kernel - Move mplock to machine-independent C
[dragonfly.git] / sys / platform / pc64 / x86_64 / npx.c
blob277006569cfa2bbc086cef36f861cda5a552f252
1 /*
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * Copyright (c) 2006 The DragonFly Project.
5 * Copyright (c) 2006 Matthew Dillon.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91
36 * $FreeBSD: src/sys/i386/isa/npx.c,v 1.80.2.3 2001/10/20 19:04:38 tegge Exp $
39 #include "opt_debug_npx.h"
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/module.h>
47 #include <sys/sysctl.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #ifdef NPX_DEBUG
51 #include <sys/syslog.h>
52 #endif
53 #include <sys/signalvar.h>
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
58 #ifndef SMP
59 #include <machine/asmacros.h>
60 #endif
61 #include <machine/cputypes.h>
62 #include <machine/frame.h>
63 #include <machine/md_var.h>
64 #include <machine/pcb.h>
65 #include <machine/psl.h>
66 #ifndef SMP
67 #include <machine/clock.h>
68 #endif
69 #include <machine/specialreg.h>
70 #include <machine/segments.h>
71 #include <machine/globaldata.h>
73 #define fldcw(addr) __asm("fldcw %0" : : "m" (*(addr)))
74 #define fnclex() __asm("fnclex")
75 #define fninit() __asm("fninit")
76 #define fnop() __asm("fnop")
77 #define fnsave(addr) __asm __volatile("fnsave %0" : "=m" (*(addr)))
78 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr)))
79 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=m" (*(addr)))
80 #define frstor(addr) __asm("frstor %0" : : "m" (*(addr)))
81 #ifndef CPU_DISABLE_SSE
82 #define fxrstor(addr) __asm("fxrstor %0" : : "m" (*(addr)))
83 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr)))
84 #endif
85 #define start_emulating() __asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
86 : : "n" (CR0_TS) : "ax")
87 #define stop_emulating() __asm("clts")
89 #ifndef CPU_DISABLE_SSE
90 #define GET_FPU_EXSW_PTR(td) \
91 (cpu_fxsr ? \
92 &(td)->td_savefpu->sv_xmm.sv_ex_sw : \
93 &(td)->td_savefpu->sv_87.sv_ex_sw)
94 #else /* CPU_DISABLE_SSE */
95 #define GET_FPU_EXSW_PTR(td) \
96 (&(td)->td_savefpu->sv_87.sv_ex_sw)
97 #endif /* CPU_DISABLE_SSE */
99 typedef u_char bool_t;
100 #ifndef CPU_DISABLE_SSE
101 static void fpu_clean_state(void);
102 #endif
104 static struct krate badfprate = { 1 };
106 static void fpusave (union savefpu *);
107 static void fpurstor (union savefpu *);
110 * Initialize the floating point unit.
112 void
113 npxinit(u_short control)
115 static union savefpu dummy __aligned(16);
118 * fninit has the same h/w bugs as fnsave. Use the detoxified
119 * fnsave to throw away any junk in the fpu. npxsave() initializes
120 * the fpu and sets npxthread = NULL as important side effects.
122 npxsave(&dummy);
123 crit_enter();
124 stop_emulating();
125 fldcw(&control);
126 fpusave(curthread->td_savefpu);
127 mdcpu->gd_npxthread = NULL;
128 start_emulating();
129 crit_exit();
133 * Free coprocessor (if we have it).
135 void
136 npxexit(void)
138 if (curthread == mdcpu->gd_npxthread)
139 npxsave(curthread->td_savefpu);
142 #if 0
144 * The following mechanism is used to ensure that the FPE_... value
145 * that is passed as a trapcode to the signal handler of the user
146 * process does not have more than one bit set.
148 * Multiple bits may be set if the user process modifies the control
149 * word while a status word bit is already set. While this is a sign
150 * of bad coding, we have no choise than to narrow them down to one
151 * bit, since we must not send a trapcode that is not exactly one of
152 * the FPE_ macros.
