2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
35 * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_extern.h>
61 #include <sys/vmmeter.h>
62 #include <sys/refcount.h>
63 #include <sys/thread2.h>
64 #include <sys/signal2.h>
65 #include <sys/spinlock2.h>
67 #include <sys/dsched.h>
69 static MALLOC_DEFINE(M_ATFORK
, "atfork", "atfork callback");
70 static MALLOC_DEFINE(M_REAPER
, "reaper", "process reapers");
73 * These are the stuctures used to create a callout list for things to do
74 * when forking a process
78 TAILQ_ENTRY(forklist
) next
;
81 TAILQ_HEAD(forklist_head
, forklist
);
82 static struct forklist_head fork_list
= TAILQ_HEAD_INITIALIZER(fork_list
);
84 static struct lwp
*lwp_fork(struct lwp
*, struct proc
*, int flags
);
86 int forksleep
; /* Place for fork1() to sleep on. */
89 * Red-Black tree support for LWPs
93 rb_lwp_compare(struct lwp
*lp1
, struct lwp
*lp2
)
95 if (lp1
->lwp_tid
< lp2
->lwp_tid
)
97 if (lp1
->lwp_tid
> lp2
->lwp_tid
)
102 RB_GENERATE2(lwp_rb_tree
, lwp
, u
.lwp_rbnode
, rb_lwp_compare
, lwpid_t
, lwp_tid
);
108 sys_fork(struct fork_args
*uap
)
110 struct lwp
*lp
= curthread
->td_lwp
;
114 error
= fork1(lp
, RFFDG
| RFPROC
| RFPGLOCK
, &p2
);
117 start_forked_proc(lp
, p2
);
118 uap
->sysmsg_fds
[0] = p2
->p_pid
;
119 uap
->sysmsg_fds
[1] = 0;
126 * vfork() system call
129 sys_vfork(struct vfork_args
*uap
)
131 struct lwp
*lp
= curthread
->td_lwp
;
135 error
= fork1(lp
, RFFDG
| RFPROC
| RFPPWAIT
| RFMEM
| RFPGLOCK
, &p2
);
138 start_forked_proc(lp
, p2
);
139 uap
->sysmsg_fds
[0] = p2
->p_pid
;
140 uap
->sysmsg_fds
[1] = 0;
147 * Handle rforks. An rfork may (1) operate on the current process without
148 * creating a new, (2) create a new process that shared the current process's
149 * vmspace, signals, and/or descriptors, or (3) create a new process that does
150 * not share these things (normal fork).
152 * Note that we only call start_forked_proc() if a new process is actually
155 * rfork { int flags }
158 sys_rfork(struct rfork_args
*uap
)
160 struct lwp
*lp
= curthread
->td_lwp
;
164 if ((uap
->flags
& RFKERNELONLY
) != 0)
167 error
= fork1(lp
, uap
->flags
| RFPGLOCK
, &p2
);
171 start_forked_proc(lp
, p2
);
172 uap
->sysmsg_fds
[0] = p2
->p_pid
;
173 uap
->sysmsg_fds
[1] = 0;
176 uap
->sysmsg_fds
[0] = 0;
177 uap
->sysmsg_fds
[1] = 0;
184 * Low level thread create used by pthreads.
187 sys_lwp_create(struct lwp_create_args
*uap
)
189 struct proc
*p
= curproc
;
191 struct lwp_params params
;
194 error
= copyin(uap
->params
, ¶ms
, sizeof(params
));
198 lwkt_gettoken(&p
->p_token
);
199 plimit_lwp_fork(p
); /* force exclusive access */
200 lp
= lwp_fork(curthread
->td_lwp
, p
, RFPROC
| RFMEM
);
201 error
= cpu_prepare_lwp(lp
, ¶ms
);
204 if (params
.lwp_tid1
!= NULL
&&
205 (error
= copyout(&lp
->lwp_tid
, params
.lwp_tid1
, sizeof(lp
->lwp_tid
))))
207 if (params
.lwp_tid2
!= NULL
&&
208 (error
= copyout(&lp
->lwp_tid
, params
.lwp_tid2
, sizeof(lp
->lwp_tid
))))
212 * Now schedule the new lwp.
