Fix warnings when compiled with ACPI_IO
[dragonfly.git] / contrib / mpfr / acosh.c
blob1d0c42781bed617f2b0ab2696edb3776bb632456
1 /* mpfr_acosh -- inverse hyperbolic cosine
3 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the Arenaire and Cacao projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 2.1 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* The computation of acosh is done by *
27 * acosh= ln(x + sqrt(x^2-1)) */
29 int
30 mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mp_rnd_t rnd_mode)
32 MPFR_SAVE_EXPO_DECL (expo);
33 int inexact;
34 int comp;
36 MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
37 ("y[%#R]=%R inexact=%d", y, y, inexact));
39 /* Deal with special cases */
40 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
42 /* Nan, or zero or -Inf */
43 if (MPFR_IS_INF (x) && MPFR_IS_POS (x))
45 MPFR_SET_INF (y);
46 MPFR_SET_POS (y);
47 MPFR_RET (0);
49 else /* Nan, or zero or -Inf */
51 MPFR_SET_NAN (y);
52 MPFR_RET_NAN;
55 comp = mpfr_cmp_ui (x, 1);
56 if (MPFR_UNLIKELY (comp < 0))
58 MPFR_SET_NAN (y);
59 MPFR_RET_NAN;
61 else if (MPFR_UNLIKELY (comp == 0))
63 MPFR_SET_ZERO (y); /* acosh(1) = 0 */
64 MPFR_SET_POS (y);
65 MPFR_RET (0);
67 MPFR_SAVE_EXPO_MARK (expo);
69 /* General case */
71 /* Declaration of the intermediary variables */
72 mpfr_t t;
73 /* Declaration of the size variables */
74 mp_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */
75 mp_prec_t Nt; /* Precision of the intermediary variable */
76 mp_exp_t err, exp_te, d; /* Precision of error */
77 MPFR_ZIV_DECL (loop);
79 /* compute the precision of intermediary variable */
80 /* the optimal number of bits : see algorithms.tex */
81 Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
83 /* initialization of intermediary variables */
84 mpfr_init2 (t, Nt);
86 /* First computation of acosh */
87 MPFR_ZIV_INIT (loop, Nt);
88 for (;;)
90 MPFR_BLOCK_DECL (flags);
92 /* compute acosh */
93 MPFR_BLOCK (flags, mpfr_mul (t, x, x, GMP_RNDD)); /* x^2 */
94 if (MPFR_OVERFLOW (flags))
96 mpfr_t ln2;
97 mp_prec_t pln2;
99 /* As x is very large and the precision is not too large, we
100 assume that we obtain the same result by evaluating ln(2x).
101 We need to compute ln(x) + ln(2) as 2x can overflow. TODO:
102 write a proof and add an MPFR_ASSERTN. */
103 mpfr_log (t, x, GMP_RNDN); /* err(log) < 1/2 ulp(t) */
104 pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ?
105 MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t);
106 mpfr_init2 (ln2, pln2);
107 mpfr_const_log2 (ln2, GMP_RNDN); /* err(ln2) < 1/2 ulp(t) */
108 mpfr_add (t, t, ln2, GMP_RNDN); /* err <= 3/2 ulp(t) */
109 mpfr_clear (ln2);
110 err = 1;
112 else
114 exp_te = MPFR_GET_EXP (t);
115 mpfr_sub_ui (t, t, 1, GMP_RNDD); /* x^2-1 */
116 if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
118 /* This means that x is very close to 1: x = 1 + t with
119 t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t))
120 with 0 < eps(t) < t / 12. */
121 mpfr_sub_ui (t, x, 1, GMP_RNDD); /* t = x - 1 */
122 mpfr_mul_2ui (t, t, 1, GMP_RNDN); /* 2t */
123 mpfr_sqrt (t, t, GMP_RNDN); /* sqrt(2t) */
124 err = 1;
126 else
128 d = exp_te - MPFR_GET_EXP (t);
129 mpfr_sqrt (t, t, GMP_RNDN); /* sqrt(x^2-1) */
130 mpfr_add (t, t, x, GMP_RNDN); /* sqrt(x^2-1)+x */
131 mpfr_log (t, t, GMP_RNDN); /* ln(sqrt(x^2-1)+x) */
133 /* error estimate -- see algorithms.tex */
134 err = 3 + MAX (1, d) - MPFR_GET_EXP (t);
135 /* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */
136 err = MAX (0, 1 + err);
140 if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode)))
141 break;
143 /* reactualisation of the precision */
144 MPFR_ZIV_NEXT (loop, Nt);
145 mpfr_set_prec (t, Nt);
147 MPFR_ZIV_FREE (loop);
149 inexact = mpfr_set (y, t, rnd_mode);
151 mpfr_clear (t);
154 MPFR_SAVE_EXPO_FREE (expo);
155 return mpfr_check_range (y, inexact, rnd_mode);