kernel - namecache - fix deadlock
[dragonfly.git] / sys / kern / vfs_cache.c
blobc88c87c5ac356934b000f653883664fd571569e5
1 /*
2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1989, 1993, 1995
35 * The Regents of the University of California. All rights reserved.
37 * This code is derived from software contributed to Berkeley by
38 * Poul-Henning Kamp of the FreeBSD Project.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the University of
51 * California, Berkeley and its contributors.
52 * 4. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/mount.h>
74 #include <sys/vnode.h>
75 #include <sys/malloc.h>
76 #include <sys/sysproto.h>
77 #include <sys/spinlock.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/nlookup.h>
81 #include <sys/filedesc.h>
82 #include <sys/fnv_hash.h>
83 #include <sys/globaldata.h>
84 #include <sys/kern_syscall.h>
85 #include <sys/dirent.h>
86 #include <ddb/ddb.h>
88 #include <sys/sysref2.h>
89 #include <sys/spinlock2.h>
90 #include <sys/mplock2.h>
92 #define MAX_RECURSION_DEPTH 64
95 * Random lookups in the cache are accomplished with a hash table using
96 * a hash key of (nc_src_vp, name). Each hash chain has its own spin lock.
98 * Negative entries may exist and correspond to resolved namecache
99 * structures where nc_vp is NULL. In a negative entry, NCF_WHITEOUT
100 * will be set if the entry corresponds to a whited-out directory entry
101 * (verses simply not finding the entry at all). ncneglist is locked
102 * with a global spinlock (ncspin).
104 * MPSAFE RULES:
106 * (1) A ncp must be referenced before it can be locked.
108 * (2) A ncp must be locked in order to modify it.
110 * (3) ncp locks are always ordered child -> parent. That may seem
111 * backwards but forward scans use the hash table and thus can hold
112 * the parent unlocked when traversing downward.
114 * This allows insert/rename/delete/dot-dot and other operations
115 * to use ncp->nc_parent links.
117 * This also prevents a locked up e.g. NFS node from creating a
118 * chain reaction all the way back to the root vnode / namecache.
120 * (4) parent linkages require both the parent and child to be locked.
124 * Structures associated with name cacheing.
126 #define NCHHASH(hash) (&nchashtbl[(hash) & nchash])
127 #define MINNEG 1024
129 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
131 LIST_HEAD(nchash_list, namecache);
133 struct nchash_head {
134 struct nchash_list list;
135 struct spinlock spin;
138 static struct nchash_head *nchashtbl;
139 static struct namecache_list ncneglist;
140 static struct spinlock ncspin;
143 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server
144 * to create the namecache infrastructure leading to a dangling vnode.
146 * 0 Only errors are reported
147 * 1 Successes are reported
148 * 2 Successes + the whole directory scan is reported
149 * 3 Force the directory scan code run as if the parent vnode did not
150 * have a namecache record, even if it does have one.
152 static int ncvp_debug;
153 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
155 static u_long nchash; /* size of hash table */
156 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
158 static int ncnegfactor = 16; /* ratio of negative entries */
159 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
161 static int nclockwarn; /* warn on locked entries in ticks */
162 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
164 static int numneg; /* number of cache entries allocated */
165 SYSCTL_INT(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
167 static int numdefered; /* number of cache entries allocated */
168 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0, "");
170 static int numcache; /* number of cache entries allocated */
171 SYSCTL_INT(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
173 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
174 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
176 int cache_mpsafe;
177 SYSCTL_INT(_vfs, OID_AUTO, cache_mpsafe, CTLFLAG_RW, &cache_mpsafe, 0, "");
179 static int cache_resolve_mp(struct mount *mp);
180 static struct vnode *cache_dvpref(struct namecache *ncp);
181 static void _cache_lock(struct namecache *ncp);
182 static void _cache_setunresolved(struct namecache *ncp);
183 static void _cache_cleanneg(int count);
184 static void _cache_cleandefered(void);
187 * The new name cache statistics
189 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
190 #define STATNODE(mode, name, var) \
191 SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
192 STATNODE(CTLFLAG_RD, numneg, &numneg);
193 STATNODE(CTLFLAG_RD, numcache, &numcache);
194 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
195 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
196 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
197 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
198 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
199 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
200 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
201 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
202 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
203 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
205 struct nchstats nchstats[SMP_MAXCPU];
207 * Export VFS cache effectiveness statistics to user-land.
209 * The statistics are left for aggregation to user-land so
210 * neat things can be achieved, like observing per-CPU cache
211 * distribution.
213 static int
214 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
216 struct globaldata *gd;
217 int i, error;
219 error = 0;
220 for (i = 0; i < ncpus; ++i) {
221 gd = globaldata_find(i);
222 if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
223 sizeof(struct nchstats))))
224 break;
227 return (error);
229 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
230 0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
232 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
235 * Namespace locking. The caller must already hold a reference to the
236 * namecache structure in order to lock/unlock it. This function prevents
237 * the namespace from being created or destroyed by accessors other then
238 * the lock holder.
240 * Note that holding a locked namecache structure prevents other threads
241 * from making namespace changes (e.g. deleting or creating), prevents
242 * vnode association state changes by other threads, and prevents the
243 * namecache entry from being resolved or unresolved by other threads.
245 * The lock owner has full authority to associate/disassociate vnodes
246 * and resolve/unresolve the locked ncp.
248 * The primary lock field is nc_exlocks. nc_locktd is set after the
249 * fact (when locking) or cleared prior to unlocking.
251 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed
252 * or recycled, but it does NOT help you if the vnode had already
253 * initiated a recyclement. If this is important, use cache_get()
254 * rather then cache_lock() (and deal with the differences in the
255 * way the refs counter is handled). Or, alternatively, make an
256 * unconditional call to cache_validate() or cache_resolve()
257 * after cache_lock() returns.
259 * MPSAFE
261 static
262 void
263 _cache_lock(struct namecache *ncp)
265 thread_t td;
266 int didwarn;
267 int error;
268 u_int count;
270 KKASSERT(ncp->nc_refs != 0);
271 didwarn = 0;
272 td = curthread;
274 for (;;) {
275 count = ncp->nc_exlocks;
277 if (count == 0) {
278 if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
280 * The vp associated with a locked ncp must
281 * be held to prevent it from being recycled.
283 * WARNING! If VRECLAIMED is set the vnode
284 * could already be in the middle of a recycle.
285 * Callers must use cache_vref() or
286 * cache_vget() on the locked ncp to
287 * validate the vp or set the cache entry
288 * to unresolved.
290 * NOTE! vhold() is allowed if we hold a
291 * lock on the ncp (which we do).
293 ncp->nc_locktd = td;
294 if (ncp->nc_vp)
295 vhold(ncp->nc_vp); /* MPSAFE */
296 break;
298 /* cmpset failed */
299 continue;
301 if (ncp->nc_locktd == td) {
302 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
303 count + 1)) {
304 break;
306 /* cmpset failed */
307 continue;
309 tsleep_interlock(ncp, 0);
310 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
311 count | NC_EXLOCK_REQ) == 0) {
312 /* cmpset failed */
313 continue;
315 error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn);
316 if (error == EWOULDBLOCK) {
317 if (didwarn == 0) {
318 didwarn = ticks;
319 kprintf("[diagnostic] cache_lock: blocked "
320 "on %p",
321 ncp);
322 kprintf(" \"%*.*s\"\n",
323 ncp->nc_nlen, ncp->nc_nlen,
324 ncp->nc_name);
328 if (didwarn) {
329 kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
330 "%d secs\n",
331 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
332 (int)(ticks - didwarn) / hz);
337 * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
338 * such as the case where one of its children is locked.
340 * MPSAFE
342 static
344 _cache_lock_nonblock(struct namecache *ncp)
346 thread_t td;
347 u_int count;
349 td = curthread;
351 for (;;) {
352 count = ncp->nc_exlocks;
354 if (count == 0) {
355 if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
357 * The vp associated with a locked ncp must
358 * be held to prevent it from being recycled.
360 * WARNING! If VRECLAIMED is set the vnode
361 * could already be in the middle of a recycle.
362 * Callers must use cache_vref() or
363 * cache_vget() on the locked ncp to
364 * validate the vp or set the cache entry
365 * to unresolved.
367 * NOTE! vhold() is allowed if we hold a
368 * lock on the ncp (which we do).
370 ncp->nc_locktd = td;
371 if (ncp->nc_vp)
372 vhold(ncp->nc_vp); /* MPSAFE */
373 break;
375 /* cmpset failed */
376 continue;
378 if (ncp->nc_locktd == td) {
379 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
380 count + 1)) {
381 break;
383 /* cmpset failed */
384 continue;
386 return(EWOULDBLOCK);
388 return(0);
392 * Helper function
394 * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
396 * nc_locktd must be NULLed out prior to nc_exlocks getting cleared.
398 * MPSAFE
400 static
401 void
402 _cache_unlock(struct namecache *ncp)
404 thread_t td __debugvar = curthread;
405 u_int count;
407 KKASSERT(ncp->nc_refs >= 0);
408 KKASSERT(ncp->nc_exlocks > 0);
409 KKASSERT(ncp->nc_locktd == td);
411 count = ncp->nc_exlocks;
412 if ((count & ~NC_EXLOCK_REQ) == 1) {
413 ncp->nc_locktd = NULL;
414 if (ncp->nc_vp)
415 vdrop(ncp->nc_vp);
417 for (;;) {
418 if ((count & ~NC_EXLOCK_REQ) == 1) {
419 if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) {
420 if (count & NC_EXLOCK_REQ)
421 wakeup(ncp);
422 break;
424 } else {
425 if (atomic_cmpset_int(&ncp->nc_exlocks, count,
426 count - 1)) {
427 break;
430 count = ncp->nc_exlocks;
436 * cache_hold() and cache_drop() prevent the premature deletion of a
437 * namecache entry but do not prevent operations (such as zapping) on
438 * that namecache entry.
440 * This routine may only be called from outside this source module if
441 * nc_refs is already at least 1.
443 * This is a rare case where callers are allowed to hold a spinlock,
444 * so we can't ourselves.
446 * MPSAFE
448 static __inline
449 struct namecache *
450 _cache_hold(struct namecache *ncp)
452 atomic_add_int(&ncp->nc_refs, 1);
453 return(ncp);
457 * Drop a cache entry, taking care to deal with races.
459 * For potential 1->0 transitions we must hold the ncp lock to safely
460 * test its flags. An unresolved entry with no children must be zapped
461 * to avoid leaks.