214 p
->p_usched
->resetpriority(lp
);
216 lp
->lwp_stat
= LSRUN
;
217 p
->p_usched
->setrunqueue(lp
);
219 lwkt_reltoken(&p
->p_token
);
225 * Make sure no one is using this lwp, before it is removed from
226 * the tree. If we didn't wait it here, lwp tree iteration with
227 * blocking operation would be broken.
229 while (lp
->lwp_lock
> 0)
230 tsleep(lp
, 0, "lwpfail", 1);
231 lwp_rb_tree_RB_REMOVE(&p
->p_lwp_tree
, lp
);
233 /* lwp_dispose expects an exited lwp, and a held proc */
234 atomic_set_int(&lp
->lwp_mpflags
, LWP_MP_WEXIT
);
235 lp
->lwp_thread
->td_flags
|= TDF_EXITING
;
236 lwkt_remove_tdallq(lp
->lwp_thread
);
238 biosched_done(lp
->lwp_thread
);
239 dsched_exit_thread(lp
->lwp_thread
);
241 lwkt_reltoken(&p
->p_token
);
246 int nprocs
= 1; /* process 0 */
249 fork1(struct lwp
*lp1
, int flags
, struct proc
**procp
)
251 struct proc
*p1
= lp1
->lwp_proc
;
256 struct sysreaper
*reap
;
259 static int curfail
= 0;
260 static struct timeval lastfail
;
262 struct filedesc_to_leader
*fdtol
;
264 if ((flags
& (RFFDG
|RFCFDG
)) == (RFFDG
|RFCFDG
))
267 lwkt_gettoken(&p1
->p_token
);
272 * Here we don't create a new process, but we divorce
273 * certain parts of a process from itself.
275 if ((flags
& RFPROC
) == 0) {
277 * This kind of stunt does not work anymore if
278 * there are native threads (lwps) running
280 if (p1
->p_nthreads
!= 1) {
285 vm_fork(p1
, 0, flags
);
288 * Close all file descriptors.
290 if (flags
& RFCFDG
) {
291 struct filedesc
*fdtmp
;
297 * Unshare file descriptors (from parent.)
300 if (p1
->p_fd
->fd_refcnt
> 1) {
301 struct filedesc
*newfd
;
302 error
= fdcopy(p1
, &newfd
);
316 * Interlock against process group signal delivery. If signals
317 * are pending after the interlock is obtained we have to restart
318 * the system call to process the signals. If we don't the child
319 * can miss a pgsignal (such as ^C) sent during the fork.
321 * We can't use CURSIG() here because it will process any STOPs
322 * and cause the process group lock to be held indefinitely. If
323 * a STOP occurs, the fork will be restarted after the CONT.
326 if ((flags
& RFPGLOCK
) && (plkgrp
= p1
->p_pgrp
) != NULL
) {
328 lockmgr(&plkgrp
->pg_lock
, LK_SHARED
);
329 if (CURSIG_NOBLOCK(lp1
)) {
336 * Although process entries are dynamically created, we still keep
337 * a global limit on the maximum number we will create. Don't allow
338 * a nonprivileged user to use the last ten processes; don't let root
339 * exceed the limit. The variable nprocs is the current number of
340 * processes, maxproc is the limit.
342 uid
= lp1
->lwp_thread
->td_ucred
->cr_ruid
;
343 if ((nprocs
>= maxproc
- 10 && uid
!= 0) || nprocs
>= maxproc
) {
344 if (ppsratecheck(&lastfail
, &curfail
, 1))
345 kprintf("maxproc limit exceeded by uid %d, please "
346 "see tuning(7) and login.conf(5).\n", uid
);
347 tsleep(&forksleep
, 0, "fork", hz
/ 2);
353 * Increment the nprocs resource before blocking can occur. There
354 * are hard-limits as to the number of processes that can run.
356 atomic_add_int(&nprocs
, 1);
359 * Increment the count of procs running with this uid. Don't allow
360 * a nonprivileged user to exceed their current limit.
362 ok
= chgproccnt(lp1
->lwp_thread
->td_ucred
->cr_ruidinfo
, 1,
363 (uid
!= 0) ? p1
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
: 0);
366 * Back out the process count
368 atomic_add_int(&nprocs
, -1);
369 if (ppsratecheck(&lastfail
, &curfail
, 1))
370 kprintf("maxproc limit exceeded by uid %d, please "
371 "see tuning(7) and login.conf(5).\n", uid
);
372 tsleep(&forksleep
, 0, "fork", hz
/ 2);
378 * Allocate a new process, don't get fancy: zero the structure.
