kernel - Cleanup macros
[dragonfly.git] / sys / kern / kern_fork.c
blobe4a113361db8c909aeac10adac4329e268b15842
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
35 * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
53 #include <sys/jail.h>
55 #include <vm/vm.h>
56 #include <sys/lock.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_extern.h>
61 #include <sys/vmmeter.h>
62 #include <sys/refcount.h>
63 #include <sys/thread2.h>
64 #include <sys/signal2.h>
65 #include <sys/spinlock2.h>
67 #include <sys/dsched.h>
69 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
70 static MALLOC_DEFINE(M_REAPER, "reaper", "process reapers");
73 * These are the stuctures used to create a callout list for things to do
74 * when forking a process
76 struct forklist {
77 forklist_fn function;
78 TAILQ_ENTRY(forklist) next;
81 TAILQ_HEAD(forklist_head, forklist);
82 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
84 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
86 int forksleep; /* Place for fork1() to sleep on. */
89 * Red-Black tree support for LWPs
92 static int
93 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
95 if (lp1->lwp_tid < lp2->lwp_tid)
96 return(-1);
97 if (lp1->lwp_tid > lp2->lwp_tid)
98 return(1);
99 return(0);
102 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
105 * fork() system call
108 sys_fork(struct fork_args *uap)
110 struct lwp *lp = curthread->td_lwp;
111 struct proc *p2;
112 int error;
114 error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
115 if (error == 0) {
116 PHOLD(p2);
117 start_forked_proc(lp, p2);
118 uap->sysmsg_fds[0] = p2->p_pid;
119 uap->sysmsg_fds[1] = 0;
120 PRELE(p2);
122 return error;
126 * vfork() system call
129 sys_vfork(struct vfork_args *uap)
131 struct lwp *lp = curthread->td_lwp;
132 struct proc *p2;
133 int error;
135 error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
136 if (error == 0) {
137 PHOLD(p2);
138 start_forked_proc(lp, p2);
139 uap->sysmsg_fds[0] = p2->p_pid;
140 uap->sysmsg_fds[1] = 0;
141 PRELE(p2);
143 return error;
147 * Handle rforks. An rfork may (1) operate on the current process without
148 * creating a new, (2) create a new process that shared the current process's
149 * vmspace, signals, and/or descriptors, or (3) create a new process that does
150 * not share these things (normal fork).
152 * Note that we only call start_forked_proc() if a new process is actually
153 * created.
155 * rfork { int flags }
158 sys_rfork(struct rfork_args *uap)
160 struct lwp *lp = curthread->td_lwp;
161 struct proc *p2;
162 int error;
164 if ((uap->flags & RFKERNELONLY) != 0)
165 return (EINVAL);
167 error = fork1(lp, uap->flags | RFPGLOCK, &p2);
168 if (error == 0) {
169 if (p2) {
170 PHOLD(p2);
171 start_forked_proc(lp, p2);
172 uap->sysmsg_fds[0] = p2->p_pid;
173 uap->sysmsg_fds[1] = 0;
174 PRELE(p2);
175 } else {
176 uap->sysmsg_fds[0] = 0;
177 uap->sysmsg_fds[1] = 0;
180 return error;
184 * Low level thread create used by pthreads.
187 sys_lwp_create(struct lwp_create_args *uap)
189 struct proc *p = curproc;
190 struct lwp *lp;
191 struct lwp_params params;
192 int error;
194 error = copyin(uap->params, &params, sizeof(params));
195 if (error)
196 goto fail2;
198 lwkt_gettoken(&p->p_token);
199 plimit_lwp_fork(p); /* force exclusive access */
200 lp = lwp_fork(curthread->td_lwp, p, RFPROC | RFMEM);
201 error = cpu_prepare_lwp(lp, &params);
202 if (error)
203 goto fail;
204 if (params.lwp_tid1 != NULL &&
205 (error = copyout(&lp->lwp_tid, params.lwp_tid1, sizeof(lp->lwp_tid))))
206 goto fail;
207 if (params.lwp_tid2 != NULL &&
208 (error = copyout(&lp->lwp_tid, params.lwp_tid2, sizeof(lp->lwp_tid))))
209 goto fail;
212 * Now schedule the new lwp.
