 --i; /* retry */
3523 continue;
3525 if (m->valid)
3526 deaccumulate += PAGE_SIZE;
3529 * We found a page and were able to busy it.
3531 if (!iswired)
3532 vm_page_wire(m);
3533 vm_page_wakeup(m);
3534 bp->b_xio.xio_pages[i] = m;
3535 if (bp->b_act_count < m->act_count)
3536 bp->b_act_count = m->act_count;
3538 if (desiredpages)
3539 vm_object_drop(obj);
3542 * Even though its a new buffer, any pages already in the VM
3543 * page cache should not count towards I/O bandwidth.
3545 if (deaccumulate)
3546 atomic_add_long(&bufcache_bw_accum, -deaccumulate);
3549 * Clean-up any loose pages.
3551 while (i < bp->b_xio.xio_npages) {
3552 m = bp->b_xio.xio_pages[i];
3553 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3554 vm_page_busy_wait(m, TRUE, "biodep");
3555 bp->b_xio.xio_pages[i] = NULL;
3556 vm_page_unwire(m, 0);
3557 vm_page_wakeup(m);
3558 ++i;
3560 if (desiredpages < bp->b_xio.xio_npages) {
3561 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3562 (desiredpages << PAGE_SHIFT),
3563 (bp->b_xio.xio_npages - desiredpages));
3565 bp->b_xio.xio_npages = desiredpages;
3568 * Step 2. We've loaded the pages into the buffer,
3569 * we have to figure out if we can still have B_CACHE
3570 * set. Note that B_CACHE is set according to the
3571 * byte-granular range ( bcount and size ), not the
3572 * aligned range ( newbsize ).
3574 * The VM test is against m->valid, which is DEV_BSIZE
3575 * aligned. Needless to say, the validity of the data
3576 * needs to also be DEV_BSIZE aligned. Note that this
3577 * fails with NFS if the server or some other client
3578 * extends the file's EOF. If our buffer is resized,
3579 * B_CACHE may remain set! XXX
3581 toff = bp->b_bcount;
3582 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3584 while ((bp->b_flags & B_CACHE) && toff < size) {
3585 vm_pindex_t pi;
3587 if (tinc > (size - toff))
3588 tinc = size - toff;
3590 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3592 vfs_buf_test_cache(bp, bp->b_loffset, toff,
3593 tinc, bp->b_xio.xio_pages[pi]);
3594 toff += tinc;
3595 tinc = PAGE_SIZE;
3599 * Step 3, fixup the KVM pmap. Remember that
3600 * bp->b_data is relative to bp->b_loffset, but
3601 * bp->b_loffset may be offset into the first page.
3603 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3604 if (must_reenter) {
3605 pmap_qenter((vm_offset_t)bp->b_data,
3606 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3607 } else {
3608 atomic_add_long(&repurposedspace, newbsize);
3610 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3611 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3613 if (newbsize < bp->b_bufsize)
3614 bufspacewakeup();
3615 bp->b_bufsize = newbsize; /* actual buffer allocation */
3616 bp->b_bcount = size; /* requested buffer size */
3620 * biowait:
3622 * Wait for buffer I/O completion, returning error status. B_EINTR
3623 * is converted into an EINTR error but not cleared (since a chain
3624 * of biowait() calls may occur).
3626 * On return bpdone() will have been called but the buffer will remain
3627 * locked and will not have been brelse()'d.
3629 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3630 * likely still in progress on return.
3632 * NOTE! This operation is on a BIO, not a BUF.
3634 * NOTE! BIO_DONE is cleared by vn_strategy()
3636 static __inline int
3637 _biowait(struct bio *bio, const char *wmesg, int to)
3639 struct buf *bp = bio->bio_buf;
3640 u_int32_t flags;
3641 u_int32_t nflags;
3642 int error;
3644 KKASSERT(bio == &bp->b_bio1);
3645 for (;;) {
3646 flags = bio->bio_flags;
3647 if (flags & BIO_DONE)
3648 break;
3649 nflags = flags | BIO_WANT;
3650 tsleep_interlock(bio, 0);
3651 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3652 if (wmesg)
3653 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3654 else if (bp->b_cmd == BUF_CMD_READ)
3655 error = tsleep(bio, PINTERLOCKED, "biord", to);
3656 else
3657 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3658 if (error) {
3659 kprintf("tsleep error biowait %d\n", error);
3660 return (error);
3666 * Finish up.
3668 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3669 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3670 if (bp->b_flags & B_EINTR)
3671 return (EINTR);
3672 if (bp->b_flags & B_ERROR)
3673 return (bp->b_error ? bp->b_error : EIO);
3674 return (0);
3678 biowait(struct bio *bio, const char *wmesg)
3680 return(_biowait(bio, wmesg, 0));
3684 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3686 return(_biowait(bio, wmesg, to));
3690 * This associates a tracking count with an I/O. vn_strategy() and
3691 * dev_dstrategy() do this automatically but there are a few cases
3692 * where a vnode or device layer is bypassed when a block translation
3693 * is cached. In such cases bio_start_transaction() may be called on
3694 * the bypassed layers so the system gets an I/O in progress indication
3695 * for those higher layers.
3697 void
3698 bio_start_transaction(struct bio *bio, struct bio_track *track)
3700 bio->bio_track = track;
3701 bio_track_ref(track);
3702 dsched_buf_enter(bio->bio_buf); /* might stack */
3706 * Initiate I/O on a vnode.
3708 * SWAPCACHE OPERATION:
3710 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3711 * devfs also uses b_vp for fake buffers so we also have to check
3712 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3713 * underlying block device. The swap assignments are related to the
3714 * buffer cache buffer's b_vp, not the passed vp.
