rcmd(3) manual page: Add missing .El
[dragonfly.git] / sys / kern / lwkt_thread.c
blob53cfcf4318c7ffcb198f4a047741fcf7327a7f5d
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.120 2008/10/26 04:29:19 sephe Exp $
38 * Each cpu in a system has its own self-contained light weight kernel
39 * thread scheduler, which means that generally speaking we only need
40 * to use a critical section to avoid problems. Foreign thread
41 * scheduling is queued via (async) IPIs.
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/caps.h>
55 #include <sys/spinlock.h>
56 #include <sys/ktr.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
74 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
76 static int untimely_switch = 0;
77 #ifdef INVARIANTS
78 static int panic_on_cscount = 0;
79 #endif
80 static __int64_t switch_count = 0;
81 static __int64_t preempt_hit = 0;
82 static __int64_t preempt_miss = 0;
83 static __int64_t preempt_weird = 0;
84 static __int64_t token_contention_count = 0;
85 static __int64_t mplock_contention_count = 0;
86 static int lwkt_use_spin_port;
87 #ifdef SMP
88 static int chain_mplock = 0;
89 #endif
90 static struct objcache *thread_cache;
92 volatile cpumask_t mp_lock_contention_mask;
94 extern void cpu_heavy_restore(void);
95 extern void cpu_lwkt_restore(void);
96 extern void cpu_kthread_restore(void);
97 extern void cpu_idle_restore(void);
99 #ifdef __amd64__
101 static int
102 jg_tos_ok(struct thread *td)
104 void *tos;
105 int tos_ok;
107 if (td == NULL) {
108 return 1;
110 KKASSERT(td->td_sp != NULL);
111 tos = ((void **)td->td_sp)[0];
112 tos_ok = 0;
113 if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
114 (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
115 tos_ok = 1;
117 return tos_ok;
120 #endif
123 * We can make all thread ports use the spin backend instead of the thread
124 * backend. This should only be set to debug the spin backend.
126 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
128 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
129 #ifdef INVARIANTS
130 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
131 #endif
132 #ifdef SMP
133 SYSCTL_INT(_lwkt, OID_AUTO, chain_mplock, CTLFLAG_RW, &chain_mplock, 0, "");
134 #endif
135 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
136 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
137 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
138 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
139 #ifdef INVARIANTS
140 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
141 &token_contention_count, 0, "spinning due to token contention");
142 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
143 &mplock_contention_count, 0, "spinning due to MPLOCK contention");
144 #endif
147 * Kernel Trace
149 #if !defined(KTR_GIANT_CONTENTION)
150 #define KTR_GIANT_CONTENTION KTR_ALL
151 #endif
153 KTR_INFO_MASTER(giant);
154 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
155 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
157 #define loggiant(name) KTR_LOG(giant_ ## name, curthread)
160 * These helper procedures handle the runq, they can only be called from
161 * within a critical section.
163 * WARNING! Prior to SMP being brought up it is possible to enqueue and
164 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
165 * instead of 'mycpu' when referencing the globaldata structure. Once
166 * SMP live enqueuing and dequeueing only occurs on the current cpu.
168 static __inline
169 void
170 _lwkt_dequeue(thread_t td)
172 if (td->td_flags & TDF_RUNQ) {
173 int nq = td->td_pri & TDPRI_MASK;
174 struct globaldata *gd = td->td_gd;
176 td->td_flags &= ~TDF_RUNQ;
177 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
178 /* runqmask is passively cleaned up by the switcher */
182 static __inline
183 void
184 _lwkt_enqueue(thread_t td)
186 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
187 int nq = td->td_pri & TDPRI_MASK;
188 struct globaldata *gd = td->td_gd;
190 td->td_flags |= TDF_RUNQ;
191 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
192 gd->gd_runqmask |= 1 << nq;
196 static __boolean_t
197 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
199 struct thread *td = (struct thread *)obj;
201 td->td_kstack = NULL;
202 td->td_kstack_size = 0;
203 td->td_flags = TDF_ALLOCATED_THREAD;
204 return (1);
207 static void
208 _lwkt_thread_dtor(void *obj, void *privdata)
210 struct thread *td = (struct thread *)obj;
212 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
213 ("_lwkt_thread_dtor: not allocated from objcache"));
214 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
215 td->td_kstack_size > 0,
216 ("_lwkt_thread_dtor: corrupted stack"));
217 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
221 * Initialize the lwkt s/system.
223 void
224 lwkt_init(void)
226 /* An objcache has 2 magazines per CPU so divide cache size by 2. */
227 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
228 NULL, CACHE_NTHREADS/2,
229 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
233 * Schedule a thread to run. As the current thread we can always safely
234 * schedule ourselves, and a shortcut procedure is provided for that
235 * function.
237 * (non-blocking, self contained on a per cpu basis)
239 void
240 lwkt_schedule_self(thread_t td)
242 crit_enter_quick(td);
243 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
244 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
245 _lwkt_enqueue(td);
246 crit_exit_quick(td);
250 * Deschedule a thread.
252 * (non-blocking, self contained on a per cpu basis)
254 void
255 lwkt_deschedule_self(thread_t td)
257 crit_enter_quick(td);
258 _lwkt_dequeue(td);
259 crit_exit_quick(td);
263 * LWKTs operate on a per-cpu basis
265 * WARNING! Called from early boot, 'mycpu' may not work yet.