214 p->p_usched->resetpriority(lp);
215 crit_enter();
216 lp->lwp_stat = LSRUN;
217 p->p_usched->setrunqueue(lp);
218 crit_exit();
219 lwkt_reltoken(&p->p_token);
221 return (0);
223 fail:
225 * Make sure no one is using this lwp, before it is removed from
226 * the tree. If we didn't wait it here, lwp tree iteration with
227 * blocking operation would be broken.
229 while (lp->lwp_lock > 0)
230 tsleep(lp, 0, "lwpfail", 1);
231 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
232 --p->p_nthreads;
233 /* lwp_dispose expects an exited lwp, and a held proc */
234 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
235 lp->lwp_thread->td_flags |= TDF_EXITING;
236 lwkt_remove_tdallq(lp->lwp_thread);
237 PHOLD(p);
238 biosched_done(lp->lwp_thread);
239 dsched_exit_thread(lp->lwp_thread);
240 lwp_dispose(lp);
241 lwkt_reltoken(&p->p_token);
242 fail2:
243 return (error);
246 int nprocs = 1; /* process 0 */
249 fork1(struct lwp *lp1, int flags, struct proc **procp)
251 struct proc *p1 = lp1->lwp_proc;
252 struct proc *p2;
253 struct proc *pptr;
254 struct pgrp *p1grp;
255 struct pgrp *plkgrp;
256 struct sysreaper *reap;
257 uid_t uid;
258 int ok, error;
259 static int curfail = 0;
260 static struct timeval lastfail;
261 struct forklist *ep;
262 struct filedesc_to_leader *fdtol;
264 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
265 return (EINVAL);
267 lwkt_gettoken(&p1->p_token);
268 plkgrp = NULL;
269 p2 = NULL;
272 * Here we don't create a new process, but we divorce
273 * certain parts of a process from itself.
275 if ((flags & RFPROC) == 0) {
277 * This kind of stunt does not work anymore if
278 * there are native threads (lwps) running
280 if (p1->p_nthreads != 1) {
281 error = EINVAL;
282 goto done;
285 vm_fork(p1, 0, flags);
288 * Close all file descriptors.
290 if (flags & RFCFDG) {
291 struct filedesc *fdtmp;
292 fdtmp = fdinit(p1);
293 fdfree(p1, fdtmp);
297 * Unshare file descriptors (from parent.)
299 if (flags & RFFDG) {
300 if (p1->p_fd->fd_refcnt > 1) {
301 struct filedesc *newfd;
302 error = fdcopy(p1, &newfd);
303 if (error != 0) {
304 error = ENOMEM;
305 goto done;
307 fdfree(p1, newfd);
310 *procp = NULL;
311 error = 0;
312 goto done;
316 * Interlock against process group signal delivery. If signals
317 * are pending after the interlock is obtained we have to restart
318 * the system call to process the signals. If we don't the child
319 * can miss a pgsignal (such as ^C) sent during the fork.
321 * We can't use CURSIG() here because it will process any STOPs
322 * and cause the process group lock to be held indefinitely. If
323 * a STOP occurs, the fork will be restarted after the CONT.
325 p1grp = p1->p_pgrp;
326 if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
327 pgref(plkgrp);
328 lockmgr(&plkgrp->pg_lock, LK_SHARED);
329 if (CURSIG_NOBLOCK(lp1)) {
330 error = ERESTART;
331 goto done;
336 * Although process entries are dynamically created, we still keep
337 * a global limit on the maximum number we will create. Don't allow
338 * a nonprivileged user to use the last ten processes; don't let root
339 * exceed the limit. The variable nprocs is the current number of
340 * processes, maxproc is the limit.
342 uid = lp1->lwp_thread->td_ucred->cr_ruid;
343 if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
344 if (ppsratecheck(&lastfail, &curfail, 1))
345 kprintf("maxproc limit exceeded by uid %d, please "
346 "see tuning(7) and login.conf(5).\n", uid);
347 tsleep(&forksleep, 0, "fork", hz / 2);
348 error = EAGAIN;
349 goto done;
353 * Increment the nprocs resource before blocking can occur. There
354 * are hard-limits as to the number of processes that can run.
356 atomic_add_int(&nprocs, 1);
359 * Increment the count of procs running with this uid. Don't allow
360 * a nonprivileged user to exceed their current limit.