380 p2
= kmalloc(sizeof(struct proc
), M_PROC
, M_WAITOK
|M_ZERO
);
383 * Core initialization. SIDL is a safety state that protects the
384 * partially initialized process once it starts getting hooked
385 * into system structures and becomes addressable.
387 * We must be sure to acquire p2->p_token as well, we must hold it
388 * once the process is on the allproc list to avoid things such
389 * as competing modifications to p_flags.
391 mycpu
->gd_forkid
+= ncpus
;
392 p2
->p_forkid
= mycpu
->gd_forkid
+ mycpu
->gd_cpuid
;
393 p2
->p_lasttid
= -1; /* first tid will be 0 */
397 * NOTE: Process 0 will not have a reaper, but process 1 (init) and
398 * all other processes always will.
400 if ((reap
= p1
->p_reaper
) != NULL
) {
407 RB_INIT(&p2
->p_lwp_tree
);
408 spin_init(&p2
->p_spin
, "procfork1");
409 lwkt_token_init(&p2
->p_token
, "proc");
410 lwkt_gettoken(&p2
->p_token
);
413 * Setup linkage for kernel based threading XXX lwp. Also add the
414 * process to the allproclist.
416 * The process structure is addressable after this point.
418 if (flags
& RFTHREAD
) {
419 p2
->p_peers
= p1
->p_peers
;
421 p2
->p_leader
= p1
->p_leader
;
425 proc_add_allproc(p2
);
428 * Initialize the section which is copied verbatim from the parent.
430 bcopy(&p1
->p_startcopy
, &p2
->p_startcopy
,
431 ((caddr_t
)&p2
->p_endcopy
- (caddr_t
)&p2
->p_startcopy
));
434 * Duplicate sub-structures as needed. Increase reference counts
437 * NOTE: because we are now on the allproc list it is possible for
438 * other consumers to gain temporary references to p2
439 * (p2->p_lock can change).
441 if (p1
->p_flags
& P_PROFIL
)
443 p2
->p_ucred
= crhold(lp1
->lwp_thread
->td_ucred
);
445 if (jailed(p2
->p_ucred
))
446 p2
->p_flags
|= P_JAILED
;
449 refcount_acquire(&p2
->p_args
->ar_ref
);
451 p2
->p_usched
= p1
->p_usched
;
452 /* XXX: verify copy of the secondary iosched stuff */
453 dsched_enter_proc(p2
);
455 if (flags
& RFSIGSHARE
) {
456 p2
->p_sigacts
= p1
->p_sigacts
;
457 refcount_acquire(&p2
->p_sigacts
->ps_refcnt
);
459 p2
->p_sigacts
= kmalloc(sizeof(*p2
->p_sigacts
),
460 M_SUBPROC
, M_WAITOK
);
461 bcopy(p1
->p_sigacts
, p2
->p_sigacts
, sizeof(*p2
->p_sigacts
));
462 refcount_init(&p2
->p_sigacts
->ps_refcnt
, 1);
464 if (flags
& RFLINUXTHPN
)
465 p2
->p_sigparent
= SIGUSR1
;
467 p2
->p_sigparent
= SIGCHLD
;
469 /* bump references to the text vnode (for procfs) */
470 p2
->p_textvp
= p1
->p_textvp
;
474 /* copy namecache handle to the text file */
475 if (p1
->p_textnch
.mount
)
476 cache_copy(&p1
->p_textnch
, &p2
->p_textnch
);
479 * Handle file descriptors
481 if (flags
& RFCFDG
) {
482 p2
->p_fd
= fdinit(p1
);
484 } else if (flags
& RFFDG
) {
485 error
= fdcopy(p1
, &p2
->p_fd
);
492 p2
->p_fd
= fdshare(p1
);
493 if (p1
->p_fdtol
== NULL
) {
494 p1
->p_fdtol
= filedesc_to_leader_alloc(NULL
,
497 if ((flags
& RFTHREAD
) != 0) {
499 * Shared file descriptor table and
500 * shared process leaders.
