HAMMER VFS - Fix deadlock during read-only HAMMER mount
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
blob777facfb37ae56c1c14981b59f9b8949ef6ea01e
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
37 * Manage HAMMER's on-disk structures. These routines are primarily
38 * responsible for interfacing with the kernel's I/O subsystem and for
39 * managing in-memory structures.
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_transaction_t trans,
52 hammer_node_t node, int isnew);
53 static void _hammer_rel_node(hammer_node_t node, int locked);
55 static int
56 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
58 if (vol1->vol_no < vol2->vol_no)
59 return(-1);
60 if (vol1->vol_no > vol2->vol_no)
61 return(1);
62 return(0);
66 * hammer_buffer structures are indexed via their zoneX_offset, not
67 * their zone2_offset.
69 static int
70 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
72 if (buf1->zoneX_offset < buf2->zoneX_offset)
73 return(-1);
74 if (buf1->zoneX_offset > buf2->zoneX_offset)
75 return(1);
76 return(0);
79 static int
80 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
82 if (node1->node_offset < node2->node_offset)
83 return(-1);
84 if (node1->node_offset > node2->node_offset)
85 return(1);
86 return(0);
89 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
90 hammer_vol_rb_compare, int32_t, vol_no);
91 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
92 hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
93 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
94 hammer_nod_rb_compare, hammer_off_t, node_offset);
96 /************************************************************************
97 * VOLUMES *
98 ************************************************************************
100 * Load a HAMMER volume by name. Returns 0 on success or a positive error
101 * code on failure. Volumes must be loaded at mount time, get_volume() will
102 * not load a new volume.
104 * Calls made to hammer_load_volume() or single-threaded
107 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
108 struct vnode *devvp)
110 struct mount *mp;
111 hammer_volume_t volume;
112 struct hammer_volume_ondisk *ondisk;
113 struct nlookupdata nd;
114 struct buf *bp = NULL;
115 int error;
116 int ronly;
117 int setmp = 0;
119 mp = hmp->mp;
120 ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
123 * Allocate a volume structure
125 ++hammer_count_volumes;
126 volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
127 volume->vol_name = kstrdup(volname, hmp->m_misc);
128 volume->io.hmp = hmp; /* bootstrap */
129 hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
130 volume->io.offset = 0LL;
131 volume->io.bytes = HAMMER_BUFSIZE;
134 * Get the device vnode
136 if (devvp == NULL) {
137 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
138 if (error == 0)
139 error = nlookup(&nd);
140 if (error == 0)
141 error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
142 nlookup_done(&nd);
143 } else {
144 error = 0;
145 volume->devvp = devvp;
148 if (error == 0) {
149 if (vn_isdisk(volume->devvp, &error)) {
150 error = vfs_mountedon(volume->devvp);
153 if (error == 0 && vcount(volume->devvp) > 0)
154 error = EBUSY;
155 if (error == 0) {
156 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
157 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
158 if (error == 0) {
159 error = VOP_OPEN(volume->devvp,
160 (ronly ? FREAD : FREAD|FWRITE),
161 FSCRED, NULL);
163 vn_unlock(volume->devvp);
165 if (error) {
166 hammer_free_volume(volume);
167 return(error);
169 volume->devvp->v_rdev->si_mountpoint = mp;
170 setmp = 1;
173 * Extract the volume number from the volume header and do various
174 * sanity checks.
176 error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
177 if (error)
178 goto late_failure;
179 ondisk = (void *)bp->b_data;
180 if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
181 kprintf("hammer_mount: volume %s has an invalid header\n",
182 volume->vol_name);
183 error = EFTYPE;
184 goto late_failure;
186 volume->vol_no = ondisk->vol_no;
187 volume->buffer_base = ondisk->vol_buf_beg;
188 volume->vol_flags = ondisk->vol_flags;
189 volume->nblocks = ondisk->vol_nblocks;
190 volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
191 ondisk->vol_buf_end - ondisk->vol_buf_beg);
192 volume->maxraw_off = ondisk->vol_buf_end;
194 if (RB_EMPTY(&hmp->rb_vols_root)) {
195 hmp->fsid = ondisk->vol_fsid;
196 } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
197 kprintf("hammer_mount: volume %s's fsid does not match "
198 "other volumes\n", volume->vol_name);
199 error = EFTYPE;
200 goto late_failure;
204 * Insert the volume structure into the red-black tree.
206 if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
207 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
208 volume->vol_name, volume->vol_no);
209 error = EEXIST;
213 * Set the root volume . HAMMER special cases rootvol the structure.
214 * We do not hold a ref because this would prevent related I/O
215 * from being flushed.
217 if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
218 hmp->rootvol = volume;
219 hmp->nvolumes = ondisk->vol_count;
220 if (bp) {
221 brelse(bp);
222 bp = NULL;
224 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
225 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
226 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
227 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
229 late_failure:
230 if (bp)
231 brelse(bp);
232 if (error) {
233 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
234 if (setmp)
235 volume->devvp->v_rdev->si_mountpoint = NULL;
236 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
237 hammer_free_volume(volume);
239 return (error);
243 * This is called for each volume when updating the mount point from
244 * read-write to read-only or vise-versa.
247 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
249 if (volume->devvp) {
250 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
251 if (volume->io.hmp->ronly) {
252 /* do not call vinvalbuf */
253 VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
254 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
255 } else {
256 /* do not call vinvalbuf */
257 VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
258 VOP_CLOSE(volume->devvp, FREAD);
260 vn_unlock(volume->devvp);
262 return(0);
266 * Unload and free a HAMMER volume. Must return >= 0 to continue scan
267 * so returns -1 on failure.
270 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
272 hammer_mount_t hmp = volume->io.hmp;
273 int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
276 * Clean up the root volume pointer, which is held unlocked in hmp.