362 ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
363 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
364 if (!ok) {
366 * Back out the process count
368 atomic_add_int(&nprocs, -1);
369 if (ppsratecheck(&lastfail, &curfail, 1))
370 kprintf("maxproc limit exceeded by uid %d, please "
371 "see tuning(7) and login.conf(5).\n", uid);
372 tsleep(&forksleep, 0, "fork", hz / 2);
373 error = EAGAIN;
374 goto done;
378 * Allocate a new process, don't get fancy: zero the structure.
380 p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
383 * Core initialization. SIDL is a safety state that protects the
384 * partially initialized process once it starts getting hooked
385 * into system structures and becomes addressable.
387 * We must be sure to acquire p2->p_token as well, we must hold it
388 * once the process is on the allproc list to avoid things such
389 * as competing modifications to p_flags.
391 mycpu->gd_forkid += ncpus;
392 p2->p_forkid = mycpu->gd_forkid + mycpu->gd_cpuid;
393 p2->p_lasttid = -1; /* first tid will be 0 */
394 p2->p_stat = SIDL;
397 * NOTE: Process 0 will not have a reaper, but process 1 (init) and
398 * all other processes always will.
400 if ((reap = p1->p_reaper) != NULL) {
401 reaper_hold(reap);
402 p2->p_reaper = reap;
403 } else {
404 p2->p_reaper = NULL;
407 RB_INIT(&p2->p_lwp_tree);
408 spin_init(&p2->p_spin, "procfork1");
409 lwkt_token_init(&p2->p_token, "proc");
410 lwkt_gettoken(&p2->p_token);
413 * Setup linkage for kernel based threading XXX lwp. Also add the
414 * process to the allproclist.
416 * The process structure is addressable after this point.
418 if (flags & RFTHREAD) {
419 p2->p_peers = p1->p_peers;
420 p1->p_peers = p2;
421 p2->p_leader = p1->p_leader;
422 } else {
423 p2->p_leader = p2;
425 proc_add_allproc(p2);
428 * Initialize the section which is copied verbatim from the parent.
430 bcopy(&p1->p_startcopy, &p2->p_startcopy,
431 ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
434 * Duplicate sub-structures as needed. Increase reference counts
435 * on shared objects.
437 * NOTE: because we are now on the allproc list it is possible for
438 * other consumers to gain temporary references to p2
439 * (p2->p_lock can change).
441 if (p1->p_flags & P_PROFIL)
442 startprofclock(p2);
443 p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
445 if (jailed(p2->p_ucred))
446 p2->p_flags |= P_JAILED;
448 if (p2->p_args)
449 refcount_acquire(&p2->p_args->ar_ref);
451 p2->p_usched = p1->p_usched;
452 /* XXX: verify copy of the secondary iosched stuff */
453 dsched_enter_proc(p2);
455 if (flags & RFSIGSHARE) {
456 p2->p_sigacts = p1->p_sigacts;
457 refcount_acquire(&p2->p_sigacts->ps_refcnt);
458 } else {
459 p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
460 M_SUBPROC, M_WAITOK);
461 bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
462 refcount_init(&p2->p_sigacts->ps_refcnt, 1);
464 if (flags & RFLINUXTHPN)
465 p2->p_sigparent = SIGUSR1;
466 else
467 p2->p_sigparent = SIGCHLD;
469 /* bump references to the text vnode (for procfs) */
470 p2->p_textvp = p1->p_textvp;
471 if (p2->p_textvp)
472 vref(p2->p_textvp);
474 /* copy namecache handle to the text file */
475 if (p1->p_textnch.mount)
476 cache_copy(&p1->p_textnch, &p2->p_textnch);
479 * Handle file descriptors
481 if (flags & RFCFDG) {
482 p2->p_fd = fdinit(p1);
483 fdtol = NULL;
484 } else if (flags & RFFDG) {
485 error = fdcopy(p1, &p2->p_fd);
486 if (error != 0) {
487 error = ENOMEM;
488 goto done;
490 fdtol = NULL;
491 } else {
492 p2->p_fd = fdshare(p1);
493 if (p1->p_fdtol == NULL) {
494 p1->p_fdtol = filedesc_to_leader_alloc(NULL,
495 p1->p_leader);
497 if ((flags & RFTHREAD) != 0) {
499 * Shared file descriptor table and
500 * shared process leaders.
