kernel - Try to idle cpus when in panic()
[dragonfly.git] / sys / platform / pc64 / x86_64 / mp_machdep.c
blob476b989359728e0d2c5cdfd8cbb904221143dfc2
1 /*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 * derived from this software without specific prior written permission.
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
25 * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
28 #include "opt_cpu.h"
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h> /* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
40 #include <sys/mplock2.h>
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine_base/acpica/acpi_md_cpu.h>
62 #include <machine/psl.h>
63 #include <machine/segments.h>
64 #include <machine/tss.h>
65 #include <machine/specialreg.h>
66 #include <machine/globaldata.h>
67 #include <machine/pmap_inval.h>
68 #include <machine/clock.h>
70 #include <machine/md_var.h> /* setidt() */
71 #include <machine_base/icu/icu.h> /* IPIs */
72 #include <machine_base/icu/icu_var.h>
73 #include <machine_base/apic/ioapic_abi.h>
74 #include <machine/intr_machdep.h> /* IPIs */
76 #define WARMBOOT_TARGET 0
77 #define WARMBOOT_OFF (KERNBASE + 0x0467)
78 #define WARMBOOT_SEG (KERNBASE + 0x0469)
80 #define CMOS_REG (0x70)
81 #define CMOS_DATA (0x71)
82 #define BIOS_RESET (0x0f)
83 #define BIOS_WARM (0x0a)
86 * this code MUST be enabled here and in mpboot.s.
87 * it follows the very early stages of AP boot by placing values in CMOS ram.
88 * it NORMALLY will never be needed and thus the primitive method for enabling.
91 #if defined(CHECK_POINTS)
92 #define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
93 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
95 #define CHECK_INIT(D); \
96 CHECK_WRITE(0x34, (D)); \
97 CHECK_WRITE(0x35, (D)); \
98 CHECK_WRITE(0x36, (D)); \
99 CHECK_WRITE(0x37, (D)); \
100 CHECK_WRITE(0x38, (D)); \
101 CHECK_WRITE(0x39, (D));
103 #define CHECK_PRINT(S); \
104 kprintf("%s: %d, %d, %d, %d, %d, %d\n", \
105 (S), \
106 CHECK_READ(0x34), \
107 CHECK_READ(0x35), \
108 CHECK_READ(0x36), \
109 CHECK_READ(0x37), \
110 CHECK_READ(0x38), \
111 CHECK_READ(0x39));
113 #else /* CHECK_POINTS */
115 #define CHECK_INIT(D)
116 #define CHECK_PRINT(S)
118 #endif /* CHECK_POINTS */
121 * Values to send to the POST hardware.
123 #define MP_BOOTADDRESS_POST 0x10
124 #define MP_PROBE_POST 0x11
125 #define MPTABLE_PASS1_POST 0x12
127 #define MP_START_POST 0x13
128 #define MP_ENABLE_POST 0x14
129 #define MPTABLE_PASS2_POST 0x15
131 #define START_ALL_APS_POST 0x16
132 #define INSTALL_AP_TRAMP_POST 0x17
133 #define START_AP_POST 0x18
135 #define MP_ANNOUNCE_POST 0x19
137 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
138 int current_postcode;
140 /** XXX FIXME: what system files declare these??? */
141 extern struct region_descriptor r_gdt;
143 extern int nkpt;
144 extern int naps;
146 int64_t tsc0_offset;
147 extern int64_t tsc_offsets[];
149 /* AP uses this during bootstrap. Do not staticize. */
150 char *bootSTK;
151 static int bootAP;
153 struct pcb stoppcbs[MAXCPU];
155 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
158 * Local data and functions.
161 static u_int boot_address;
162 static int mp_finish;
163 static int mp_finish_lapic;
165 static int start_all_aps(u_int boot_addr);
166 #if 0
167 static void install_ap_tramp(u_int boot_addr);
168 #endif
169 static int start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
170 static int smitest(void);
171 static void mp_bsp_simple_setup(void);
173 /* which cpus have been started */
174 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
175 /* which cpus have lapic been inited */
176 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
177 /* which cpus are ready for IPIs etc? */
178 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
179 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
181 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RD, &smp_active_mask, 0, "");
182 static u_int bootMP_size;
183 static u_int report_invlpg_src;
184 SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
185 &report_invlpg_src, 0, "");
186 static u_int report_invltlb_src;
187 SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
188 &report_invltlb_src, 0, "");
189 static int optimized_invltlb;
190 SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
191 &optimized_invltlb, 0, "");
192 static int all_but_self_ipi_enable = 1;
193 SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
194 &all_but_self_ipi_enable, 0, "");
196 /* Local data for detecting CPU TOPOLOGY */
197 static int core_bits = 0;
198 static int logical_CPU_bits = 0;
202 * Calculate usable address in base memory for AP trampoline code.