3716 * The passed vp == bp->b_vp only in the case where the strategy call
3717 * is made on the vp itself for its own buffers (a regular file or
3718 * block device vp). The filesystem usually then re-calls vn_strategy()
3719 * after translating the request to an underlying device.
3721 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3722 * underlying buffer cache buffers.
3724 * We can only deal with page-aligned buffers at the moment, because
3725 * we can't tell what the real dirty state for pages straddling a buffer
3726 * are.
3728 * In order to call swap_pager_strategy() we must provide the VM object
3729 * and base offset for the underlying buffer cache pages so it can find
3730 * the swap blocks.
3732 void
3733 vn_strategy(struct vnode *vp, struct bio *bio)
3735 struct bio_track *track;
3736 struct buf *bp = bio->bio_buf;
3738 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3741 * Set when an I/O is issued on the bp. Cleared by consumers
3742 * (aka HAMMER), allowing the consumer to determine if I/O had
3743 * actually occurred.
3745 bp->b_flags |= B_IOISSUED;
3748 * Handle the swap cache intercept.
3750 if (vn_cache_strategy(vp, bio))
3751 return;
3754 * Otherwise do the operation through the filesystem
3756 if (bp->b_cmd == BUF_CMD_READ)
3757 track = &vp->v_track_read;
3758 else
3759 track = &vp->v_track_write;
3760 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3761 bio->bio_track = track;
3762 bio_track_ref(track);
3763 dsched_buf_enter(bp); /* might stack */
3764 vop_strategy(*vp->v_ops, vp, bio);
3767 static void vn_cache_strategy_callback(struct bio *bio);
3770 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3772 struct buf *bp = bio->bio_buf;
3773 struct bio *nbio;
3774 vm_object_t object;
3775 vm_page_t m;
3776 int i;
3779 * Stop using swapcache if paniced, dumping, or dumped
3781 if (panicstr || dumping)
3782 return(0);
3785 * Is this buffer cache buffer suitable for reading from
3786 * the swap cache?
3788 if (vm_swapcache_read_enable == 0 ||
3789 bp->b_cmd != BUF_CMD_READ ||
3790 ((bp->b_flags & B_CLUSTER) == 0 &&
3791 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3792 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3793 (bp->b_bcount & PAGE_MASK) != 0) {
3794 return(0);
3798 * Figure out the original VM object (it will match the underlying
3799 * VM pages). Note that swap cached data uses page indices relative
3800 * to that object, not relative to bio->bio_offset.
3802 if (bp->b_flags & B_CLUSTER)
3803 object = vp->v_object;
3804 else
3805 object = bp->b_vp->v_object;
3808 * In order to be able to use the swap cache all underlying VM
3809 * pages must be marked as such, and we can't have any bogus pages.
3811 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3812 m = bp->b_xio.xio_pages[i];
3813 if ((m->flags & PG_SWAPPED) == 0)
3814 break;
3815 if (m == bogus_page)
3816 break;
3820 * If we are good then issue the I/O using swap_pager_strategy().
3822 * We can only do this if the buffer actually supports object-backed
3823 * I/O. If it doesn't npages will be 0.
3825 if (i && i == bp->b_xio.xio_npages) {
3826 m = bp->b_xio.xio_pages[0];
3827 nbio = push_bio(bio);
3828 nbio->bio_done = vn_cache_strategy_callback;
3829 nbio->bio_offset = ptoa(m->pindex);
3830 KKASSERT(m->object == object);
3831 swap_pager_strategy(object, nbio);
3832 return(1);
3834 return(0);
3838 * This is a bit of a hack but since the vn_cache_strategy() function can
3839 * override a VFS's strategy function we must make sure that the bio, which
3840 * is probably bio2, doesn't leak an unexpected offset value back to the
3841 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3842 * bio went through its own file strategy function and the the bio2 offset
3843 * is a cached disk offset when, in fact, it isn't.
3845 static void
3846 vn_cache_strategy_callback(struct bio *bio)
3848 bio->bio_offset = NOOFFSET;
3849 biodone(pop_bio(bio));
3853 * bpdone:
3855 * Finish I/O on a buffer after all BIOs have been processed.
3856 * Called when the bio chain is exhausted or by biowait. If called
3857 * by biowait, elseit is typically 0.
3859 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3860 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3861 * assuming B_INVAL is clear.
3863 * For the VMIO case, we set B_CACHE if the op was a read and no
3864 * read error occured, or if the op was a write. B_CACHE is never
3865 * set if the buffer is invalid or otherwise uncacheable.
3867 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3868 * initiator to leave B_INVAL set to brelse the buffer out of existance
3869 * in the biodone routine.
3871 * bpdone is responsible for calling bundirty() on the buffer after a
3872 * successful write. We previously did this prior to initiating the
3873 * write under the assumption that the buffer might be dirtied again
3874 * while the write was in progress, however doing it before-hand creates
3875 * a race condition prior to the call to vn_strategy() where the
3876 * filesystem may not be aware that a dirty buffer is present.
3877 * It should not be possible for the buffer or its underlying pages to
3878 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3879 * pages.
3881 void
3882 bpdone(struct buf *bp, int elseit)
3884 buf_cmd_t cmd;
3886 KASSERT(BUF_REFCNTNB(bp) > 0,
3887 ("bpdone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3888 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3889 ("bpdone: bp %p already done!", bp));
3892 * No more BIOs are left. All completion functions have been dealt
3893 * with, now we clean up the buffer.