502 fdtol = p1->p_fdtol;
503 fdtol->fdl_refcount++;
504 } else {
506 * Shared file descriptor table, and
507 * different process leaders
509 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
512 p2->p_fdtol = fdtol;
513 p2->p_limit = plimit_fork(p1);
516 * Preserve some more flags in subprocess. P_PROFIL has already
517 * been preserved.
519 p2->p_flags |= p1->p_flags & P_SUGID;
520 if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
521 p2->p_flags |= P_CONTROLT;
522 if (flags & RFPPWAIT) {
523 p2->p_flags |= P_PPWAIT;
524 if (p1->p_upmap)
525 atomic_add_int(&p1->p_upmap->invfork, 1);
529 * Inherit the virtual kernel structure (allows a virtual kernel
530 * to fork to simulate multiple cpus).
532 if (p1->p_vkernel)
533 vkernel_inherit(p1, p2);
536 * Once we are on a pglist we may receive signals. XXX we might
537 * race a ^C being sent to the process group by not receiving it
538 * at all prior to this line.
540 pgref(p1grp);
541 lwkt_gettoken(&p1grp->pg_token);
542 LIST_INSERT_AFTER(p1, p2, p_pglist);
543 lwkt_reltoken(&p1grp->pg_token);
546 * Attach the new process to its parent.
548 * If RFNOWAIT is set, the newly created process becomes a child
549 * of the reaper (typically init). This effectively disassociates
550 * the child from the parent.
552 * Temporarily hold pptr for the RFNOWAIT case to avoid ripouts.
554 if (flags & RFNOWAIT) {
555 pptr = reaper_get(reap);
556 if (pptr == NULL) {
557 pptr = initproc;
558 PHOLD(pptr);
560 } else {
561 pptr = p1;
563 p2->p_pptr = pptr;
564 LIST_INIT(&p2->p_children);
566 lwkt_gettoken(&pptr->p_token);
567 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
568 lwkt_reltoken(&pptr->p_token);
570 if (flags & RFNOWAIT)
571 PRELE(pptr);
573 varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
574 callout_init_mp(&p2->p_ithandle);
576 #ifdef KTRACE
578 * Copy traceflag and tracefile if enabled. If not inherited,
579 * these were zeroed above but we still could have a trace race
580 * so make sure p2's p_tracenode is NULL.
582 if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
583 p2->p_traceflag = p1->p_traceflag;
584 p2->p_tracenode = ktrinherit(p1->p_tracenode);
586 #endif
589 * This begins the section where we must prevent the parent
590 * from being swapped.
592 * Gets PRELE'd in the caller in start_forked_proc().
594 PHOLD(p1);
596 vm_fork(p1, p2, flags);
599 * Create the first lwp associated with the new proc.
600 * It will return via a different execution path later, directly
601 * into userland, after it was put on the runq by
602 * start_forked_proc().
604 lwp_fork(lp1, p2, flags);
606 if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
607 mycpu->gd_cnt.v_forks++;
608 mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
609 p2->p_vmspace->vm_ssize;
610 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
611 mycpu->gd_cnt.v_vforks++;
612 mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
613 p2->p_vmspace->vm_ssize;
614 } else if (p1 == &proc0) {
615 mycpu->gd_cnt.v_kthreads++;
616 mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
617 p2->p_vmspace->vm_ssize;
618 } else {
619 mycpu->gd_cnt.v_rforks++;
620 mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
621 p2->p_vmspace->vm_ssize;
625 * Both processes are set up, now check if any loadable modules want
626 * to adjust anything.
627 * What if they have an error? XXX
629 TAILQ_FOREACH(ep, &fork_list, next) {
630 (*ep->function)(p1, p2, flags);
634 * Set the start time. Note that the process is not runnable. The
635 * caller is responsible for making it runnable.
637 microtime(&p2->p_start);
638 p2->p_acflag = AFORK;
641 * tell any interested parties about the new process
643 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
646 * Return child proc pointer to parent.
648 *procp = p2;
649 error = 0;
650 done:
651 if (p2)
652 lwkt_reltoken(&p2->p_token);
653 lwkt_reltoken(&p1->p_token);
654 if (plkgrp) {
655 lockmgr(&plkgrp->pg_lock, LK_RELEASE);
656 pgrel(plkgrp);
658 return (error);
661 static struct lwp *
662 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
664 globaldata_t gd = mycpu;
665 struct lwp *lp;
666 struct thread *td;
668 lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
670 lp->lwp_proc = destproc;
671 lp->lwp_vmspace = destproc->p_vmspace;
672 lp->lwp_stat = LSRUN;
673 bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
674 (unsigned) ((caddr_t)&lp->lwp_endcopy -
675 (caddr_t)&lp->lwp_startcopy));
678 * Reset the sigaltstack if memory is shared, otherwise inherit
679 * it.