463 * The call to cache_zap() itself will handle all remaining races and
464 * will decrement the ncp's refs regardless. If we are resolved or
465 * have children nc_refs can safely be dropped to 0 without having to
466 * zap the entry.
468 * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
470 * NOTE: cache_zap() may return a non-NULL referenced parent which must
471 * be dropped in a loop.
473 * MPSAFE
475 static __inline
476 void
477 _cache_drop(struct namecache *ncp)
479 int refs;
481 while (ncp) {
482 KKASSERT(ncp->nc_refs > 0);
483 refs = ncp->nc_refs;
485 if (refs == 1) {
486 if (_cache_lock_nonblock(ncp) == 0) {
487 if ((ncp->nc_flag & NCF_UNRESOLVED) &&
488 TAILQ_EMPTY(&ncp->nc_list)) {
489 ncp = cache_zap(ncp, 1);
490 continue;
492 if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
493 _cache_unlock(ncp);
494 break;
496 _cache_unlock(ncp);
498 } else {
499 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
500 break;
502 cpu_pause();
507 * Link a new namecache entry to its parent and to the hash table. Be
508 * careful to avoid races if vhold() blocks in the future.
510 * Both ncp and par must be referenced and locked.
512 * NOTE: The hash table spinlock is likely held during this call, we
513 * can't do anything fancy.
515 * MPSAFE
517 static void
518 _cache_link_parent(struct namecache *ncp, struct namecache *par,
519 struct nchash_head *nchpp)
521 KKASSERT(ncp->nc_parent == NULL);
522 ncp->nc_parent = par;
523 ncp->nc_head = nchpp;
524 LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
526 if (TAILQ_EMPTY(&par->nc_list)) {
527 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
529 * Any vp associated with an ncp which has children must
530 * be held to prevent it from being recycled.
532 if (par->nc_vp)
533 vhold(par->nc_vp);
534 } else {
535 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
540 * Remove the parent and hash associations from a namecache structure.
541 * If this is the last child of the parent the cache_drop(par) will
542 * attempt to recursively zap the parent.
544 * ncp must be locked. This routine will acquire a temporary lock on
545 * the parent as wlel as the appropriate hash chain.
547 * MPSAFE
549 static void
550 _cache_unlink_parent(struct namecache *ncp)
552 struct namecache *par;
553 struct vnode *dropvp;
555 if ((par = ncp->nc_parent) != NULL) {
556 KKASSERT(ncp->nc_parent == par);
557 _cache_hold(par);
558 _cache_lock(par);
559 spin_lock_wr(&ncp->nc_head->spin);
560 LIST_REMOVE(ncp, nc_hash);
561 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
562 dropvp = NULL;
563 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
564 dropvp = par->nc_vp;
565 spin_unlock_wr(&ncp->nc_head->spin);
566 ncp->nc_parent = NULL;
567 ncp->nc_head = NULL;
568 _cache_unlock(par);
569 _cache_drop(par);
572 * We can only safely vdrop with no spinlocks held.
574 if (dropvp)
575 vdrop(dropvp);
580 * Allocate a new namecache structure. Most of the code does not require
581 * zero-termination of the string but it makes vop_compat_ncreate() easier.
583 * MPSAFE
585 static struct namecache *
586 cache_alloc(int nlen)
588 struct namecache *ncp;
590 ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
591 if (nlen)
592 ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
593 ncp->nc_nlen = nlen;
594 ncp->nc_flag = NCF_UNRESOLVED;
595 ncp->nc_error = ENOTCONN; /* needs to be resolved */
596 ncp->nc_refs = 1;
598 TAILQ_INIT(&ncp->nc_list);
599 _cache_lock(ncp);
600 return(ncp);
604 * Can only be called for the case where the ncp has never been
605 * associated with anything (so no spinlocks are needed).
607 * MPSAFE
609 static void
610 _cache_free(struct namecache *ncp)
612 KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
613 if (ncp->nc_name)
614 kfree(ncp->nc_name, M_VFSCACHE);
615 kfree(ncp, M_VFSCACHE);
619 * MPSAFE
621 void
622 cache_zero(struct nchandle *nch)
624 nch->ncp = NULL;
625 nch->mount = NULL;
629 * Ref and deref a namecache structure.
631 * The caller must specify a stable ncp pointer, typically meaning the
632 * ncp is already referenced but this can also occur indirectly through
633 * e.g. holding a lock on a direct child.
635 * WARNING: Caller may hold an unrelated read spinlock, which means we can't
636 * use read spinlocks here.
638 * MPSAFE if nch is
640 struct nchandle *
641 cache_hold(struct nchandle *nch)
643 _cache_hold(nch->ncp);
644 atomic_add_int(&nch->mount->mnt_refs, 1);
645 return(nch);
649 * Create a copy of a namecache handle for an already-referenced
650 * entry.
652 * MPSAFE if nch is
654 void
655 cache_copy(struct nchandle *nch, struct nchandle *target)
657 *target = *nch;
658 if (target->ncp)
659 _cache_hold(target->ncp);
660 atomic_add_int(&nch->mount->mnt_refs, 1);
664 * MPSAFE if nch is
666 void
667 cache_changemount(struct nchandle *nch, struct mount *mp)
669 atomic_add_int(&nch->mount->mnt_refs, -1);
670 nch->mount = mp;
671 atomic_add_int(&nch->mount->mnt_refs, 1);
675 * MPSAFE
677 void
678 cache_drop(struct nchandle *nch)
680 atomic_add_int(&nch->mount->mnt_refs, -1);
681 _cache_drop(nch->ncp);
682 nch->ncp = NULL;
683 nch->mount = NULL;
687 * MPSAFE
689 void
690 cache_lock(struct nchandle *nch)
692 _cache_lock(nch->ncp);
696 * Relock nch1 given an unlocked nch1 and a locked nch2. The caller
697 * is responsible for checking both for validity on return as they
698 * may have become invalid.
700 * We have to deal with potential deadlocks here, just ping pong
701 * the lock until we get it (we will always block somewhere when
702 * looping so this is not cpu-intensive).
704 * which = 0 nch1 not locked, nch2 is locked
705 * which = 1 nch1 is locked, nch2 is not locked
707 void
708 cache_relock(struct nchandle *nch1, struct ucred *cred1,
709 struct nchandle *nch2, struct ucred *cred2)
711 int which;
713 which = 0;
715 for (;;) {
716 if (which == 0) {
717 if (cache_lock_nonblock(nch1) == 0) {
718 cache_resolve(nch1, cred1);
719 break;
721 cache_unlock(nch2);
722 cache_lock(nch1);
723 cache_resolve(nch1, cred1);
724 which = 1;
725 } else {
726 if (cache_lock_nonblock(nch2) == 0) {
727 cache_resolve(nch2, cred2);
728 break;
730 cache_unlock(nch1);
731 cache_lock(nch2);
732 cache_resolve(nch2, cred2);
733 which = 0;
739 * MPSAFE
742 cache_lock_nonblock(struct nchandle *nch)
744 return(_cache_lock_nonblock(nch->ncp));
749 * MPSAFE
751 void
752 cache_unlock(struct nchandle *nch)
754 _cache_unlock(nch->ncp);
758 * ref-and-lock, unlock-and-deref functions.
760 * This function is primarily used by nlookup. Even though cache_lock
761 * holds the vnode, it is possible that the vnode may have already
762 * initiated a recyclement.
764 * We want cache_get() to return a definitively usable vnode or a
765 * definitively unresolved ncp.
767 * MPSAFE
769 static
770 struct namecache *
771 _cache_get(struct namecache *ncp)
773 _cache_hold(ncp);
774 _cache_lock(ncp);
775 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
776 _cache_setunresolved(ncp);
777 return(ncp);
781 * This is a special form of _cache_lock() which only succeeds if
782 * it can get a pristine, non-recursive lock. The caller must have
783 * already ref'd the ncp.
785 * On success the ncp will be locked, on failure it will not. The
786 * ref count does not change either way.
788 * We want _cache_lock_special() (on success) to return a definitively
789 * usable vnode or a definitively unresolved ncp.
791 * MPSAFE
793 static int
794 _cache_lock_special(struct namecache *ncp)
796 if (_cache_lock_nonblock(ncp) == 0) {
797 if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) {
798 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
799 _cache_setunresolved(ncp);
800 return(0);
802 _cache_unlock(ncp);
804 return(EWOULDBLOCK);
809 * NOTE: The same nchandle can be passed for both arguments.
811 * MPSAFE
813 void
814 cache_get(struct nchandle *nch, struct nchandle *target)
816 KKASSERT(nch->ncp->nc_refs > 0);
817 target->mount = nch->mount;
818 target->ncp = _cache_get(nch->ncp);
819 atomic_add_int(&target->mount->mnt_refs, 1);
823 * MPSAFE
825 static __inline
826 void
827 _cache_put(struct namecache *ncp)
829 _cache_unlock(ncp);
830 _cache_drop(ncp);
834 * MPSAFE
836 void
837 cache_put(struct nchandle *nch)
839 atomic_add_int(&nch->mount->mnt_refs, -1);
840 _cache_put(nch->ncp);
841 nch->ncp = NULL;
842 nch->mount = NULL;
846 * Resolve an unresolved ncp by associating a vnode with it. If the
847 * vnode is NULL, a negative cache entry is created.
849 * The ncp should be locked on entry and will remain locked on return.
851 * MPSAFE
853 static
854 void
855 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
857 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
859 if (vp != NULL) {
861 * Any vp associated with an ncp which has children must
862 * be held. Any vp associated with a locked ncp must be held.
864 if (!TAILQ_EMPTY(&ncp->nc_list))
865 vhold(vp);
866 spin_lock_wr(&vp->v_spinlock);
867 ncp->nc_vp = vp;
868 TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
869 spin_unlock_wr(&vp->v_spinlock);
870 if (ncp->nc_exlocks)
871 vhold(vp);
874 * Set auxiliary flags
876 switch(vp->v_type) {
877 case VDIR:
878 ncp->nc_flag |= NCF_ISDIR;
879 break;
880 case VLNK:
881 ncp->nc_flag |= NCF_ISSYMLINK;
882 /* XXX cache the contents of the symlink */
883 break;
884 default:
885 break;
887 atomic_add_int(&numcache, 1);
888 ncp->nc_error = 0;
889 } else {
891 * When creating a negative cache hit we set the
892 * namecache_gen. A later resolve will clean out the
893 * negative cache hit if the mount point's namecache_gen
894 * has changed. Used by devfs, could also be used by
895 * other remote FSs.