503 fdtol
->fdl_refcount
++;
506 * Shared file descriptor table, and
507 * different process leaders
509 fdtol
= filedesc_to_leader_alloc(p1
->p_fdtol
, p2
);
513 p2
->p_limit
= plimit_fork(p1
);
516 * Preserve some more flags in subprocess. P_PROFIL has already
519 p2
->p_flags
|= p1
->p_flags
& P_SUGID
;
520 if (p1
->p_session
->s_ttyvp
!= NULL
&& (p1
->p_flags
& P_CONTROLT
))
521 p2
->p_flags
|= P_CONTROLT
;
522 if (flags
& RFPPWAIT
) {
523 p2
->p_flags
|= P_PPWAIT
;
525 atomic_add_int(&p1
->p_upmap
->invfork
, 1);
529 * Inherit the virtual kernel structure (allows a virtual kernel
530 * to fork to simulate multiple cpus).
533 vkernel_inherit(p1
, p2
);
536 * Once we are on a pglist we may receive signals. XXX we might
537 * race a ^C being sent to the process group by not receiving it
538 * at all prior to this line.
541 lwkt_gettoken(&p1grp
->pg_token
);
542 LIST_INSERT_AFTER(p1
, p2
, p_pglist
);
543 lwkt_reltoken(&p1grp
->pg_token
);
546 * Attach the new process to its parent.
548 * If RFNOWAIT is set, the newly created process becomes a child
549 * of the reaper (typically init). This effectively disassociates
550 * the child from the parent.
552 * Temporarily hold pptr for the RFNOWAIT case to avoid ripouts.
554 if (flags
& RFNOWAIT
) {
555 pptr
= reaper_get(reap
);
564 LIST_INIT(&p2
->p_children
);
566 lwkt_gettoken(&pptr
->p_token
);
567 LIST_INSERT_HEAD(&pptr
->p_children
, p2
, p_sibling
);
568 lwkt_reltoken(&pptr
->p_token
);
570 if (flags
& RFNOWAIT
)
573 varsymset_init(&p2
->p_varsymset
, &p1
->p_varsymset
);
574 callout_init_mp(&p2
->p_ithandle
);
578 * Copy traceflag and tracefile if enabled. If not inherited,
579 * these were zeroed above but we still could have a trace race
580 * so make sure p2's p_tracenode is NULL.
582 if ((p1
->p_traceflag
& KTRFAC_INHERIT
) && p2
->p_tracenode
== NULL
) {
583 p2
->p_traceflag
= p1
->p_traceflag
;
584 p2
->p_tracenode
= ktrinherit(p1
->p_tracenode
);
589 * This begins the section where we must prevent the parent
590 * from being swapped.
592 * Gets PRELE'd in the caller in start_forked_proc().
596 vm_fork(p1
, p2
, flags
);
599 * Create the first lwp associated with the new proc.
600 * It will return via a different execution path later, directly
601 * into userland, after it was put on the runq by
602 * start_forked_proc().
604 lwp_fork(lp1
, p2
, flags
);
606 if (flags
== (RFFDG
| RFPROC
| RFPGLOCK
)) {
607 mycpu
->gd_cnt
.v_forks
++;
608 mycpu
->gd_cnt
.v_forkpages
+= p2
->p_vmspace
->vm_dsize
+
609 p2
->p_vmspace
->vm_ssize
;
610 } else if (flags
== (RFFDG
| RFPROC
| RFPPWAIT
| RFMEM
| RFPGLOCK
)) {
611 mycpu
->gd_cnt
.v_vforks
++;
612 mycpu
->gd_cnt
.v_vforkpages
+= p2
->p_vmspace
->vm_dsize
+
613 p2
->p_vmspace
->vm_ssize
;
614 } else if (p1
== &proc0
) {
615 mycpu
->gd_cnt
.v_kthreads
++;
616 mycpu
->gd_cnt
.v_kthreadpages
+= p2
->p_vmspace
->vm_dsize
+
617 p2
->p_vmspace
->vm_ssize
;
619 mycpu
->gd_cnt
.v_rforks
++;
620 mycpu
->gd_cnt
.v_rforkpages
+= p2
->p_vmspace
->vm_dsize
+
621 p2
->p_vmspace
->vm_ssize
;
625 * Both processes are set up, now check if any loadable modules want
626 * to adjust anything.
627 * What if they have an error? XXX
629 TAILQ_FOREACH(ep
, &fork_list
, next
) {
630 (*ep
->function
)(p1
, p2
, flags
);
634 * Set the start time. Note that the process is not runnable. The
635 * caller is responsible for making it runnable.