3895 cmd = bp->b_cmd;
3896 bp->b_cmd = BUF_CMD_DONE;
3899 * Only reads and writes are processed past this point.
3901 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3902 if (cmd == BUF_CMD_FREEBLKS)
3903 bp->b_flags |= B_NOCACHE;
3904 if (elseit)
3905 brelse(bp);
3906 return;
3910 * A failed write must re-dirty the buffer unless B_INVAL
3911 * was set.
3913 * A successful write must clear the dirty flag. This is done after
3914 * the write to ensure that the buffer remains on the vnode's dirty
3915 * list for filesystem interlocks / checks until the write is actually
3916 * complete. HAMMER2 is sensitive to this issue.
3918 * Only applicable to normal buffers (with VPs). vinum buffers may
3919 * not have a vp.
3921 * Must be done prior to calling buf_complete() as the callback might
3922 * re-dirty the buffer.
3924 if (cmd == BUF_CMD_WRITE) {
3925 if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3926 bp->b_flags &= ~B_NOCACHE;
3927 if (bp->b_vp)
3928 bdirty(bp);
3929 } else {
3930 if (bp->b_vp)
3931 bundirty(bp);
3936 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3937 * a lot worse. XXX - move this above the clearing of b_cmd
3939 if (LIST_FIRST(&bp->b_dep) != NULL)
3940 buf_complete(bp);
3942 if (bp->b_flags & B_VMIO) {
3943 int i;
3944 vm_ooffset_t foff;
3945 vm_page_t m;
3946 vm_object_t obj;
3947 int iosize;
3948 struct vnode *vp = bp->b_vp;
3950 obj = vp->v_object;
3952 #if defined(VFS_BIO_DEBUG)
3953 if (vp->v_auxrefs == 0)
3954 panic("bpdone: zero vnode hold count");
3955 if ((vp->v_flag & VOBJBUF) == 0)
3956 panic("bpdone: vnode is not setup for merged cache");
3957 #endif
3959 foff = bp->b_loffset;
3960 KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3961 KASSERT(obj != NULL, ("bpdone: missing VM object"));
3963 #if defined(VFS_BIO_DEBUG)
3964 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3965 kprintf("bpdone: paging in progress(%d) < "
3966 "bp->b_xio.xio_npages(%d)\n",
3967 obj->paging_in_progress,
3968 bp->b_xio.xio_npages);
3970 #endif
3973 * Set B_CACHE if the op was a normal read and no error
3974 * occured. B_CACHE is set for writes in the b*write()
3975 * routines.
3977 iosize = bp->b_bcount - bp->b_resid;
3978 if (cmd == BUF_CMD_READ &&
3979 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3980 bp->b_flags |= B_CACHE;
3983 vm_object_hold(obj);
3984 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3985 int resid;
3986 int isbogus;
3988 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3989 if (resid > iosize)
3990 resid = iosize;
3993 * cleanup bogus pages, restoring the originals. Since
3994 * the originals should still be wired, we don't have
3995 * to worry about interrupt/freeing races destroying
3996 * the VM object association.
3998 m = bp->b_xio.xio_pages[i];
3999 if (m == bogus_page) {
4000 if ((bp->b_flags & B_HASBOGUS) == 0)
4001 panic("bpdone: bp %p corrupt bogus", bp);
4002 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
4003 if (m == NULL)
4004 panic("bpdone: page disappeared");
4005 bp->b_xio.xio_pages[i] = m;
4006 isbogus = 1;
4007 } else {
4008 isbogus = 0;
4010 #if defined(VFS_BIO_DEBUG)
4011 if (OFF_TO_IDX(foff) != m->pindex) {
4012 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
4013 "mismatch\n",
4014 (unsigned long)foff, (long)m->pindex);
4016 #endif
4019 * In the write case, the valid and clean bits are
4020 * already changed correctly (see bdwrite()), so we
4021 * only need to do this here in the read case.
4023 vm_page_busy_wait(m, FALSE, "bpdpgw");
4024 if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
4025 vfs_clean_one_page(bp, i, m);
4028 * when debugging new filesystems or buffer I/O
4029 * methods, this is the most common error that pops
4030 * up. if you see this, you have not set the page
4031 * busy flag correctly!!!
4033 if (m->busy == 0) {
4034 kprintf("bpdone: page busy < 0, "
4035 "pindex: %d, foff: 0x(%x,%x), "
4036 "resid: %d, index: %d\n",
4037 (int) m->pindex, (int)(foff >> 32),
4038 (int) foff & 0xffffffff, resid, i);
4039 if (!vn_isdisk(vp, NULL))
4040 kprintf(" iosize: %ld, loffset: %lld, "
4041 "flags: 0x%08x, npages: %d\n",
4042 bp->b_vp->v_mount->mnt_stat.f_iosize,
4043 (long long)bp->b_loffset,
4044 bp->b_flags, bp->b_xio.xio_npages);
4045 else
4046 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
4047 (long long)bp->b_loffset,
4048 bp->b_flags, bp->b_xio.xio_npages);
4049 kprintf(" valid: 0x%x, dirty: 0x%x, "
4050 "wired: %d\n",
4051 m->valid, m->dirty,
4052 m->wire_count);
4053 panic("bpdone: page busy < 0");
4055 vm_page_io_finish(m);
4056 vm_page_wakeup(m);
4057 vm_object_pip_wakeup(obj);
4058 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4059 iosize -= resid;
4061 if (bp->b_flags & B_HASBOGUS) {
4062 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4063 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4064 bp->b_flags &= ~B_HASBOGUS;
4066 vm_object_drop(obj);
4070 * Finish up by releasing the buffer. There are no more synchronous
4071 * or asynchronous completions, those were handled by bio_done
4072 * callbacks.