267 void
268 lwkt_gdinit(struct globaldata *gd)
270 int i;
272 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
273 TAILQ_INIT(&gd->gd_tdrunq[i]);
274 gd->gd_runqmask = 0;
275 TAILQ_INIT(&gd->gd_tdallq);
279 * Create a new thread. The thread must be associated with a process context
280 * or LWKT start address before it can be scheduled. If the target cpu is
281 * -1 the thread will be created on the current cpu.
283 * If you intend to create a thread without a process context this function
284 * does everything except load the startup and switcher function.
286 thread_t
287 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
289 globaldata_t gd = mycpu;
290 void *stack;
293 * If static thread storage is not supplied allocate a thread. Reuse
294 * a cached free thread if possible. gd_freetd is used to keep an exiting
295 * thread intact through the exit.
297 if (td == NULL) {
298 if ((td = gd->gd_freetd) != NULL)
299 gd->gd_freetd = NULL;
300 else
301 td = objcache_get(thread_cache, M_WAITOK);
302 KASSERT((td->td_flags &
303 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
304 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
305 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
309 * Try to reuse cached stack.
311 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
312 if (flags & TDF_ALLOCATED_STACK) {
313 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
314 stack = NULL;
317 if (stack == NULL) {
318 stack = (void *)kmem_alloc(&kernel_map, stksize);
319 flags |= TDF_ALLOCATED_STACK;
321 if (cpu < 0)
322 lwkt_init_thread(td, stack, stksize, flags, gd);
323 else
324 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
325 return(td);
329 * Initialize a preexisting thread structure. This function is used by
330 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
332 * All threads start out in a critical section at a priority of
333 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
334 * appropriate. This function may send an IPI message when the
335 * requested cpu is not the current cpu and consequently gd_tdallq may
336 * not be initialized synchronously from the point of view of the originating
337 * cpu.
339 * NOTE! we have to be careful in regards to creating threads for other cpus
340 * if SMP has not yet been activated.
342 #ifdef SMP
344 static void
345 lwkt_init_thread_remote(void *arg)
347 thread_t td = arg;
350 * Protected by critical section held by IPI dispatch
352 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
355 #endif
357 void
358 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
359 struct globaldata *gd)
361 globaldata_t mygd = mycpu;
363 bzero(td, sizeof(struct thread));
364 td->td_kstack = stack;
365 td->td_kstack_size = stksize;
366 td->td_flags = flags;
367 td->td_gd = gd;
368 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
369 #ifdef SMP
370 if ((flags & TDF_MPSAFE) == 0)
371 td->td_mpcount = 1;
372 #endif
373 if (lwkt_use_spin_port)
374 lwkt_initport_spin(&td->td_msgport);
375 else
376 lwkt_initport_thread(&td->td_msgport, td);
377 pmap_init_thread(td);
378 #ifdef SMP
380 * Normally initializing a thread for a remote cpu requires sending an
381 * IPI. However, the idlethread is setup before the other cpus are
382 * activated so we have to treat it as a special case. XXX manipulation
383 * of gd_tdallq requires the BGL.
385 if (gd == mygd || td == &gd->gd_idlethread) {
386 crit_enter_gd(mygd);
387 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
388 crit_exit_gd(mygd);
389 } else {
390 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
392 #else
393 crit_enter_gd(mygd);
394 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
395 crit_exit_gd(mygd);
396 #endif
399 void
400 lwkt_set_comm(thread_t td, const char *ctl, ...)
402 __va_list va;
404 __va_start(va, ctl);
405 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
406 __va_end(va);
409 void
410 lwkt_hold(thread_t td)
412 ++td->td_refs;
415 void
416 lwkt_rele(thread_t td)
418 KKASSERT(td->td_refs > 0);
419 --td->td_refs;
422 void
423 lwkt_wait_free(thread_t td)
425 while (td->td_refs)
426 tsleep(td, 0, "tdreap", hz);
429 void
430 lwkt_free_thread(thread_t td)
432 KASSERT((td->td_flags & TDF_RUNNING) == 0,
433 ("lwkt_free_thread: did not exit! %p", td));
435 if (td->td_flags & TDF_ALLOCATED_THREAD) {
436 objcache_put(thread_cache, td);
437 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
438 /* client-allocated struct with internally allocated stack */
439 KASSERT(td->td_kstack && td->td_kstack_size > 0,
440 ("lwkt_free_thread: corrupted stack"));
441 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
442 td->td_kstack = NULL;
443 td->td_kstack_size = 0;
449 * Switch to the next runnable lwkt. If no LWKTs are runnable then
450 * switch to the idlethread. Switching must occur within a critical
451 * section to avoid races with the scheduling queue.
453 * We always have full control over our cpu's run queue. Other cpus
454 * that wish to manipulate our queue must use the cpu_*msg() calls to
455 * talk to our cpu, so a critical section is all that is needed and
456 * the result is very, very fast thread switching.
458 * The LWKT scheduler uses a fixed priority model and round-robins at
459 * each priority level. User process scheduling is a totally
460 * different beast and LWKT priorities should not be confused with
461 * user process priorities.
