tcp6: Implement pru_savefaddr
[dragonfly.git] / sys / netinet / tcp_syncache.c
blobdef7d7a4fdd364b893ebdc291b02cbd27b065f34
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
57 * permission.
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72 * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.35 2008/11/22 11:03:35 sephe Exp $
75 #include "opt_inet.h"
76 #include "opt_inet6.h"
77 #include "opt_ipsec.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/md5.h>
86 #include <sys/proc.h> /* for proc0 declaration */
87 #include <sys/random.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/in_cksum.h>
92 #include <sys/msgport2.h>
93 #include <net/netmsg2.h>
95 #include <net/if.h>
96 #include <net/route.h>
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define IPSEC
134 #endif /*FAST_IPSEC*/
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138 &tcp_syncookies, 0,
139 "Use TCP SYN cookies if the syncache overflows");
141 static void syncache_drop(struct syncache *, struct syncache_head *);
142 static void syncache_free(struct syncache *);
143 static void syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int syncache_respond(struct syncache *, struct mbuf *);
146 static struct socket *syncache_socket(struct syncache *, struct socket *,
147 struct mbuf *);
148 static void syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 struct tcphdr *, struct socket *);
154 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
156 * the odds are that the user has given up attempting to connect by then.
158 #define SYNCACHE_MAXREXMTS 3
160 /* Arbitrary values */
161 #define TCP_SYNCACHE_HASHSIZE 512
162 #define TCP_SYNCACHE_BUCKETLIMIT 30
164 struct netmsg_sc_timer {
165 struct netmsg_base base;
166 struct msgrec *nm_mrec; /* back pointer to containing msgrec */
169 struct msgrec {
170 struct netmsg_sc_timer msg;
171 lwkt_port_t port; /* constant after init */
172 int slot; /* constant after init */
175 static void syncache_timer_handler(netmsg_t);
177 struct tcp_syncache {
178 u_int hashsize;
179 u_int hashmask;
180 u_int bucket_limit;
181 u_int cache_limit;
182 u_int rexmt_limit;
183 u_int hash_secret;
185 static struct tcp_syncache tcp_syncache;
187 TAILQ_HEAD(syncache_list, syncache);
189 struct tcp_syncache_percpu {
190 struct syncache_head *hashbase;
191 u_int cache_count;
192 struct syncache_list timerq[SYNCACHE_MAXREXMTS + 1];
193 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
194 struct msgrec mrec[SYNCACHE_MAXREXMTS + 1];
196 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
198 static struct lwkt_port syncache_null_rport;
200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
203 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
205 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
206 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
208 /* XXX JH */
209 #if 0
210 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
211 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
212 #endif
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
215 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
217 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
218 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
220 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
222 #define SYNCACHE_HASH(inc, mask) \
223 ((tcp_syncache.hash_secret ^ \
224 (inc)->inc_faddr.s_addr ^ \
225 ((inc)->inc_faddr.s_addr >> 16) ^ \
226 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
228 #define SYNCACHE_HASH6(inc, mask) \
229 ((tcp_syncache.hash_secret ^ \
230 (inc)->inc6_faddr.s6_addr32[0] ^ \
231 (inc)->inc6_faddr.s6_addr32[3] ^ \
232 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
234 #define ENDPTS_EQ(a, b) ( \
235 (a)->ie_fport == (b)->ie_fport && \
236 (a)->ie_lport == (b)->ie_lport && \
237 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
238 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
241 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
243 static __inline void
244 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
245 struct syncache *sc, int slot)
247 sc->sc_rxtslot = slot;
248 sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
249 TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
250 if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
251 callout_reset(&syncache_percpu->tt_timerq[slot],
252 TCPTV_RTOBASE * tcp_backoff[slot],
253 syncache_timer,
254 &syncache_percpu->mrec[slot]);
258 static void
259 syncache_free(struct syncache *sc)
261 struct rtentry *rt;
262 #ifdef INET6
263 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
264 #else
265 const boolean_t isipv6 = FALSE;
266 #endif
268 if (sc->sc_ipopts)
269 m_free(sc->sc_ipopts);
271 rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
272 if (rt != NULL) {
274 * If this is the only reference to a protocol-cloned
275 * route, remove it immediately.