4074 if (elseit) {
4075 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
4076 brelse(bp);
4077 else
4078 bqrelse(bp);
4083 * Normal biodone.
4085 void
4086 biodone(struct bio *bio)
4088 struct buf *bp = bio->bio_buf;
4090 runningbufwakeup(bp);
4093 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
4095 while (bio) {
4096 biodone_t *done_func;
4097 struct bio_track *track;
4100 * BIO tracking. Most but not all BIOs are tracked.
4102 if ((track = bio->bio_track) != NULL) {
4103 bio_track_rel(track);
4104 bio->bio_track = NULL;
4108 * A bio_done function terminates the loop. The function
4109 * will be responsible for any further chaining and/or
4110 * buffer management.
4112 * WARNING! The done function can deallocate the buffer!
4114 if ((done_func = bio->bio_done) != NULL) {
4115 bio->bio_done = NULL;
4116 done_func(bio);
4117 return;
4119 bio = bio->bio_prev;
4123 * If we've run out of bio's do normal [a]synchronous completion.
4125 bpdone(bp, 1);
4129 * Synchronous biodone - this terminates a synchronous BIO.
4131 * bpdone() is called with elseit=FALSE, leaving the buffer completed
4132 * but still locked. The caller must brelse() the buffer after waiting
4133 * for completion.
4135 void
4136 biodone_sync(struct bio *bio)
4138 struct buf *bp = bio->bio_buf;
4139 int flags;
4140 int nflags;
4142 KKASSERT(bio == &bp->b_bio1);
4143 bpdone(bp, 0);
4145 for (;;) {
4146 flags = bio->bio_flags;
4147 nflags = (flags | BIO_DONE) & ~BIO_WANT;
4149 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4150 if (flags & BIO_WANT)
4151 wakeup(bio);
4152 break;
4158 * vfs_unbusy_pages:
4160 * This routine is called in lieu of iodone in the case of
4161 * incomplete I/O. This keeps the busy status for pages
4162 * consistant.
4164 void
4165 vfs_unbusy_pages(struct buf *bp)
4167 int i;
4169 runningbufwakeup(bp);
4171 if (bp->b_flags & B_VMIO) {
4172 struct vnode *vp = bp->b_vp;
4173 vm_object_t obj;
4175 obj = vp->v_object;
4176 vm_object_hold(obj);
4178 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4179 vm_page_t m = bp->b_xio.xio_pages[i];
4182 * When restoring bogus changes the original pages
4183 * should still be wired, so we are in no danger of
4184 * losing the object association and do not need
4185 * critical section protection particularly.
4187 if (m == bogus_page) {
4188 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4189 if (!m) {
4190 panic("vfs_unbusy_pages: page missing");
4192 bp->b_xio.xio_pages[i] = m;
4194 vm_page_busy_wait(m, FALSE, "bpdpgw");
4195 vm_page_io_finish(m);
4196 vm_page_wakeup(m);
4197 vm_object_pip_wakeup(obj);
4199 if (bp->b_flags & B_HASBOGUS) {
4200 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4201 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4202 bp->b_flags &= ~B_HASBOGUS;
4204 vm_object_drop(obj);
4209 * vfs_busy_pages:
4211 * This routine is called before a device strategy routine.
4212 * It is used to tell the VM system that paging I/O is in
4213 * progress, and treat the pages associated with the buffer
4214 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4215 * flag is handled to make sure that the object doesn't become
4216 * inconsistant.
4218 * Since I/O has not been initiated yet, certain buffer flags
4219 * such as B_ERROR or B_INVAL may be in an inconsistant state
4220 * and should be ignored.
4222 void
4223 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4225 int i, bogus;
4226 struct lwp *lp = curthread->td_lwp;
4229 * The buffer's I/O command must already be set. If reading,
4230 * B_CACHE must be 0 (double check against callers only doing
4231 * I/O when B_CACHE is 0).
4233 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4234 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4236 if (bp->b_flags & B_VMIO) {
4237 vm_object_t obj;
4239 obj = vp->v_object;
4240 KASSERT(bp->b_loffset != NOOFFSET,
4241 ("vfs_busy_pages: no buffer offset"));
4244 * Busy all the pages. We have to busy them all at once
4245 * to avoid deadlocks.
4247 retry:
4248 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4249 vm_page_t m = bp->b_xio.xio_pages[i];
4251 if (vm_page_busy_try(m, FALSE)) {
4252 vm_page_sleep_busy(m, FALSE, "vbpage");
4253 while (--i >= 0)
4254 vm_page_wakeup(bp->b_xio.xio_pages[i]);
4255 goto retry;
4260 * Setup for I/O, soft-busy the page right now because
4261 * the next loop may block.
4263 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4264 vm_page_t m = bp->b_xio.xio_pages[i];
4266 if ((bp->b_flags & B_CLUSTER) == 0) {
4267 vm_object_pip_add(obj, 1);
4268 vm_page_io_start(m);
4273 * Adjust protections for I/O and do bogus-page mapping.
4274 * Assume that vm_page_protect() can block (it can block
4275 * if VM_PROT_NONE, don't take any chances regardless).
4277 * In particular note that for writes we must incorporate
4278 * page dirtyness from the VM system into the buffer's
4279 * dirty range.
4281 * For reads we theoretically must incorporate page dirtyness
4282 * from the VM system to determine if the page needs bogus
4283 * replacement, but we shortcut the test by simply checking
4284 * that all m->valid bits are set, indicating that the page
4285 * is fully valid and does not need to be re-read. For any
4286 * VM system dirtyness the page will also be fully valid
4287 * since it was mapped at one point.