463 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch()
464 * cleans it up. Note that the td_switch() function cannot do anything that
465 * requires the MP lock since the MP lock will have already been setup for
466 * the target thread (not the current thread). It's nice to have a scheduler
467 * that does not need the MP lock to work because it allows us to do some
468 * really cool high-performance MP lock optimizations.
470 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
471 * is not called by the current thread in the preemption case, only when
472 * the preempting thread blocks (in order to return to the original thread).
474 void
475 lwkt_switch(void)
477 globaldata_t gd = mycpu;
478 thread_t td = gd->gd_curthread;
479 thread_t ntd;
480 #ifdef SMP
481 int mpheld;
482 #endif
485 * Switching from within a 'fast' (non thread switched) interrupt or IPI
486 * is illegal. However, we may have to do it anyway if we hit a fatal
487 * kernel trap or we have paniced.
489 * If this case occurs save and restore the interrupt nesting level.
491 if (gd->gd_intr_nesting_level) {
492 int savegdnest;
493 int savegdtrap;
495 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
496 panic("lwkt_switch: cannot switch from within "
497 "a fast interrupt, yet, td %p\n", td);
498 } else {
499 savegdnest = gd->gd_intr_nesting_level;
500 savegdtrap = gd->gd_trap_nesting_level;
501 gd->gd_intr_nesting_level = 0;
502 gd->gd_trap_nesting_level = 0;
503 if ((td->td_flags & TDF_PANICWARN) == 0) {
504 td->td_flags |= TDF_PANICWARN;
505 kprintf("Warning: thread switch from interrupt or IPI, "
506 "thread %p (%s)\n", td, td->td_comm);
507 print_backtrace();
509 lwkt_switch();
510 gd->gd_intr_nesting_level = savegdnest;
511 gd->gd_trap_nesting_level = savegdtrap;
512 return;
517 * Passive release (used to transition from user to kernel mode
518 * when we block or switch rather then when we enter the kernel).
519 * This function is NOT called if we are switching into a preemption
520 * or returning from a preemption. Typically this causes us to lose
521 * our current process designation (if we have one) and become a true
522 * LWKT thread, and may also hand the current process designation to
523 * another process and schedule thread.
525 if (td->td_release)
526 td->td_release(td);
528 crit_enter_gd(gd);
529 if (td->td_toks)
530 lwkt_relalltokens(td);
533 * We had better not be holding any spin locks, but don't get into an
534 * endless panic loop.
536 KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
537 ("lwkt_switch: still holding a shared spinlock %p!",
538 gd->gd_spinlock_rd));
539 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
540 ("lwkt_switch: still holding %d exclusive spinlocks!",
541 gd->gd_spinlocks_wr));
544 #ifdef SMP
546 * td_mpcount cannot be used to determine if we currently hold the
547 * MP lock because get_mplock() will increment it prior to attempting
548 * to get the lock, and switch out if it can't. Our ownership of
549 * the actual lock will remain stable while we are in a critical section
550 * (but, of course, another cpu may own or release the lock so the
551 * actual value of mp_lock is not stable).
553 mpheld = MP_LOCK_HELD();
554 #ifdef INVARIANTS
555 if (td->td_cscount) {
556 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
557 td);
558 if (panic_on_cscount)
559 panic("switching while mastering cpusync");
561 #endif
562 #endif
563 if ((ntd = td->td_preempted) != NULL) {
565 * We had preempted another thread on this cpu, resume the preempted
566 * thread. This occurs transparently, whether the preempted thread
567 * was scheduled or not (it may have been preempted after descheduling
568 * itself).
570 * We have to setup the MP lock for the original thread after backing
571 * out the adjustment that was made to curthread when the original
572 * was preempted.
574 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
575 #ifdef SMP
576 if (ntd->td_mpcount && mpheld == 0) {
577 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
578 td, ntd, td->td_mpcount, ntd->td_mpcount);
580 if (ntd->td_mpcount) {
581 td->td_mpcount -= ntd->td_mpcount;
582 KKASSERT(td->td_mpcount >= 0);
584 #endif
585 ntd->td_flags |= TDF_PREEMPT_DONE;
588 * The interrupt may have woken a thread up, we need to properly
589 * set the reschedule flag if the originally interrupted thread is
590 * at a lower priority.
592 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
593 need_lwkt_resched();
594 /* YYY release mp lock on switchback if original doesn't need it */
595 } else {
597 * Priority queue / round-robin at each priority. Note that user
598 * processes run at a fixed, low priority and the user process
599 * scheduler deals with interactions between user processes
600 * by scheduling and descheduling them from the LWKT queue as
601 * necessary.
603 * We have to adjust the MP lock for the target thread. If we
604 * need the MP lock and cannot obtain it we try to locate a
605 * thread that does not need the MP lock. If we cannot, we spin
606 * instead of HLT.
608 * A similar issue exists for the tokens held by the target thread.
609 * If we cannot obtain ownership of the tokens we cannot immediately
610 * schedule the thread.
614 * If an LWKT reschedule was requested, well that is what we are
615 * doing now so clear it.