681 if (flags & RFMEM) {
682 lp->lwp_sigstk.ss_flags = SS_DISABLE;
683 lp->lwp_sigstk.ss_size = 0;
684 lp->lwp_sigstk.ss_sp = NULL;
685 lp->lwp_flags &= ~LWP_ALTSTACK;
686 } else {
687 lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
691 * Set cpbase to the last timeout that occured (not the upcoming
692 * timeout).
694 * A critical section is required since a timer IPI can update
695 * scheduler specific data.
697 crit_enter();
698 lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
699 destproc->p_usched->heuristic_forking(origlp, lp);
700 crit_exit();
701 CPUMASK_ANDMASK(lp->lwp_cpumask, usched_mastermask);
702 lwkt_token_init(&lp->lwp_token, "lwp_token");
703 spin_init(&lp->lwp_spin, "lwptoken");
706 * Assign the thread to the current cpu to begin with so we
707 * can manipulate it.
709 td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
710 lp->lwp_thread = td;
711 td->td_ucred = crhold(destproc->p_ucred);
712 td->td_proc = destproc;
713 td->td_lwp = lp;
714 td->td_switch = cpu_heavy_switch;
715 #ifdef NO_LWKT_SPLIT_USERPRI
716 lwkt_setpri(td, TDPRI_USER_NORM);
717 #else
718 lwkt_setpri(td, TDPRI_KERN_USER);
719 #endif
720 lwkt_set_comm(td, "%s", destproc->p_comm);
723 * cpu_fork will copy and update the pcb, set up the kernel stack,
724 * and make the child ready to run.
726 cpu_fork(origlp, lp, flags);
727 kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
730 * Assign a TID to the lp. Loop until the insert succeeds (returns
731 * NULL).
733 * If we are in a vfork assign the same TID as the lwp that did the
734 * vfork(). This way if the user program messes around with
735 * pthread calls inside the vfork(), it will operate like an
736 * extension of the (blocked) parent. Also note that since the
737 * address space is being shared, insofar as pthreads is concerned,
738 * the code running in the vfork() is part of the original process.
740 if (flags & RFPPWAIT) {
741 lp->lwp_tid = origlp->lwp_tid - 1;
742 } else {
743 lp->lwp_tid = destproc->p_lasttid;
746 do {
747 if (++lp->lwp_tid < 0)
748 lp->lwp_tid = 1;
749 } while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
751 destproc->p_lasttid = lp->lwp_tid;
752 destproc->p_nthreads++;
755 * This flag is set and never cleared. It means that the process
756 * was threaded at some point. Used to improve exit performance.
758 destproc->p_flags |= P_MAYBETHREADED;
760 return (lp);
764 * The next two functionms are general routines to handle adding/deleting
765 * items on the fork callout list.
767 * at_fork():
768 * Take the arguments given and put them onto the fork callout list,
769 * However first make sure that it's not already there.
770 * Returns 0 on success or a standard error number.
773 at_fork(forklist_fn function)
775 struct forklist *ep;
777 #ifdef INVARIANTS
778 /* let the programmer know if he's been stupid */
779 if (rm_at_fork(function)) {
780 kprintf("WARNING: fork callout entry (%p) already present\n",
781 function);
783 #endif
784 ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
785 ep->function = function;
786 TAILQ_INSERT_TAIL(&fork_list, ep, next);
787 return (0);
791 * Scan the exit callout list for the given item and remove it..
792 * Returns the number of items removed (0 or 1)
795 rm_at_fork(forklist_fn function)
797 struct forklist *ep;
799 TAILQ_FOREACH(ep, &fork_list, next) {
800 if (ep->function == function) {
801 TAILQ_REMOVE(&fork_list, ep, next);
802 kfree(ep, M_ATFORK);
803 return(1);
806 return (0);
810 * Add a forked process to the run queue after any remaining setup, such
811 * as setting the fork handler, has been completed.
813 * p2 is held by the caller.