4289 bogus = 0;
4290 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4291 vm_page_t m = bp->b_xio.xio_pages[i];
4293 if (bp->b_cmd == BUF_CMD_WRITE) {
4295 * When readying a vnode-backed buffer for
4296 * a write we must zero-fill any invalid
4297 * portions of the backing VM pages, mark
4298 * it valid and clear related dirty bits.
4300 * vfs_clean_one_page() incorporates any
4301 * VM dirtyness and updates the b_dirtyoff
4302 * range (after we've made the page RO).
4304 * It is also expected that the pmap modified
4305 * bit has already been cleared by the
4306 * vm_page_protect(). We may not be able
4307 * to clear all dirty bits for a page if it
4308 * was also memory mapped (NFS).
4310 * Finally be sure to unassign any swap-cache
4311 * backing store as it is now stale.
4313 vm_page_protect(m, VM_PROT_READ);
4314 vfs_clean_one_page(bp, i, m);
4315 swap_pager_unswapped(m);
4316 } else if (m->valid == VM_PAGE_BITS_ALL) {
4318 * When readying a vnode-backed buffer for
4319 * read we must replace any dirty pages with
4320 * a bogus page so dirty data is not destroyed
4321 * when filling gaps.
4323 * To avoid testing whether the page is
4324 * dirty we instead test that the page was
4325 * at some point mapped (m->valid fully
4326 * valid) with the understanding that
4327 * this also covers the dirty case.
4329 bp->b_xio.xio_pages[i] = bogus_page;
4330 bp->b_flags |= B_HASBOGUS;
4331 bogus++;
4332 } else if (m->valid & m->dirty) {
4334 * This case should not occur as partial
4335 * dirtyment can only happen if the buffer
4336 * is B_CACHE, and this code is not entered
4337 * if the buffer is B_CACHE.
4339 kprintf("Warning: vfs_busy_pages - page not "
4340 "fully valid! loff=%jx bpf=%08x "
4341 "idx=%d val=%02x dir=%02x\n",
4342 (uintmax_t)bp->b_loffset, bp->b_flags,
4343 i, m->valid, m->dirty);
4344 vm_page_protect(m, VM_PROT_NONE);
4345 } else {
4347 * The page is not valid and can be made
4348 * part of the read.
4350 vm_page_protect(m, VM_PROT_NONE);
4352 vm_page_wakeup(m);
4354 if (bogus) {
4355 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4356 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4361 * This is the easiest place to put the process accounting for the I/O
4362 * for now.
4364 if (lp != NULL) {
4365 if (bp->b_cmd == BUF_CMD_READ)
4366 lp->lwp_ru.ru_inblock++;
4367 else
4368 lp->lwp_ru.ru_oublock++;
4373 * Tell the VM system that the pages associated with this buffer
4374 * are clean. This is used for delayed writes where the data is
4375 * going to go to disk eventually without additional VM intevention.
4377 * NOTE: While we only really need to clean through to b_bcount, we
4378 * just go ahead and clean through to b_bufsize.
4380 static void
4381 vfs_clean_pages(struct buf *bp)
4383 vm_page_t m;
4384 int i;
4386 if ((bp->b_flags & B_VMIO) == 0)
4387 return;
4389 KASSERT(bp->b_loffset != NOOFFSET,
4390 ("vfs_clean_pages: no buffer offset"));
4392 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4393 m = bp->b_xio.xio_pages[i];
4394 vfs_clean_one_page(bp, i, m);
4399 * vfs_clean_one_page:
4401 * Set the valid bits and clear the dirty bits in a page within a
4402 * buffer. The range is restricted to the buffer's size and the
4403 * buffer's logical offset might index into the first page.
4405 * The caller has busied or soft-busied the page and it is not mapped,
4406 * test and incorporate the dirty bits into b_dirtyoff/end before
4407 * clearing them. Note that we need to clear the pmap modified bits
4408 * after determining the the page was dirty, vm_page_set_validclean()
4409 * does not do it for us.
4411 * This routine is typically called after a read completes (dirty should
4412 * be zero in that case as we are not called on bogus-replace pages),
4413 * or before a write is initiated.
4415 static void
4416 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4418 int bcount;
4419 int xoff;
4420 int soff;
4421 int eoff;
4424 * Calculate offset range within the page but relative to buffer's
4425 * loffset. loffset might be offset into the first page.
4427 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4428 bcount = bp->b_bcount + xoff; /* offset adjusted */
4430 if (pageno == 0) {
4431 soff = xoff;
4432 eoff = PAGE_SIZE;
4433 } else {
4434 soff = (pageno << PAGE_SHIFT);
4435 eoff = soff + PAGE_SIZE;
4437 if (eoff > bcount)
4438 eoff = bcount;
4439 if (soff >= eoff)
4440 return;
4443 * Test dirty bits and adjust b_dirtyoff/end.
4445 * If dirty pages are incorporated into the bp any prior
4446 * B_NEEDCOMMIT state (NFS) must be cleared because the
4447 * caller has not taken into account the new dirty data.
4449 * If the page was memory mapped the dirty bits might go beyond the
4450 * end of the buffer, but we can't really make the assumption that
4451 * a file EOF straddles the buffer (even though this is the case for
4452 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4453 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4454 * This also saves some console spam.
4456 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4457 * NFS can handle huge commits but not huge writes.