204 u_int
205 mp_bootaddress(u_int basemem)
207 POSTCODE(MP_BOOTADDRESS_POST);
209 bootMP_size = mptramp_end - mptramp_start;
210 boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
211 if (((basemem * 1024) - boot_address) < bootMP_size)
212 boot_address -= PAGE_SIZE; /* not enough, lower by 4k */
213 /* 3 levels of page table pages */
214 mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
216 return mptramp_pagetables;
220 * Print various information about the SMP system hardware and setup.
222 void
223 mp_announce(void)
225 int x;
227 POSTCODE(MP_ANNOUNCE_POST);
229 kprintf("DragonFly/MP: Multiprocessor motherboard\n");
230 kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
231 for (x = 1; x <= naps; ++x)
232 kprintf(" cpu%d (AP): apic id: %2d\n", x, CPUID_TO_APICID(x));
234 if (!ioapic_enable)
235 kprintf(" Warning: APIC I/O disabled\n");
239 * AP cpu's call this to sync up protected mode.
241 * WARNING! %gs is not set up on entry. This routine sets up %gs.
243 void
244 init_secondary(void)
246 int gsel_tss;
247 int x, myid = bootAP;
248 u_int64_t msr, cr0;
249 struct mdglobaldata *md;
250 struct privatespace *ps;
252 ps = CPU_prvspace[myid];
254 gdt_segs[GPROC0_SEL].ssd_base =
255 (long) &ps->mdglobaldata.gd_common_tss;
256 ps->mdglobaldata.mi.gd_prvspace = ps;
258 /* We fill the 32-bit segment descriptors */
259 for (x = 0; x < NGDT; x++) {
260 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
261 ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
263 /* And now a 64-bit one */
264 ssdtosyssd(&gdt_segs[GPROC0_SEL],
265 (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
267 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
268 r_gdt.rd_base = (long) &gdt[myid * NGDT];
269 lgdt(&r_gdt); /* does magic intra-segment return */
271 /* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
272 wrmsr(MSR_FSBASE, 0); /* User value */
273 wrmsr(MSR_GSBASE, (u_int64_t)ps);
274 wrmsr(MSR_KGSBASE, 0); /* XXX User value while we're in the kernel */
276 lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
278 #if 0
279 lldt(_default_ldt);
280 mdcpu->gd_currentldt = _default_ldt;
281 #endif
283 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
284 gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
286 md = mdcpu; /* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
288 md->gd_common_tss.tss_rsp0 = 0; /* not used until after switch */
289 #if 0 /* JG XXX */
290 md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
291 #endif
292 md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
293 md->gd_common_tssd = *md->gd_tss_gdt;
295 /* double fault stack */
296 md->gd_common_tss.tss_ist1 =
297 (long)&md->mi.gd_prvspace->idlestack[
298 sizeof(md->mi.gd_prvspace->idlestack)];
300 ltr(gsel_tss);
303 * Set to a known state:
304 * Set by mpboot.s: CR0_PG, CR0_PE
305 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
307 cr0 = rcr0();
308 cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
309 load_cr0(cr0);
311 /* Set up the fast syscall stuff */
312 msr = rdmsr(MSR_EFER) | EFER_SCE;
313 wrmsr(MSR_EFER, msr);
314 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
315 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
316 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
317 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
318 wrmsr(MSR_STAR, msr);
319 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
321 pmap_set_opt(); /* PSE/4MB pages, etc */
322 pmap_init_pat(); /* Page Attribute Table */
324 /* set up CPU registers and state */
325 cpu_setregs();
327 /* set up SSE/NX registers */
328 initializecpu(myid);
330 /* set up FPU state on the AP */
331 npxinit();
333 /* disable the APIC, just to be SURE */
334 lapic->svr &= ~APIC_SVR_ENABLE;
337 /*******************************************************************
338 * local functions and data
342 * Start the SMP system
344 static void
345 mp_start_aps(void *dummy __unused)
347 if (lapic_enable) {
348 /* start each Application Processor */
349 start_all_aps(boot_address);
350 } else {
351 mp_bsp_simple_setup();
354 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
357 * start each AP in our list
359 static int
360 start_all_aps(u_int boot_addr)
362 vm_offset_t va = boot_address + KERNBASE;
363 u_int64_t *pt4, *pt3, *pt2;
364 int pssize;
365 int x, i;
366 int shift;
367 int smicount;
368 int smibest;
369 int smilast;
370 u_char mpbiosreason;
371 u_long mpbioswarmvec;
372 struct mdglobaldata *gd;
373 struct privatespace *ps;
374 size_t ipiq_size;
376 POSTCODE(START_ALL_APS_POST);
378 /* install the AP 1st level boot code */
379 pmap_kenter(va, boot_address);
380 cpu_invlpg((void *)va); /* JG XXX */
381 bcopy(mptramp_start, (void *)va, bootMP_size);
383 /* Locate the page tables, they'll be below the trampoline */
384 pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