637 microtime(&p2
->p_start
);
638 p2
->p_acflag
= AFORK
;
641 * tell any interested parties about the new process
643 KNOTE(&p1
->p_klist
, NOTE_FORK
| p2
->p_pid
);
646 * Return child proc pointer to parent.
652 lwkt_reltoken(&p2
->p_token
);
653 lwkt_reltoken(&p1
->p_token
);
655 lockmgr(&plkgrp
->pg_lock
, LK_RELEASE
);
662 lwp_fork(struct lwp
*origlp
, struct proc
*destproc
, int flags
)
664 globaldata_t gd
= mycpu
;
668 lp
= kmalloc(sizeof(struct lwp
), M_LWP
, M_WAITOK
|M_ZERO
);
670 lp
->lwp_proc
= destproc
;
671 lp
->lwp_vmspace
= destproc
->p_vmspace
;
672 lp
->lwp_stat
= LSRUN
;
673 bcopy(&origlp
->lwp_startcopy
, &lp
->lwp_startcopy
,
674 (unsigned) ((caddr_t
)&lp
->lwp_endcopy
-
675 (caddr_t
)&lp
->lwp_startcopy
));
678 * Reset the sigaltstack if memory is shared, otherwise inherit
682 lp
->lwp_sigstk
.ss_flags
= SS_DISABLE
;
683 lp
->lwp_sigstk
.ss_size
= 0;
684 lp
->lwp_sigstk
.ss_sp
= NULL
;
685 lp
->lwp_flags
&= ~LWP_ALTSTACK
;
687 lp
->lwp_flags
|= origlp
->lwp_flags
& LWP_ALTSTACK
;
691 * Set cpbase to the last timeout that occured (not the upcoming
694 * A critical section is required since a timer IPI can update
695 * scheduler specific data.
698 lp
->lwp_cpbase
= gd
->gd_schedclock
.time
- gd
->gd_schedclock
.periodic
;
699 destproc
->p_usched
->heuristic_forking(origlp
, lp
);
701 CPUMASK_ANDMASK(lp
->lwp_cpumask
, usched_mastermask
);
702 lwkt_token_init(&lp
->lwp_token
, "lwp_token");
703 spin_init(&lp
->lwp_spin
, "lwptoken");
706 * Assign the thread to the current cpu to begin with so we
709 td
= lwkt_alloc_thread(NULL
, LWKT_THREAD_STACK
, gd
->gd_cpuid
, 0);
711 td
->td_ucred
= crhold(destproc
->p_ucred
);
712 td
->td_proc
= destproc
;
714 td
->td_switch
= cpu_heavy_switch
;
715 #ifdef NO_LWKT_SPLIT_USERPRI
716 lwkt_setpri(td
, TDPRI_USER_NORM
);
718 lwkt_setpri(td
, TDPRI_KERN_USER
);
720 lwkt_set_comm(td
, "%s", destproc
->p_comm
);
723 * cpu_fork will copy and update the pcb, set up the kernel stack,
724 * and make the child ready to run.
726 cpu_fork(origlp
, lp
, flags
);
727 kqueue_init(&lp
->lwp_kqueue
, destproc
->p_fd
);
730 * Assign a TID to the lp. Loop until the insert succeeds (returns
733 * If we are in a vfork assign the same TID as the lwp that did the
734 * vfork(). This way if the user program messes around with
735 * pthread calls inside the vfork(), it will operate like an
736 * extension of the (blocked) parent. Also note that since the
737 * address space is being shared, insofar as pthreads is concerned,
738 * the code running in the vfork() is part of the original process.
740 if (flags
& RFPPWAIT
) {
741 lp
->lwp_tid
= origlp
->lwp_tid
- 1;
743 lp
->lwp_tid
= destproc
->p_lasttid
;
747 if (++lp
->lwp_tid
< 0)
749 } while (lwp_rb_tree_RB_INSERT(&destproc
->p_lwp_tree
, lp
) != NULL
);
751 destproc
->p_lasttid
= lp
->lwp_tid
;
752 destproc
->p_nthreads
++;
755 * This flag is set and never cleared. It means that the process
756 * was threaded at some point. Used to improve exit performance.