4459 vm_page_test_dirty(m);
4460 if (m->dirty) {
4461 if ((bp->b_flags & B_NEEDCOMMIT) &&
4462 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4463 if (debug_commit)
4464 kprintf("Warning: vfs_clean_one_page: bp %p "
4465 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4466 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4467 "doff/end %d %d\n",
4468 bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4469 bp->b_flags, bp->b_cmd,
4470 m->valid, m->dirty, xoff, soff, eoff,
4471 bp->b_dirtyoff, bp->b_dirtyend);
4472 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4473 if (debug_commit)
4474 print_backtrace(-1);
4477 * Only clear the pmap modified bits if ALL the dirty bits
4478 * are set, otherwise the system might mis-clear portions
4479 * of a page.
4481 if (m->dirty == VM_PAGE_BITS_ALL &&
4482 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4483 pmap_clear_modify(m);
4485 if (bp->b_dirtyoff > soff - xoff)
4486 bp->b_dirtyoff = soff - xoff;
4487 if (bp->b_dirtyend < eoff - xoff)
4488 bp->b_dirtyend = eoff - xoff;
4492 * Set related valid bits, clear related dirty bits.
4493 * Does not mess with the pmap modified bit.
4495 * WARNING! We cannot just clear all of m->dirty here as the
4496 * buffer cache buffers may use a DEV_BSIZE'd aligned
4497 * block size, or have an odd size (e.g. NFS at file EOF).
4498 * The putpages code can clear m->dirty to 0.
4500 * If a VOP_WRITE generates a buffer cache buffer which
4501 * covers the same space as mapped writable pages the
4502 * buffer flush might not be able to clear all the dirty
4503 * bits and still require a putpages from the VM system
4504 * to finish it off.
4506 * WARNING! vm_page_set_validclean() currently assumes vm_token
4507 * is held. The page might not be busied (bdwrite() case).
4508 * XXX remove this comment once we've validated that this
4509 * is no longer an issue.
4511 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4514 #if 0
4516 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4517 * The page data is assumed to be valid (there is no zeroing here).
4519 static void
4520 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4522 int bcount;
4523 int xoff;
4524 int soff;
4525 int eoff;
4528 * Calculate offset range within the page but relative to buffer's
4529 * loffset. loffset might be offset into the first page.
4531 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4532 bcount = bp->b_bcount + xoff; /* offset adjusted */
4534 if (pageno == 0) {
4535 soff = xoff;
4536 eoff = PAGE_SIZE;
4537 } else {
4538 soff = (pageno << PAGE_SHIFT);
4539 eoff = soff + PAGE_SIZE;
4541 if (eoff > bcount)
4542 eoff = bcount;
4543 if (soff >= eoff)
4544 return;
4545 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4547 #endif
4550 * vfs_bio_clrbuf:
4552 * Clear a buffer. This routine essentially fakes an I/O, so we need
4553 * to clear B_ERROR and B_INVAL.
4555 * Note that while we only theoretically need to clear through b_bcount,
4556 * we go ahead and clear through b_bufsize.
4559 void
4560 vfs_bio_clrbuf(struct buf *bp)
4562 int i, mask = 0;
4563 caddr_t sa, ea;
4564 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4565 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4566 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4567 (bp->b_loffset & PAGE_MASK) == 0) {
4568 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4569 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4570 bp->b_resid = 0;
4571 return;
4573 if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4574 bzero(bp->b_data, bp->b_bufsize);
4575 bp->b_xio.xio_pages[0]->valid |= mask;
4576 bp->b_resid = 0;
4577 return;
4580 sa = bp->b_data;
4581 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4582 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4583 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4584 ea = (caddr_t)(vm_offset_t)ulmin(
4585 (u_long)(vm_offset_t)ea,
4586 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4587 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4588 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4589 continue;
4590 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4591 bzero(sa, ea - sa);
4592 } else {
4593 for (; sa < ea; sa += DEV_BSIZE, j++) {
4594 if ((bp->b_xio.xio_pages[i]->valid &
4595 (1<<j)) == 0) {
4596 bzero(sa, DEV_BSIZE);
4600 bp->b_xio.xio_pages[i]->valid |= mask;
4602 bp->b_resid = 0;
4603 } else {
4604 clrbuf(bp);
4609 * vm_hold_load_pages:
4611 * Load pages into the buffer's address space. The pages are
4612 * allocated from the kernel object in order to reduce interference
4613 * with the any VM paging I/O activity. The range of loaded
4614 * pages will be wired.
4616 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4617 * retrieve the full range (to - from) of pages.
4619 void
4620 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4622 vm_offset_t pg;
4623 vm_page_t p;
4624 int index;
4626 to = round_page(to);
4627 from = round_page(from);
4628 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4630 pg = from;
4631 while (pg < to) {
4633 * Note: must allocate system pages since blocking here
4634 * could intefere with paging I/O, no matter which
4635 * process we are.
4637 vm_object_hold(&kernel_object);
4638 p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4639 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4640 vm_object_drop(&kernel_object);
4641 if (p) {
4642 vm_page_wire(p);
4643 p->valid = VM_PAGE_BITS_ALL;
4644 pmap_kenter_noinval(pg, VM_PAGE_TO_PHYS(p));
4645 bp->b_xio.xio_pages[index] = p;
4646 vm_page_wakeup(p);
4648 pg += PAGE_SIZE;
4649 ++index;
4652 pmap_invalidate_range(&kernel_pmap, from, to);
4653 bp->b_xio.xio_npages = index;
4657 * Allocate a page for a buffer cache buffer.
4659 * If NULL is returned the caller is expected to retry (typically check if
4660 * the page already exists on retry before trying to allocate one).
4662 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4663 * function will use the system reserve with the hope that the page
4664 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4665 * is done with the buffer.