385 pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
386 pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
388 /* Create the initial 1GB replicated page tables */
389 for (i = 0; i < 512; i++) {
390 /* Each slot of the level 4 pages points to the same level 3 page */
391 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
392 pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
393 kernel_pmap.pmap_bits[PG_RW_IDX] |
394 kernel_pmap.pmap_bits[PG_U_IDX];
396 /* Each slot of the level 3 pages points to the same level 2 page */
397 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
398 pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
399 kernel_pmap.pmap_bits[PG_RW_IDX] |
400 kernel_pmap.pmap_bits[PG_U_IDX];
402 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
403 pt2[i] = i * (2 * 1024 * 1024);
404 pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
405 kernel_pmap.pmap_bits[PG_RW_IDX] |
406 kernel_pmap.pmap_bits[PG_PS_IDX] |
407 kernel_pmap.pmap_bits[PG_U_IDX];
410 /* save the current value of the warm-start vector */
411 mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
412 outb(CMOS_REG, BIOS_RESET);
413 mpbiosreason = inb(CMOS_DATA);
415 /* setup a vector to our boot code */
416 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
417 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
418 outb(CMOS_REG, BIOS_RESET);
419 outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
422 * If we have a TSC we can figure out the SMI interrupt rate.
423 * The SMI does not necessarily use a constant rate. Spend
424 * up to 250ms trying to figure it out.
426 smibest = 0;
427 if (cpu_feature & CPUID_TSC) {
428 set_apic_timer(275000);
429 smilast = read_apic_timer();
430 for (x = 0; x < 20 && read_apic_timer(); ++x) {
431 smicount = smitest();
432 if (smibest == 0 || smilast - smicount < smibest)
433 smibest = smilast - smicount;
434 smilast = smicount;
436 if (smibest > 250000)
437 smibest = 0;
438 if (smibest) {
439 smibest = smibest * (int64_t)1000000 /
440 get_apic_timer_frequency();
443 if (smibest)
444 kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
445 1000000 / smibest, smibest);
447 /* start each AP */
448 for (x = 1; x <= naps; ++x) {
449 /* This is a bit verbose, it will go away soon. */
451 pssize = sizeof(struct privatespace);
452 ps = (void *)kmem_alloc(&kernel_map, pssize);
453 CPU_prvspace[x] = ps;
454 #if 0
455 kprintf("ps %d %p %d\n", x, ps, pssize);
456 #endif
457 bzero(ps, pssize);
458 gd = &ps->mdglobaldata;
459 gd->mi.gd_prvspace = ps;
461 /* prime data page for it to use */
462 mi_gdinit(&gd->mi, x);
463 cpu_gdinit(gd, x);
464 ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
465 gd->mi.gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
466 bzero(gd->mi.gd_ipiq, ipiq_size);
468 gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
470 /* setup a vector to our boot code */
471 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
472 *((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
473 outb(CMOS_REG, BIOS_RESET);
474 outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
477 * Setup the AP boot stack
479 bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
480 bootAP = x;
482 /* attempt to start the Application Processor */
483 CHECK_INIT(99); /* setup checkpoints */
484 if (!start_ap(gd, boot_addr, smibest)) {
485 kprintf("\nAP #%d (PHY# %d) failed!\n",
486 x, CPUID_TO_APICID(x));
487 CHECK_PRINT("trace"); /* show checkpoints */
488 /* better panic as the AP may be running loose */
489 kprintf("panic y/n? [y] ");
490 cnpoll(TRUE);
491 if (cngetc() != 'n')
492 panic("bye-bye");
493 cnpoll(FALSE);
495 CHECK_PRINT("trace"); /* show checkpoints */
498 /* set ncpus to 1 + highest logical cpu. Not all may have come up */
499 ncpus = x;
501 /* ncpus2 -- ncpus rounded down to the nearest power of 2 */
502 for (shift = 0; (1 << shift) <= ncpus; ++shift)
504 --shift;
505 ncpus2_shift = shift;
506 ncpus2 = 1 << shift;
507 ncpus2_mask = ncpus2 - 1;
509 /* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
510 if ((1 << shift) < ncpus)
511 ++shift;
512 ncpus_fit = 1 << shift;
513 ncpus_fit_mask = ncpus_fit - 1;
515 /* build our map of 'other' CPUs */
516 mycpu->gd_other_cpus = smp_startup_mask;
517 CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
519 gd = (struct mdglobaldata *)mycpu;
520 gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
522 ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
523 mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
524 bzero(mycpu->gd_ipiq, ipiq_size);
526 /* restore the warmstart vector */
527 *(u_long *) WARMBOOT_OFF = mpbioswarmvec;
528 outb(CMOS_REG, BIOS_RESET);
529 outb(CMOS_DATA, mpbiosreason);
532 * NOTE! The idlestack for the BSP was setup by locore. Finish
533 * up, clean out the P==V mapping we did earlier.