758 destproc
->p_flags
|= P_MAYBETHREADED
;
764 * The next two functionms are general routines to handle adding/deleting
765 * items on the fork callout list.
768 * Take the arguments given and put them onto the fork callout list,
769 * However first make sure that it's not already there.
770 * Returns 0 on success or a standard error number.
773 at_fork(forklist_fn function
)
778 /* let the programmer know if he's been stupid */
779 if (rm_at_fork(function
)) {
780 kprintf("WARNING: fork callout entry (%p) already present\n",
784 ep
= kmalloc(sizeof(*ep
), M_ATFORK
, M_WAITOK
|M_ZERO
);
785 ep
->function
= function
;
786 TAILQ_INSERT_TAIL(&fork_list
, ep
, next
);
791 * Scan the exit callout list for the given item and remove it..
792 * Returns the number of items removed (0 or 1)
795 rm_at_fork(forklist_fn function
)
799 TAILQ_FOREACH(ep
, &fork_list
, next
) {
800 if (ep
->function
== function
) {
801 TAILQ_REMOVE(&fork_list
, ep
, next
);
810 * Add a forked process to the run queue after any remaining setup, such
811 * as setting the fork handler, has been completed.
813 * p2 is held by the caller.
816 start_forked_proc(struct lwp
*lp1
, struct proc
*p2
)
818 struct lwp
*lp2
= ONLY_LWP_IN_PROC(p2
);
822 * Move from SIDL to RUN queue, and activate the process's thread.
823 * Activation of the thread effectively makes the process "a"
824 * current process, so we do not setrunqueue().
826 * YYY setrunqueue works here but we should clean up the trampoline
827 * code so we just schedule the LWKT thread and let the trampoline
828 * deal with the userland scheduler on return to userland.
830 KASSERT(p2
->p_stat
== SIDL
,
831 ("cannot start forked process, bad status: %p", p2
));
832 p2
->p_usched
->resetpriority(lp2
);
834 p2
->p_stat
= SACTIVE
;
835 lp2
->lwp_stat
= LSRUN
;
836 p2
->p_usched
->setrunqueue(lp2
);
840 * Now can be swapped.
842 PRELE(lp1
->lwp_proc
);
845 * Preserve synchronization semantics of vfork. P_PPWAIT is set in
846 * the child until it has retired the parent's resources. The parent
847 * must wait for the flag to be cleared by the child.
849 * Interlock the flag/tsleep with atomic ops to avoid unnecessary
852 * XXX Is this use of an atomic op on a field that is not normally
853 * manipulated with atomic ops ok?
855 while ((pflags
= p2
->p_flags
) & P_PPWAIT
) {
857 tsleep_interlock(lp1
->lwp_proc
, 0);
858 if (atomic_cmpset_int(&p2
->p_flags
, pflags
, pflags
))
859 tsleep(lp1
->lwp_proc
, PINTERLOCKED
, "ppwait", 0);
864 * procctl (idtype_t idtype, id_t id, int cmd, void *arg)
867 sys_procctl(struct procctl_args
*uap
)
869 struct proc
*p
= curproc
;
871 struct sysreaper
*reap
;
872 union reaper_info udata
;
875 if (uap
->idtype
!= P_PID
|| uap
->id
!= (id_t
)p
->p_pid
)
879 case PROC_REAP_ACQUIRE
:
880 lwkt_gettoken(&p
->p_token
);
881 reap
= kmalloc(sizeof(*reap
), M_REAPER
, M_WAITOK
|M_ZERO
);
882 if (p
->p_reaper
== NULL
|| p
->p_reaper
->p
!= p
) {
883 reaper_init(p
, reap
);
886 kfree(reap
, M_REAPER
);
889 lwkt_reltoken(&p
->p_token
);
891 case PROC_REAP_RELEASE
:
892 lwkt_gettoken(&p
->p_token
);
895 KKASSERT(reap
!= NULL
);
897 reaper_hold(reap
); /* in case of thread race */
898 lockmgr(&reap
->lock
, LK_EXCLUSIVE
);
900 lockmgr(&reap
->lock
, LK_RELEASE
);
905 p
->p_reaper
= reap
->parent
;
907 reaper_hold(p
->p_reaper
);
908 lockmgr(&reap
->lock
, LK_RELEASE
);
909 reaper_drop(reap
); /* our ref */
910 reaper_drop(reap
); /* old p_reaper ref */
915 lwkt_reltoken(&p
->p_token
);
917 case PROC_REAP_STATUS
:
918 bzero(&udata
, sizeof(udata
));
919 lwkt_gettoken_shared(&p
->p_token
);
920 if ((reap
= p
->p_reaper
) != NULL
&& reap
->p
== p
) {
921 udata
.status
.flags
= reap
->flags
;
922 udata
.status
.refs
= reap
->refs
- 1; /* minus ours */
924 p2
= LIST_FIRST(&p
->p_children
);
925 udata
.status
.pid_head
= p2
? p2
->p_pid
: -1;
926 lwkt_reltoken(&p
->p_token
);
929 error
= copyout(&udata
, uap
->data
,
930 sizeof(udata
.status
));
943 * Bump ref on reaper, preventing destruction
946 reaper_hold(struct sysreaper
*reap
)
948 KKASSERT(reap
->refs
> 0);
949 refcount_acquire(&reap
->refs
);
953 * Drop ref on reaper, destroy the structure on the 1->0
954 * transition and loop on the parent.