154 * The mechanism has a static table with 127 entries. Each combination
155 * of the 7 FPU status word exception bits directly translates to a
156 * position in this table, where a single FPE_... value is stored.
157 * This FPE_... value stored there is considered the "most important"
158 * of the exception bits and will be sent as the signal code. The
159 * precedence of the bits is based upon Intel Document "Numerical
160 * Applications", Chapter "Special Computational Situations".
162 * The macro to choose one of these values does these steps: 1) Throw
163 * away status word bits that cannot be masked. 2) Throw away the bits
164 * currently masked in the control word, assuming the user isn't
165 * interested in them anymore. 3) Reinsert status word bit 7 (stack
166 * fault) if it is set, which cannot be masked but must be presered.
167 * 4) Use the remaining bits to point into the trapcode table.
169 * The 6 maskable bits in order of their preference, as stated in the
170 * above referenced Intel manual:
171 * 1 Invalid operation (FP_X_INV)
172 * 1a Stack underflow
173 * 1b Stack overflow
174 * 1c Operand of unsupported format
175 * 1d SNaN operand.
176 * 2 QNaN operand (not an exception, irrelavant here)
177 * 3 Any other invalid-operation not mentioned above or zero divide
178 * (FP_X_INV, FP_X_DZ)
179 * 4 Denormal operand (FP_X_DNML)
180 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL)
181 * 6 Inexact result (FP_X_IMP)
183 static char fpetable[128] = {
185 FPE_FLTINV, /* 1 - INV */
186 FPE_FLTUND, /* 2 - DNML */
187 FPE_FLTINV, /* 3 - INV | DNML */
188 FPE_FLTDIV, /* 4 - DZ */
189 FPE_FLTINV, /* 5 - INV | DZ */
190 FPE_FLTDIV, /* 6 - DNML | DZ */
191 FPE_FLTINV, /* 7 - INV | DNML | DZ */
192 FPE_FLTOVF, /* 8 - OFL */
193 FPE_FLTINV, /* 9 - INV | OFL */
194 FPE_FLTUND, /* A - DNML | OFL */
195 FPE_FLTINV, /* B - INV | DNML | OFL */
196 FPE_FLTDIV, /* C - DZ | OFL */
197 FPE_FLTINV, /* D - INV | DZ | OFL */
198 FPE_FLTDIV, /* E - DNML | DZ | OFL */
199 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */
200 FPE_FLTUND, /* 10 - UFL */
201 FPE_FLTINV, /* 11 - INV | UFL */
202 FPE_FLTUND, /* 12 - DNML | UFL */
203 FPE_FLTINV, /* 13 - INV | DNML | UFL */
204 FPE_FLTDIV, /* 14 - DZ | UFL */
205 FPE_FLTINV, /* 15 - INV | DZ | UFL */
206 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */
207 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */
208 FPE_FLTOVF, /* 18 - OFL | UFL */
209 FPE_FLTINV, /* 19 - INV | OFL | UFL */
210 FPE_FLTUND, /* 1A - DNML | OFL | UFL */
211 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */
212 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */
213 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */
214 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */
215 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */
216 FPE_FLTRES, /* 20 - IMP */
217 FPE_FLTINV, /* 21 - INV | IMP */
218 FPE_FLTUND, /* 22 - DNML | IMP */
219 FPE_FLTINV, /* 23 - INV | DNML | IMP */
220 FPE_FLTDIV, /* 24 - DZ | IMP */
221 FPE_FLTINV, /* 25 - INV | DZ | IMP */
222 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */
223 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */
224 FPE_FLTOVF, /* 28 - OFL | IMP */
225 FPE_FLTINV, /* 29 - INV | OFL | IMP */
226 FPE_FLTUND, /* 2A - DNML | OFL | IMP */
227 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */
228 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */
229 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */
230 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */
231 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */
232 FPE_FLTUND, /* 30 - UFL | IMP */
233 FPE_FLTINV, /* 31 - INV | UFL | IMP */
234 FPE_FLTUND, /* 32 - DNML | UFL | IMP */
235 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */
236 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */
237 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */
238 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */
239 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */
240 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */
241 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */
242 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */
243 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */
244 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */
245 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */
246 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */
247 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
248 FPE_FLTSUB, /* 40 - STK */
249 FPE_FLTSUB, /* 41 - INV | STK */
250 FPE_FLTUND, /* 42 - DNML | STK */
251 FPE_FLTSUB, /* 43 - INV | DNML | STK */
252 FPE_FLTDIV, /* 44 - DZ | STK */
253 FPE_FLTSUB, /* 45 - INV | DZ | STK */