897 ncp->nc_vp = NULL;
898 spin_lock_wr(&ncspin);
899 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
900 ++numneg;
901 spin_unlock_wr(&ncspin);
902 ncp->nc_error = ENOENT;
903 if (mp)
904 ncp->nc_namecache_gen = mp->mnt_namecache_gen;
906 ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
910 * MPSAFE
912 void
913 cache_setvp(struct nchandle *nch, struct vnode *vp)
915 _cache_setvp(nch->mount, nch->ncp, vp);
919 * MPSAFE
921 void
922 cache_settimeout(struct nchandle *nch, int nticks)
924 struct namecache *ncp = nch->ncp;
926 if ((ncp->nc_timeout = ticks + nticks) == 0)
927 ncp->nc_timeout = 1;
931 * Disassociate the vnode or negative-cache association and mark a
932 * namecache entry as unresolved again. Note that the ncp is still
933 * left in the hash table and still linked to its parent.
935 * The ncp should be locked and refd on entry and will remain locked and refd
936 * on return.
938 * This routine is normally never called on a directory containing children.
939 * However, NFS often does just that in its rename() code as a cop-out to
940 * avoid complex namespace operations. This disconnects a directory vnode
941 * from its namecache and can cause the OLDAPI and NEWAPI to get out of
942 * sync.
944 * MPSAFE
946 static
947 void
948 _cache_setunresolved(struct namecache *ncp)
950 struct vnode *vp;
952 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
953 ncp->nc_flag |= NCF_UNRESOLVED;
954 ncp->nc_timeout = 0;
955 ncp->nc_error = ENOTCONN;
956 if ((vp = ncp->nc_vp) != NULL) {
957 atomic_add_int(&numcache, -1);
958 spin_lock_wr(&vp->v_spinlock);
959 ncp->nc_vp = NULL;
960 TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
961 spin_unlock_wr(&vp->v_spinlock);
964 * Any vp associated with an ncp with children is
965 * held by that ncp. Any vp associated with a locked
966 * ncp is held by that ncp. These conditions must be
967 * undone when the vp is cleared out from the ncp.
969 if (!TAILQ_EMPTY(&ncp->nc_list))
970 vdrop(vp);
971 if (ncp->nc_exlocks)
972 vdrop(vp);
973 } else {
974 spin_lock_wr(&ncspin);
975 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
976 --numneg;
977 spin_unlock_wr(&ncspin);
979 ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
984 * The cache_nresolve() code calls this function to automatically
985 * set a resolved cache element to unresolved if it has timed out
986 * or if it is a negative cache hit and the mount point namecache_gen
987 * has changed.
989 * MPSAFE
991 static __inline void
992 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
995 * Already in an unresolved state, nothing to do.
997 if (ncp->nc_flag & NCF_UNRESOLVED)
998 return;
1001 * Try to zap entries that have timed out. We have
1002 * to be careful here because locked leafs may depend
1003 * on the vnode remaining intact in a parent, so only
1004 * do this under very specific conditions.
1006 if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1007 TAILQ_EMPTY(&ncp->nc_list)) {
1008 _cache_setunresolved(ncp);
1009 return;
1013 * If a resolved negative cache hit is invalid due to
1014 * the mount's namecache generation being bumped, zap it.
1016 if (ncp->nc_vp == NULL &&
1017 ncp->nc_namecache_gen != mp->mnt_namecache_gen) {
1018 _cache_setunresolved(ncp);
1019 return;
1024 * MPSAFE
1026 void
1027 cache_setunresolved(struct nchandle *nch)
1029 _cache_setunresolved(nch->ncp);
1033 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1034 * looking for matches. This flag tells the lookup code when it must
1035 * check for a mount linkage and also prevents the directories in question
1036 * from being deleted or renamed.
1038 * MPSAFE
1040 static
1042 cache_clrmountpt_callback(struct mount *mp, void *data)
1044 struct nchandle *nch = data;
1046 if (mp->mnt_ncmounton.ncp == nch->ncp)
1047 return(1);
1048 if (mp->mnt_ncmountpt.ncp == nch->ncp)
1049 return(1);
1050 return(0);
1054 * MPSAFE
1056 void
1057 cache_clrmountpt(struct nchandle *nch)
1059 int count;
1061 count = mountlist_scan(cache_clrmountpt_callback, nch,
1062 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1063 if (count == 0)
1064 nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1068 * Invalidate portions of the namecache topology given a starting entry.
1069 * The passed ncp is set to an unresolved state and:
1071 * The passed ncp must be referencxed and locked. The routine may unlock
1072 * and relock ncp several times, and will recheck the children and loop
1073 * to catch races. When done the passed ncp will be returned with the
1074 * reference and lock intact.
1076 * CINV_DESTROY - Set a flag in the passed ncp entry indicating
1077 * that the physical underlying nodes have been
1078 * destroyed... as in deleted. For example, when
1079 * a directory is removed. This will cause record
1080 * lookups on the name to no longer be able to find
1081 * the record and tells the resolver to return failure
1082 * rather then trying to resolve through the parent.
1084 * The topology itself, including ncp->nc_name,
1085 * remains intact.
1087 * This only applies to the passed ncp, if CINV_CHILDREN
1088 * is specified the children are not flagged.
1090 * CINV_CHILDREN - Set all children (recursively) to an unresolved
1091 * state as well.
1093 * Note that this will also have the side effect of
1094 * cleaning out any unreferenced nodes in the topology
1095 * from the leaves up as the recursion backs out.
1097 * Note that the topology for any referenced nodes remains intact, but
1098 * the nodes will be marked as having been destroyed and will be set
1099 * to an unresolved state.
1101 * It is possible for cache_inval() to race a cache_resolve(), meaning that
1102 * the namecache entry may not actually be invalidated on return if it was
1103 * revalidated while recursing down into its children. This code guarentees
1104 * that the node(s) will go through an invalidation cycle, but does not
1105 * guarentee that they will remain in an invalidated state.
1107 * Returns non-zero if a revalidation was detected during the invalidation
1108 * recursion, zero otherwise. Note that since only the original ncp is
1109 * locked the revalidation ultimately can only indicate that the original ncp
1110 * *MIGHT* no have been reresolved.
1112 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1113 * have to avoid blowing out the kernel stack. We do this by saving the
1114 * deep namecache node and aborting the recursion, then re-recursing at that
1115 * node using a depth-first algorithm in order to allow multiple deep
1116 * recursions to chain through each other, then we restart the invalidation
1117 * from scratch.
1119 * MPSAFE
1122 struct cinvtrack {
1123 struct namecache *resume_ncp;
1124 int depth;
1127 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1129 static
1131 _cache_inval(struct namecache *ncp, int flags)
1133 struct cinvtrack track;
1134 struct namecache *ncp2;
1135 int r;
1137 track.depth = 0;
1138 track.resume_ncp = NULL;
1140 for (;;) {
1141 r = _cache_inval_internal(ncp, flags, &track);
1142 if (track.resume_ncp == NULL)
1143 break;
1144 kprintf("Warning: deep namecache recursion at %s\n",
1145 ncp->nc_name);
1146 _cache_unlock(ncp);
1147 while ((ncp2 = track.resume_ncp) != NULL) {
1148 track.resume_ncp = NULL;
1149 _cache_lock(ncp2);
1150 _cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1151 &track);
1152 _cache_put(ncp2);
1154 _cache_lock(ncp);
1156 return(r);
1160 cache_inval(struct nchandle *nch, int flags)
1162 return(_cache_inval(nch->ncp, flags));
1166 * Helper for _cache_inval(). The passed ncp is refd and locked and
1167 * remains that way on return, but may be unlocked/relocked multiple
1168 * times by the routine.
1170 static int
1171 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1173 struct namecache *kid;
1174 struct namecache *nextkid;
1175 int rcnt = 0;
1177 KKASSERT(ncp->nc_exlocks);
1179 _cache_setunresolved(ncp);
1180 if (flags & CINV_DESTROY)
1181 ncp->nc_flag |= NCF_DESTROYED;
1182 if ((flags & CINV_CHILDREN) &&
1183 (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1185 _cache_hold(kid);
1186 if (++track->depth > MAX_RECURSION_DEPTH) {
1187 track->resume_ncp = ncp;
1188 _cache_hold(ncp);
1189 ++rcnt;
1191 _cache_unlock(ncp);
1192 while (kid) {
1193 if (track->resume_ncp) {
1194 _cache_drop(kid);
1195 break;
1197 if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1198 _cache_hold(nextkid);
1199 if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1200 TAILQ_FIRST(&kid->nc_list)
1202 _cache_lock(kid);
1203 rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1204 _cache_unlock(kid);
1206 _cache_drop(kid);
1207 kid = nextkid;
1209 --track->depth;
1210 _cache_lock(ncp);
1214 * Someone could have gotten in there while ncp was unlocked,
1215 * retry if so.
1217 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1218 ++rcnt;
1219 return (rcnt);
1223 * Invalidate a vnode's namecache associations. To avoid races against
1224 * the resolver we do not invalidate a node which we previously invalidated
1225 * but which was then re-resolved while we were in the invalidation loop.
1227 * Returns non-zero if any namecache entries remain after the invalidation
1228 * loop completed.
1230 * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1231 * be ripped out of the topology while held, the vnode's v_namecache
1232 * list has no such restriction. NCP's can be ripped out of the list
1233 * at virtually any time if not locked, even if held.
1235 * In addition, the v_namecache list itself must be locked via
1236 * the vnode's spinlock.
1238 * MPSAFE
1241 cache_inval_vp(struct vnode *vp, int flags)
1243 struct namecache *ncp;
1244 struct namecache *next;
1246 restart:
1247 spin_lock_wr(&vp->v_spinlock);
1248 ncp = TAILQ_FIRST(&vp->v_namecache);
1249 if (ncp)
1250 _cache_hold(ncp);
1251 while (ncp) {
1252 /* loop entered with ncp held and vp spin-locked */
1253 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1254 _cache_hold(next);
1255 spin_unlock_wr(&vp->v_spinlock);
1256 _cache_lock(ncp);
1257 if (ncp->nc_vp != vp) {
1258 kprintf("Warning: cache_inval_vp: race-A detected on "
1259 "%s\n", ncp->nc_name);
1260 _cache_put(ncp);
1261 if (next)
1262 _cache_drop(next);
1263 goto restart;
1265 _cache_inval(ncp, flags);
1266 _cache_put(ncp); /* also releases reference */
1267 ncp = next;
1268 spin_lock_wr(&vp->v_spinlock);
1269 if (ncp && ncp->nc_vp != vp) {
1270 spin_unlock_wr(&vp->v_spinlock);
1271 kprintf("Warning: cache_inval_vp: race-B detected on "
1272 "%s\n", ncp->nc_name);
1273 _cache_drop(ncp);
1274 goto restart;
1277 spin_unlock_wr(&vp->v_spinlock);
1278 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1282 * This routine is used instead of the normal cache_inval_vp() when we
1283 * are trying to recycle otherwise good vnodes.