617 clear_lwkt_resched();
618 again:
619 if (gd->gd_runqmask) {
620 int nq = bsrl(gd->gd_runqmask);
621 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
622 gd->gd_runqmask &= ~(1 << nq);
623 goto again;
625 #ifdef SMP
627 * THREAD SELECTION FOR AN SMP MACHINE BUILD
629 * If the target needs the MP lock and we couldn't get it,
630 * or if the target is holding tokens and we could not
631 * gain ownership of the tokens, continue looking for a
632 * thread to schedule and spin instead of HLT if we can't.
634 * NOTE: the mpheld variable invalid after this conditional, it
635 * can change due to both cpu_try_mplock() returning success
636 * AND interactions in lwkt_getalltokens() due to the fact that
637 * we are trying to check the mpcount of a thread other then
638 * the current thread. Because of this, if the current thread
639 * is not holding td_mpcount, an IPI indirectly run via
640 * lwkt_getalltokens() can obtain and release the MP lock and
641 * cause the core MP lock to be released.
643 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
644 (ntd->td_toks && lwkt_getalltokens(ntd) == 0)
646 u_int32_t rqmask = gd->gd_runqmask;
648 mpheld = MP_LOCK_HELD();
649 ntd = NULL;
650 while (rqmask) {
651 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
652 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
653 /* spinning due to MP lock being held */
654 #ifdef INVARIANTS
655 ++mplock_contention_count;
656 #endif
657 /* mplock still not held, 'mpheld' still valid */
658 continue;
662 * mpheld state invalid after getalltokens call returns
663 * failure, but the variable is only needed for
664 * the loop.
666 if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
667 /* spinning due to token contention */
668 #ifdef INVARIANTS
669 ++token_contention_count;
670 #endif
671 mpheld = MP_LOCK_HELD();
672 continue;
674 break;
676 if (ntd)
677 break;
678 rqmask &= ~(1 << nq);
679 nq = bsrl(rqmask);
682 * We have two choices. We can either refuse to run a
683 * user thread when a kernel thread needs the MP lock
684 * but could not get it, or we can allow it to run but
685 * then expect an IPI (hopefully) later on to force a
686 * reschedule when the MP lock might become available.
688 if (nq < TDPRI_KERN_LPSCHED) {
689 if (chain_mplock == 0)
690 break;
691 atomic_set_int(&mp_lock_contention_mask,
692 gd->gd_cpumask);
693 /* continue loop, allow user threads to be scheduled */
696 if (ntd == NULL) {
697 cpu_mplock_contested();
698 ntd = &gd->gd_idlethread;
699 ntd->td_flags |= TDF_IDLE_NOHLT;
700 goto using_idle_thread;
701 } else {
702 ++gd->gd_cnt.v_swtch;
703 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
704 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
706 } else {
707 ++gd->gd_cnt.v_swtch;
708 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
709 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
711 #else
713 * THREAD SELECTION FOR A UP MACHINE BUILD. We don't have to
714 * worry about tokens or the BGL. However, we still have
715 * to call lwkt_getalltokens() in order to properly detect
716 * stale tokens. This call cannot fail for a UP build!
718 lwkt_getalltokens(ntd);
719 ++gd->gd_cnt.v_swtch;
720 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
721 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
722 #endif
723 } else {
725 * We have nothing to run but only let the idle loop halt
726 * the cpu if there are no pending interrupts.
728 ntd = &gd->gd_idlethread;
729 if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
730 ntd->td_flags |= TDF_IDLE_NOHLT;
731 #ifdef SMP
732 using_idle_thread:
734 * The idle thread should not be holding the MP lock unless we
735 * are trapping in the kernel or in a panic. Since we select the
736 * idle thread unconditionally when no other thread is available,
737 * if the MP lock is desired during a panic or kernel trap, we
738 * have to loop in the scheduler until we get it.
740 if (ntd->td_mpcount) {
741 mpheld = MP_LOCK_HELD();
742 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
743 panic("Idle thread %p was holding the BGL!", ntd);
744 } else if (mpheld == 0) {
745 cpu_mplock_contested();
746 goto again;
749 #endif
752 KASSERT(ntd->td_pri >= TDPRI_CRIT,
753 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
756 * Do the actual switch. If the new target does not need the MP lock
757 * and we are holding it, release the MP lock. If the new target requires
758 * the MP lock we have already acquired it for the target.
760 #ifdef SMP
761 if (ntd->td_mpcount == 0 ) {
762 if (MP_LOCK_HELD())
763 cpu_rel_mplock();
764 } else {
765 ASSERT_MP_LOCK_HELD(ntd);
767 #endif
768 if (td != ntd) {
769 ++switch_count;
770 #ifdef __amd64__
771 KKASSERT(jg_tos_ok(ntd));
772 #endif
773 td->td_switch(ntd);
775 /* NOTE: current cpu may have changed after switch */
776 crit_exit_quick(td);
780 * Request that the target thread preempt the current thread. Preemption
781 * only works under a specific set of conditions:
783 * - We are not preempting ourselves
784 * - The target thread is owned by the current cpu
785 * - We are not currently being preempted
786 * - The target is not currently being preempted
787 * - We are not holding any spin locks
788 * - The target thread is not holding any tokens
789 * - We are able to satisfy the target's MP lock requirements (if any).