278 if (hmp->rootvol == volume)
279 hmp->rootvol = NULL;
282 * We must not flush a dirty buffer to disk on umount. It should
283 * have already been dealt with by the flusher, or we may be in
284 * catastrophic failure.
286 hammer_io_clear_modify(&volume->io, 1);
287 volume->io.waitdep = 1;
290 * Clean up the persistent ref ioerror might have on the volume
292 if (volume->io.ioerror)
293 hammer_io_clear_error_noassert(&volume->io);
296 * This should release the bp. Releasing the volume with flush set
297 * implies the interlock is set.
299 hammer_ref_interlock_true(&volume->io.lock);
300 hammer_rel_volume(volume, 1);
301 KKASSERT(volume->io.bp == NULL);
304 * There should be no references on the volume, no clusters, and
305 * no super-clusters.
307 KKASSERT(hammer_norefs(&volume->io.lock));
309 volume->ondisk = NULL;
310 if (volume->devvp) {
311 if (volume->devvp->v_rdev &&
312 volume->devvp->v_rdev->si_mountpoint == hmp->mp
314 volume->devvp->v_rdev->si_mountpoint = NULL;
316 if (ronly) {
318 * Make sure we don't sync anything to disk if we
319 * are in read-only mode (1) or critically-errored
320 * (2). Note that there may be dirty buffers in
321 * normal read-only mode from crash recovery.
323 vinvalbuf(volume->devvp, 0, 0, 0);
324 VOP_CLOSE(volume->devvp, FREAD);
325 } else {
327 * Normal termination, save any dirty buffers
328 * (XXX there really shouldn't be any).
330 vinvalbuf(volume->devvp, V_SAVE, 0, 0);
331 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
336 * Destroy the structure
338 RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
339 hammer_free_volume(volume);
340 return(0);
343 static
344 void
345 hammer_free_volume(hammer_volume_t volume)
347 hammer_mount_t hmp = volume->io.hmp;
349 if (volume->vol_name) {
350 kfree(volume->vol_name, hmp->m_misc);
351 volume->vol_name = NULL;
353 if (volume->devvp) {
354 vrele(volume->devvp);
355 volume->devvp = NULL;
357 --hammer_count_volumes;
358 kfree(volume, hmp->m_misc);
362 * Get a HAMMER volume. The volume must already exist.
364 hammer_volume_t
365 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
367 struct hammer_volume *volume;
370 * Locate the volume structure
372 volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
373 if (volume == NULL) {
374 *errorp = ENOENT;
375 return(NULL);
379 * Reference the volume, load/check the data on the 0->1 transition.
380 * hammer_load_volume() will dispose of the interlock on return,
381 * and also clean up the ref count on error.
383 if (hammer_ref_interlock(&volume->io.lock)) {
384 *errorp = hammer_load_volume(volume);
385 if (*errorp)
386 volume = NULL;
387 } else {
388 KKASSERT(volume->ondisk);
389 *errorp = 0;
391 return(volume);
395 hammer_ref_volume(hammer_volume_t volume)
397 int error;
400 * Reference the volume and deal with the check condition used to
401 * load its ondisk info.
403 if (hammer_ref_interlock(&volume->io.lock)) {
404 error = hammer_load_volume(volume);
405 } else {
406 KKASSERT(volume->ondisk);
407 error = 0;
409 return (error);
412 hammer_volume_t
413 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
415 hammer_volume_t volume;
417 volume = hmp->rootvol;
418 KKASSERT(volume != NULL);
421 * Reference the volume and deal with the check condition used to
422 * load its ondisk info.
424 if (hammer_ref_interlock(&volume->io.lock)) {
425 *errorp = hammer_load_volume(volume);
426 if (*errorp)
427 volume = NULL;
428 } else {
429 KKASSERT(volume->ondisk);
430 *errorp = 0;
432 return (volume);
436 * Load a volume's on-disk information. The volume must be referenced and
437 * the interlock is held on call. The interlock will be released on return.
438 * The reference will also be released on return if an error occurs.
440 static int
441 hammer_load_volume(hammer_volume_t volume)
443 int error;
445 if (volume->ondisk == NULL) {
446 error = hammer_io_read(volume->devvp, &volume->io,
447 HAMMER_BUFSIZE);
448 if (error == 0) {
449 volume->ondisk = (void *)volume->io.bp->b_data;
450 hammer_ref_interlock_done(&volume->io.lock);
451 } else {
452 hammer_rel_volume(volume, 1);
454 } else {
455 error = 0;
457 return(error);
461 * Release a previously acquired reference on the volume.
463 * Volumes are not unloaded from memory during normal operation.
465 void
466 hammer_rel_volume(hammer_volume_t volume, int locked)
468 struct buf *bp;
470 if (hammer_rel_interlock(&volume->io.lock, locked)) {
471 volume->ondisk = NULL;
472 bp = hammer_io_release(&volume->io, locked);
473 hammer_rel_interlock_done(&volume->io.lock, locked);
474 if (bp)
475 brelse(bp);
480 hammer_mountcheck_volumes(struct hammer_mount *hmp)
482 hammer_volume_t vol;
483 int i;
485 for (i = 0; i < hmp->nvolumes; ++i) {
486 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
487 if (vol == NULL)
488 return(EINVAL);
490 return(0);
493 /************************************************************************
494 * BUFFERS *
495 ************************************************************************
497 * Manage buffers. Currently most blockmap-backed zones are direct-mapped
498 * to zone-2 buffer offsets, without a translation stage. However, the
499 * hammer_buffer structure is indexed by its zoneX_offset, not its
500 * zone2_offset.
502 * The proper zone must be maintained throughout the code-base all the way
503 * through to the big-block allocator, or routines like hammer_del_buffers()
504 * will not be able to locate all potentially conflicting buffers.