254 FPE_FLTDIV, /* 46 - DNML | DZ | STK */
255 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */
256 FPE_FLTOVF, /* 48 - OFL | STK */
257 FPE_FLTSUB, /* 49 - INV | OFL | STK */
258 FPE_FLTUND, /* 4A - DNML | OFL | STK */
259 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */
260 FPE_FLTDIV, /* 4C - DZ | OFL | STK */
261 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */
262 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */
263 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */
264 FPE_FLTUND, /* 50 - UFL | STK */
265 FPE_FLTSUB, /* 51 - INV | UFL | STK */
266 FPE_FLTUND, /* 52 - DNML | UFL | STK */
267 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */
268 FPE_FLTDIV, /* 54 - DZ | UFL | STK */
269 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */
270 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */
271 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */
272 FPE_FLTOVF, /* 58 - OFL | UFL | STK */
273 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */
274 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */
275 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */
276 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */
277 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */
278 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */
279 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */
280 FPE_FLTRES, /* 60 - IMP | STK */
281 FPE_FLTSUB, /* 61 - INV | IMP | STK */
282 FPE_FLTUND, /* 62 - DNML | IMP | STK */
283 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */
284 FPE_FLTDIV, /* 64 - DZ | IMP | STK */
285 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */
286 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */
287 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */
288 FPE_FLTOVF, /* 68 - OFL | IMP | STK */
289 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */
290 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */
291 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */
292 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */
293 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */
294 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */
295 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */
296 FPE_FLTUND, /* 70 - UFL | IMP | STK */
297 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */
298 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */
299 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */
300 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */
301 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */
302 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */
303 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */
304 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */
305 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */
306 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */
307 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */
308 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */
309 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */
310 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
311 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
314 #endif
316 #if 0
319 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
321 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs. We now
322 * depend on longjmp() restoring a usable state. Restoring the state
323 * or examining it might fail if we didn't clear exceptions.
325 * The error code chosen will be one of the FPE_... macros. It will be
326 * sent as the second argument to old BSD-style signal handlers and as
327 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
329 * XXX the FP state is not preserved across signal handlers. So signal
330 * handlers cannot afford to do FP unless they preserve the state or
331 * longjmp() out. Both preserving the state and longjmp()ing may be
332 * destroyed by IRQ13 bugs. Clearing FP exceptions is not an acceptable
333 * solution for signals other than SIGFPE.
335 * The MP lock is not held on entry (see i386/i386/exception.s) and
336 * should not be held on exit. Interrupts are enabled. We must enter
337 * a critical section to stabilize the FP system and prevent an interrupt
338 * or preemption from changing the FP state out from under us.
340 void
341 npx_intr(void *dummy)
343 int code;
344 u_short control;
345 struct intrframe *frame;
346 u_long *exstat;
348 crit_enter();
351 * This exception can only occur with CR0_TS clear, otherwise we
352 * would get a DNA exception. However, since interrupts were
353 * enabled a preemption could have sneaked in and used the FP system
354 * before we entered our critical section. If that occured, the
355 * TS bit will be set and npxthread will be NULL.