277 if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
278 rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
279 rt_mask(rt), rt->rt_flags, NULL);
280 RTFREE(rt);
282 kfree(sc, M_SYNCACHE);
285 void
286 syncache_init(void)
288 int i, cpu;
290 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
291 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
292 tcp_syncache.cache_limit =
293 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
294 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
295 tcp_syncache.hash_secret = karc4random();
297 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
298 &tcp_syncache.hashsize);
299 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
300 &tcp_syncache.cache_limit);
301 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
302 &tcp_syncache.bucket_limit);
303 if (!powerof2(tcp_syncache.hashsize)) {
304 kprintf("WARNING: syncache hash size is not a power of 2.\n");
305 tcp_syncache.hashsize = 512; /* safe default */
307 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
309 lwkt_initport_replyonly_null(&syncache_null_rport);
311 for (cpu = 0; cpu < ncpus2; cpu++) {
312 struct tcp_syncache_percpu *syncache_percpu;
314 syncache_percpu = &tcp_syncache_percpu[cpu];
315 /* Allocate the hash table. */
316 MALLOC(syncache_percpu->hashbase, struct syncache_head *,
317 tcp_syncache.hashsize * sizeof(struct syncache_head),
318 M_SYNCACHE, M_WAITOK);
320 /* Initialize the hash buckets. */
321 for (i = 0; i < tcp_syncache.hashsize; i++) {
322 struct syncache_head *bucket;
324 bucket = &syncache_percpu->hashbase[i];
325 TAILQ_INIT(&bucket->sch_bucket);
326 bucket->sch_length = 0;
329 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
330 /* Initialize the timer queues. */
331 TAILQ_INIT(&syncache_percpu->timerq[i]);
332 callout_init_mp(&syncache_percpu->tt_timerq[i]);
334 syncache_percpu->mrec[i].slot = i;
335 syncache_percpu->mrec[i].port = cpu_portfn(cpu);
336 syncache_percpu->mrec[i].msg.nm_mrec =
337 &syncache_percpu->mrec[i];
338 netmsg_init(&syncache_percpu->mrec[i].msg.base,
339 NULL, &syncache_null_rport,
340 0, syncache_timer_handler);
345 static void
346 syncache_insert(struct syncache *sc, struct syncache_head *sch)
348 struct tcp_syncache_percpu *syncache_percpu;
349 struct syncache *sc2;
350 int i;
352 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
355 * Make sure that we don't overflow the per-bucket
356 * limit or the total cache size limit.
358 if (sch->sch_length >= tcp_syncache.bucket_limit) {
360 * The bucket is full, toss the oldest element.
362 sc2 = TAILQ_FIRST(&sch->sch_bucket);
363 sc2->sc_tp->ts_recent = ticks;
364 syncache_drop(sc2, sch);
365 tcpstat.tcps_sc_bucketoverflow++;
366 } else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
368 * The cache is full. Toss the oldest entry in the
369 * entire cache. This is the front entry in the
370 * first non-empty timer queue with the largest
371 * timeout value.
373 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
374 sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
375 while (sc2 && (sc2->sc_flags & SCF_MARKER))
376 sc2 = TAILQ_NEXT(sc2, sc_timerq);
377 if (sc2 != NULL)
378 break;
380 sc2->sc_tp->ts_recent = ticks;
381 syncache_drop(sc2, NULL);
382 tcpstat.tcps_sc_cacheoverflow++;
385 /* Initialize the entry's timer. */
386 syncache_timeout(syncache_percpu, sc, 0);
388 /* Put it into the bucket. */
389 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
390 sch->sch_length++;
391 syncache_percpu->cache_count++;
392 tcpstat.tcps_sc_added++;
395 void
396 syncache_destroy(struct tcpcb *tp)
398 struct tcp_syncache_percpu *syncache_percpu;
399 struct syncache_head *bucket;
400 struct syncache *sc;
401 int i;
403 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
404 sc = NULL;
406 for (i = 0; i < tcp_syncache.hashsize; i++) {
407 bucket = &syncache_percpu->hashbase[i];
408 TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
409 if (sc->sc_tp == tp)
410 sc->sc_tp = NULL;
415 static void
416 syncache_drop(struct syncache *sc, struct syncache_head *sch)
418 struct tcp_syncache_percpu *syncache_percpu;
419 #ifdef INET6
420 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
421 #else
422 const boolean_t isipv6 = FALSE;
423 #endif
425 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
427 if (sch == NULL) {
428 if (isipv6) {
429 sch = &syncache_percpu->hashbase[
430 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
431 } else {
432 sch = &syncache_percpu->hashbase[
433 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
437 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
438 sch->sch_length--;
439 syncache_percpu->cache_count--;
442 * Cleanup
444 if (sc->sc_tp)
445 sc->sc_tp = NULL;
448 * Remove the entry from the syncache timer/timeout queue. Note
449 * that we do not try to stop any running timer since we do not know
450 * whether the timer's message is in-transit or not. Since timeouts
451 * are fairly long, taking an unneeded callout does not detrimentally
452 * effect performance.
454 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
456 syncache_free(sc);
460 * Place a timeout message on the TCP thread's message queue.
461 * This routine runs in soft interrupt context.
463 * An invariant is for this routine to be called, the callout must
464 * have been active. Note that the callout is not deactivated until
465 * after the message has been processed in syncache_timer_handler() below.
467 static void
468 syncache_timer(void *p)
470 struct netmsg_sc_timer *msg = p;
472 lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
476 * Service a timer message queued by timer expiration.
477 * This routine runs in the TCP protocol thread.
479 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
480 * If we have retransmitted an entry the maximum number of times, expire it.
482 * When we finish processing timed-out entries, we restart the timer if there
483 * are any entries still on the queue and deactivate it otherwise. Only after
484 * a timer has been deactivated here can it be restarted by syncache_timeout().