957 reaper_drop(struct sysreaper
*next
)
959 struct sysreaper
*reap
;
961 while ((reap
= next
) != NULL
) {
962 if (refcount_release(&reap
->refs
)) {
964 KKASSERT(reap
->p
== NULL
);
966 kfree(reap
, M_REAPER
);
974 * Initialize a static or newly allocated reaper structure
977 reaper_init(struct proc
*p
, struct sysreaper
*reap
)
979 reap
->parent
= p
->p_reaper
;
982 reap
->flags
= REAPER_STAT_OWNED
| REAPER_STAT_REALINIT
;
985 reap
->flags
= REAPER_STAT_OWNED
;
988 lockinit(&reap
->lock
, "subrp", 0, 0);
994 * Called with p->p_token held during exit.
996 * This is a bit simpler than RELEASE because there are no threads remaining
997 * to race. We only release if we own the reaper, the exit code will handle
998 * the final p_reaper release.
1001 reaper_exit(struct proc
*p
)
1003 struct sysreaper
*reap
;
1006 * Release acquired reaper
1008 if ((reap
= p
->p_reaper
) != NULL
&& reap
->p
== p
) {
1009 lockmgr(&reap
->lock
, LK_EXCLUSIVE
);
1010 p
->p_reaper
= reap
->parent
;
1012 reaper_hold(p
->p_reaper
);
1014 lockmgr(&reap
->lock
, LK_RELEASE
);
1019 * Return and clear reaper (caller is holding p_token for us)
1020 * (reap->p does not equal p). Caller must drop it.
1022 if ((reap
= p
->p_reaper
) != NULL
) {
1029 * Return a held (PHOLD) process representing the reaper for process (p).
1030 * NULL should not normally be returned. Caller should PRELE() the returned
1031 * reaper process when finished.
1033 * Remove dead internal nodes while we are at it.
1035 * Process (p)'s token must be held on call.
1036 * The returned process's token is NOT acquired by this routine.
1039 reaper_get(struct sysreaper
*reap
)
1041 struct sysreaper
*next
;
1042 struct proc
*reproc
;
1048 * Extra hold for loop
1053 lockmgr(&reap
->lock
, LK_SHARED
);
1061 lockmgr(&reap
->lock
, LK_RELEASE
);
1069 lockmgr(&reap
->lock
, LK_RELEASE
);
1074 * Traverse upwards in the reaper topology, destroy
1075 * dead internal nodes when possible.
1077 * NOTE: Our ref on next means that a dead node should
1078 * have 2 (ours and reap->parent's).
1080 next
= reap
->parent
;
1083 if (next
->refs
== 2 && next
->p
== NULL
) {
1084 lockmgr(&reap
->lock
, LK_RELEASE
);
1085 lockmgr(&reap
->lock
, LK_EXCLUSIVE
);
1086 if (next
->refs
== 2 &&
1087 reap
->parent
== next
&&
1090 * reap->parent inherits ref from next.
1092 reap
->parent
= next
->parent
;
1093 next
->parent
= NULL
;
1094 reaper_drop(next
); /* ours */
1095 reaper_drop(next
); /* old parent */
1096 next
= reap
->parent
;
1097 continue; /* possible chain */
1102 lockmgr(&reap
->lock
, LK_RELEASE
);