791 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
792 * this is called via lwkt_schedule() through the td_preemptable callback.
793 * critpri is the managed critical priority that we should ignore in order
794 * to determine whether preemption is possible (aka usually just the crit
795 * priority of lwkt_schedule() itself).
797 * XXX at the moment we run the target thread in a critical section during
798 * the preemption in order to prevent the target from taking interrupts
799 * that *WE* can't. Preemption is strictly limited to interrupt threads
800 * and interrupt-like threads, outside of a critical section, and the
801 * preempted source thread will be resumed the instant the target blocks
802 * whether or not the source is scheduled (i.e. preemption is supposed to
803 * be as transparent as possible).
805 * The target thread inherits our MP count (added to its own) for the
806 * duration of the preemption in order to preserve the atomicy of the
807 * MP lock during the preemption. Therefore, any preempting targets must be
808 * careful in regards to MP assertions. Note that the MP count may be
809 * out of sync with the physical mp_lock, but we do not have to preserve
810 * the original ownership of the lock if it was out of synch (that is, we
811 * can leave it synchronized on return).
813 void
814 lwkt_preempt(thread_t ntd, int critpri)
816 struct globaldata *gd = mycpu;
817 thread_t td;
818 #ifdef SMP
819 int mpheld;
820 int savecnt;
821 #endif
824 * The caller has put us in a critical section. We can only preempt
825 * if the caller of the caller was not in a critical section (basically
826 * a local interrupt), as determined by the 'critpri' parameter. We
827 * also can't preempt if the caller is holding any spinlocks (even if
828 * he isn't in a critical section). This also handles the tokens test.
830 * YYY The target thread must be in a critical section (else it must
831 * inherit our critical section? I dunno yet).
833 * Set need_lwkt_resched() unconditionally for now YYY.
835 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
837 td = gd->gd_curthread;
838 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
839 ++preempt_miss;
840 return;
842 if ((td->td_pri & ~TDPRI_MASK) > critpri) {
843 ++preempt_miss;
844 need_lwkt_resched();
845 return;
847 #ifdef SMP
848 if (ntd->td_gd != gd) {
849 ++preempt_miss;
850 need_lwkt_resched();
851 return;
853 #endif
855 * Take the easy way out and do not preempt if we are holding
856 * any spinlocks. We could test whether the thread(s) being
857 * preempted interlock against the target thread's tokens and whether
858 * we can get all the target thread's tokens, but this situation
859 * should not occur very often so its easier to simply not preempt.
860 * Also, plain spinlocks are impossible to figure out at this point so
861 * just don't preempt.
863 * Do not try to preempt if the target thread is holding any tokens.
864 * We could try to acquire the tokens but this case is so rare there
865 * is no need to support it.
867 if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
868 ++preempt_miss;
869 need_lwkt_resched();
870 return;
872 if (ntd->td_toks) {
873 ++preempt_miss;
874 need_lwkt_resched();
875 return;
877 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
878 ++preempt_weird;
879 need_lwkt_resched();
880 return;
882 if (ntd->td_preempted) {
883 ++preempt_hit;
884 need_lwkt_resched();
885 return;
887 #ifdef SMP
889 * note: an interrupt might have occured just as we were transitioning
890 * to or from the MP lock. In this case td_mpcount will be pre-disposed
891 * (non-zero) but not actually synchronized with the actual state of the
892 * lock. We can use it to imply an MP lock requirement for the
893 * preemption but we cannot use it to test whether we hold the MP lock
894 * or not.
896 savecnt = td->td_mpcount;
897 mpheld = MP_LOCK_HELD();
898 ntd->td_mpcount += td->td_mpcount;
899 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
900 ntd->td_mpcount -= td->td_mpcount;
901 ++preempt_miss;
902 need_lwkt_resched();
903 return;
905 #endif
908 * Since we are able to preempt the current thread, there is no need to
909 * call need_lwkt_resched().
911 ++preempt_hit;
912 ntd->td_preempted = td;
913 td->td_flags |= TDF_PREEMPT_LOCK;
914 td->td_switch(ntd);
916 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
917 #ifdef SMP
918 KKASSERT(savecnt == td->td_mpcount);
919 mpheld = MP_LOCK_HELD();
920 if (mpheld && td->td_mpcount == 0)
921 cpu_rel_mplock();
922 else if (mpheld == 0 && td->td_mpcount)
923 panic("lwkt_preempt(): MP lock was not held through");
924 #endif
925 ntd->td_preempted = NULL;
926 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
930 * Yield our thread while higher priority threads are pending. This is
931 * typically called when we leave a critical section but it can be safely
932 * called while we are in a critical section.
934 * This function will not generally yield to equal priority threads but it
935 * can occur as a side effect. Note that lwkt_switch() is called from
936 * inside the critical section to prevent its own crit_exit() from reentering
937 * lwkt_yield_quick().
939 * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
940 * came along but was blocked and made pending.
942 * (self contained on a per cpu basis)
944 void
945 lwkt_yield_quick(void)
947 globaldata_t gd = mycpu;
948 thread_t td = gd->gd_curthread;
951 * gd_reqflags is cleared in splz if the cpl is 0. If we were to clear
952 * it with a non-zero cpl then we might not wind up calling splz after
953 * a task switch when the critical section is exited even though the
954 * new task could accept the interrupt.