1285 * Return 0 on success, non-zero if not all namecache records could be
1286 * disassociated from the vnode (for various reasons).
1288 * MPSAFE
1291 cache_inval_vp_nonblock(struct vnode *vp)
1293 struct namecache *ncp;
1294 struct namecache *next;
1296 spin_lock_wr(&vp->v_spinlock);
1297 ncp = TAILQ_FIRST(&vp->v_namecache);
1298 if (ncp)
1299 _cache_hold(ncp);
1300 while (ncp) {
1301 /* loop entered with ncp held */
1302 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1303 _cache_hold(next);
1304 spin_unlock_wr(&vp->v_spinlock);
1305 if (_cache_lock_nonblock(ncp)) {
1306 _cache_drop(ncp);
1307 if (next)
1308 _cache_drop(next);
1309 goto done;
1311 if (ncp->nc_vp != vp) {
1312 kprintf("Warning: cache_inval_vp: race-A detected on "
1313 "%s\n", ncp->nc_name);
1314 _cache_put(ncp);
1315 if (next)
1316 _cache_drop(next);
1317 goto done;
1319 _cache_inval(ncp, 0);
1320 _cache_put(ncp); /* also releases reference */
1321 ncp = next;
1322 spin_lock_wr(&vp->v_spinlock);
1323 if (ncp && ncp->nc_vp != vp) {
1324 spin_unlock_wr(&vp->v_spinlock);
1325 kprintf("Warning: cache_inval_vp: race-B detected on "
1326 "%s\n", ncp->nc_name);
1327 _cache_drop(ncp);
1328 goto done;
1331 spin_unlock_wr(&vp->v_spinlock);
1332 done:
1333 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1337 * The source ncp has been renamed to the target ncp. Both fncp and tncp
1338 * must be locked. The target ncp is destroyed (as a normal rename-over
1339 * would destroy the target file or directory).
1341 * Because there may be references to the source ncp we cannot copy its
1342 * contents to the target. Instead the source ncp is relinked as the target
1343 * and the target ncp is removed from the namecache topology.
1345 * MPSAFE
1347 void
1348 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1350 struct namecache *fncp = fnch->ncp;
1351 struct namecache *tncp = tnch->ncp;
1352 struct namecache *tncp_par;
1353 struct nchash_head *nchpp;
1354 u_int32_t hash;
1355 char *oname;
1358 * Rename fncp (unlink)
1360 _cache_unlink_parent(fncp);
1361 oname = fncp->nc_name;
1362 fncp->nc_name = tncp->nc_name;
1363 fncp->nc_nlen = tncp->nc_nlen;
1364 tncp_par = tncp->nc_parent;
1365 _cache_hold(tncp_par);
1366 _cache_lock(tncp_par);
1369 * Rename fncp (relink)
1371 hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1372 hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1373 nchpp = NCHHASH(hash);
1375 spin_lock_wr(&nchpp->spin);
1376 _cache_link_parent(fncp, tncp_par, nchpp);
1377 spin_unlock_wr(&nchpp->spin);
1379 _cache_put(tncp_par);
1382 * Get rid of the overwritten tncp (unlink)
1384 _cache_setunresolved(tncp);
1385 _cache_unlink_parent(tncp);
1386 tncp->nc_name = NULL;
1387 tncp->nc_nlen = 0;
1389 if (oname)
1390 kfree(oname, M_VFSCACHE);
1394 * vget the vnode associated with the namecache entry. Resolve the namecache
1395 * entry if necessary. The passed ncp must be referenced and locked.
1397 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked
1398 * (depending on the passed lk_type) will be returned in *vpp with an error
1399 * of 0, or NULL will be returned in *vpp with a non-0 error code. The
1400 * most typical error is ENOENT, meaning that the ncp represents a negative
1401 * cache hit and there is no vnode to retrieve, but other errors can occur
1402 * too.
1404 * The vget() can race a reclaim. If this occurs we re-resolve the
1405 * namecache entry.
1407 * There are numerous places in the kernel where vget() is called on a
1408 * vnode while one or more of its namecache entries is locked. Releasing
1409 * a vnode never deadlocks against locked namecache entries (the vnode
1410 * will not get recycled while referenced ncp's exist). This means we
1411 * can safely acquire the vnode. In fact, we MUST NOT release the ncp
1412 * lock when acquiring the vp lock or we might cause a deadlock.
1414 * MPSAFE
1417 cache_vget(struct nchandle *nch, struct ucred *cred,
1418 int lk_type, struct vnode **vpp)
1420 struct namecache *ncp;
1421 struct vnode *vp;
1422 int error;
1424 ncp = nch->ncp;
1425 KKASSERT(ncp->nc_locktd == curthread);
1426 again:
1427 vp = NULL;
1428 if (ncp->nc_flag & NCF_UNRESOLVED)
1429 error = cache_resolve(nch, cred);
1430 else
1431 error = 0;
1433 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1434 error = vget(vp, lk_type);
1435 if (error) {
1437 * VRECLAIM race
1439 if (error == ENOENT) {
1440 kprintf("Warning: vnode reclaim race detected "
1441 "in cache_vget on %p (%s)\n",
1442 vp, ncp->nc_name);
1443 _cache_setunresolved(ncp);
1444 goto again;
1448 * Not a reclaim race, some other error.
1450 KKASSERT(ncp->nc_vp == vp);
1451 vp = NULL;
1452 } else {
1453 KKASSERT(ncp->nc_vp == vp);
1454 KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1457 if (error == 0 && vp == NULL)
1458 error = ENOENT;
1459 *vpp = vp;
1460 return(error);
1464 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1466 struct namecache *ncp;
1467 struct vnode *vp;
1468 int error;
1470 ncp = nch->ncp;
1471 KKASSERT(ncp->nc_locktd == curthread);
1472 again:
1473 vp = NULL;
1474 if (ncp->nc_flag & NCF_UNRESOLVED)
1475 error = cache_resolve(nch, cred);
1476 else
1477 error = 0;
1479 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1480 error = vget(vp, LK_SHARED);
1481 if (error) {
1483 * VRECLAIM race
1485 if (error == ENOENT) {
1486 kprintf("Warning: vnode reclaim race detected "
1487 "in cache_vget on %p (%s)\n",
1488 vp, ncp->nc_name);
1489 _cache_setunresolved(ncp);
1490 goto again;
1494 * Not a reclaim race, some other error.
1496 KKASSERT(ncp->nc_vp == vp);
1497 vp = NULL;
1498 } else {
1499 KKASSERT(ncp->nc_vp == vp);
1500 KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1501 /* caller does not want a lock */
1502 vn_unlock(vp);
1505 if (error == 0 && vp == NULL)
1506 error = ENOENT;
1507 *vpp = vp;
1508 return(error);
1512 * Return a referenced vnode representing the parent directory of
1513 * ncp.
1515 * Because the caller has locked the ncp it should not be possible for
1516 * the parent ncp to go away. However, the parent can unresolve its
1517 * dvp at any time so we must be able to acquire a lock on the parent
1518 * to safely access nc_vp.
1520 * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1521 * so use vhold()/vdrop() while holding the lock to prevent dvp from
1522 * getting destroyed.
1524 * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a
1525 * lock on the ncp in question..
1527 static struct vnode *
1528 cache_dvpref(struct namecache *ncp)
1530 struct namecache *par;
1531 struct vnode *dvp;
1533 dvp = NULL;
1534 if ((par = ncp->nc_parent) != NULL) {
1535 _cache_hold(par);
1536 _cache_lock(par);
1537 if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1538 if ((dvp = par->nc_vp) != NULL)
1539 vhold(dvp);
1541 _cache_unlock(par);
1542 if (dvp) {
1543 if (vget(dvp, LK_SHARED) == 0) {
1544 vn_unlock(dvp);
1545 vdrop(dvp);
1546 /* return refd, unlocked dvp */
1547 } else {
1548 vdrop(dvp);
1549 dvp = NULL;
1552 _cache_drop(par);
1554 return(dvp);
1558 * Convert a directory vnode to a namecache record without any other
1559 * knowledge of the topology. This ONLY works with directory vnodes and
1560 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the
1561 * returned ncp (if not NULL) will be held and unlocked.
1563 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1564 * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1565 * for dvp. This will fail only if the directory has been deleted out from
1566 * under the caller.
1568 * Callers must always check for a NULL return no matter the value of 'makeit'.
1570 * To avoid underflowing the kernel stack each recursive call increments
1571 * the makeit variable.
1574 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1575 struct vnode *dvp, char *fakename);
1576 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1577 struct vnode **saved_dvp);
1580 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1581 struct nchandle *nch)
1583 struct vnode *saved_dvp;
1584 struct vnode *pvp;
1585 char *fakename;
1586 int error;
1588 nch->ncp = NULL;
1589 nch->mount = dvp->v_mount;
1590 saved_dvp = NULL;
1591 fakename = NULL;
1594 * Loop until resolution, inside code will break out on error.
1596 while (makeit) {
1598 * Break out if we successfully acquire a working ncp.
1600 spin_lock_wr(&dvp->v_spinlock);
1601 nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1602 if (nch->ncp) {
1603 cache_hold(nch);
1604 spin_unlock_wr(&dvp->v_spinlock);
1605 break;
1607 spin_unlock_wr(&dvp->v_spinlock);
1610 * If dvp is the root of its filesystem it should already
1611 * have a namecache pointer associated with it as a side
1612 * effect of the mount, but it may have been disassociated.
1614 if (dvp->v_flag & VROOT) {
1615 nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1616 error = cache_resolve_mp(nch->mount);
1617 _cache_put(nch->ncp);
1618 if (ncvp_debug) {
1619 kprintf("cache_fromdvp: resolve root of mount %p error %d",
1620 dvp->v_mount, error);
1622 if (error) {
1623 if (ncvp_debug)
1624 kprintf(" failed\n");
1625 nch->ncp = NULL;
1626 break;
1628 if (ncvp_debug)
1629 kprintf(" succeeded\n");
1630 continue;
1634 * If we are recursed too deeply resort to an O(n^2)
1635 * algorithm to resolve the namecache topology. The
1636 * resolved pvp is left referenced in saved_dvp to
1637 * prevent the tree from being destroyed while we loop.