357 panic("npx_intr: not coded");
358 /* XXX FP STATE FLAG MUST BE PART OF CONTEXT SUPPLIED BY REAL KERNEL */
359 #if 0
360 if (rcr0() & CR0_TS) {
361 KASSERT(mdcpu->gd_npxthread == NULL, ("gd_npxthread was %p with TS set!", mdcpu->gd_npxthread));
362 npxdna();
363 crit_exit();
364 return;
366 #endif
367 if (mdcpu->gd_npxthread == NULL) {
368 get_mplock();
369 kprintf("npxintr: npxthread = %p, curthread = %p\n",
370 mdcpu->gd_npxthread, curthread);
371 panic("npxintr from nowhere");
373 if (mdcpu->gd_npxthread != curthread) {
374 get_mplock();
375 kprintf("npxintr: npxthread = %p, curthread = %p\n",
376 mdcpu->gd_npxthread, curthread);
377 panic("npxintr from non-current process");
380 exstat = GET_FPU_EXSW_PTR(curthread);
381 outb(0xf0, 0);
382 fnstsw(exstat);
383 fnstcw(&control);
384 fnclex();
386 get_mplock();
389 * Pass exception to process.
391 frame = (struct intrframe *)&dummy; /* XXX */
392 if ((ISPL(frame->if_cs) == SEL_UPL) /*||(frame->if_eflags&PSL_VM)*/) {
394 * Interrupt is essentially a trap, so we can afford to call
395 * the SIGFPE handler (if any) as soon as the interrupt
396 * returns.
398 * XXX little or nothing is gained from this, and plenty is
399 * lost - the interrupt frame has to contain the trap frame
400 * (this is otherwise only necessary for the rescheduling trap
401 * in doreti, and the frame for that could easily be set up
402 * just before it is used).
404 curthread->td_lwp->lwp_md.md_regs = INTR_TO_TRAPFRAME(frame);
406 * Encode the appropriate code for detailed information on
407 * this exception.
409 code =
410 fpetable[(*exstat & ~control & 0x3f) | (*exstat & 0x40)];
411 trapsignal(curthread->td_lwp, SIGFPE, code);
412 } else {
414 * Nested interrupt. These losers occur when:
415 * o an IRQ13 is bogusly generated at a bogus time, e.g.:
416 * o immediately after an fnsave or frstor of an
417 * error state.
418 * o a couple of 386 instructions after
419 * "fstpl _memvar" causes a stack overflow.
420 * These are especially nasty when combined with a
421 * trace trap.
422 * o an IRQ13 occurs at the same time as another higher-
423 * priority interrupt.
425 * Treat them like a true async interrupt.
427 lwpsignal(curproc, curthread->td_lwp, SIGFPE);
429 rel_mplock();
430 crit_exit();
433 #endif
436 * Implement the device not available (DNA) exception. gd_npxthread had
437 * better be NULL. Restore the current thread's FP state and set gd_npxthread
438 * to curthread.
440 * Interrupts are enabled and preemption can occur. Enter a critical
441 * section to stabilize the FP state.
444 npxdna(void)
446 thread_t td = curthread;
447 u_long *exstat;
448 int didinit = 0;
450 if (mdcpu->gd_npxthread != NULL) {
451 kprintf("npxdna: npxthread = %p, curthread = %p\n",
452 mdcpu->gd_npxthread, curthread);
453 panic("npxdna");
457 * Setup the initial saved state if the thread has never before
458 * used the FP unit. This also occurs when a thread pushes a
459 * signal handler and uses FP in the handler.
461 if ((td->td_flags & (TDF_USINGFP | TDF_KERNELFP)) == 0) {
462 td->td_flags |= TDF_USINGFP;
463 npxinit(__INITIAL_NPXCW__);
464 didinit = 1;
468 * The setting of gd_npxthread and the call to fpurstor() must not
469 * be preempted by an interrupt thread or we will take an npxdna
470 * trap and potentially save our current fpstate (which is garbage)
471 * and then restore the garbage rather then the originally saved
472 * fpstate.