956 * XXX from crit_exit() only called after last crit section is released.
957 * If called directly will run splz() even if in a critical section.
959 * td_nest_count prevent deep nesting via splz() or doreti(). Note that
960 * except for this special case, we MUST call splz() here to handle any
961 * pending ints, particularly after we switch, or we might accidently
962 * halt the cpu with interrupts pending.
964 if (gd->gd_reqflags && td->td_nest_count < 2)
965 splz();
968 * YYY enabling will cause wakeup() to task-switch, which really
969 * confused the old 4.x code. This is a good way to simulate
970 * preemption and MP without actually doing preemption or MP, because a
971 * lot of code assumes that wakeup() does not block.
973 if (untimely_switch && td->td_nest_count == 0 &&
974 gd->gd_intr_nesting_level == 0
976 crit_enter_quick(td);
978 * YYY temporary hacks until we disassociate the userland scheduler
979 * from the LWKT scheduler.
981 if (td->td_flags & TDF_RUNQ) {
982 lwkt_switch(); /* will not reenter yield function */
983 } else {
984 lwkt_schedule_self(td); /* make sure we are scheduled */
985 lwkt_switch(); /* will not reenter yield function */
986 lwkt_deschedule_self(td); /* make sure we are descheduled */
988 crit_exit_noyield(td);
993 * This implements a normal yield which, unlike _quick, will yield to equal
994 * priority threads as well. Note that gd_reqflags tests will be handled by
995 * the crit_exit() call in lwkt_switch().
997 * (self contained on a per cpu basis)
999 void
1000 lwkt_yield(void)
1002 lwkt_schedule_self(curthread);
1003 lwkt_switch();
1007 * Return 0 if no runnable threads are pending at the same or higher
1008 * priority as the passed thread.
1010 * Return 1 if runnable threads are pending at the same priority.
1012 * Return 2 if runnable threads are pending at a higher priority.
1015 lwkt_check_resched(thread_t td)
1017 int pri = td->td_pri & TDPRI_MASK;
1019 if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1020 return(2);
1021 if (TAILQ_NEXT(td, td_threadq))
1022 return(1);
1023 return(0);
1027 * Generic schedule. Possibly schedule threads belonging to other cpus and
1028 * deal with threads that might be blocked on a wait queue.
1030 * We have a little helper inline function which does additional work after
1031 * the thread has been enqueued, including dealing with preemption and
1032 * setting need_lwkt_resched() (which prevents the kernel from returning
1033 * to userland until it has processed higher priority threads).
1035 * It is possible for this routine to be called after a failed _enqueue
1036 * (due to the target thread migrating, sleeping, or otherwise blocked).
1037 * We have to check that the thread is actually on the run queue!
1039 * reschedok is an optimized constant propagated from lwkt_schedule() or
1040 * lwkt_schedule_noresched(). By default it is non-zero, causing a
1041 * reschedule to be requested if the target thread has a higher priority.
1042 * The port messaging code will set MSG_NORESCHED and cause reschedok to
1043 * be 0, prevented undesired reschedules.
1045 static __inline
1046 void
1047 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1049 thread_t otd;
1051 if (ntd->td_flags & TDF_RUNQ) {
1052 if (ntd->td_preemptable && reschedok) {
1053 ntd->td_preemptable(ntd, cpri); /* YYY +token */
1054 } else if (reschedok) {
1055 otd = curthread;
1056 if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1057 need_lwkt_resched();
1062 static __inline
1063 void
1064 _lwkt_schedule(thread_t td, int reschedok)
1066 globaldata_t mygd = mycpu;
1068 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1069 crit_enter_gd(mygd);
1070 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1071 if (td == mygd->gd_curthread) {
1072 _lwkt_enqueue(td);
1073 } else {
1075 * If we own the thread, there is no race (since we are in a
1076 * critical section). If we do not own the thread there might
1077 * be a race but the target cpu will deal with it.
1079 #ifdef SMP
1080 if (td->td_gd == mygd) {
1081 _lwkt_enqueue(td);
1082 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1083 } else {
1084 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1086 #else
1087 _lwkt_enqueue(td);
1088 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1089 #endif
1091 crit_exit_gd(mygd);
1094 void
1095 lwkt_schedule(thread_t td)
1097 _lwkt_schedule(td, 1);
1100 void
1101 lwkt_schedule_noresched(thread_t td)
1103 _lwkt_schedule(td, 0);
1106 #ifdef SMP
1109 * Thread migration using a 'Pull' method. The thread may or may not be
1110 * the current thread. It MUST be descheduled and in a stable state.
1111 * lwkt_giveaway() must be called on the cpu owning the thread.
1113 * At any point after lwkt_giveaway() is called, the target cpu may
1114 * 'pull' the thread by calling lwkt_acquire().
1116 * MPSAFE - must be called under very specific conditions.