506 hammer_buffer_t
507 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
508 int bytes, int isnew, int *errorp)
510 hammer_buffer_t buffer;
511 hammer_volume_t volume;
512 hammer_off_t zone2_offset;
513 hammer_io_type_t iotype;
514 int vol_no;
515 int zone;
517 buf_offset &= ~HAMMER_BUFMASK64;
518 again:
520 * Shortcut if the buffer is already cached
522 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
523 if (buffer) {
525 * Once refed the ondisk field will not be cleared by
526 * any other action. Shortcut the operation if the
527 * ondisk structure is valid.
529 found_aliased:
530 if (hammer_ref_interlock(&buffer->io.lock) == 0) {
531 hammer_io_advance(&buffer->io);
532 KKASSERT(buffer->ondisk);
533 *errorp = 0;
534 return(buffer);
538 * 0->1 transition or defered 0->1 transition (CHECK),
539 * interlock now held. Shortcut if ondisk is already
540 * assigned.
542 ++hammer_count_refedbufs;
543 if (buffer->ondisk) {
544 hammer_io_advance(&buffer->io);
545 hammer_ref_interlock_done(&buffer->io.lock);
546 *errorp = 0;
547 return(buffer);
551 * The buffer is no longer loose if it has a ref, and
552 * cannot become loose once it gains a ref. Loose
553 * buffers will never be in a modified state. This should
554 * only occur on the 0->1 transition of refs.
556 * lose_list can be modified via a biodone() interrupt
557 * so the io_token must be held.
559 if (buffer->io.mod_list == &hmp->lose_list) {
560 lwkt_gettoken(&hmp->io_token);
561 if (buffer->io.mod_list == &hmp->lose_list) {
562 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
563 mod_entry);
564 buffer->io.mod_list = NULL;
565 KKASSERT(buffer->io.modified == 0);
567 lwkt_reltoken(&hmp->io_token);
569 goto found;
570 } else if (hmp->ronly) {
572 * If this is a read-only mount there could be an alias
573 * in the raw-zone. If there is we use that buffer instead.
575 * rw mounts will not have aliases. Also note when going
576 * from ro -> rw the recovered raw buffers are flushed and
577 * reclaimed, so again there will not be any aliases once
578 * the mount is rw.
580 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
581 (buf_offset & ~HAMMER_OFF_ZONE_MASK) |
582 HAMMER_ZONE_RAW_BUFFER);
583 if (buffer) {
584 kprintf("HAMMER: recovered aliased %016jx\n",
585 (intmax_t)buf_offset);
586 goto found_aliased;
591 * What is the buffer class?
593 zone = HAMMER_ZONE_DECODE(buf_offset);
595 switch(zone) {
596 case HAMMER_ZONE_LARGE_DATA_INDEX:
597 case HAMMER_ZONE_SMALL_DATA_INDEX:
598 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
599 break;
600 case HAMMER_ZONE_UNDO_INDEX:
601 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
602 break;
603 case HAMMER_ZONE_META_INDEX:
604 default:
606 * NOTE: inode data and directory entries are placed in this
607 * zone. inode atime/mtime is updated in-place and thus
608 * buffers containing inodes must be synchronized as
609 * meta-buffers, same as buffers containing B-Tree info.
611 iotype = HAMMER_STRUCTURE_META_BUFFER;
612 break;
616 * Handle blockmap offset translations
618 if (zone >= HAMMER_ZONE_BTREE_INDEX) {
619 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
620 } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
621 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
622 } else {
623 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
624 zone2_offset = buf_offset;
625 *errorp = 0;
627 if (*errorp)
628 return(NULL);
631 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
632 * specifications.
634 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
635 HAMMER_ZONE_RAW_BUFFER);
636 vol_no = HAMMER_VOL_DECODE(zone2_offset);
637 volume = hammer_get_volume(hmp, vol_no, errorp);
638 if (volume == NULL)
639 return(NULL);
641 KKASSERT(zone2_offset < volume->maxbuf_off);
644 * Allocate a new buffer structure. We will check for races later.
646 ++hammer_count_buffers;
647 buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
648 M_WAITOK|M_ZERO|M_USE_RESERVE);
649 buffer->zone2_offset = zone2_offset;
650 buffer->zoneX_offset = buf_offset;
652 hammer_io_init(&buffer->io, volume, iotype);
653 buffer->io.offset = volume->ondisk->vol_buf_beg +
654 (zone2_offset & HAMMER_OFF_SHORT_MASK);
655 buffer->io.bytes = bytes;
656 TAILQ_INIT(&buffer->clist);
657 hammer_ref_interlock_true(&buffer->io.lock);
660 * Insert the buffer into the RB tree and handle late collisions.
662 if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
663 hammer_rel_volume(volume, 0);
664 buffer->io.volume = NULL; /* safety */
665 if (hammer_rel_interlock(&buffer->io.lock, 1)) /* safety */
666 hammer_rel_interlock_done(&buffer->io.lock, 1);
667 --hammer_count_buffers;
668 kfree(buffer, hmp->m_misc);
669 goto again;
671 ++hammer_count_refedbufs;
672 found:
675 * The buffer is referenced and interlocked. Load the buffer
676 * if necessary. hammer_load_buffer() deals with the interlock
677 * and, if an error is returned, also deals with the ref.
679 if (buffer->ondisk == NULL) {
680 *errorp = hammer_load_buffer(buffer, isnew);
681 if (*errorp)
682 buffer = NULL;
683 } else {
684 hammer_io_advance(&buffer->io);
685 hammer_ref_interlock_done(&buffer->io.lock);
686 *errorp = 0;
688 return(buffer);
692 * This is used by the direct-read code to deal with large-data buffers
693 * created by the reblocker and mirror-write code. The direct-read code
694 * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
695 * running hammer buffers must be fully synced to disk before we can issue
696 * the direct-read.
698 * This code path is not considered critical as only the rebocker and
699 * mirror-write code will create large-data buffers via the HAMMER buffer
700 * subsystem. They do that because they operate at the B-Tree level and
701 * do not access the vnode/inode structures.