486 static void
487 syncache_timer_handler(netmsg_t msg)
489 struct tcp_syncache_percpu *syncache_percpu;
490 struct syncache *sc;
491 struct syncache marker;
492 struct syncache_list *list;
493 struct inpcb *inp;
494 int slot;
496 slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
497 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
499 list = &syncache_percpu->timerq[slot];
502 * Use a marker to keep our place in the scan. syncache_drop()
503 * can block and cause any next pointer we cache to become stale.
505 marker.sc_flags = SCF_MARKER;
506 TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
508 while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
510 * Move the marker.
512 TAILQ_REMOVE(list, &marker, sc_timerq);
513 TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
515 if (sc->sc_flags & SCF_MARKER)
516 continue;
518 if (ticks < sc->sc_rxttime)
519 break; /* finished because timerq sorted by time */
520 if (sc->sc_tp == NULL) {
521 syncache_drop(sc, NULL);
522 tcpstat.tcps_sc_stale++;
523 continue;
525 inp = sc->sc_tp->t_inpcb;
526 if (slot == SYNCACHE_MAXREXMTS ||
527 slot >= tcp_syncache.rexmt_limit ||
528 inp == NULL ||
529 inp->inp_gencnt != sc->sc_inp_gencnt) {
530 syncache_drop(sc, NULL);
531 tcpstat.tcps_sc_stale++;
532 continue;
535 * syncache_respond() may call back into the syncache to
536 * to modify another entry, so do not obtain the next
537 * entry on the timer chain until it has completed.
539 syncache_respond(sc, NULL);
540 tcpstat.tcps_sc_retransmitted++;
541 TAILQ_REMOVE(list, sc, sc_timerq);
542 syncache_timeout(syncache_percpu, sc, slot + 1);
544 TAILQ_REMOVE(list, &marker, sc_timerq);
546 if (sc != NULL) {
547 callout_reset(&syncache_percpu->tt_timerq[slot],
548 sc->sc_rxttime - ticks, syncache_timer,
549 &syncache_percpu->mrec[slot]);
550 } else {
551 callout_deactivate(&syncache_percpu->tt_timerq[slot]);
553 lwkt_replymsg(&msg->base.lmsg, 0);
557 * Find an entry in the syncache.
559 struct syncache *
560 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
562 struct tcp_syncache_percpu *syncache_percpu;
563 struct syncache *sc;
564 struct syncache_head *sch;
566 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
567 #ifdef INET6
568 if (inc->inc_isipv6) {
569 sch = &syncache_percpu->hashbase[
570 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
571 *schp = sch;
572 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
573 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
574 return (sc);
575 } else
576 #endif
578 sch = &syncache_percpu->hashbase[
579 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
580 *schp = sch;
581 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
582 #ifdef INET6
583 if (sc->sc_inc.inc_isipv6)
584 continue;
585 #endif
586 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
587 return (sc);
590 return (NULL);
594 * This function is called when we get a RST for a
595 * non-existent connection, so that we can see if the
596 * connection is in the syn cache. If it is, zap it.
598 void
599 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
601 struct syncache *sc;
602 struct syncache_head *sch;
604 sc = syncache_lookup(inc, &sch);
605 if (sc == NULL) {
606 return;
609 * If the RST bit is set, check the sequence number to see
610 * if this is a valid reset segment.
611 * RFC 793 page 37:
612 * In all states except SYN-SENT, all reset (RST) segments
613 * are validated by checking their SEQ-fields. A reset is
614 * valid if its sequence number is in the window.
616 * The sequence number in the reset segment is normally an
617 * echo of our outgoing acknowlegement numbers, but some hosts
618 * send a reset with the sequence number at the rightmost edge
619 * of our receive window, and we have to handle this case.
621 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
622 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
623 syncache_drop(sc, sch);
624 tcpstat.tcps_sc_reset++;
628 void
629 syncache_badack(struct in_conninfo *inc)
631 struct syncache *sc;
632 struct syncache_head *sch;
634 sc = syncache_lookup(inc, &sch);
635 if (sc != NULL) {
636 syncache_drop(sc, sch);
637 tcpstat.tcps_sc_badack++;
641 void
642 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
644 struct syncache *sc;
645 struct syncache_head *sch;
647 /* we are called at splnet() here */
648 sc = syncache_lookup(inc, &sch);
649 if (sc == NULL)
650 return;
652 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
653 if (ntohl(th->th_seq) != sc->sc_iss)
654 return;
657 * If we've rertransmitted 3 times and this is our second error,
658 * we remove the entry. Otherwise, we allow it to continue on.
659 * This prevents us from incorrectly nuking an entry during a
660 * spurious network outage.
662 * See tcp_notify().
664 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
665 sc->sc_flags |= SCF_UNREACH;
666 return;
668 syncache_drop(sc, sch);
669 tcpstat.tcps_sc_unreach++;
673 * Build a new TCP socket structure from a syncache entry.