1639 if (makeit > 20) {
1640 error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1641 if (error) {
1642 kprintf("lookupdotdot(longpath) failed %d "
1643 "dvp %p\n", error, dvp);
1644 nch->ncp = NULL;
1645 break;
1647 continue;
1651 * Get the parent directory and resolve its ncp.
1653 if (fakename) {
1654 kfree(fakename, M_TEMP);
1655 fakename = NULL;
1657 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1658 &fakename);
1659 if (error) {
1660 kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1661 break;
1663 vn_unlock(pvp);
1666 * Reuse makeit as a recursion depth counter. On success
1667 * nch will be fully referenced.
1669 cache_fromdvp(pvp, cred, makeit + 1, nch);
1670 vrele(pvp);
1671 if (nch->ncp == NULL)
1672 break;
1675 * Do an inefficient scan of pvp (embodied by ncp) to look
1676 * for dvp. This will create a namecache record for dvp on
1677 * success. We loop up to recheck on success.
1679 * ncp and dvp are both held but not locked.
1681 error = cache_inefficient_scan(nch, cred, dvp, fakename);
1682 if (error) {
1683 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1684 pvp, nch->ncp->nc_name, dvp);
1685 cache_drop(nch);
1686 /* nch was NULLed out, reload mount */
1687 nch->mount = dvp->v_mount;
1688 break;
1690 if (ncvp_debug) {
1691 kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1692 pvp, nch->ncp->nc_name);
1694 cache_drop(nch);
1695 /* nch was NULLed out, reload mount */
1696 nch->mount = dvp->v_mount;
1700 * If nch->ncp is non-NULL it will have been held already.
1702 if (fakename)
1703 kfree(fakename, M_TEMP);
1704 if (saved_dvp)
1705 vrele(saved_dvp);
1706 if (nch->ncp)
1707 return (0);
1708 return (EINVAL);
1712 * Go up the chain of parent directories until we find something
1713 * we can resolve into the namecache. This is very inefficient.
1715 static
1717 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1718 struct vnode **saved_dvp)
1720 struct nchandle nch;
1721 struct vnode *pvp;
1722 int error;
1723 static time_t last_fromdvp_report;
1724 char *fakename;
1727 * Loop getting the parent directory vnode until we get something we
1728 * can resolve in the namecache.
1730 vref(dvp);
1731 nch.mount = dvp->v_mount;
1732 nch.ncp = NULL;
1733 fakename = NULL;
1735 for (;;) {
1736 if (fakename) {
1737 kfree(fakename, M_TEMP);
1738 fakename = NULL;
1740 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1741 &fakename);
1742 if (error) {
1743 vrele(dvp);
1744 break;
1746 vn_unlock(pvp);
1747 spin_lock_wr(&pvp->v_spinlock);
1748 if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1749 _cache_hold(nch.ncp);
1750 spin_unlock_wr(&pvp->v_spinlock);
1751 vrele(pvp);
1752 break;
1754 spin_unlock_wr(&pvp->v_spinlock);
1755 if (pvp->v_flag & VROOT) {
1756 nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1757 error = cache_resolve_mp(nch.mount);
1758 _cache_unlock(nch.ncp);
1759 vrele(pvp);
1760 if (error) {
1761 _cache_drop(nch.ncp);
1762 nch.ncp = NULL;
1763 vrele(dvp);
1765 break;
1767 vrele(dvp);
1768 dvp = pvp;
1770 if (error == 0) {
1771 if (last_fromdvp_report != time_second) {
1772 last_fromdvp_report = time_second;
1773 kprintf("Warning: extremely inefficient path "
1774 "resolution on %s\n",
1775 nch.ncp->nc_name);
1777 error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1780 * Hopefully dvp now has a namecache record associated with
1781 * it. Leave it referenced to prevent the kernel from
1782 * recycling the vnode. Otherwise extremely long directory
1783 * paths could result in endless recycling.
1785 if (*saved_dvp)
1786 vrele(*saved_dvp);
1787 *saved_dvp = dvp;
1788 _cache_drop(nch.ncp);
1790 if (fakename)
1791 kfree(fakename, M_TEMP);
1792 return (error);
1796 * Do an inefficient scan of the directory represented by ncp looking for
1797 * the directory vnode dvp. ncp must be held but not locked on entry and
1798 * will be held on return. dvp must be refd but not locked on entry and
1799 * will remain refd on return.
1801 * Why do this at all? Well, due to its stateless nature the NFS server
1802 * converts file handles directly to vnodes without necessarily going through
1803 * the namecache ops that would otherwise create the namecache topology
1804 * leading to the vnode. We could either (1) Change the namecache algorithms
1805 * to allow disconnect namecache records that are re-merged opportunistically,
1806 * or (2) Make the NFS server backtrack and scan to recover a connected
1807 * namecache topology in order to then be able to issue new API lookups.
1809 * It turns out that (1) is a huge mess. It takes a nice clean set of
1810 * namecache algorithms and introduces a lot of complication in every subsystem
1811 * that calls into the namecache to deal with the re-merge case, especially
1812 * since we are using the namecache to placehold negative lookups and the
1813 * vnode might not be immediately assigned. (2) is certainly far less
1814 * efficient then (1), but since we are only talking about directories here
1815 * (which are likely to remain cached), the case does not actually run all
1816 * that often and has the supreme advantage of not polluting the namecache
1817 * algorithms.
1819 * If a fakename is supplied just construct a namecache entry using the
1820 * fake name.
1822 static int
1823 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1824 struct vnode *dvp, char *fakename)
1826 struct nlcomponent nlc;
1827 struct nchandle rncp;
1828 struct dirent *den;
1829 struct vnode *pvp;
1830 struct vattr vat;
1831 struct iovec iov;
1832 struct uio uio;
1833 int blksize;
1834 int eofflag;
1835 int bytes;
1836 char *rbuf;
1837 int error;
1839 vat.va_blocksize = 0;
1840 if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1841 return (error);
1842 cache_lock(nch);
1843 error = cache_vref(nch, cred, &pvp);
1844 cache_unlock(nch);
1845 if (error)
1846 return (error);
1847 if (ncvp_debug) {
1848 kprintf("inefficient_scan: directory iosize %ld "
1849 "vattr fileid = %lld\n",
1850 vat.va_blocksize,
1851 (long long)vat.va_fileid);
1855 * Use the supplied fakename if not NULL. Fake names are typically
1856 * not in the actual filesystem hierarchy. This is used by HAMMER
1857 * to glue @@timestamp recursions together.
1859 if (fakename) {
1860 nlc.nlc_nameptr = fakename;
1861 nlc.nlc_namelen = strlen(fakename);
1862 rncp = cache_nlookup(nch, &nlc);
1863 goto done;
1866 if ((blksize = vat.va_blocksize) == 0)
1867 blksize = DEV_BSIZE;
1868 rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1869 rncp.ncp = NULL;
1871 eofflag = 0;
1872 uio.uio_offset = 0;
1873 again:
1874 iov.iov_base = rbuf;
1875 iov.iov_len = blksize;
1876 uio.uio_iov = &iov;
1877 uio.uio_iovcnt = 1;
1878 uio.uio_resid = blksize;
1879 uio.uio_segflg = UIO_SYSSPACE;
1880 uio.uio_rw = UIO_READ;
1881 uio.uio_td = curthread;
1883 if (ncvp_debug >= 2)
1884 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1885 error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1886 if (error == 0) {
1887 den = (struct dirent *)rbuf;
1888 bytes = blksize - uio.uio_resid;
1890 while (bytes > 0) {
1891 if (ncvp_debug >= 2) {
1892 kprintf("cache_inefficient_scan: %*.*s\n",
1893 den->d_namlen, den->d_namlen,
1894 den->d_name);
1896 if (den->d_type != DT_WHT &&
1897 den->d_ino == vat.va_fileid) {
1898 if (ncvp_debug) {
1899 kprintf("cache_inefficient_scan: "
1900 "MATCHED inode %lld path %s/%*.*s\n",
1901 (long long)vat.va_fileid,
1902 nch->ncp->nc_name,
1903 den->d_namlen, den->d_namlen,
1904 den->d_name);
1906 nlc.nlc_nameptr = den->d_name;
1907 nlc.nlc_namelen = den->d_namlen;
1908 rncp = cache_nlookup(nch, &nlc);
1909 KKASSERT(rncp.ncp != NULL);
1910 break;
1912 bytes -= _DIRENT_DIRSIZ(den);
1913 den = _DIRENT_NEXT(den);
1915 if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1916 goto again;
1918 kfree(rbuf, M_TEMP);
1919 done:
1920 vrele(pvp);
1921 if (rncp.ncp) {
1922 if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1923 _cache_setvp(rncp.mount, rncp.ncp, dvp);
1924 if (ncvp_debug >= 2) {
1925 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1926 nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1928 } else {
1929 if (ncvp_debug >= 2) {
1930 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1931 nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1932 rncp.ncp->nc_vp);
1935 if (rncp.ncp->nc_vp == NULL)
1936 error = rncp.ncp->nc_error;
1938 * Release rncp after a successful nlookup. rncp was fully
1939 * referenced.
1941 cache_put(&rncp);
1942 } else {
1943 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1944 dvp, nch->ncp->nc_name);
1945 error = ENOENT;
1947 return (error);
1951 * Zap a namecache entry. The ncp is unconditionally set to an unresolved
1952 * state, which disassociates it from its vnode or ncneglist.
1954 * Then, if there are no additional references to the ncp and no children,
1955 * the ncp is removed from the topology and destroyed.
1957 * References and/or children may exist if the ncp is in the middle of the
1958 * topology, preventing the ncp from being destroyed.
1960 * This function must be called with the ncp held and locked and will unlock
1961 * and drop it during zapping.
1963 * If nonblock is non-zero and the parent ncp cannot be locked we give up.
1964 * This case can occur in the cache_drop() path.
1966 * This function may returned a held (but NOT locked) parent node which the
1967 * caller must drop. We do this so _cache_drop() can loop, to avoid
1968 * blowing out the kernel stack.
1970 * WARNING! For MPSAFE operation this routine must acquire up to three
1971 * spin locks to be able to safely test nc_refs. Lock order is
1972 * very important.
1974 * hash spinlock if on hash list
1975 * parent spinlock if child of parent
1976 * (the ncp is unresolved so there is no vnode association)
1978 static struct namecache *
1979 cache_zap(struct namecache *ncp, int nonblock)
1981 struct namecache *par;
1982 struct vnode *dropvp;
1983 int refs;
1986 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1988 _cache_setunresolved(ncp);
1991 * Try to scrap the entry and possibly tail-recurse on its parent.
1992 * We only scrap unref'd (other then our ref) unresolved entries,
1993 * we do not scrap 'live' entries.