535 pmap_set_opt();
538 * Wait all APs to finish initializing LAPIC
540 if (bootverbose)
541 kprintf("SMP: Waiting APs LAPIC initialization\n");
542 if (cpu_feature & CPUID_TSC)
543 tsc0_offset = rdtsc();
544 tsc_offsets[0] = 0;
545 mp_finish_lapic = 1;
546 rel_mplock();
548 while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
549 cpu_pause();
550 cpu_lfence();
551 if (cpu_feature & CPUID_TSC)
552 tsc0_offset = rdtsc();
554 while (try_mplock() == 0) {
555 cpu_pause();
556 cpu_lfence();
559 /* number of APs actually started */
560 return ncpus - 1;
565 * load the 1st level AP boot code into base memory.
568 /* targets for relocation */
569 extern void bigJump(void);
570 extern void bootCodeSeg(void);
571 extern void bootDataSeg(void);
572 extern void MPentry(void);
573 extern u_int MP_GDT;
574 extern u_int mp_gdtbase;
576 #if 0
578 static void
579 install_ap_tramp(u_int boot_addr)
581 int x;
582 int size = *(int *) ((u_long) & bootMP_size);
583 u_char *src = (u_char *) ((u_long) bootMP);
584 u_char *dst = (u_char *) boot_addr + KERNBASE;
585 u_int boot_base = (u_int) bootMP;
586 u_int8_t *dst8;
587 u_int16_t *dst16;
588 u_int32_t *dst32;
590 POSTCODE(INSTALL_AP_TRAMP_POST);
592 for (x = 0; x < size; ++x)
593 *dst++ = *src++;
596 * modify addresses in code we just moved to basemem. unfortunately we
597 * need fairly detailed info about mpboot.s for this to work. changes
598 * to mpboot.s might require changes here.
601 /* boot code is located in KERNEL space */
602 dst = (u_char *) boot_addr + KERNBASE;
604 /* modify the lgdt arg */
605 dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
606 *dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
608 /* modify the ljmp target for MPentry() */
609 dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
610 *dst32 = ((u_int) MPentry - KERNBASE);
612 /* modify the target for boot code segment */
613 dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
614 dst8 = (u_int8_t *) (dst16 + 1);
615 *dst16 = (u_int) boot_addr & 0xffff;
616 *dst8 = ((u_int) boot_addr >> 16) & 0xff;
618 /* modify the target for boot data segment */
619 dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
620 dst8 = (u_int8_t *) (dst16 + 1);
621 *dst16 = (u_int) boot_addr & 0xffff;
622 *dst8 = ((u_int) boot_addr >> 16) & 0xff;
625 #endif
628 * This function starts the AP (application processor) identified
629 * by the APIC ID 'physicalCpu'. It does quite a "song and dance"
630 * to accomplish this. This is necessary because of the nuances
631 * of the different hardware we might encounter. It ain't pretty,
632 * but it seems to work.
634 * NOTE: eventually an AP gets to ap_init(), which is called just
635 * before the AP goes into the LWKT scheduler's idle loop.
637 static int
638 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
640 int physical_cpu;
641 int vector;
642 u_long icr_lo, icr_hi;
644 POSTCODE(START_AP_POST);
646 /* get the PHYSICAL APIC ID# */
647 physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
649 /* calculate the vector */
650 vector = (boot_addr >> 12) & 0xff;
652 /* We don't want anything interfering */
653 cpu_disable_intr();
655 /* Make sure the target cpu sees everything */
656 wbinvd();
659 * Try to detect when a SMI has occurred, wait up to 200ms.
661 * If a SMI occurs during an AP reset but before we issue
662 * the STARTUP command, the AP may brick. To work around
663 * this problem we hold off doing the AP startup until
664 * after we have detected the SMI. Hopefully another SMI
665 * will not occur before we finish the AP startup.