703 void
704 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
706 hammer_buffer_t buffer;
707 int error;
709 KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
710 HAMMER_ZONE_LARGE_DATA);
712 while (bytes > 0) {
713 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
714 base_offset);
715 if (buffer && (buffer->io.modified || buffer->io.running)) {
716 error = hammer_ref_buffer(buffer);
717 if (error == 0) {
718 hammer_io_wait(&buffer->io);
719 if (buffer->io.modified) {
720 hammer_io_write_interlock(&buffer->io);
721 hammer_io_flush(&buffer->io, 0);
722 hammer_io_done_interlock(&buffer->io);
723 hammer_io_wait(&buffer->io);
725 hammer_rel_buffer(buffer, 0);
728 base_offset += HAMMER_BUFSIZE;
729 bytes -= HAMMER_BUFSIZE;
734 * Destroy all buffers covering the specified zoneX offset range. This
735 * is called when the related blockmap layer2 entry is freed or when
736 * a direct write bypasses our buffer/buffer-cache subsystem.
738 * The buffers may be referenced by the caller itself. Setting reclaim
739 * will cause the buffer to be destroyed when it's ref count reaches zero.
741 * Return 0 on success, EAGAIN if some buffers could not be destroyed due
742 * to additional references held by other threads, or some other (typically
743 * fatal) error.
746 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
747 hammer_off_t zone2_offset, int bytes,
748 int report_conflicts)
750 hammer_buffer_t buffer;
751 hammer_volume_t volume;
752 int vol_no;
753 int error;
754 int ret_error;
756 vol_no = HAMMER_VOL_DECODE(zone2_offset);
757 volume = hammer_get_volume(hmp, vol_no, &ret_error);
758 KKASSERT(ret_error == 0);
760 while (bytes > 0) {
761 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
762 base_offset);
763 if (buffer) {
764 error = hammer_ref_buffer(buffer);
765 if (hammer_debug_general & 0x20000) {
766 kprintf("hammer: delbufr %016jx "
767 "rerr=%d 1ref=%d\n",
768 (intmax_t)buffer->zoneX_offset,
769 error,
770 hammer_oneref(&buffer->io.lock));
772 if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
773 error = EAGAIN;
774 hammer_rel_buffer(buffer, 0);
776 if (error == 0) {
777 KKASSERT(buffer->zone2_offset == zone2_offset);
778 hammer_io_clear_modify(&buffer->io, 1);
779 buffer->io.reclaim = 1;
780 buffer->io.waitdep = 1;
781 KKASSERT(buffer->io.volume == volume);
782 hammer_rel_buffer(buffer, 0);
784 } else {
785 error = hammer_io_inval(volume, zone2_offset);
787 if (error) {
788 ret_error = error;
789 if (report_conflicts ||
790 (hammer_debug_general & 0x8000)) {
791 kprintf("hammer_del_buffers: unable to "
792 "invalidate %016llx buffer=%p rep=%d\n",
793 (long long)base_offset,
794 buffer, report_conflicts);
797 base_offset += HAMMER_BUFSIZE;
798 zone2_offset += HAMMER_BUFSIZE;
799 bytes -= HAMMER_BUFSIZE;
801 hammer_rel_volume(volume, 0);
802 return (ret_error);
806 * Given a referenced and interlocked buffer load/validate the data.
808 * The buffer interlock will be released on return. If an error is
809 * returned the buffer reference will also be released (and the buffer
810 * pointer will thus be stale).
812 static int
813 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
815 hammer_volume_t volume;
816 int error;
819 * Load the buffer's on-disk info
821 volume = buffer->io.volume;
823 if (hammer_debug_io & 0x0004) {
824 kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
825 (long long)buffer->zoneX_offset,
826 (long long)buffer->zone2_offset,
827 isnew, buffer->ondisk);
830 if (buffer->ondisk == NULL) {
832 * Issue the read or generate a new buffer. When reading
833 * the limit argument controls any read-ahead clustering
834 * hammer_io_read() is allowed to do.
836 * We cannot read-ahead in the large-data zone and we cannot
837 * cross a largeblock boundary as the next largeblock might
838 * use a different buffer size.
840 if (isnew) {
841 error = hammer_io_new(volume->devvp, &buffer->io);
842 } else if ((buffer->zoneX_offset & HAMMER_OFF_ZONE_MASK) ==
843 HAMMER_ZONE_LARGE_DATA) {
844 error = hammer_io_read(volume->devvp, &buffer->io,
845 buffer->io.bytes);
846 } else {
847 hammer_off_t limit;
849 limit = (buffer->zone2_offset +
850 HAMMER_LARGEBLOCK_MASK64) &
851 ~HAMMER_LARGEBLOCK_MASK64;
852 limit -= buffer->zone2_offset;
853 error = hammer_io_read(volume->devvp, &buffer->io,
854 limit);
856 if (error == 0)
857 buffer->ondisk = (void *)buffer->io.bp->b_data;
858 } else if (isnew) {
859 error = hammer_io_new(volume->devvp, &buffer->io);
860 } else {
861 error = 0;
863 if (error == 0) {
864 hammer_io_advance(&buffer->io);
865 hammer_ref_interlock_done(&buffer->io.lock);
866 } else {
867 hammer_rel_buffer(buffer, 1);
869 return (error);
873 * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
874 * This routine is only called during unmount or when a volume is
875 * removed.
877 * If data != NULL, it specifies a volume whoose buffers should
878 * be unloaded.
881 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
883 struct hammer_volume *volume = (struct hammer_volume *) data;
886 * If volume != NULL we are only interested in unloading buffers
887 * associated with a particular volume.
889 if (volume != NULL && volume != buffer->io.volume)
890 return 0;
893 * Clean up the persistent ref ioerror might have on the buffer
894 * and acquire a ref. Expect a 0->1 transition.