4667 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4668 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4669 * is capable of retiring pages (to swap). For TMPFS we don't dig
4670 * into the system reserve because doing so could stall out pretty
4671 * much every process running on the system.
4673 static
4674 vm_page_t
4675 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4677 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4678 vm_page_t p;
4680 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4683 * Try a normal allocation first.
4685 p = vm_page_alloc(obj, pg, vmflags);
4686 if (p)
4687 return(p);
4688 if (vm_page_lookup(obj, pg))
4689 return(NULL);
4690 vm_pageout_deficit += deficit;
4693 * Try again, digging into the system reserve.
4695 * Trying to recover pages from the buffer cache here can deadlock
4696 * against other threads trying to busy underlying pages so we
4697 * depend on the code in brelse() and bqrelse() to free/cache the
4698 * underlying buffer cache pages when memory is low.
4700 if (curthread->td_flags & TDF_SYSTHREAD)
4701 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4702 else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4703 vmflags |= 0;
4704 else
4705 vmflags |= VM_ALLOC_SYSTEM;
4707 /*recoverbufpages();*/
4708 p = vm_page_alloc(obj, pg, vmflags);
4709 if (p)
4710 return(p);
4711 if (vm_page_lookup(obj, pg))
4712 return(NULL);
4715 * Wait for memory to free up and try again
4717 if (vm_page_count_severe())
4718 ++lowmempgallocs;
4719 vm_wait(hz / 20 + 1);
4721 p = vm_page_alloc(obj, pg, vmflags);
4722 if (p)
4723 return(p);
4724 if (vm_page_lookup(obj, pg))
4725 return(NULL);
4728 * Ok, now we are really in trouble.
4731 static struct krate biokrate = { .freq = 1 };
4732 krateprintf(&biokrate,
4733 "Warning: bio_page_alloc: memory exhausted "
4734 "during buffer cache page allocation from %s\n",
4735 curthread->td_comm);
4737 if (curthread->td_flags & TDF_SYSTHREAD)
4738 vm_wait(hz / 20 + 1);
4739 else
4740 vm_wait(hz / 2 + 1);
4741 return (NULL);
4745 * vm_hold_free_pages:
4747 * Return pages associated with the buffer back to the VM system.
4749 * The range of pages underlying the buffer's address space will
4750 * be unmapped and un-wired.
4752 void
4753 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4755 vm_offset_t pg;
4756 vm_page_t p;
4757 int index, newnpages;
4759 from = round_page(from);
4760 to = round_page(to);
4761 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4762 newnpages = index;
4764 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4765 p = bp->b_xio.xio_pages[index];
4766 if (p && (index < bp->b_xio.xio_npages)) {
4767 if (p->busy) {
4768 kprintf("vm_hold_free_pages: doffset: %lld, "
4769 "loffset: %lld\n",
4770 (long long)bp->b_bio2.bio_offset,
4771 (long long)bp->b_loffset);
4773 bp->b_xio.xio_pages[index] = NULL;
4774 pmap_kremove_noinval(pg);
4775 vm_page_busy_wait(p, FALSE, "vmhldpg");
4776 vm_page_unwire(p, 0);
4777 vm_page_free(p);
4780 pmap_invalidate_range(&kernel_pmap, from, to);
4781 bp->b_xio.xio_npages = newnpages;
4785 * vmapbuf:
4787 * Map a user buffer into KVM via a pbuf. On return the buffer's
4788 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4789 * initialized.
4792 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4794 caddr_t addr;
4795 vm_offset_t va;
4796 vm_page_t m;
4797 int vmprot;
4798 int error;
4799 int pidx;
4800 int i;
4803 * bp had better have a command and it better be a pbuf.
4805 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4806 KKASSERT(bp->b_flags & B_PAGING);
4807 KKASSERT(bp->b_kvabase);
4809 if (bytes < 0)
4810 return (-1);
4813 * Map the user data into KVM. Mappings have to be page-aligned.
4815 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4816 pidx = 0;
4818 vmprot = VM_PROT_READ;
4819 if (bp->b_cmd == BUF_CMD_READ)
4820 vmprot |= VM_PROT_WRITE;
4822 while (addr < udata + bytes) {
4824 * Do the vm_fault if needed; do the copy-on-write thing
4825 * when reading stuff off device into memory.
4827 * vm_fault_page*() returns a held VM page.
4829 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4830 va = trunc_page(va);
4832 m = vm_fault_page_quick(va, vmprot, &error);
4833 if (m == NULL) {
4834 for (i = 0; i < pidx; ++i) {
4835 vm_page_unhold(bp->b_xio.xio_pages[i]);
4836 bp->b_xio.xio_pages[i] = NULL;
4838 return(-1);
4840 bp->b_xio.xio_pages[pidx] = m;
4841 addr += PAGE_SIZE;
4842 ++pidx;
4846 * Map the page array and set the buffer fields to point to
4847 * the mapped data buffer.
4849 if (pidx > btoc(MAXPHYS))
4850 panic("vmapbuf: mapped more than MAXPHYS");
4851 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4853 bp->b_xio.xio_npages = pidx;
4854 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4855 bp->b_bcount = bytes;
4856 bp->b_bufsize = bytes;
4858 return(0);
4862 * vunmapbuf:
4864 * Free the io map PTEs associated with this IO operation.
4865 * We also invalidate the TLB entries and restore the original b_addr.