474 crit_enter();
475 stop_emulating();
477 * Record new context early in case frstor causes an IRQ13.
479 mdcpu->gd_npxthread = td;
480 exstat = GET_FPU_EXSW_PTR(td);
481 *exstat = 0;
483 * The following frstor may cause an IRQ13 when the state being
484 * restored has a pending error. The error will appear to have been
485 * triggered by the current (npx) user instruction even when that
486 * instruction is a no-wait instruction that should not trigger an
487 * error (e.g., fnclex). On at least one 486 system all of the
488 * no-wait instructions are broken the same as frstor, so our
489 * treatment does not amplify the breakage. On at least one
490 * 386/Cyrix 387 system, fnclex works correctly while frstor and
491 * fnsave are broken, so our treatment breaks fnclex if it is the
492 * first FPU instruction after a context switch.
494 if ((td->td_savefpu->sv_xmm.sv_env.en_mxcsr & ~0xFFBF)
495 #ifndef CPU_DISABLE_SSE
496 && cpu_fxsr
497 #endif
499 krateprintf(&badfprate,
500 "FXRSTR: illegal FP MXCSR %08x didinit = %d\n",
501 td->td_savefpu->sv_xmm.sv_env.en_mxcsr, didinit);
502 td->td_savefpu->sv_xmm.sv_env.en_mxcsr &= 0xFFBF;
503 lwpsignal(curproc, curthread->td_lwp, SIGFPE);
505 fpurstor(td->td_savefpu);
506 crit_exit();
508 return (1);
512 * Wrapper for the fnsave instruction to handle h/w bugs. If there is an error
513 * pending, then fnsave generates a bogus IRQ13 on some systems. Force
514 * any IRQ13 to be handled immediately, and then ignore it. This routine is
515 * often called at splhigh so it must not use many system services. In
516 * particular, it's much easier to install a special handler than to
517 * guarantee that it's safe to use npxintr() and its supporting code.
519 * WARNING! This call is made during a switch and the MP lock will be
520 * setup for the new target thread rather then the current thread, so we
521 * cannot do anything here that depends on the *_mplock() functions as
522 * we may trip over their assertions.
524 * WARNING! When using fxsave we MUST fninit after saving the FP state. The
525 * kernel will always assume that the FP state is 'safe' (will not cause
526 * exceptions) for mmx/xmm use if npxthread is NULL. The kernel must still
527 * setup a custom save area before actually using the FP unit, but it will
528 * not bother calling fninit. This greatly improves kernel performance when
529 * it wishes to use the FP unit.
531 void
532 npxsave(union savefpu *addr)
534 crit_enter();
535 stop_emulating();
536 fpusave(addr);
537 mdcpu->gd_npxthread = NULL;
538 fninit();
539 start_emulating();
540 crit_exit();
543 static void
544 fpusave(union savefpu *addr)
546 #ifndef CPU_DISABLE_SSE
547 if (cpu_fxsr)
548 fxsave(addr);
549 else
550 #endif
551 fnsave(addr);
555 * Save the FP state to the mcontext structure.
557 * WARNING: If you want to try to npxsave() directly to mctx->mc_fpregs,
558 * then it MUST be 16-byte aligned. Currently this is not guarenteed.
560 void
561 npxpush(mcontext_t *mctx)
563 thread_t td = curthread;
565 KKASSERT((td->td_flags & TDF_KERNELFP) == 0);
567 if (td->td_flags & TDF_USINGFP) {
568 if (mdcpu->gd_npxthread == td) {
570 * XXX Note: This is a bit inefficient if the signal
571 * handler uses floating point, extra faults will
572 * occur.