1118 void
1119 lwkt_giveaway(thread_t td)
1121 globaldata_t gd = mycpu;
1123 crit_enter_gd(gd);
1124 KKASSERT(td->td_gd == gd);
1125 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1126 td->td_flags |= TDF_MIGRATING;
1127 crit_exit_gd(gd);
1130 void
1131 lwkt_acquire(thread_t td)
1133 globaldata_t gd;
1134 globaldata_t mygd;
1136 KKASSERT(td->td_flags & TDF_MIGRATING);
1137 gd = td->td_gd;
1138 mygd = mycpu;
1139 if (gd != mycpu) {
1140 cpu_lfence();
1141 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1142 crit_enter_gd(mygd);
1143 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1144 #ifdef SMP
1145 lwkt_process_ipiq();
1146 #endif
1147 cpu_lfence();
1149 td->td_gd = mygd;
1150 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1151 td->td_flags &= ~TDF_MIGRATING;
1152 crit_exit_gd(mygd);
1153 } else {
1154 crit_enter_gd(mygd);
1155 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1156 td->td_flags &= ~TDF_MIGRATING;
1157 crit_exit_gd(mygd);
1161 #endif
1164 * Generic deschedule. Descheduling threads other then your own should be
1165 * done only in carefully controlled circumstances. Descheduling is
1166 * asynchronous.
1168 * This function may block if the cpu has run out of messages.
1170 void
1171 lwkt_deschedule(thread_t td)
1173 crit_enter();
1174 #ifdef SMP
1175 if (td == curthread) {
1176 _lwkt_dequeue(td);
1177 } else {
1178 if (td->td_gd == mycpu) {
1179 _lwkt_dequeue(td);
1180 } else {
1181 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1184 #else
1185 _lwkt_dequeue(td);
1186 #endif
1187 crit_exit();
1191 * Set the target thread's priority. This routine does not automatically
1192 * switch to a higher priority thread, LWKT threads are not designed for
1193 * continuous priority changes. Yield if you want to switch.
1195 * We have to retain the critical section count which uses the high bits
1196 * of the td_pri field. The specified priority may also indicate zero or
1197 * more critical sections by adding TDPRI_CRIT*N.
1199 * Note that we requeue the thread whether it winds up on a different runq
1200 * or not. uio_yield() depends on this and the routine is not normally
1201 * called with the same priority otherwise.
1203 void
1204 lwkt_setpri(thread_t td, int pri)
1206 KKASSERT(pri >= 0);
1207 KKASSERT(td->td_gd == mycpu);
1208 crit_enter();
1209 if (td->td_flags & TDF_RUNQ) {
1210 _lwkt_dequeue(td);
1211 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1212 _lwkt_enqueue(td);
1213 } else {
1214 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1216 crit_exit();
1219 void
1220 lwkt_setpri_self(int pri)
1222 thread_t td = curthread;
1224 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1225 crit_enter();
1226 if (td->td_flags & TDF_RUNQ) {
1227 _lwkt_dequeue(td);
1228 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1229 _lwkt_enqueue(td);
1230 } else {
1231 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1233 crit_exit();
1237 * Migrate the current thread to the specified cpu.
1239 * This is accomplished by descheduling ourselves from the current cpu,
1240 * moving our thread to the tdallq of the target cpu, IPI messaging the
1241 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1242 * races while the thread is being migrated.
1244 #ifdef SMP
1245 static void lwkt_setcpu_remote(void *arg);
1246 #endif
1248 void
1249 lwkt_setcpu_self(globaldata_t rgd)
1251 #ifdef SMP
1252 thread_t td = curthread;
1254 if (td->td_gd != rgd) {
1255 crit_enter_quick(td);
1256 td->td_flags |= TDF_MIGRATING;
1257 lwkt_deschedule_self(td);
1258 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1259 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1260 lwkt_switch();
1261 /* we are now on the target cpu */
1262 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1263 crit_exit_quick(td);
1265 #endif
1268 void
1269 lwkt_migratecpu(int cpuid)
1271 #ifdef SMP
1272 globaldata_t rgd;
1274 rgd = globaldata_find(cpuid);
1275 lwkt_setcpu_self(rgd);
1276 #endif
1280 * Remote IPI for cpu migration (called while in a critical section so we
1281 * do not have to enter another one). The thread has already been moved to
1282 * our cpu's allq, but we must wait for the thread to be completely switched
1283 * out on the originating cpu before we schedule it on ours or the stack
1284 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1285 * change to main memory.
1287 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1288 * against wakeups. It is best if this interface is used only when there
1289 * are no pending events that might try to schedule the thread.
1291 #ifdef SMP
1292 static void
1293 lwkt_setcpu_remote(void *arg)
1295 thread_t td = arg;
1296 globaldata_t gd = mycpu;
1298 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1299 #ifdef SMP
1300 lwkt_process_ipiq();
1301 #endif
1302 cpu_lfence();
1304 td->td_gd = gd;
1305 cpu_sfence();
1306 td->td_flags &= ~TDF_MIGRATING;
1307 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1308 _lwkt_enqueue(td);
1310 #endif
1312 struct lwp *
1313 lwkt_preempted_proc(void)
1315 thread_t td = curthread;
1316 while (td->td_preempted)
1317 td = td->td_preempted;
1318 return(td->td_lwp);
1322 * Create a kernel process/thread/whatever. It shares it's address space
1323 * with proc0 - ie: kernel only.