675 * This is called from the context of the SYN+ACK
677 static struct socket *
678 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
680 struct inpcb *inp = NULL, *linp;
681 struct socket *so;
682 struct tcpcb *tp, *ltp;
683 lwkt_port_t port;
684 #ifdef INET6
685 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
686 #else
687 const boolean_t isipv6 = FALSE;
688 #endif
689 struct sockaddr_in sin_faddr;
690 struct sockaddr_in6 sin6_faddr;
691 struct sockaddr *faddr;
693 if (isipv6) {
694 faddr = (struct sockaddr *)&sin6_faddr;
695 sin6_faddr.sin6_family = AF_INET6;
696 sin6_faddr.sin6_len = sizeof(sin6_faddr);
697 sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
698 sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
699 sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
700 } else {
701 faddr = (struct sockaddr *)&sin_faddr;
702 sin_faddr.sin_family = AF_INET;
703 sin_faddr.sin_len = sizeof(sin_faddr);
704 sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
705 sin_faddr.sin_port = sc->sc_inc.inc_fport;
706 bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
710 * Ok, create the full blown connection, and set things up
711 * as they would have been set up if we had created the
712 * connection when the SYN arrived. If we can't create
713 * the connection, abort it.
715 * Set the protocol processing port for the socket to the current
716 * port (that the connection came in on).
718 so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr);
719 if (so == NULL) {
721 * Drop the connection; we will send a RST if the peer
722 * retransmits the ACK,
724 tcpstat.tcps_listendrop++;
725 goto abort;
729 * Insert new socket into hash list.
731 inp = so->so_pcb;
732 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
733 if (isipv6) {
734 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
735 } else {
736 #ifdef INET6
737 inp->inp_vflag &= ~INP_IPV6;
738 inp->inp_vflag |= INP_IPV4;
739 inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
740 #endif
741 inp->inp_laddr = sc->sc_inc.inc_laddr;
743 inp->inp_lport = sc->sc_inc.inc_lport;
744 if (in_pcbinsporthash(inp) != 0) {
746 * Undo the assignments above if we failed to
747 * put the PCB on the hash lists.
749 if (isipv6)
750 inp->in6p_laddr = kin6addr_any;
751 else
752 inp->inp_laddr.s_addr = INADDR_ANY;
753 inp->inp_lport = 0;
754 goto abort;
756 linp = lso->so_pcb;
757 #ifdef IPSEC
758 /* copy old policy into new socket's */
759 if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
760 kprintf("syncache_expand: could not copy policy\n");
761 #endif
762 if (isipv6) {
763 struct in6_addr laddr6;
765 * Inherit socket options from the listening socket.
766 * Note that in6p_inputopts are not (and should not be)
767 * copied, since it stores previously received options and is
768 * used to detect if each new option is different than the
769 * previous one and hence should be passed to a user.
770 * If we copied in6p_inputopts, a user would not be able to
771 * receive options just after calling the accept system call.
773 inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
774 if (linp->in6p_outputopts)
775 inp->in6p_outputopts =
776 ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
777 inp->in6p_route = sc->sc_route6;
778 sc->sc_route6.ro_rt = NULL;
780 laddr6 = inp->in6p_laddr;
781 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
782 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
783 if (in6_pcbconnect(inp, faddr, &thread0)) {
784 inp->in6p_laddr = laddr6;
785 goto abort;
787 } else {
788 struct in_addr laddr;
790 inp->inp_options = ip_srcroute(m);
791 if (inp->inp_options == NULL) {
792 inp->inp_options = sc->sc_ipopts;
793 sc->sc_ipopts = NULL;
795 inp->inp_route = sc->sc_route;
796 sc->sc_route.ro_rt = NULL;
798 laddr = inp->inp_laddr;
799 if (inp->inp_laddr.s_addr == INADDR_ANY)
800 inp->inp_laddr = sc->sc_inc.inc_laddr;
801 if (in_pcbconnect(inp, faddr, &thread0)) {
802 inp->inp_laddr = laddr;
803 goto abort;
808 * The current port should be in the context of the SYN+ACK and
809 * so should match the tcp address port.
811 * XXX we may be running on the netisr thread instead of a tcp
812 * thread, in which case port will not match
813 * curthread->td_msgport.