1995 * Note that once the spinlocks are acquired if nc_refs == 1 no
1996 * other references are possible. If it isn't, however, we have
1997 * to decrement but also be sure to avoid a 1->0 transition.
1999 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2000 KKASSERT(ncp->nc_refs > 0);
2003 * Acquire locks. Note that the parent can't go away while we hold
2004 * a child locked.
2006 if ((par = ncp->nc_parent) != NULL) {
2007 if (nonblock) {
2008 for (;;) {
2009 if (_cache_lock_nonblock(par) == 0)
2010 break;
2011 kprintf("Warning ncp %p cache_drop "
2012 "deadlock avoided\n", ncp);
2013 refs = ncp->nc_refs;
2014 ncp->nc_flag |= NCF_DEFEREDZAP;
2015 ++numdefered; /* MP race ok */
2016 if (atomic_cmpset_int(&ncp->nc_refs,
2017 refs, refs - 1)) {
2018 _cache_unlock(ncp);
2019 return(NULL);
2021 cpu_pause();
2023 _cache_hold(par);
2024 } else {
2025 _cache_hold(par);
2026 _cache_lock(par);
2028 spin_lock_wr(&ncp->nc_head->spin);
2032 * If someone other then us has a ref or we have children
2033 * we cannot zap the entry. The 1->0 transition and any
2034 * further list operation is protected by the spinlocks
2035 * we have acquired but other transitions are not.
2037 for (;;) {
2038 refs = ncp->nc_refs;
2039 if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2040 break;
2041 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2042 if (par) {
2043 spin_unlock_wr(&ncp->nc_head->spin);
2044 _cache_put(par);
2046 _cache_unlock(ncp);
2047 return(NULL);
2049 cpu_pause();
2053 * We are the only ref and with the spinlocks held no further
2054 * refs can be acquired by others.
2056 * Remove us from the hash list and parent list. We have to
2057 * drop a ref on the parent's vp if the parent's list becomes
2058 * empty.
2060 dropvp = NULL;
2061 if (par) {
2062 struct nchash_head *nchpp = ncp->nc_head;
2064 KKASSERT(nchpp != NULL);
2065 LIST_REMOVE(ncp, nc_hash);
2066 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2067 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2068 dropvp = par->nc_vp;
2069 ncp->nc_head = NULL;
2070 ncp->nc_parent = NULL;
2071 spin_unlock_wr(&nchpp->spin);
2072 _cache_unlock(par);
2073 } else {
2074 KKASSERT(ncp->nc_head == NULL);
2078 * ncp should not have picked up any refs. Physically
2079 * destroy the ncp.
2081 KKASSERT(ncp->nc_refs == 1);
2082 /* _cache_unlock(ncp) not required */
2083 ncp->nc_refs = -1; /* safety */
2084 if (ncp->nc_name)
2085 kfree(ncp->nc_name, M_VFSCACHE);
2086 kfree(ncp, M_VFSCACHE);
2089 * Delayed drop (we had to release our spinlocks)
2091 * The refed parent (if not NULL) must be dropped. The
2092 * caller is responsible for looping.
2094 if (dropvp)
2095 vdrop(dropvp);
2096 return(par);
2100 * Clean up dangling negative cache and defered-drop entries in the
2101 * namecache.
2103 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
2105 void
2106 cache_hysteresis(void)
2109 * Don't cache too many negative hits. We use hysteresis to reduce
2110 * the impact on the critical path.
2112 switch(cache_hysteresis_state) {
2113 case CHI_LOW:
2114 if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
2115 _cache_cleanneg(10);
2116 cache_hysteresis_state = CHI_HIGH;
2118 break;
2119 case CHI_HIGH:
2120 if (numneg > MINNEG * 9 / 10 &&
2121 numneg * ncnegfactor * 9 / 10 > numcache
2123 _cache_cleanneg(10);
2124 } else {
2125 cache_hysteresis_state = CHI_LOW;
2127 break;
2131 * Clean out dangling defered-zap ncps which could not
2132 * be cleanly dropped if too many build up. Note
2133 * that numdefered is not an exact number as such ncps
2134 * can be reused and the counter is not handled in a MP
2135 * safe manner by design.
2137 if (numdefered * ncnegfactor > numcache) {
2138 _cache_cleandefered();
2143 * NEW NAMECACHE LOOKUP API
2145 * Lookup an entry in the namecache. The passed par_nch must be referenced
2146 * and unlocked. A referenced and locked nchandle with a non-NULL nch.ncp
2147 * is ALWAYS returned, eve if the supplied component is illegal.
2149 * The resulting namecache entry should be returned to the system with
2150 * cache_put() or cache_unlock() + cache_drop().
2152 * namecache locks are recursive but care must be taken to avoid lock order
2153 * reversals (hence why the passed par_nch must be unlocked). Locking
2154 * rules are to order for parent traversals, not for child traversals.
2156 * Nobody else will be able to manipulate the associated namespace (e.g.
2157 * create, delete, rename, rename-target) until the caller unlocks the
2158 * entry.
2160 * The returned entry will be in one of three states: positive hit (non-null
2161 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2162 * Unresolved entries must be resolved through the filesystem to associate the
2163 * vnode and/or determine whether a positive or negative hit has occured.
2165 * It is not necessary to lock a directory in order to lock namespace under
2166 * that directory. In fact, it is explicitly not allowed to do that. A
2167 * directory is typically only locked when being created, renamed, or
2168 * destroyed.
2170 * The directory (par) may be unresolved, in which case any returned child
2171 * will likely also be marked unresolved. Likely but not guarenteed. Since
2172 * the filesystem lookup requires a resolved directory vnode the caller is
2173 * responsible for resolving the namecache chain top-down. This API
2174 * specifically allows whole chains to be created in an unresolved state.
2176 struct nchandle
2177 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2179 struct nchandle nch;
2180 struct namecache *ncp;
2181 struct namecache *new_ncp;
2182 struct nchash_head *nchpp;
2183 struct mount *mp;
2184 u_int32_t hash;
2185 globaldata_t gd;
2186 int par_locked;
2188 numcalls++;
2189 gd = mycpu;
2190 mp = par_nch->mount;
2191 par_locked = 0;
2194 * This is a good time to call it, no ncp's are locked by
2195 * the caller or us.
2197 cache_hysteresis();
2200 * Try to locate an existing entry
2202 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2203 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2204 new_ncp = NULL;
2205 nchpp = NCHHASH(hash);
2206 restart:
2207 spin_lock_wr(&nchpp->spin);
2208 LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2209 numchecks++;
2212 * Break out if we find a matching entry. Note that
2213 * UNRESOLVED entries may match, but DESTROYED entries
2214 * do not.
2216 if (ncp->nc_parent == par_nch->ncp &&
2217 ncp->nc_nlen == nlc->nlc_namelen &&
2218 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2219 (ncp->nc_flag & NCF_DESTROYED) == 0
2221 _cache_hold(ncp);
2222 spin_unlock_wr(&nchpp->spin);
2223 if (par_locked) {
2224 _cache_unlock(par_nch->ncp);
2225 par_locked = 0;
2227 if (_cache_lock_special(ncp) == 0) {
2228 _cache_auto_unresolve(mp, ncp);
2229 if (new_ncp)
2230 _cache_free(new_ncp);
2231 goto found;
2233 _cache_get(ncp);
2234 _cache_put(ncp);
2235 _cache_drop(ncp);
2236 goto restart;
2241 * We failed to locate an entry, create a new entry and add it to
2242 * the cache. The parent ncp must also be locked so we
2243 * can link into it.
2245 * We have to relookup after possibly blocking in kmalloc or
2246 * when locking par_nch.
2248 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2249 * mount case, in which case nc_name will be NULL.
2251 if (new_ncp == NULL) {
2252 spin_unlock_wr(&nchpp->spin);
2253 new_ncp = cache_alloc(nlc->nlc_namelen);
2254 if (nlc->nlc_namelen) {
2255 bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2256 nlc->nlc_namelen);
2257 new_ncp->nc_name[nlc->nlc_namelen] = 0;
2259 goto restart;
2261 if (par_locked == 0) {
2262 spin_unlock_wr(&nchpp->spin);
2263 _cache_lock(par_nch->ncp);
2264 par_locked = 1;
2265 goto restart;
2269 * WARNING! We still hold the spinlock. We have to set the hash
2270 * table entry attomically.
2272 ncp = new_ncp;
2273 _cache_link_parent(ncp, par_nch->ncp, nchpp);
2274 spin_unlock_wr(&nchpp->spin);
2275 _cache_unlock(par_nch->ncp);
2276 /* par_locked = 0 - not used */
2277 found:
2279 * stats and namecache size management
2281 if (ncp->nc_flag & NCF_UNRESOLVED)
2282 ++gd->gd_nchstats->ncs_miss;
2283 else if (ncp->nc_vp)
2284 ++gd->gd_nchstats->ncs_goodhits;
2285 else
2286 ++gd->gd_nchstats->ncs_neghits;
2287 nch.mount = mp;
2288 nch.ncp = ncp;
2289 atomic_add_int(&nch.mount->mnt_refs, 1);
2290 return(nch);
2294 * The namecache entry is marked as being used as a mount point.
2295 * Locate the mount if it is visible to the caller.
2297 struct findmount_info {
2298 struct mount *result;
2299 struct mount *nch_mount;
2300 struct namecache *nch_ncp;
2303 static
2305 cache_findmount_callback(struct mount *mp, void *data)
2307 struct findmount_info *info = data;
2310 * Check the mount's mounted-on point against the passed nch.
2312 if (mp->mnt_ncmounton.mount == info->nch_mount &&
2313 mp->mnt_ncmounton.ncp == info->nch_ncp
2315 info->result = mp;
2316 return(-1);
2318 return(0);
2321 struct mount *
2322 cache_findmount(struct nchandle *nch)
2324 struct findmount_info info;
2326 info.result = NULL;
2327 info.nch_mount = nch->mount;
2328 info.nch_ncp = nch->ncp;
2329 mountlist_scan(cache_findmount_callback, &info,
2330 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
2331 return(info.result);
2335 * Resolve an unresolved namecache entry, generally by looking it up.
2336 * The passed ncp must be locked and refd.
2338 * Theoretically since a vnode cannot be recycled while held, and since
2339 * the nc_parent chain holds its vnode as long as children exist, the
2340 * direct parent of the cache entry we are trying to resolve should
2341 * have a valid vnode. If not then generate an error that we can
2342 * determine is related to a resolver bug.