574 mctx->mc_ownedfp = _MC_FPOWNED_FPU;
575 npxsave(td->td_savefpu);
576 } else {
577 mctx->mc_ownedfp = _MC_FPOWNED_PCB;
579 bcopy(td->td_savefpu, mctx->mc_fpregs, sizeof(mctx->mc_fpregs));
580 td->td_flags &= ~TDF_USINGFP;
581 mctx->mc_fpformat =
582 #ifndef CPU_DISABLE_SSE
583 (cpu_fxsr) ? _MC_FPFMT_XMM :
584 #endif
585 _MC_FPFMT_387;
586 } else {
587 mctx->mc_ownedfp = _MC_FPOWNED_NONE;
588 mctx->mc_fpformat = _MC_FPFMT_NODEV;
593 * Restore the FP state from the mcontext structure.
595 void
596 npxpop(mcontext_t *mctx)
598 thread_t td = curthread;
600 switch(mctx->mc_ownedfp) {
601 case _MC_FPOWNED_NONE:
603 * If the signal handler used the FP unit but the interrupted
604 * code did not, release the FP unit. Clear TDF_USINGFP will
605 * force the FP unit to reinit so the interrupted code sees
606 * a clean slate.
608 if (td->td_flags & TDF_USINGFP) {
609 if (td == mdcpu->gd_npxthread)
610 npxsave(td->td_savefpu);
611 td->td_flags &= ~TDF_USINGFP;
613 break;
614 case _MC_FPOWNED_FPU:
615 case _MC_FPOWNED_PCB:
617 * Clear ownership of the FP unit and restore our saved state.
619 * NOTE: The signal handler may have set-up some FP state and
620 * enabled the FP unit, so we have to restore no matter what.
622 * XXX: This is bit inefficient, if the code being returned
623 * to is actively using the FP this results in multiple
624 * kernel faults.
626 * WARNING: The saved state was exposed to userland and may
627 * have to be sanitized to avoid a GP fault in the kernel.
629 if (td == mdcpu->gd_npxthread)
630 npxsave(td->td_savefpu);
631 bcopy(mctx->mc_fpregs, td->td_savefpu, sizeof(*td->td_savefpu));
632 if ((td->td_savefpu->sv_xmm.sv_env.en_mxcsr & ~0xFFBF)
633 #ifndef CPU_DISABLE_SSE
634 && cpu_fxsr
635 #endif
637 krateprintf(&badfprate,
638 "pid %d (%s) signal return from user: "
639 "illegal FP MXCSR %08x\n",
640 td->td_proc->p_pid,
641 td->td_proc->p_comm,
642 td->td_savefpu->sv_xmm.sv_env.en_mxcsr);
644 td->td_flags |= TDF_USINGFP;
645 break;
650 #ifndef CPU_DISABLE_SSE
652 * On AuthenticAMD processors, the fxrstor instruction does not restore
653 * the x87's stored last instruction pointer, last data pointer, and last
654 * opcode values, except in the rare case in which the exception summary
655 * (ES) bit in the x87 status word is set to 1.
657 * In order to avoid leaking this information across processes, we clean
658 * these values by performing a dummy load before executing fxrstor().
660 static double dummy_variable = 0.0;
661 static void
662 fpu_clean_state(void)
664 u_short status;
667 * Clear the ES bit in the x87 status word if it is currently
668 * set, in order to avoid causing a fault in the upcoming load.
670 fnstsw(&status);
671 if (status & 0x80)
672 fnclex();
675 * Load the dummy variable into the x87 stack. This mangles
676 * the x87 stack, but we don't care since we're about to call
677 * fxrstor() anyway.
679 __asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
681 #endif /* CPU_DISABLE_SSE */
683 static void
684 fpurstor(union savefpu *addr)
686 #ifndef CPU_DISABLE_SSE
687 if (cpu_fxsr) {
688 fpu_clean_state();
689 fxrstor(addr);
690 } else {
691 frstor(addr);
693 #else
694 frstor(addr);
695 #endif