815 if (isipv6) {
816 port = tcp6_addrport();
817 } else {
818 port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
819 inp->inp_laddr.s_addr, inp->inp_lport);
821 if (port != &curthread->td_msgport) {
822 print_backtrace(-1);
823 kprintf("TCP PORT MISMATCH %p vs %p\n",
824 port, &curthread->td_msgport);
826 /*KKASSERT(port == &curthread->td_msgport);*/
828 tp = intotcpcb(inp);
829 tp->t_state = TCPS_SYN_RECEIVED;
830 tp->iss = sc->sc_iss;
831 tp->irs = sc->sc_irs;
832 tcp_rcvseqinit(tp);
833 tcp_sendseqinit(tp);
834 tp->snd_wl1 = sc->sc_irs;
835 tp->rcv_up = sc->sc_irs + 1;
836 tp->rcv_wnd = sc->sc_wnd;
837 tp->rcv_adv += tp->rcv_wnd;
839 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
840 if (sc->sc_flags & SCF_NOOPT)
841 tp->t_flags |= TF_NOOPT;
842 if (sc->sc_flags & SCF_WINSCALE) {
843 tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
844 tp->requested_s_scale = sc->sc_requested_s_scale;
845 tp->request_r_scale = sc->sc_request_r_scale;
847 if (sc->sc_flags & SCF_TIMESTAMP) {
848 tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
849 tp->ts_recent = sc->sc_tsrecent;
850 tp->ts_recent_age = ticks;
852 if (sc->sc_flags & SCF_SACK_PERMITTED)
853 tp->t_flags |= TF_SACK_PERMITTED;
855 #ifdef TCP_SIGNATURE
856 if (sc->sc_flags & SCF_SIGNATURE)
857 tp->t_flags |= TF_SIGNATURE;
858 #endif /* TCP_SIGNATURE */
861 tcp_mss(tp, sc->sc_peer_mss);
864 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
866 if (sc->sc_rxtslot != 0)
867 tp->snd_cwnd = tp->t_maxseg;
870 * Inherit some properties from the listen socket
872 ltp = intotcpcb(linp);
873 tp->t_keepinit = ltp->t_keepinit;
874 tp->t_keepidle = ltp->t_keepidle;
875 tp->t_keepintvl = ltp->t_keepintvl;
876 tp->t_keepcnt = ltp->t_keepcnt;
877 tp->t_maxidle = ltp->t_maxidle;
879 tcp_create_timermsg(tp, port);
880 tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
882 tcpstat.tcps_accepts++;
883 return (so);
885 abort:
886 if (so != NULL)
887 soabort_oncpu(so);
888 return (NULL);
892 * This function gets called when we receive an ACK for a
893 * socket in the LISTEN state. We look up the connection
894 * in the syncache, and if its there, we pull it out of
895 * the cache and turn it into a full-blown connection in
896 * the SYN-RECEIVED state.
899 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
900 struct mbuf *m)
902 struct syncache *sc;
903 struct syncache_head *sch;
904 struct socket *so;
906 sc = syncache_lookup(inc, &sch);
907 if (sc == NULL) {
909 * There is no syncache entry, so see if this ACK is
910 * a returning syncookie. To do this, first:
911 * A. See if this socket has had a syncache entry dropped in
912 * the past. We don't want to accept a bogus syncookie
913 * if we've never received a SYN.
914 * B. check that the syncookie is valid. If it is, then
915 * cobble up a fake syncache entry, and return.
917 if (!tcp_syncookies)
918 return (0);
919 sc = syncookie_lookup(inc, th, *sop);
920 if (sc == NULL)
921 return (0);
922 sch = NULL;
923 tcpstat.tcps_sc_recvcookie++;
927 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
929 if (th->th_ack != sc->sc_iss + 1)
930 return (0);
932 so = syncache_socket(sc, *sop, m);
933 if (so == NULL) {
934 #if 0
935 resetandabort:
936 /* XXXjlemon check this - is this correct? */
937 tcp_respond(NULL, m, m, th,
938 th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
939 #endif
940 m_freem(m); /* XXX only needed for above */
941 tcpstat.tcps_sc_aborted++;
942 } else {
943 tcpstat.tcps_sc_completed++;
945 if (sch == NULL)
946 syncache_free(sc);
947 else
948 syncache_drop(sc, sch);
949 *sop = so;
950 return (1);
954 * Given a LISTEN socket and an inbound SYN request, add
955 * this to the syn cache, and send back a segment:
956 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
957 * to the source.
959 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
960 * Doing so would require that we hold onto the data and deliver it
961 * to the application. However, if we are the target of a SYN-flood
962 * DoS attack, an attacker could send data which would eventually
963 * consume all available buffer space if it were ACKed. By not ACKing
964 * the data, we avoid this DoS scenario.
967 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
968 struct socket **sop, struct mbuf *m)
970 struct tcp_syncache_percpu *syncache_percpu;
971 struct tcpcb *tp;
972 struct socket *so;
973 struct syncache *sc = NULL;
974 struct syncache_head *sch;
975 struct mbuf *ipopts = NULL;
976 int win;
978 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
979 so = *sop;
980 tp = sototcpcb(so);
983 * Remember the IP options, if any.
985 #ifdef INET6
986 if (!inc->inc_isipv6)
987 #endif
988 ipopts = ip_srcroute(m);
991 * See if we already have an entry for this connection.
992 * If we do, resend the SYN,ACK, and reset the retransmit timer.
994 * XXX
995 * The syncache should be re-initialized with the contents
996 * of the new SYN which may have different options.
998 sc = syncache_lookup(inc, &sch);
999 if (sc != NULL) {
1000 tcpstat.tcps_sc_dupsyn++;
1001 if (ipopts) {
1003 * If we were remembering a previous source route,
1004 * forget it and use the new one we've been given.
1006 if (sc->sc_ipopts)
1007 m_free(sc->sc_ipopts);
1008 sc->sc_ipopts = ipopts;
1011 * Update timestamp if present.