4867 void
4868 vunmapbuf(struct buf *bp)
4870 int pidx;
4871 int npages;
4873 KKASSERT(bp->b_flags & B_PAGING);
4875 npages = bp->b_xio.xio_npages;
4876 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4877 for (pidx = 0; pidx < npages; ++pidx) {
4878 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4879 bp->b_xio.xio_pages[pidx] = NULL;
4881 bp->b_xio.xio_npages = 0;
4882 bp->b_data = bp->b_kvabase;
4886 * Scan all buffers in the system and issue the callback.
4889 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4891 int count = 0;
4892 int error;
4893 long n;
4895 for (n = 0; n < nbuf; ++n) {
4896 if ((error = callback(&buf[n], info)) < 0) {
4897 count = error;
4898 break;
4900 count += error;
4902 return (count);
4906 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4907 * completion to the master buffer.
4909 static void
4910 nestiobuf_iodone(struct bio *bio)
4912 struct bio *mbio;
4913 struct buf *mbp, *bp;
4914 struct devstat *stats;
4915 int error;
4916 int donebytes;
4918 bp = bio->bio_buf;
4919 mbio = bio->bio_caller_info1.ptr;
4920 stats = bio->bio_caller_info2.ptr;
4921 mbp = mbio->bio_buf;
4923 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4924 KKASSERT(mbp != bp);
4926 error = bp->b_error;
4927 if (bp->b_error == 0 &&
4928 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4930 * Not all got transfered, raise an error. We have no way to
4931 * propagate these conditions to mbp.
4933 error = EIO;
4936 donebytes = bp->b_bufsize;
4938 relpbuf(bp, NULL);
4940 nestiobuf_done(mbio, donebytes, error, stats);
4943 void
4944 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4946 struct buf *mbp;
4948 mbp = mbio->bio_buf;
4950 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4953 * If an error occured, propagate it to the master buffer.
4955 * Several biodone()s may wind up running concurrently so
4956 * use an atomic op to adjust b_flags.
4958 if (error) {
4959 mbp->b_error = error;
4960 atomic_set_int(&mbp->b_flags, B_ERROR);
4964 * Decrement the operations in progress counter and terminate the
4965 * I/O if this was the last bit.
4967 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4968 mbp->b_resid = 0;
4969 if (stats)
4970 devstat_end_transaction_buf(stats, mbp);
4971 biodone(mbio);
4976 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4977 * the mbio from being biodone()'d while we are still adding sub-bios to
4978 * it.
4980 void
4981 nestiobuf_init(struct bio *bio)
4983 bio->bio_driver_info = (void *)1;
4987 * The BIOs added to the nestedio have already been started, remove the
4988 * count that placeheld our mbio and biodone() it if the count would
4989 * transition to 0.
4991 void
4992 nestiobuf_start(struct bio *mbio)
4994 struct buf *mbp = mbio->bio_buf;
4997 * Decrement the operations in progress counter and terminate the
4998 * I/O if this was the last bit.
5000 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
5001 if (mbp->b_flags & B_ERROR)
5002 mbp->b_resid = mbp->b_bcount;
5003 else
5004 mbp->b_resid = 0;
5005 biodone(mbio);
5010 * Set an intermediate error prior to calling nestiobuf_start()
5012 void
5013 nestiobuf_error(struct bio *mbio, int error)
5015 struct buf *mbp = mbio->bio_buf;
5017 if (error) {
5018 mbp->b_error = error;
5019 atomic_set_int(&mbp->b_flags, B_ERROR);
5024 * nestiobuf_add: setup a "nested" buffer.
5026 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
5027 * => 'bp' should be a buffer allocated by getiobuf.
5028 * => 'offset' is a byte offset in the master buffer.
5029 * => 'size' is a size in bytes of this nested buffer.
5031 void
5032 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
5034 struct buf *mbp = mbio->bio_buf;
5035 struct vnode *vp = mbp->b_vp;
5037 KKASSERT(mbp->b_bcount >= offset + size);
5039 atomic_add_int((int *)&mbio->bio_driver_info, 1);
5041 /* kernel needs to own the lock for it to be released in biodone */
5042 BUF_KERNPROC(bp);
5043 bp->b_vp = vp;
5044 bp->b_cmd = mbp->b_cmd;
5045 bp->b_bio1.bio_done = nestiobuf_iodone;
5046 bp->b_data = (char *)mbp->b_data + offset;
5047 bp->b_resid = bp->b_bcount = size;
5048 bp->b_bufsize = bp->b_bcount;
5050 bp->b_bio1.bio_track = NULL;
5051 bp->b_bio1.bio_caller_info1.ptr = mbio;
5052 bp->b_bio1.bio_caller_info2.ptr = stats;
5055 #ifdef DDB
5057 DB_SHOW_COMMAND(buffer, db_show_buffer)
5059 /* get args */
5060 struct buf *bp = (struct buf *)addr;
5062 if (!have_addr) {
5063 db_printf("usage: show buffer <addr>\n");
5064 return;
5067 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
5068 db_printf("b_cmd = %d\n", bp->b_cmd);
5069 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
5070 "b_resid = %d\n, b_data = %p, "
5071 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
5072 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5073 bp->b_data,
5074 (long long)bp->b_bio2.bio_offset,
5075 (long long)(bp->b_bio2.bio_next ?
5076 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
5077 if (bp->b_xio.xio_npages) {
5078 int i;
5079 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
5080 bp->b_xio.xio_npages);
5081 for (i = 0; i < bp->b_xio.xio_npages; i++) {
5082 vm_page_t m;
5083 m = bp->b_xio.xio_pages[i];
5084 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
5085 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
5086 if ((i + 1) < bp->b_xio.xio_npages)
5087 db_printf(",");
5089 db_printf("\n");
5092 #endif /* DDB */