2344 * However, if a vnode was in the middle of a recyclement when the NCP
2345 * got locked, ncp->nc_vp might point to a vnode that is about to become
2346 * invalid. cache_resolve() handles this case by unresolving the entry
2347 * and then re-resolving it.
2349 * Note that successful resolution does not necessarily return an error
2350 * code of 0. If the ncp resolves to a negative cache hit then ENOENT
2351 * will be returned.
2353 * MPSAFE
2356 cache_resolve(struct nchandle *nch, struct ucred *cred)
2358 struct namecache *par_tmp;
2359 struct namecache *par;
2360 struct namecache *ncp;
2361 struct nchandle nctmp;
2362 struct mount *mp;
2363 struct vnode *dvp;
2364 int error;
2366 ncp = nch->ncp;
2367 mp = nch->mount;
2368 restart:
2370 * If the ncp is already resolved we have nothing to do. However,
2371 * we do want to guarentee that a usable vnode is returned when
2372 * a vnode is present, so make sure it hasn't been reclaimed.
2374 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2375 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2376 _cache_setunresolved(ncp);
2377 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2378 return (ncp->nc_error);
2382 * Mount points need special handling because the parent does not
2383 * belong to the same filesystem as the ncp.
2385 if (ncp == mp->mnt_ncmountpt.ncp)
2386 return (cache_resolve_mp(mp));
2389 * We expect an unbroken chain of ncps to at least the mount point,
2390 * and even all the way to root (but this code doesn't have to go
2391 * past the mount point).
2393 if (ncp->nc_parent == NULL) {
2394 kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2395 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2396 ncp->nc_error = EXDEV;
2397 return(ncp->nc_error);
2401 * The vp's of the parent directories in the chain are held via vhold()
2402 * due to the existance of the child, and should not disappear.
2403 * However, there are cases where they can disappear:
2405 * - due to filesystem I/O errors.
2406 * - due to NFS being stupid about tracking the namespace and
2407 * destroys the namespace for entire directories quite often.
2408 * - due to forced unmounts.
2409 * - due to an rmdir (parent will be marked DESTROYED)
2411 * When this occurs we have to track the chain backwards and resolve
2412 * it, looping until the resolver catches up to the current node. We
2413 * could recurse here but we might run ourselves out of kernel stack
2414 * so we do it in a more painful manner. This situation really should
2415 * not occur all that often, or if it does not have to go back too
2416 * many nodes to resolve the ncp.
2418 while ((dvp = cache_dvpref(ncp)) == NULL) {
2420 * This case can occur if a process is CD'd into a
2421 * directory which is then rmdir'd. If the parent is marked
2422 * destroyed there is no point trying to resolve it.
2424 if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2425 return(ENOENT);
2426 par = ncp->nc_parent;
2427 _cache_hold(par);
2428 _cache_lock(par);
2429 while ((par_tmp = par->nc_parent) != NULL &&
2430 par_tmp->nc_vp == NULL) {
2431 _cache_hold(par_tmp);
2432 _cache_lock(par_tmp);
2433 _cache_put(par);
2434 par = par_tmp;
2436 if (par->nc_parent == NULL) {
2437 kprintf("EXDEV case 2 %*.*s\n",
2438 par->nc_nlen, par->nc_nlen, par->nc_name);
2439 _cache_put(par);
2440 return (EXDEV);
2442 kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2443 par->nc_nlen, par->nc_nlen, par->nc_name);
2445 * The parent is not set in stone, ref and lock it to prevent
2446 * it from disappearing. Also note that due to renames it
2447 * is possible for our ncp to move and for par to no longer
2448 * be one of its parents. We resolve it anyway, the loop
2449 * will handle any moves.
2451 _cache_get(par); /* additional hold/lock */
2452 _cache_put(par); /* from earlier hold/lock */
2453 if (par == nch->mount->mnt_ncmountpt.ncp) {
2454 cache_resolve_mp(nch->mount);
2455 } else if ((dvp = cache_dvpref(par)) == NULL) {
2456 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2457 _cache_put(par);
2458 continue;
2459 } else {
2460 if (par->nc_flag & NCF_UNRESOLVED) {
2461 nctmp.mount = mp;
2462 nctmp.ncp = par;
2463 par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2465 vrele(dvp);
2467 if ((error = par->nc_error) != 0) {
2468 if (par->nc_error != EAGAIN) {
2469 kprintf("EXDEV case 3 %*.*s error %d\n",
2470 par->nc_nlen, par->nc_nlen, par->nc_name,
2471 par->nc_error);
2472 _cache_put(par);
2473 return(error);
2475 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2476 par, par->nc_nlen, par->nc_nlen, par->nc_name);
2478 _cache_put(par);
2479 /* loop */
2483 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2484 * ncp's and reattach them. If this occurs the original ncp is marked
2485 * EAGAIN to force a relookup.
2487 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2488 * ncp must already be resolved.
2490 if (dvp) {
2491 nctmp.mount = mp;
2492 nctmp.ncp = ncp;
2493 ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2494 vrele(dvp);
2495 } else {
2496 ncp->nc_error = EPERM;
2498 if (ncp->nc_error == EAGAIN) {
2499 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2500 ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2501 goto restart;
2503 return(ncp->nc_error);
2507 * Resolve the ncp associated with a mount point. Such ncp's almost always
2508 * remain resolved and this routine is rarely called. NFS MPs tends to force
2509 * re-resolution more often due to its mac-truck-smash-the-namecache
2510 * method of tracking namespace changes.
2512 * The semantics for this call is that the passed ncp must be locked on
2513 * entry and will be locked on return. However, if we actually have to
2514 * resolve the mount point we temporarily unlock the entry in order to
2515 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of
2516 * the unlock we have to recheck the flags after we relock.
2518 static int
2519 cache_resolve_mp(struct mount *mp)
2521 struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2522 struct vnode *vp;
2523 int error;
2525 KKASSERT(mp != NULL);
2528 * If the ncp is already resolved we have nothing to do. However,
2529 * we do want to guarentee that a usable vnode is returned when
2530 * a vnode is present, so make sure it hasn't been reclaimed.
2532 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2533 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2534 _cache_setunresolved(ncp);
2537 if (ncp->nc_flag & NCF_UNRESOLVED) {
2538 _cache_unlock(ncp);
2539 while (vfs_busy(mp, 0))
2541 error = VFS_ROOT(mp, &vp);
2542 _cache_lock(ncp);
2545 * recheck the ncp state after relocking.
2547 if (ncp->nc_flag & NCF_UNRESOLVED) {
2548 ncp->nc_error = error;
2549 if (error == 0) {
2550 _cache_setvp(mp, ncp, vp);
2551 vput(vp);
2552 } else {
2553 kprintf("[diagnostic] cache_resolve_mp: failed"
2554 " to resolve mount %p err=%d ncp=%p\n",
2555 mp, error, ncp);
2556 _cache_setvp(mp, ncp, NULL);
2558 } else if (error == 0) {
2559 vput(vp);
2561 vfs_unbusy(mp);
2563 return(ncp->nc_error);
2567 * Clean out negative cache entries when too many have accumulated.
2569 * MPSAFE
2571 static void
2572 _cache_cleanneg(int count)
2574 struct namecache *ncp;
2577 * Automode from the vnlru proc - clean out 10% of the negative cache
2578 * entries.
2580 if (count == 0)
2581 count = numneg / 10 + 1;
2584 * Attempt to clean out the specified number of negative cache
2585 * entries.
2587 while (count) {
2588 spin_lock_wr(&ncspin);
2589 ncp = TAILQ_FIRST(&ncneglist);
2590 if (ncp == NULL) {
2591 spin_unlock_wr(&ncspin);
2592 break;
2594 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2595 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2596 _cache_hold(ncp);
2597 spin_unlock_wr(&ncspin);
2598 if (_cache_lock_special(ncp) == 0) {
2599 ncp = cache_zap(ncp, 0);
2600 if (ncp)
2601 _cache_drop(ncp);
2602 } else {
2603 _cache_drop(ncp);
2605 --count;
2610 * This is a kitchen sink function to clean out ncps which we
2611 * tried to zap from cache_drop() but failed because we were
2612 * unable to acquire the parent lock.
2614 * Such entries can also be removed via cache_inval_vp(), such
2615 * as when unmounting.
2617 * MPSAFE
2619 static void
2620 _cache_cleandefered(void)
2622 struct nchash_head *nchpp;
2623 struct namecache *ncp;
2624 struct namecache dummy;
2625 int i;
2627 bzero(&dummy, sizeof(dummy));
2628 dummy.nc_flag = NCF_DESTROYED;
2630 for (i = 0; i <= nchash; ++i) {
2631 nchpp = &nchashtbl[i];
2633 spin_lock_wr(&nchpp->spin);
2634 LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
2635 ncp = &dummy;
2636 while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
2637 if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
2638 continue;
2639 LIST_REMOVE(&dummy, nc_hash);
2640 LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
2641 _cache_hold(ncp);
2642 spin_unlock_wr(&nchpp->spin);
2643 _cache_drop(ncp);
2644 spin_lock_wr(&nchpp->spin);
2645 ncp = &dummy;
2647 LIST_REMOVE(&dummy, nc_hash);
2648 spin_unlock_wr(&nchpp->spin);
2653 * Name cache initialization, from vfsinit() when we are booting
2655 void
2656 nchinit(void)
2658 int i;
2659 globaldata_t gd;
2661 /* initialise per-cpu namecache effectiveness statistics. */
2662 for (i = 0; i < ncpus; ++i) {
2663 gd = globaldata_find(i);
2664 gd->gd_nchstats = &nchstats[i];
2666 TAILQ_INIT(&ncneglist);
2667 spin_init(&ncspin);
2668 nchashtbl = hashinit_ext(desiredvnodes*2, sizeof(struct nchash_head),
2669 M_VFSCACHE, &nchash);
2670 for (i = 0; i <= (int)nchash; ++i) {
2671 LIST_INIT(&nchashtbl[i].list);
2672 spin_init(&nchashtbl[i].spin);
2674 nclockwarn = 5 * hz;
2678 * Called from start_init() to bootstrap the root filesystem. Returns
2679 * a referenced, unlocked namecache record.
2681 void
2682 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2684 nch->ncp = cache_alloc(0);
2685 nch->mount = mp;
2686 atomic_add_int(&mp->mnt_refs, 1);
2687 if (vp)
2688 _cache_setvp(nch->mount, nch->ncp, vp);
2692 * vfs_cache_setroot()
2694 * Create an association between the root of our namecache and
2695 * the root vnode. This routine may be called several times during
2696 * booting.
2698 * If the caller intends to save the returned namecache pointer somewhere
2699 * it must cache_hold() it.