1013 if (sc->sc_flags & SCF_TIMESTAMP)
1014 sc->sc_tsrecent = to->to_tsval;
1016 /* Just update the TOF_SACK_PERMITTED for now. */
1017 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1018 sc->sc_flags |= SCF_SACK_PERMITTED;
1019 else
1020 sc->sc_flags &= ~SCF_SACK_PERMITTED;
1023 * PCB may have changed, pick up new values.
1025 sc->sc_tp = tp;
1026 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1027 if (syncache_respond(sc, m) == 0) {
1028 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1029 sc, sc_timerq);
1030 syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1031 tcpstat.tcps_sndacks++;
1032 tcpstat.tcps_sndtotal++;
1034 *sop = NULL;
1035 return (1);
1039 * Fill in the syncache values.
1041 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1042 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1043 sc->sc_ipopts = ipopts;
1044 sc->sc_inc.inc_fport = inc->inc_fport;
1045 sc->sc_inc.inc_lport = inc->inc_lport;
1046 sc->sc_tp = tp;
1047 #ifdef INET6
1048 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1049 if (inc->inc_isipv6) {
1050 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1051 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1052 sc->sc_route6.ro_rt = NULL;
1053 } else
1054 #endif
1056 sc->sc_inc.inc_faddr = inc->inc_faddr;
1057 sc->sc_inc.inc_laddr = inc->inc_laddr;
1058 sc->sc_route.ro_rt = NULL;
1060 sc->sc_irs = th->th_seq;
1061 sc->sc_flags = 0;
1062 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1063 if (tcp_syncookies)
1064 sc->sc_iss = syncookie_generate(sc);
1065 else
1066 sc->sc_iss = karc4random();
1068 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1069 win = ssb_space(&so->so_rcv);
1070 win = imax(win, 0);
1071 win = imin(win, TCP_MAXWIN);
1072 sc->sc_wnd = win;
1074 if (tcp_do_rfc1323) {
1076 * A timestamp received in a SYN makes
1077 * it ok to send timestamp requests and replies.
1079 if (to->to_flags & TOF_TS) {
1080 sc->sc_tsrecent = to->to_tsval;
1081 sc->sc_flags |= SCF_TIMESTAMP;
1083 if (to->to_flags & TOF_SCALE) {
1084 int wscale = TCP_MIN_WINSHIFT;
1086 /* Compute proper scaling value from buffer space */
1087 while (wscale < TCP_MAX_WINSHIFT &&
1088 (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1089 wscale++;
1091 sc->sc_request_r_scale = wscale;
1092 sc->sc_requested_s_scale = to->to_requested_s_scale;
1093 sc->sc_flags |= SCF_WINSCALE;
1096 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1097 sc->sc_flags |= SCF_SACK_PERMITTED;
1098 if (tp->t_flags & TF_NOOPT)
1099 sc->sc_flags = SCF_NOOPT;
1100 #ifdef TCP_SIGNATURE
1102 * If listening socket requested TCP digests, and received SYN
1103 * contains the option, flag this in the syncache so that
1104 * syncache_respond() will do the right thing with the SYN+ACK.
1105 * XXX Currently we always record the option by default and will
1106 * attempt to use it in syncache_respond().
1108 if (to->to_flags & TOF_SIGNATURE)
1109 sc->sc_flags = SCF_SIGNATURE;
1110 #endif /* TCP_SIGNATURE */
1112 if (syncache_respond(sc, m) == 0) {
1113 syncache_insert(sc, sch);
1114 tcpstat.tcps_sndacks++;
1115 tcpstat.tcps_sndtotal++;
1116 } else {
1117 syncache_free(sc);
1118 tcpstat.tcps_sc_dropped++;
1120 *sop = NULL;
1121 return (1);
1124 static int
1125 syncache_respond(struct syncache *sc, struct mbuf *m)
1127 u_int8_t *optp;
1128 int optlen, error;
1129 u_int16_t tlen, hlen, mssopt;
1130 struct ip *ip = NULL;
1131 struct rtentry *rt;
1132 struct tcphdr *th;
1133 struct ip6_hdr *ip6 = NULL;
1134 #ifdef INET6
1135 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1136 #else
1137 const boolean_t isipv6 = FALSE;
1138 #endif
1140 if (isipv6) {
1141 rt = tcp_rtlookup6(&sc->sc_inc);
1142 if (rt != NULL)
1143 mssopt = rt->rt_ifp->if_mtu -
1144 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1145 else
1146 mssopt = tcp_v6mssdflt;
1147 hlen = sizeof(struct ip6_hdr);
1148 } else {
1149 rt = tcp_rtlookup(&sc->sc_inc);
1150 if (rt != NULL)
1151 mssopt = rt->rt_ifp->if_mtu -
1152 (sizeof(struct ip) + sizeof(struct tcphdr));
1153 else
1154 mssopt = tcp_mssdflt;
1155 hlen = sizeof(struct ip);
1158 /* Compute the size of the TCP options. */
1159 if (sc->sc_flags & SCF_NOOPT) {
1160 optlen = 0;
1161 } else {
1162 optlen = TCPOLEN_MAXSEG +
1163 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1164 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1165 ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1166 TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1167 #ifdef TCP_SIGNATURE
1168 optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1169 (TCPOLEN_SIGNATURE + 2) : 0);
1170 #endif /* TCP_SIGNATURE */
1172 tlen = hlen + sizeof(struct tcphdr) + optlen;
1175 * XXX
1176 * assume that the entire packet will fit in a header mbuf
1178 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1181 * XXX shouldn't this reuse the mbuf if possible ?
