kernel - namecache - fix deadlock
[dragonfly.git] / contrib / mpfr / root.c
blob0586b4210ce512f6ac7f5386bf325f404efcd815
1 /* mpfr_root -- kth root.
3 Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the Arenaire and Cacao projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 2.1 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* The computation of y = x^(1/k) is done as follows:
28 Let x = sign * m * 2^(k*e) where m is an integer
30 with 2^(k*(n-1)) <= m < 2^(k*n) where n = PREC(y)
32 and m = s^k + r where 0 <= r and m < (s+1)^k
34 we want that s has n bits i.e. s >= 2^(n-1), or m >= 2^(k*(n-1))
35 i.e. m must have at least k*(n-1)+1 bits
37 then, not taking into account the sign, the result will be
38 x^(1/k) = s * 2^e or (s+1) * 2^e according to the rounding mode.
41 int
42 mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mp_rnd_t rnd_mode)
44 mpz_t m;
45 mp_exp_t e, r, sh;
46 mp_prec_t n, size_m, tmp;
47 int inexact, negative;
48 MPFR_SAVE_EXPO_DECL (expo);
50 if (MPFR_UNLIKELY (k <= 1))
52 if (k < 1) /* k==0 => y=x^(1/0)=x^(+Inf) */
53 #if 0
54 /* For 0 <= x < 1 => +0.
55 For x = 1 => 1.
56 For x > 1, => +Inf.
57 For x < 0 => NaN.
60 if (MPFR_IS_NEG (x) && !MPFR_IS_ZERO (x))
62 MPFR_SET_NAN (y);
63 MPFR_RET_NAN;
65 inexact = mpfr_cmp (x, __gmpfr_one);
66 if (inexact == 0)
67 return mpfr_set_ui (y, 1, rnd_mode); /* 1 may be Out of Range */
68 else if (inexact < 0)
69 return mpfr_set_ui (y, 0, rnd_mode); /* 0+ */
70 else
72 mpfr_set_inf (y, 1);
73 return 0;
76 #endif
78 MPFR_SET_NAN (y);
79 MPFR_RET_NAN;
81 else /* y =x^(1/1)=x */
82 return mpfr_set (y, x, rnd_mode);
85 /* Singular values */
86 else if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
88 if (MPFR_IS_NAN (x))
90 MPFR_SET_NAN (y); /* NaN^(1/k) = NaN */
91 MPFR_RET_NAN;
93 else if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf
94 -Inf^(1/k) = -Inf if k odd
95 -Inf^(1/k) = NaN if k even */
97 if (MPFR_IS_NEG(x) && (k % 2 == 0))
99 MPFR_SET_NAN (y);
100 MPFR_RET_NAN;
102 MPFR_SET_INF (y);
103 MPFR_SET_SAME_SIGN (y, x);
104 MPFR_RET (0);
106 else /* x is necessarily 0: (+0)^(1/k) = +0
107 (-0)^(1/k) = -0 */
109 MPFR_ASSERTD (MPFR_IS_ZERO (x));
110 MPFR_SET_ZERO (y);
111 MPFR_SET_SAME_SIGN (y, x);
112 MPFR_RET (0);
116 /* Returns NAN for x < 0 and k even */
117 else if (MPFR_IS_NEG (x) && (k % 2 == 0))
119 MPFR_SET_NAN (y);
120 MPFR_RET_NAN;
123 /* General case */
124 MPFR_SAVE_EXPO_MARK (expo);
125 mpz_init (m);
127 e = mpfr_get_z_exp (m, x); /* x = m * 2^e */
128 if ((negative = MPFR_IS_NEG(x)))
129 mpz_neg (m, m);
130 r = e % (mp_exp_t) k;
131 if (r < 0)
132 r += k; /* now r = e (mod k) with 0 <= e < r */
133 /* x = (m*2^r) * 2^(e-r) where e-r is a multiple of k */
135 MPFR_MPZ_SIZEINBASE2 (size_m, m);
136 /* for rounding to nearest, we want the round bit to be in the root */
137 n = MPFR_PREC (y) + (rnd_mode == GMP_RNDN);
139 /* we now multiply m by 2^(r+k*sh) so that root(m,k) will give
140 exactly n bits: we want k*(n-1)+1 <= size_m + k*sh + r <= k*n
141 i.e. sh = floor ((kn-size_m-r)/k) */
142 if ((mp_exp_t) size_m + r > k * (mp_exp_t) n)
143 sh = 0; /* we already have too many bits */
144 else
145 sh = (k * (mp_exp_t) n - (mp_exp_t) size_m - r) / k;
146 sh = k * sh + r;
147 if (sh >= 0)
149 mpz_mul_2exp (m, m, sh);
150 e = e - sh;
152 else if (r > 0)
154 mpz_mul_2exp (m, m, r);
155 e = e - r;
158 /* invariant: x = m*2^e, with e divisible by k */
160 /* we reuse the variable m to store the kth root, since it is not needed
161 any more: we just need to know if the root is exact */
162 inexact = mpz_root (m, m, k) == 0;
164 MPFR_MPZ_SIZEINBASE2 (tmp, m);
165 sh = tmp - n;
166 if (sh > 0) /* we have to flush to 0 the last sh bits from m */
168 inexact = inexact || ((mp_exp_t) mpz_scan1 (m, 0) < sh);
169 mpz_div_2exp (m, m, sh);
170 e += k * sh;
173 if (inexact)
175 if (negative)
176 rnd_mode = MPFR_INVERT_RND (rnd_mode);
177 if (rnd_mode == GMP_RNDU
178 || (rnd_mode == GMP_RNDN && mpz_tstbit (m, 0)))
179 inexact = 1, mpz_add_ui (m, m, 1);
180 else
181 inexact = -1;
184 /* either inexact is not zero, and the conversion is exact, i.e. inexact
185 is not changed; or inexact=0, and inexact is set only when
186 rnd_mode=GMP_RNDN and bit (n+1) from m is 1 */
187 inexact += mpfr_set_z (y, m, GMP_RNDN);
188 MPFR_SET_EXP (y, MPFR_GET_EXP (y) + e / (mp_exp_t) k);
190 if (negative)
192 MPFR_CHANGE_SIGN (y);
193 inexact = -inexact;
196 mpz_clear (m);
197 MPFR_SAVE_EXPO_FREE (expo);
198 return mpfr_check_range (y, inexact, rnd_mode);