896 if (buffer->io.ioerror) {
897 hammer_io_clear_error_noassert(&buffer->io);
898 --hammer_count_refedbufs;
900 hammer_ref_interlock_true(&buffer->io.lock);
901 ++hammer_count_refedbufs;
904 * We must not flush a dirty buffer to disk on umount. It should
905 * have already been dealt with by the flusher, or we may be in
906 * catastrophic failure.
908 * We must set waitdep to ensure that a running buffer is waited
909 * on and released prior to us trying to unload the volume.
911 hammer_io_clear_modify(&buffer->io, 1);
912 hammer_flush_buffer_nodes(buffer);
913 buffer->io.waitdep = 1;
914 hammer_rel_buffer(buffer, 1);
915 return(0);
919 * Reference a buffer that is either already referenced or via a specially
920 * handled pointer (aka cursor->buffer).
923 hammer_ref_buffer(hammer_buffer_t buffer)
925 hammer_mount_t hmp;
926 int error;
927 int locked;
930 * Acquire a ref, plus the buffer will be interlocked on the
931 * 0->1 transition.
933 locked = hammer_ref_interlock(&buffer->io.lock);
934 hmp = buffer->io.hmp;
937 * At this point a biodone() will not touch the buffer other then
938 * incidental bits. However, lose_list can be modified via
939 * a biodone() interrupt.
941 * No longer loose. lose_list requires the io_token.
943 if (buffer->io.mod_list == &hmp->lose_list) {
944 lwkt_gettoken(&hmp->io_token);
945 if (buffer->io.mod_list == &hmp->lose_list) {
946 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
947 mod_entry);
948 buffer->io.mod_list = NULL;
950 lwkt_reltoken(&hmp->io_token);
953 if (locked) {
954 ++hammer_count_refedbufs;
955 error = hammer_load_buffer(buffer, 0);
956 /* NOTE: on error the buffer pointer is stale */
957 } else {
958 error = 0;
960 return(error);
964 * Release a reference on the buffer. On the 1->0 transition the
965 * underlying IO will be released but the data reference is left
966 * cached.
968 * Only destroy the structure itself if the related buffer cache buffer
969 * was disassociated from it. This ties the management of the structure
970 * to the buffer cache subsystem. buffer->ondisk determines whether the
971 * embedded io is referenced or not.
973 void
974 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
976 hammer_volume_t volume;
977 hammer_mount_t hmp;
978 struct buf *bp = NULL;
979 int freeme = 0;
981 hmp = buffer->io.hmp;
983 if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
984 return;
987 * hammer_count_refedbufs accounting. Decrement if we are in
988 * the error path or if CHECK is clear.
990 * If we are not in the error path and CHECK is set the caller
991 * probably just did a hammer_ref() and didn't account for it,
992 * so we don't account for the loss here.
994 if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
995 --hammer_count_refedbufs;
998 * If the caller locked us or the normal released transitions
999 * from 1->0 (and acquired the lock) attempt to release the
1000 * io. If the called locked us we tell hammer_io_release()
1001 * to flush (which would be the unload or failure path).
1003 bp = hammer_io_release(&buffer->io, locked);
1006 * If the buffer has no bp association and no refs we can destroy
1007 * it.
1009 * NOTE: It is impossible for any associated B-Tree nodes to have
1010 * refs if the buffer has no additional refs.
1012 if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1013 RB_REMOVE(hammer_buf_rb_tree,
1014 &buffer->io.hmp->rb_bufs_root,
1015 buffer);
1016 volume = buffer->io.volume;
1017 buffer->io.volume = NULL; /* sanity */
1018 hammer_rel_volume(volume, 0);
1019 hammer_io_clear_modlist(&buffer->io);
1020 hammer_flush_buffer_nodes(buffer);
1021 KKASSERT(TAILQ_EMPTY(&buffer->clist));
1022 freeme = 1;
1026 * Cleanup
1028 hammer_rel_interlock_done(&buffer->io.lock, locked);
1029 if (bp)
1030 brelse(bp);
1031 if (freeme) {
1032 --hammer_count_buffers;
1033 kfree(buffer, hmp->m_misc);
1038 * Access the filesystem buffer containing the specified hammer offset.
1039 * buf_offset is a conglomeration of the volume number and vol_buf_beg
1040 * relative buffer offset. It must also have bit 55 set to be valid.
1041 * (see hammer_off_t in hammer_disk.h).
1043 * Any prior buffer in *bufferp will be released and replaced by the
1044 * requested buffer.
1046 * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1047 * passed cached *bufferp to match against either zoneX or zone2.
1049 static __inline
1050 void *
1051 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1052 int *errorp, struct hammer_buffer **bufferp)
1054 hammer_buffer_t buffer;
1055 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1057 buf_offset &= ~HAMMER_BUFMASK64;
1058 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1060 buffer = *bufferp;
1061 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1062 buffer->zoneX_offset != buf_offset)) {
1063 if (buffer)
1064 hammer_rel_buffer(buffer, 0);
1065 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
1066 *bufferp = buffer;
1067 } else {
1068 *errorp = 0;
1072 * Return a pointer to the buffer data.
1074 if (buffer == NULL)
1075 return(NULL);
1076 else
1077 return((char *)buffer->ondisk + xoff);
1080 void *
1081 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1082 int *errorp, struct hammer_buffer **bufferp)
1084 return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1087 void *
1088 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1089 int *errorp, struct hammer_buffer **bufferp)
1091 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1092 return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1096 * Access the filesystem buffer containing the specified hammer offset.
1097 * No disk read operation occurs. The result buffer may contain garbage.
1099 * Any prior buffer in *bufferp will be released and replaced by the
1100 * requested buffer.
1102 * This function marks the buffer dirty but does not increment its
1103 * modify_refs count.