1325 * NOTE! By default new threads are created with the MP lock held. A
1326 * thread which does not require the MP lock should release it by calling
1327 * rel_mplock() at the start of the new thread.
1330 lwkt_create(void (*func)(void *), void *arg,
1331 struct thread **tdp, thread_t template, int tdflags, int cpu,
1332 const char *fmt, ...)
1334 thread_t td;
1335 __va_list ap;
1337 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1338 tdflags);
1339 if (tdp)
1340 *tdp = td;
1341 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1344 * Set up arg0 for 'ps' etc
1346 __va_start(ap, fmt);
1347 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1348 __va_end(ap);
1351 * Schedule the thread to run
1353 if ((td->td_flags & TDF_STOPREQ) == 0)
1354 lwkt_schedule(td);
1355 else
1356 td->td_flags &= ~TDF_STOPREQ;
1357 return 0;
1361 * Destroy an LWKT thread. Warning! This function is not called when
1362 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1363 * uses a different reaping mechanism.
1365 void
1366 lwkt_exit(void)
1368 thread_t td = curthread;
1369 thread_t std;
1370 globaldata_t gd;
1372 if (td->td_flags & TDF_VERBOSE)
1373 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1374 caps_exit(td);
1377 * Get us into a critical section to interlock gd_freetd and loop
1378 * until we can get it freed.
1380 * We have to cache the current td in gd_freetd because objcache_put()ing
1381 * it would rip it out from under us while our thread is still active.
1383 gd = mycpu;
1384 crit_enter_quick(td);
1385 while ((std = gd->gd_freetd) != NULL) {
1386 gd->gd_freetd = NULL;
1387 objcache_put(thread_cache, std);
1389 lwkt_deschedule_self(td);
1390 lwkt_remove_tdallq(td);
1391 if (td->td_flags & TDF_ALLOCATED_THREAD)
1392 gd->gd_freetd = td;
1393 cpu_thread_exit();
1396 void
1397 lwkt_remove_tdallq(thread_t td)
1399 KKASSERT(td->td_gd == mycpu);
1400 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1403 void
1404 crit_panic(void)
1406 thread_t td = curthread;
1407 int lpri = td->td_pri;
1409 td->td_pri = 0;
1410 panic("td_pri is/would-go negative! %p %d", td, lpri);
1413 #ifdef SMP
1416 * Called from debugger/panic on cpus which have been stopped. We must still
1417 * process the IPIQ while stopped, even if we were stopped while in a critical
1418 * section (XXX).
1420 * If we are dumping also try to process any pending interrupts. This may
1421 * or may not work depending on the state of the cpu at the point it was
1422 * stopped.
1424 void
1425 lwkt_smp_stopped(void)
1427 globaldata_t gd = mycpu;
1429 crit_enter_gd(gd);
1430 if (dumping) {
1431 lwkt_process_ipiq();
1432 splz();
1433 } else {
1434 lwkt_process_ipiq();
1436 crit_exit_gd(gd);
1440 * get_mplock() calls this routine if it is unable to obtain the MP lock.
1441 * get_mplock() has already incremented td_mpcount. We must block and
1442 * not return until giant is held.
1444 * All we have to do is lwkt_switch() away. The LWKT scheduler will not
1445 * reschedule the thread until it can obtain the giant lock for it.
1447 void
1448 lwkt_mp_lock_contested(void)
1450 loggiant(beg);
1451 lwkt_switch();
1452 loggiant(end);
1456 * The rel_mplock() code will call this function after releasing the
1457 * last reference on the MP lock if mp_lock_contention_mask is non-zero.
1459 * We then chain an IPI to a single other cpu potentially needing the
1460 * lock. This is a bit heuristical and we can wind up with IPIs flying
1461 * all over the place.
1463 static void lwkt_mp_lock_uncontested_remote(void *arg __unused);
1465 void
1466 lwkt_mp_lock_uncontested(void)
1468 globaldata_t gd;
1469 globaldata_t dgd;
1470 cpumask_t mask;
1471 cpumask_t tmpmask;
1472 int cpuid;
1474 if (chain_mplock) {
1475 gd = mycpu;
1476 atomic_clear_int(&mp_lock_contention_mask, gd->gd_cpumask);
1477 mask = mp_lock_contention_mask;
1478 tmpmask = ~((1 << gd->gd_cpuid) - 1);
1480 if (mask) {
1481 if (mask & tmpmask)
1482 cpuid = bsfl(mask & tmpmask);
1483 else
1484 cpuid = bsfl(mask);
1485 atomic_clear_int(&mp_lock_contention_mask, 1 << cpuid);
1486 dgd = globaldata_find(cpuid);
1487 lwkt_send_ipiq(dgd, lwkt_mp_lock_uncontested_remote, NULL);
1493 * The idea is for this IPI to interrupt a potentially lower priority
1494 * thread, such as a user thread, to allow the scheduler to reschedule
1495 * a higher priority kernel thread that needs the MP lock.
1497 * For now we set the LWKT reschedule flag which generates an AST in
1498 * doreti, though theoretically it is also possible to possibly preempt
1499 * here if the underlying thread was operating in user mode. Nah.
1501 static void
1502 lwkt_mp_lock_uncontested_remote(void *arg __unused)
1504 need_lwkt_resched();
1507 #endif