815 void
816 start_forked_proc(struct lwp *lp1, struct proc *p2)
818 struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
819 int pflags;
822 * Move from SIDL to RUN queue, and activate the process's thread.
823 * Activation of the thread effectively makes the process "a"
824 * current process, so we do not setrunqueue().
826 * YYY setrunqueue works here but we should clean up the trampoline
827 * code so we just schedule the LWKT thread and let the trampoline
828 * deal with the userland scheduler on return to userland.
830 KASSERT(p2->p_stat == SIDL,
831 ("cannot start forked process, bad status: %p", p2));
832 p2->p_usched->resetpriority(lp2);
833 crit_enter();
834 p2->p_stat = SACTIVE;
835 lp2->lwp_stat = LSRUN;
836 p2->p_usched->setrunqueue(lp2);
837 crit_exit();
840 * Now can be swapped.
842 PRELE(lp1->lwp_proc);
845 * Preserve synchronization semantics of vfork. P_PPWAIT is set in
846 * the child until it has retired the parent's resources. The parent
847 * must wait for the flag to be cleared by the child.
849 * Interlock the flag/tsleep with atomic ops to avoid unnecessary
850 * p_token conflicts.
852 * XXX Is this use of an atomic op on a field that is not normally
853 * manipulated with atomic ops ok?
855 while ((pflags = p2->p_flags) & P_PPWAIT) {
856 cpu_ccfence();
857 tsleep_interlock(lp1->lwp_proc, 0);
858 if (atomic_cmpset_int(&p2->p_flags, pflags, pflags))
859 tsleep(lp1->lwp_proc, PINTERLOCKED, "ppwait", 0);
864 * procctl (idtype_t idtype, id_t id, int cmd, void *arg)
867 sys_procctl(struct procctl_args *uap)
869 struct proc *p = curproc;
870 struct proc *p2;
871 struct sysreaper *reap;
872 union reaper_info udata;
873 int error;
875 if (uap->idtype != P_PID || uap->id != (id_t)p->p_pid)
876 return EINVAL;
878 switch(uap->cmd) {
879 case PROC_REAP_ACQUIRE:
880 lwkt_gettoken(&p->p_token);
881 reap = kmalloc(sizeof(*reap), M_REAPER, M_WAITOK|M_ZERO);
882 if (p->p_reaper == NULL || p->p_reaper->p != p) {
883 reaper_init(p, reap);
884 error = 0;
885 } else {
886 kfree(reap, M_REAPER);
887 error = EALREADY;
889 lwkt_reltoken(&p->p_token);
890 break;
891 case PROC_REAP_RELEASE:
892 lwkt_gettoken(&p->p_token);
893 release_again:
894 reap = p->p_reaper;
895 KKASSERT(reap != NULL);
896 if (reap->p == p) {
897 reaper_hold(reap); /* in case of thread race */
898 lockmgr(&reap->lock, LK_EXCLUSIVE);
899 if (reap->p != p) {
900 lockmgr(&reap->lock, LK_RELEASE);
901 reaper_drop(reap);
902 goto release_again;
904 reap->p = NULL;
905 p->p_reaper = reap->parent;
906 if (p->p_reaper)
907 reaper_hold(p->p_reaper);
908 lockmgr(&reap->lock, LK_RELEASE);
909 reaper_drop(reap); /* our ref */
910 reaper_drop(reap); /* old p_reaper ref */
911 error = 0;
912 } else {
913 error = ENOTCONN;
915 lwkt_reltoken(&p->p_token);
916 break;
917 case PROC_REAP_STATUS:
918 bzero(&udata, sizeof(udata));
919 lwkt_gettoken_shared(&p->p_token);
920 if ((reap = p->p_reaper) != NULL && reap->p == p) {
921 udata.status.flags = reap->flags;
922 udata.status.refs = reap->refs - 1; /* minus ours */
924 p2 = LIST_FIRST(&p->p_children);
925 udata.status.pid_head = p2 ? p2->p_pid : -1;
926 lwkt_reltoken(&p->p_token);
928 if (uap->data) {
929 error = copyout(&udata, uap->data,
930 sizeof(udata.status));
931 } else {
932 error = 0;
934 break;
935 default:
936 error = EINVAL;
937 break;
939 return error;
943 * Bump ref on reaper, preventing destruction
945 void
946 reaper_hold(struct sysreaper *reap)
948 KKASSERT(reap->refs > 0);
949 refcount_acquire(&reap->refs);
953 * Drop ref on reaper, destroy the structure on the 1->0
954 * transition and loop on the parent.