1105 static __inline
1106 void *
1107 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1108 int *errorp, struct hammer_buffer **bufferp)
1110 hammer_buffer_t buffer;
1111 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1113 buf_offset &= ~HAMMER_BUFMASK64;
1115 buffer = *bufferp;
1116 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1117 buffer->zoneX_offset != buf_offset)) {
1118 if (buffer)
1119 hammer_rel_buffer(buffer, 0);
1120 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1121 *bufferp = buffer;
1122 } else {
1123 *errorp = 0;
1127 * Return a pointer to the buffer data.
1129 if (buffer == NULL)
1130 return(NULL);
1131 else
1132 return((char *)buffer->ondisk + xoff);
1135 void *
1136 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1137 int *errorp, struct hammer_buffer **bufferp)
1139 return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1142 void *
1143 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1144 int *errorp, struct hammer_buffer **bufferp)
1146 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1147 return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1150 /************************************************************************
1151 * NODES *
1152 ************************************************************************
1154 * Manage B-Tree nodes. B-Tree nodes represent the primary indexing
1155 * method used by the HAMMER filesystem.
1157 * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1158 * associated with its buffer, and will only referenced the buffer while
1159 * the node itself is referenced.
1161 * A hammer_node can also be passively associated with other HAMMER
1162 * structures, such as inodes, while retaining 0 references. These
1163 * associations can be cleared backwards using a pointer-to-pointer in
1164 * the hammer_node.
1166 * This allows the HAMMER implementation to cache hammer_nodes long-term
1167 * and short-cut a great deal of the infrastructure's complexity. In
1168 * most cases a cached node can be reacquired without having to dip into
1169 * either the buffer or cluster management code.
1171 * The caller must pass a referenced cluster on call and will retain
1172 * ownership of the reference on return. The node will acquire its own
1173 * additional references, if necessary.
1175 hammer_node_t
1176 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1177 int isnew, int *errorp)
1179 hammer_mount_t hmp = trans->hmp;
1180 hammer_node_t node;
1181 int doload;
1183 KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1186 * Locate the structure, allocating one if necessary.
1188 again:
1189 node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1190 if (node == NULL) {
1191 ++hammer_count_nodes;
1192 node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1193 node->node_offset = node_offset;
1194 node->hmp = hmp;
1195 TAILQ_INIT(&node->cursor_list);
1196 TAILQ_INIT(&node->cache_list);
1197 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1198 --hammer_count_nodes;
1199 kfree(node, hmp->m_misc);
1200 goto again;
1202 doload = hammer_ref_interlock_true(&node->lock);
1203 } else {
1204 doload = hammer_ref_interlock(&node->lock);
1206 if (doload) {
1207 *errorp = hammer_load_node(trans, node, isnew);
1208 trans->flags |= HAMMER_TRANSF_DIDIO;
1209 if (*errorp)
1210 node = NULL;
1211 } else {
1212 KKASSERT(node->ondisk);
1213 *errorp = 0;
1214 hammer_io_advance(&node->buffer->io);
1216 return(node);
1220 * Reference an already-referenced node. 0->1 transitions should assert
1221 * so we do not have to deal with hammer_ref() setting CHECK.
1223 void
1224 hammer_ref_node(hammer_node_t node)
1226 KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1227 hammer_ref(&node->lock);
1231 * Load a node's on-disk data reference. Called with the node referenced
1232 * and interlocked.
1234 * On return the node interlock will be unlocked. If a non-zero error code
1235 * is returned the node will also be dereferenced (and the caller's pointer
1236 * will be stale).
1238 static int
1239 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1241 hammer_buffer_t buffer;
1242 hammer_off_t buf_offset;
1243 int error;
1245 error = 0;
1246 if (node->ondisk == NULL) {
1248 * This is a little confusing but the jist is that
1249 * node->buffer determines whether the node is on
1250 * the buffer's clist and node->ondisk determines
1251 * whether the buffer is referenced.
1253 * We could be racing a buffer release, in which case
1254 * node->buffer may become NULL while we are blocked
1255 * referencing the buffer.
1257 if ((buffer = node->buffer) != NULL) {
1258 error = hammer_ref_buffer(buffer);
1259 if (error == 0 && node->buffer == NULL) {
1260 TAILQ_INSERT_TAIL(&buffer->clist,
1261 node, entry);
1262 node->buffer = buffer;
1264 } else {
1265 buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1266 buffer = hammer_get_buffer(node->hmp, buf_offset,
1267 HAMMER_BUFSIZE, 0, &error);
1268 if (buffer) {
1269 KKASSERT(error == 0);
1270 TAILQ_INSERT_TAIL(&buffer->clist,
1271 node, entry);
1272 node->buffer = buffer;
1275 if (error)
1276 goto failed;
1277 node->ondisk = (void *)((char *)buffer->ondisk +
1278 (node->node_offset & HAMMER_BUFMASK));
1281 * Check CRC. NOTE: Neither flag is set and the CRC is not
1282 * generated on new B-Tree nodes.
1284 if (isnew == 0 &&
1285 (node->flags & HAMMER_NODE_CRCANY) == 0) {
1286 if (hammer_crc_test_btree(node->ondisk) == 0) {
1287 if (hammer_debug_critical)
1288 Debugger("CRC FAILED: B-TREE NODE");
1289 node->flags |= HAMMER_NODE_CRCBAD;
1290 } else {
1291 node->flags |= HAMMER_NODE_CRCGOOD;
1295 if (node->flags & HAMMER_NODE_CRCBAD) {
1296 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1297 error = EDOM;
1298 else
1299 error = EIO;
1301 failed:
1302 if (error) {
1303 _hammer_rel_node(node, 1);
1304 } else {
1305 hammer_ref_interlock_done(&node->lock);
1307 return (error);
1311 * Safely reference a node, interlock against flushes via the IO subsystem.