1182 * Create the IP+TCP header from scratch.
1184 if (m)
1185 m_freem(m);
1187 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1188 if (m == NULL)
1189 return (ENOBUFS);
1190 m->m_data += max_linkhdr;
1191 m->m_len = tlen;
1192 m->m_pkthdr.len = tlen;
1193 m->m_pkthdr.rcvif = NULL;
1195 if (isipv6) {
1196 ip6 = mtod(m, struct ip6_hdr *);
1197 ip6->ip6_vfc = IPV6_VERSION;
1198 ip6->ip6_nxt = IPPROTO_TCP;
1199 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1200 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1201 ip6->ip6_plen = htons(tlen - hlen);
1202 /* ip6_hlim is set after checksum */
1203 /* ip6_flow = ??? */
1205 th = (struct tcphdr *)(ip6 + 1);
1206 } else {
1207 ip = mtod(m, struct ip *);
1208 ip->ip_v = IPVERSION;
1209 ip->ip_hl = sizeof(struct ip) >> 2;
1210 ip->ip_len = tlen;
1211 ip->ip_id = 0;
1212 ip->ip_off = 0;
1213 ip->ip_sum = 0;
1214 ip->ip_p = IPPROTO_TCP;
1215 ip->ip_src = sc->sc_inc.inc_laddr;
1216 ip->ip_dst = sc->sc_inc.inc_faddr;
1217 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1218 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1221 * See if we should do MTU discovery. Route lookups are
1222 * expensive, so we will only unset the DF bit if:
1224 * 1) path_mtu_discovery is disabled
1225 * 2) the SCF_UNREACH flag has been set
1227 if (path_mtu_discovery
1228 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1229 ip->ip_off |= IP_DF;
1232 th = (struct tcphdr *)(ip + 1);
1234 th->th_sport = sc->sc_inc.inc_lport;
1235 th->th_dport = sc->sc_inc.inc_fport;
1237 th->th_seq = htonl(sc->sc_iss);
1238 th->th_ack = htonl(sc->sc_irs + 1);
1239 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1240 th->th_x2 = 0;
1241 th->th_flags = TH_SYN | TH_ACK;
1242 th->th_win = htons(sc->sc_wnd);
1243 th->th_urp = 0;
1245 /* Tack on the TCP options. */
1246 if (optlen == 0)
1247 goto no_options;
1248 optp = (u_int8_t *)(th + 1);
1249 *optp++ = TCPOPT_MAXSEG;
1250 *optp++ = TCPOLEN_MAXSEG;
1251 *optp++ = (mssopt >> 8) & 0xff;
1252 *optp++ = mssopt & 0xff;
1254 if (sc->sc_flags & SCF_WINSCALE) {
1255 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1256 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1257 sc->sc_request_r_scale);
1258 optp += 4;
1261 if (sc->sc_flags & SCF_TIMESTAMP) {
1262 u_int32_t *lp = (u_int32_t *)(optp);
1264 /* Form timestamp option as shown in appendix A of RFC 1323. */
1265 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1266 *lp++ = htonl(ticks);
1267 *lp = htonl(sc->sc_tsrecent);
1268 optp += TCPOLEN_TSTAMP_APPA;
1271 #ifdef TCP_SIGNATURE
1273 * Handle TCP-MD5 passive opener response.
1275 if (sc->sc_flags & SCF_SIGNATURE) {
1276 u_int8_t *bp = optp;
1277 int i;
1279 *bp++ = TCPOPT_SIGNATURE;
1280 *bp++ = TCPOLEN_SIGNATURE;
1281 for (i = 0; i < TCP_SIGLEN; i++)
1282 *bp++ = 0;
1283 tcpsignature_compute(m, 0, optlen,
1284 optp + 2, IPSEC_DIR_OUTBOUND);
1285 *bp++ = TCPOPT_NOP;
1286 *bp++ = TCPOPT_EOL;
1287 optp += TCPOLEN_SIGNATURE + 2;
1289 #endif /* TCP_SIGNATURE */
1291 if (sc->sc_flags & SCF_SACK_PERMITTED) {
1292 *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1293 optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1296 no_options:
1297 if (isipv6) {
1298 struct route_in6 *ro6 = &sc->sc_route6;
1300 th->th_sum = 0;
1301 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1302 ip6->ip6_hlim = in6_selecthlim(NULL,
1303 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1304 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1305 sc->sc_tp->t_inpcb);
1306 } else {
1307 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1308 htons(tlen - hlen + IPPROTO_TCP));
1309 m->m_pkthdr.csum_flags = CSUM_TCP;
1310 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1311 error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1312 IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1314 return (error);
1318 * cookie layers:
1320 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1321 * | peer iss |
1322 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1323 * | 0 |(A)| |
1324 * (A): peer mss index
1328 * The values below are chosen to minimize the size of the tcp_secret
1329 * table, as well as providing roughly a 16 second lifetime for the cookie.