956 void
957 reaper_drop(struct sysreaper *next)
959 struct sysreaper *reap;
961 while ((reap = next) != NULL) {
962 if (refcount_release(&reap->refs)) {
963 next = reap->parent;
964 KKASSERT(reap->p == NULL);
965 reap->parent = NULL;
966 kfree(reap, M_REAPER);
967 } else {
968 next = NULL;
974 * Initialize a static or newly allocated reaper structure
976 void
977 reaper_init(struct proc *p, struct sysreaper *reap)
979 reap->parent = p->p_reaper;
980 reap->p = p;
981 if (p == initproc) {
982 reap->flags = REAPER_STAT_OWNED | REAPER_STAT_REALINIT;
983 reap->refs = 2;
984 } else {
985 reap->flags = REAPER_STAT_OWNED;
986 reap->refs = 1;
988 lockinit(&reap->lock, "subrp", 0, 0);
989 cpu_sfence();
990 p->p_reaper = reap;
994 * Called with p->p_token held during exit.
996 * This is a bit simpler than RELEASE because there are no threads remaining
997 * to race. We only release if we own the reaper, the exit code will handle
998 * the final p_reaper release.
1000 struct sysreaper *
1001 reaper_exit(struct proc *p)
1003 struct sysreaper *reap;
1006 * Release acquired reaper
1008 if ((reap = p->p_reaper) != NULL && reap->p == p) {
1009 lockmgr(&reap->lock, LK_EXCLUSIVE);
1010 p->p_reaper = reap->parent;
1011 if (p->p_reaper)
1012 reaper_hold(p->p_reaper);
1013 reap->p = NULL;
1014 lockmgr(&reap->lock, LK_RELEASE);
1015 reaper_drop(reap);
1019 * Return and clear reaper (caller is holding p_token for us)
1020 * (reap->p does not equal p). Caller must drop it.
1022 if ((reap = p->p_reaper) != NULL) {
1023 p->p_reaper = NULL;
1025 return reap;
1029 * Return a held (PHOLD) process representing the reaper for process (p).
1030 * NULL should not normally be returned. Caller should PRELE() the returned
1031 * reaper process when finished.
1033 * Remove dead internal nodes while we are at it.
1035 * Process (p)'s token must be held on call.
1036 * The returned process's token is NOT acquired by this routine.
1038 struct proc *
1039 reaper_get(struct sysreaper *reap)
1041 struct sysreaper *next;
1042 struct proc *reproc;
1044 if (reap == NULL)
1045 return NULL;
1048 * Extra hold for loop
1050 reaper_hold(reap);
1052 while (reap) {
1053 lockmgr(&reap->lock, LK_SHARED);
1054 if (reap->p) {
1056 * Probable reaper
1058 if (reap->p) {
1059 reproc = reap->p;
1060 PHOLD(reproc);
1061 lockmgr(&reap->lock, LK_RELEASE);
1062 reaper_drop(reap);
1063 return reproc;
1067 * Raced, try again
1069 lockmgr(&reap->lock, LK_RELEASE);
1070 continue;
1074 * Traverse upwards in the reaper topology, destroy
1075 * dead internal nodes when possible.
1077 * NOTE: Our ref on next means that a dead node should
1078 * have 2 (ours and reap->parent's).
1080 next = reap->parent;
1081 while (next) {
1082 reaper_hold(next);
1083 if (next->refs == 2 && next->p == NULL) {
1084 lockmgr(&reap->lock, LK_RELEASE);
1085 lockmgr(&reap->lock, LK_EXCLUSIVE);
1086 if (next->refs == 2 &&
1087 reap->parent == next &&
1088 next->p == NULL) {
1090 * reap->parent inherits ref from next.
1092 reap->parent = next->parent;
1093 next->parent = NULL;
1094 reaper_drop(next); /* ours */
1095 reaper_drop(next); /* old parent */
1096 next = reap->parent;
1097 continue; /* possible chain */
1100 break;
1102 lockmgr(&reap->lock, LK_RELEASE);
1103 reaper_drop(reap);
1104 reap = next;
1106 return NULL;