1313 hammer_node_t
1314 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1315 int *errorp)
1317 hammer_node_t node;
1318 int doload;
1320 node = cache->node;
1321 if (node != NULL) {
1322 doload = hammer_ref_interlock(&node->lock);
1323 if (doload) {
1324 *errorp = hammer_load_node(trans, node, 0);
1325 if (*errorp)
1326 node = NULL;
1327 } else {
1328 KKASSERT(node->ondisk);
1329 if (node->flags & HAMMER_NODE_CRCBAD) {
1330 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1331 *errorp = EDOM;
1332 else
1333 *errorp = EIO;
1334 _hammer_rel_node(node, 0);
1335 node = NULL;
1336 } else {
1337 *errorp = 0;
1340 } else {
1341 *errorp = ENOENT;
1343 return(node);
1347 * Release a hammer_node. On the last release the node dereferences
1348 * its underlying buffer and may or may not be destroyed.
1350 * If locked is non-zero the passed node has been interlocked by the
1351 * caller and we are in the failure/unload path, otherwise it has not and
1352 * we are doing a normal release.
1354 * This function will dispose of the interlock and the reference.
1355 * On return the node pointer is stale.
1357 void
1358 _hammer_rel_node(hammer_node_t node, int locked)
1360 hammer_buffer_t buffer;
1363 * Deref the node. If this isn't the 1->0 transition we're basically
1364 * done. If locked is non-zero this function will just deref the
1365 * locked node and return TRUE, otherwise it will deref the locked
1366 * node and either lock and return TRUE on the 1->0 transition or
1367 * not lock and return FALSE.
1369 if (hammer_rel_interlock(&node->lock, locked) == 0)
1370 return;
1373 * Either locked was non-zero and we are interlocked, or the
1374 * hammer_rel_interlock() call returned non-zero and we are
1375 * interlocked.
1377 * The ref-count must still be decremented if locked != 0 so
1378 * the cleanup required still varies a bit.
1380 * hammer_flush_node() when called with 1 or 2 will dispose of
1381 * the lock and possible ref-count.
1383 if (node->ondisk == NULL) {
1384 hammer_flush_node(node, locked + 1);
1385 /* node is stale now */
1386 return;
1390 * Do not disassociate the node from the buffer if it represents
1391 * a modified B-Tree node that still needs its crc to be generated.
1393 if (node->flags & HAMMER_NODE_NEEDSCRC) {
1394 hammer_rel_interlock_done(&node->lock, locked);
1395 return;
1399 * Do final cleanups and then either destroy the node and leave it
1400 * passively cached. The buffer reference is removed regardless.
1402 buffer = node->buffer;
1403 node->ondisk = NULL;
1405 if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1407 * Normal release.
1409 hammer_rel_interlock_done(&node->lock, locked);
1410 } else {
1412 * Destroy the node.
1414 hammer_flush_node(node, locked + 1);
1415 /* node is stale */
1418 hammer_rel_buffer(buffer, 0);
1421 void
1422 hammer_rel_node(hammer_node_t node)
1424 _hammer_rel_node(node, 0);
1428 * Free space on-media associated with a B-Tree node.
1430 void
1431 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1433 KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1434 node->flags |= HAMMER_NODE_DELETED;
1435 hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1439 * Passively cache a referenced hammer_node. The caller may release
1440 * the node on return.
1442 void
1443 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1446 * If the node doesn't exist, or is being deleted, don't cache it!
1448 * The node can only ever be NULL in the I/O failure path.
1450 if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1451 return;
1452 if (cache->node == node)
1453 return;
1454 while (cache->node)
1455 hammer_uncache_node(cache);
1456 if (node->flags & HAMMER_NODE_DELETED)
1457 return;
1458 cache->node = node;
1459 TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1462 void
1463 hammer_uncache_node(hammer_node_cache_t cache)
1465 hammer_node_t node;
1467 if ((node = cache->node) != NULL) {
1468 TAILQ_REMOVE(&node->cache_list, cache, entry);
1469 cache->node = NULL;
1470 if (TAILQ_EMPTY(&node->cache_list))
1471 hammer_flush_node(node, 0);
1476 * Remove a node's cache references and destroy the node if it has no
1477 * other references or backing store.
1479 * locked == 0 Normal unlocked operation
1480 * locked == 1 Call hammer_rel_interlock_done(..., 0);
1481 * locked == 2 Call hammer_rel_interlock_done(..., 1);
1483 * XXX for now this isn't even close to being MPSAFE so the refs check
1484 * is sufficient.
1486 void
1487 hammer_flush_node(hammer_node_t node, int locked)
1489 hammer_node_cache_t cache;
1490 hammer_buffer_t buffer;
1491 hammer_mount_t hmp = node->hmp;
1492 int dofree;
1494 while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1495 TAILQ_REMOVE(&node->cache_list, cache, entry);
1496 cache->node = NULL;
1500 * NOTE: refs is predisposed if another thread is blocking and
1501 * will be larger than 0 in that case. We aren't MPSAFE
1502 * here.
1504 if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1505 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1506 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1507 if ((buffer = node->buffer) != NULL) {
1508 node->buffer = NULL;
1509 TAILQ_REMOVE(&buffer->clist, node, entry);
1510 /* buffer is unreferenced because ondisk is NULL */
1512 dofree = 1;
1513 } else {
1514 dofree = 0;
1518 * Deal with the interlock if locked == 1 or locked == 2.
1520 if (locked)
1521 hammer_rel_interlock_done(&node->lock, locked - 1);
1524 * Destroy if requested
1526 if (dofree) {
1527 --hammer_count_nodes;
1528 kfree(node, hmp->m_misc);
1533 * Flush passively cached B-Tree nodes associated with this buffer.
1534 * This is only called when the buffer is about to be destroyed, so
1535 * none of the nodes should have any references. The buffer is locked.
1537 * We may be interlocked with the buffer.