1332 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1333 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1335 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1336 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1337 #define SYNCOOKIE_TIMEOUT \
1338 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1339 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1341 static struct {
1342 u_int32_t ts_secbits[4];
1343 u_int ts_expire;
1344 } tcp_secret[SYNCOOKIE_NSECRETS];
1346 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1348 static MD5_CTX syn_ctx;
1350 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1352 struct md5_add {
1353 u_int32_t laddr, faddr;
1354 u_int32_t secbits[4];
1355 u_int16_t lport, fport;
1358 #ifdef CTASSERT
1359 CTASSERT(sizeof(struct md5_add) == 28);
1360 #endif
1363 * Consider the problem of a recreated (and retransmitted) cookie. If the
1364 * original SYN was accepted, the connection is established. The second
1365 * SYN is inflight, and if it arrives with an ISN that falls within the
1366 * receive window, the connection is killed.
1368 * However, since cookies have other problems, this may not be worth
1369 * worrying about.
1372 static u_int32_t
1373 syncookie_generate(struct syncache *sc)
1375 u_int32_t md5_buffer[4];
1376 u_int32_t data;
1377 int idx, i;
1378 struct md5_add add;
1379 #ifdef INET6
1380 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1381 #else
1382 const boolean_t isipv6 = FALSE;
1383 #endif
1385 idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1386 if (tcp_secret[idx].ts_expire < ticks) {
1387 for (i = 0; i < 4; i++)
1388 tcp_secret[idx].ts_secbits[i] = karc4random();
1389 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1391 for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1392 if (tcp_msstab[data] <= sc->sc_peer_mss)
1393 break;
1394 data = (data << SYNCOOKIE_WNDBITS) | idx;
1395 data ^= sc->sc_irs; /* peer's iss */
1396 MD5Init(&syn_ctx);
1397 if (isipv6) {
1398 MD5Add(sc->sc_inc.inc6_laddr);
1399 MD5Add(sc->sc_inc.inc6_faddr);
1400 add.laddr = 0;
1401 add.faddr = 0;
1402 } else {
1403 add.laddr = sc->sc_inc.inc_laddr.s_addr;
1404 add.faddr = sc->sc_inc.inc_faddr.s_addr;
1406 add.lport = sc->sc_inc.inc_lport;
1407 add.fport = sc->sc_inc.inc_fport;
1408 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1409 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1410 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1411 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1412 MD5Add(add);
1413 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1414 data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1415 return (data);
1418 static struct syncache *
1419 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1421 u_int32_t md5_buffer[4];
1422 struct syncache *sc;
1423 u_int32_t data;
1424 int wnd, idx;
1425 struct md5_add add;
1427 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1428 idx = data & SYNCOOKIE_WNDMASK;
1429 if (tcp_secret[idx].ts_expire < ticks ||
1430 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1431 return (NULL);
1432 MD5Init(&syn_ctx);
1433 #ifdef INET6
1434 if (inc->inc_isipv6) {
1435 MD5Add(inc->inc6_laddr);
1436 MD5Add(inc->inc6_faddr);
1437 add.laddr = 0;
1438 add.faddr = 0;
1439 } else
1440 #endif
1442 add.laddr = inc->inc_laddr.s_addr;
1443 add.faddr = inc->inc_faddr.s_addr;
1445 add.lport = inc->inc_lport;
1446 add.fport = inc->inc_fport;
1447 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1448 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1449 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1450 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1451 MD5Add(add);
1452 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1453 data ^= md5_buffer[0];
1454 if (data & ~SYNCOOKIE_DATAMASK)
1455 return (NULL);
1456 data = data >> SYNCOOKIE_WNDBITS;
1459 * Fill in the syncache values.
1460 * XXX duplicate code from syncache_add
1462 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1463 sc->sc_ipopts = NULL;
1464 sc->sc_inc.inc_fport = inc->inc_fport;
1465 sc->sc_inc.inc_lport = inc->inc_lport;
1466 #ifdef INET6
1467 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1468 if (inc->inc_isipv6) {
1469 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1470 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1471 sc->sc_route6.ro_rt = NULL;
1472 } else
1473 #endif
1475 sc->sc_inc.inc_faddr = inc->inc_faddr;
1476 sc->sc_inc.inc_laddr = inc->inc_laddr;
1477 sc->sc_route.ro_rt = NULL;
1479 sc->sc_irs = th->th_seq - 1;
1480 sc->sc_iss = th->th_ack - 1;
1481 wnd = ssb_space(&so->so_rcv);
1482 wnd = imax(wnd, 0);
1483 wnd = imin(wnd, TCP_MAXWIN);
1484 sc->sc_wnd = wnd;
1485 sc->sc_flags = 0;
1486 sc->sc_rxtslot = 0;
1487 sc->sc_peer_mss = tcp_msstab[data];
1488 return (sc);