2701 void
2702 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2704 struct vnode *ovp;
2705 struct nchandle onch;
2707 ovp = rootvnode;
2708 onch = rootnch;
2709 rootvnode = nvp;
2710 if (nch)
2711 rootnch = *nch;
2712 else
2713 cache_zero(&rootnch);
2714 if (ovp)
2715 vrele(ovp);
2716 if (onch.ncp)
2717 cache_drop(&onch);
2721 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache
2722 * topology and is being removed as quickly as possible. The new VOP_N*()
2723 * API calls are required to make specific adjustments using the supplied
2724 * ncp pointers rather then just bogusly purging random vnodes.
2726 * Invalidate all namecache entries to a particular vnode as well as
2727 * any direct children of that vnode in the namecache. This is a
2728 * 'catch all' purge used by filesystems that do not know any better.
2730 * Note that the linkage between the vnode and its namecache entries will
2731 * be removed, but the namecache entries themselves might stay put due to
2732 * active references from elsewhere in the system or due to the existance of
2733 * the children. The namecache topology is left intact even if we do not
2734 * know what the vnode association is. Such entries will be marked
2735 * NCF_UNRESOLVED.
2737 void
2738 cache_purge(struct vnode *vp)
2740 cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2744 * Flush all entries referencing a particular filesystem.
2746 * Since we need to check it anyway, we will flush all the invalid
2747 * entries at the same time.
2749 #if 0
2751 void
2752 cache_purgevfs(struct mount *mp)
2754 struct nchash_head *nchpp;
2755 struct namecache *ncp, *nnp;
2758 * Scan hash tables for applicable entries.
2760 for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2761 spin_lock_wr(&nchpp->spin); XXX
2762 ncp = LIST_FIRST(&nchpp->list);
2763 if (ncp)
2764 _cache_hold(ncp);
2765 while (ncp) {
2766 nnp = LIST_NEXT(ncp, nc_hash);
2767 if (nnp)
2768 _cache_hold(nnp);
2769 if (ncp->nc_mount == mp) {
2770 _cache_lock(ncp);
2771 ncp = cache_zap(ncp, 0);
2772 if (ncp)
2773 _cache_drop(ncp);
2774 } else {
2775 _cache_drop(ncp);
2777 ncp = nnp;
2779 spin_unlock_wr(&nchpp->spin); XXX
2783 #endif
2785 static int disablecwd;
2786 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2788 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2789 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2790 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2791 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2792 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2793 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2796 * MPALMOSTSAFE
2799 sys___getcwd(struct __getcwd_args *uap)
2801 int buflen;
2802 int error;
2803 char *buf;
2804 char *bp;
2806 if (disablecwd)
2807 return (ENODEV);
2809 buflen = uap->buflen;
2810 if (buflen == 0)
2811 return (EINVAL);
2812 if (buflen > MAXPATHLEN)
2813 buflen = MAXPATHLEN;
2815 buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2816 get_mplock();
2817 bp = kern_getcwd(buf, buflen, &error);
2818 rel_mplock();
2819 if (error == 0)
2820 error = copyout(bp, uap->buf, strlen(bp) + 1);
2821 kfree(buf, M_TEMP);
2822 return (error);
2825 char *
2826 kern_getcwd(char *buf, size_t buflen, int *error)
2828 struct proc *p = curproc;
2829 char *bp;
2830 int i, slash_prefixed;
2831 struct filedesc *fdp;
2832 struct nchandle nch;
2833 struct namecache *ncp;
2835 numcwdcalls++;
2836 bp = buf;
2837 bp += buflen - 1;
2838 *bp = '\0';
2839 fdp = p->p_fd;
2840 slash_prefixed = 0;
2842 nch = fdp->fd_ncdir;
2843 ncp = nch.ncp;
2844 if (ncp)
2845 _cache_hold(ncp);
2847 while (ncp && (ncp != fdp->fd_nrdir.ncp ||
2848 nch.mount != fdp->fd_nrdir.mount)
2851 * While traversing upwards if we encounter the root
2852 * of the current mount we have to skip to the mount point
2853 * in the underlying filesystem.
2855 if (ncp == nch.mount->mnt_ncmountpt.ncp) {
2856 nch = nch.mount->mnt_ncmounton;
2857 _cache_drop(ncp);
2858 ncp = nch.ncp;
2859 if (ncp)
2860 _cache_hold(ncp);
2861 continue;
2865 * Prepend the path segment
2867 for (i = ncp->nc_nlen - 1; i >= 0; i--) {
2868 if (bp == buf) {
2869 numcwdfail4++;
2870 *error = ERANGE;
2871 bp = NULL;
2872 goto done;
2874 *--bp = ncp->nc_name[i];
2876 if (bp == buf) {
2877 numcwdfail4++;
2878 *error = ERANGE;
2879 bp = NULL;
2880 goto done;
2882 *--bp = '/';
2883 slash_prefixed = 1;
2886 * Go up a directory. This isn't a mount point so we don't
2887 * have to check again.
2889 while ((nch.ncp = ncp->nc_parent) != NULL) {
2890 _cache_lock(ncp);
2891 if (nch.ncp != ncp->nc_parent) {
2892 _cache_unlock(ncp);
2893 continue;
2895 _cache_hold(nch.ncp);
2896 _cache_unlock(ncp);
2897 break;
2899 _cache_drop(ncp);
2900 ncp = nch.ncp;
2902 if (ncp == NULL) {
2903 numcwdfail2++;
2904 *error = ENOENT;
2905 bp = NULL;
2906 goto done;
2908 if (!slash_prefixed) {
2909 if (bp == buf) {
2910 numcwdfail4++;
2911 *error = ERANGE;
2912 bp = NULL;
2913 goto done;
2915 *--bp = '/';
2917 numcwdfound++;
2918 *error = 0;
2919 done:
2920 if (ncp)
2921 _cache_drop(ncp);
2922 return (bp);
2926 * Thus begins the fullpath magic.
2928 * The passed nchp is referenced but not locked.
2930 #undef STATNODE
2931 #define STATNODE(name) \
2932 static u_int name; \
2933 SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2935 static int disablefullpath;
2936 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
2937 &disablefullpath, 0, "");
2939 STATNODE(numfullpathcalls);
2940 STATNODE(numfullpathfail1);
2941 STATNODE(numfullpathfail2);
2942 STATNODE(numfullpathfail3);
2943 STATNODE(numfullpathfail4);
2944 STATNODE(numfullpathfound);
2947 cache_fullpath(struct proc *p, struct nchandle *nchp,
2948 char **retbuf, char **freebuf)
2950 struct nchandle fd_nrdir;
2951 struct nchandle nch;
2952 struct namecache *ncp;
2953 struct mount *mp;
2954 char *bp, *buf;
2955 int slash_prefixed;
2956 int error = 0;
2957 int i;
2959 atomic_add_int(&numfullpathcalls, -1);
2961 *retbuf = NULL;
2962 *freebuf = NULL;
2964 buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2965 bp = buf + MAXPATHLEN - 1;
2966 *bp = '\0';
2967 if (p != NULL)
2968 fd_nrdir = p->p_fd->fd_nrdir;
2969 else
2970 fd_nrdir = rootnch;
2971 slash_prefixed = 0;
2972 nch = *nchp;
2973 ncp = nch.ncp;
2974 if (ncp)
2975 _cache_hold(ncp);
2976 mp = nch.mount;
2978 while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
2980 * While traversing upwards if we encounter the root
2981 * of the current mount we have to skip to the mount point.
2983 if (ncp == mp->mnt_ncmountpt.ncp) {
2984 nch = mp->mnt_ncmounton;
2985 _cache_drop(ncp);
2986 ncp = nch.ncp;
2987 if (ncp)
2988 _cache_hold(ncp);
2989 mp = nch.mount;
2990 continue;
2994 * Prepend the path segment
2996 for (i = ncp->nc_nlen - 1; i >= 0; i--) {
2997 if (bp == buf) {
2998 numfullpathfail4++;
2999 kfree(buf, M_TEMP);
3000 error = ENOMEM;
3001 goto done;
3003 *--bp = ncp->nc_name[i];
3005 if (bp == buf) {
3006 numfullpathfail4++;
3007 kfree(buf, M_TEMP);
3008 error = ENOMEM;
3009 goto done;
3011 *--bp = '/';
3012 slash_prefixed = 1;
3015 * Go up a directory. This isn't a mount point so we don't
3016 * have to check again.
3018 * We can only safely access nc_parent with ncp held locked.
3020 while ((nch.ncp = ncp->nc_parent) != NULL) {
3021 _cache_lock(ncp);
3022 if (nch.ncp != ncp->nc_parent) {
3023 _cache_unlock(ncp);
3024 continue;
3026 _cache_hold(nch.ncp);
3027 _cache_unlock(ncp);
3028 break;
3030 _cache_drop(ncp);
3031 ncp = nch.ncp;
3033 if (ncp == NULL) {
3034 numfullpathfail2++;
3035 kfree(buf, M_TEMP);
3036 error = ENOENT;
3037 goto done;
3040 if (!slash_prefixed) {
3041 if (bp == buf) {
3042 numfullpathfail4++;
3043 kfree(buf, M_TEMP);
3044 error = ENOMEM;
3045 goto done;
3047 *--bp = '/';
3049 numfullpathfound++;
3050 *retbuf = bp;
3051 *freebuf = buf;
3052 error = 0;
3053 done:
3054 if (ncp)
3055 _cache_drop(ncp);
3056 return(error);
3060 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
3062 struct namecache *ncp;
3063 struct nchandle nch;
3064 int error;
3066 atomic_add_int(&numfullpathcalls, 1);
3067 if (disablefullpath)
3068 return (ENODEV);
3070 if (p == NULL)
3071 return (EINVAL);
3073 /* vn is NULL, client wants us to use p->p_textvp */
3074 if (vn == NULL) {
3075 if ((vn = p->p_textvp) == NULL)
3076 return (EINVAL);
3078 spin_lock_wr(&vn->v_spinlock);
3079 TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3080 if (ncp->nc_nlen)
3081 break;
3083 if (ncp == NULL) {
3084 spin_unlock_wr(&vn->v_spinlock);
3085 return (EINVAL);
3087 _cache_hold(ncp);
3088 spin_unlock_wr(&vn->v_spinlock);
3090 atomic_add_int(&numfullpathcalls, -1);
3091 nch.ncp = ncp;;
3092 nch.mount = vn->v_mount;
3093 error = cache_fullpath(p, &nch, retbuf, freebuf);
3094 _cache_drop(ncp);
3095 return (error);