1539 void
1540 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1542 hammer_node_t node;
1544 while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1545 KKASSERT(node->ondisk == NULL);
1546 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1548 if (hammer_try_interlock_norefs(&node->lock)) {
1549 hammer_ref(&node->lock);
1550 node->flags |= HAMMER_NODE_FLUSH;
1551 _hammer_rel_node(node, 1);
1552 } else {
1553 KKASSERT(node->buffer != NULL);
1554 buffer = node->buffer;
1555 node->buffer = NULL;
1556 TAILQ_REMOVE(&buffer->clist, node, entry);
1557 /* buffer is unreferenced because ondisk is NULL */
1563 /************************************************************************
1564 * ALLOCATORS *
1565 ************************************************************************/
1568 * Allocate a B-Tree node.
1570 hammer_node_t
1571 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1573 hammer_buffer_t buffer = NULL;
1574 hammer_node_t node = NULL;
1575 hammer_off_t node_offset;
1577 node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1578 sizeof(struct hammer_node_ondisk),
1579 hint, errorp);
1580 if (*errorp == 0) {
1581 node = hammer_get_node(trans, node_offset, 1, errorp);
1582 hammer_modify_node_noundo(trans, node);
1583 bzero(node->ondisk, sizeof(*node->ondisk));
1584 hammer_modify_node_done(node);
1586 if (buffer)
1587 hammer_rel_buffer(buffer, 0);
1588 return(node);
1592 * Allocate data. If the address of a data buffer is supplied then
1593 * any prior non-NULL *data_bufferp will be released and *data_bufferp
1594 * will be set to the related buffer. The caller must release it when
1595 * finally done. The initial *data_bufferp should be set to NULL by
1596 * the caller.
1598 * The caller is responsible for making hammer_modify*() calls on the
1599 * *data_bufferp.
1601 void *
1602 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1603 u_int16_t rec_type, hammer_off_t *data_offsetp,
1604 struct hammer_buffer **data_bufferp,
1605 hammer_off_t hint, int *errorp)
1607 void *data;
1608 int zone;
1611 * Allocate data
1613 if (data_len) {
1614 switch(rec_type) {
1615 case HAMMER_RECTYPE_INODE:
1616 case HAMMER_RECTYPE_DIRENTRY:
1617 case HAMMER_RECTYPE_EXT:
1618 case HAMMER_RECTYPE_FIX:
1619 case HAMMER_RECTYPE_PFS:
1620 case HAMMER_RECTYPE_SNAPSHOT:
1621 case HAMMER_RECTYPE_CONFIG:
1622 zone = HAMMER_ZONE_META_INDEX;
1623 break;
1624 case HAMMER_RECTYPE_DATA:
1625 case HAMMER_RECTYPE_DB:
1626 if (data_len <= HAMMER_BUFSIZE / 2) {
1627 zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1628 } else {
1629 data_len = (data_len + HAMMER_BUFMASK) &
1630 ~HAMMER_BUFMASK;
1631 zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1633 break;
1634 default:
1635 panic("hammer_alloc_data: rec_type %04x unknown",
1636 rec_type);
1637 zone = 0; /* NOT REACHED */
1638 break;
1640 *data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1641 hint, errorp);
1642 } else {
1643 *data_offsetp = 0;
1645 if (*errorp == 0 && data_bufferp) {
1646 if (data_len) {
1647 data = hammer_bread_ext(trans->hmp, *data_offsetp,
1648 data_len, errorp, data_bufferp);
1649 } else {
1650 data = NULL;
1652 } else {
1653 data = NULL;
1655 return(data);
1659 * Sync dirty buffers to the media and clean-up any loose ends.
1661 * These functions do not start the flusher going, they simply
1662 * queue everything up to the flusher.
1664 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1665 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1668 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1670 struct hammer_sync_info info;
1672 info.error = 0;
1673 info.waitfor = waitfor;
1674 if (waitfor == MNT_WAIT) {
1675 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1676 hammer_sync_scan1, hammer_sync_scan2, &info);
1677 } else {
1678 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1679 hammer_sync_scan1, hammer_sync_scan2, &info);
1681 return(info.error);
1685 * Filesystem sync. If doing a synchronous sync make a second pass on
1686 * the vnodes in case any were already flushing during the first pass,
1687 * and activate the flusher twice (the second time brings the UNDO FIFO's
1688 * start position up to the end position after the first call).
1691 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1693 struct hammer_sync_info info;
1695 info.error = 0;
1696 info.waitfor = MNT_NOWAIT;
1697 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1698 hammer_sync_scan1, hammer_sync_scan2, &info);
1699 if (info.error == 0 && waitfor == MNT_WAIT) {
1700 info.waitfor = waitfor;
1701 vmntvnodescan(hmp->mp, VMSC_GETVP,
1702 hammer_sync_scan1, hammer_sync_scan2, &info);
1704 if (waitfor == MNT_WAIT) {
1705 hammer_flusher_sync(hmp);
1706 hammer_flusher_sync(hmp);
1707 } else {
1708 hammer_flusher_async(hmp, NULL);
1709 hammer_flusher_async(hmp, NULL);
1711 return(info.error);
1714 static int
1715 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1717 struct hammer_inode *ip;
1719 ip = VTOI(vp);
1720 if (vp->v_type == VNON || ip == NULL ||
1721 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1722 RB_EMPTY(&vp->v_rbdirty_tree))) {
1723 return(-1);
1725 return(0);
1728 static int
1729 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1731 struct hammer_sync_info *info = data;
1732 struct hammer_inode *ip;
1733 int error;
1735 ip = VTOI(vp);
1736 if (vp->v_type == VNON || vp->v_type == VBAD ||
1737 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1738 RB_EMPTY(&vp->v_rbdirty_tree))) {
1739 return(0);
1741 error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1742 if (error)
1743 info->error = error;
1744 return(0);