667 * Retries don't seem to help. SMIs have a window of opportunity
668 * and if USB->legacy keyboard emulation is enabled in the BIOS
669 * the interrupt rate can be quite high.
671 * NOTE: Don't worry about the L1 cache load, it might bloat
672 * ldelta a little but ndelta will be so huge when the SMI
673 * occurs the detection logic will still work fine.
675 if (smibest) {
676 set_apic_timer(200000);
677 smitest();
681 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
682 * and running the target CPU. OR this INIT IPI might be latched (P5
683 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
684 * ignored.
686 * see apic/apicreg.h for icr bit definitions.
688 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
692 * Setup the address for the target AP. We can setup
693 * icr_hi once and then just trigger operations with
694 * icr_lo.
696 icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
697 icr_hi |= (physical_cpu << 24);
698 icr_lo = lapic->icr_lo & 0xfff00000;
699 lapic->icr_hi = icr_hi;
702 * Do an INIT IPI: assert RESET
704 * Use edge triggered mode to assert INIT
706 lapic->icr_lo = icr_lo | 0x00004500;
707 while (lapic->icr_lo & APIC_DELSTAT_MASK)
708 /* spin */ ;
711 * The spec calls for a 10ms delay but we may have to use a
712 * MUCH lower delay to avoid bricking an AP due to a fast SMI
713 * interrupt. We have other loops here too and dividing by 2
714 * doesn't seem to be enough even after subtracting 350us,
715 * so we divide by 4.
717 * Our minimum delay is 150uS, maximum is 10ms. If no SMI
718 * interrupt was detected we use the full 10ms.
720 if (smibest == 0)
721 u_sleep(10000);
722 else if (smibest < 150 * 4 + 350)
723 u_sleep(150);
724 else if ((smibest - 350) / 4 < 10000)
725 u_sleep((smibest - 350) / 4);
726 else
727 u_sleep(10000);
730 * Do an INIT IPI: deassert RESET
732 * Use level triggered mode to deassert. It is unclear
733 * why we need to do this.
735 lapic->icr_lo = icr_lo | 0x00008500;
736 while (lapic->icr_lo & APIC_DELSTAT_MASK)
737 /* spin */ ;
738 u_sleep(150); /* wait 150us */
741 * Next we do a STARTUP IPI: the previous INIT IPI might still be
742 * latched, (P5 bug) this 1st STARTUP would then terminate
743 * immediately, and the previously started INIT IPI would continue. OR
744 * the previous INIT IPI has already run. and this STARTUP IPI will
745 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
746 * will run.
748 lapic->icr_lo = icr_lo | 0x00000600 | vector;
749 while (lapic->icr_lo & APIC_DELSTAT_MASK)
750 /* spin */ ;
751 u_sleep(200); /* wait ~200uS */
754 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
755 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
756 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
757 * recognized after hardware RESET or INIT IPI.
759 lapic->icr_lo = icr_lo | 0x00000600 | vector;
760 while (lapic->icr_lo & APIC_DELSTAT_MASK)
761 /* spin */ ;
763 /* Resume normal operation */
764 cpu_enable_intr();
766 /* wait for it to start, see ap_init() */
767 set_apic_timer(5000000);/* == 5 seconds */
768 while (read_apic_timer()) {
769 if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
770 return 1; /* return SUCCESS */
773 return 0; /* return FAILURE */
776 static
778 smitest(void)
780 int64_t ltsc;
781 int64_t ntsc;
782 int64_t ldelta;
783 int64_t ndelta;
784 int count;
786 ldelta = 0;
787 ndelta = 0;
788 while (read_apic_timer()) {
789 ltsc = rdtsc();
790 for (count = 0; count < 100; ++count)
791 ntsc = rdtsc(); /* force loop to occur */
792 if (ldelta) {
793 ndelta = ntsc - ltsc;
794 if (ldelta > ndelta)
795 ldelta = ndelta;
796 if (ndelta > ldelta * 2)
797 break;
798 } else {
799 ldelta = ntsc - ltsc;
802 return(read_apic_timer());
806 * Synchronously flush the TLB on all other CPU's. The current cpu's
807 * TLB is not flushed. If the caller wishes to flush the current cpu's
808 * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
810 * This routine may be called concurrently from multiple cpus. When this
811 * happens, smp_invltlb() can wind up sticking around in the confirmation
812 * while() loop at the end as additional cpus are added to the global
813 * cpumask, until they are acknowledged by another IPI.
815 * NOTE: If for some reason we were unable to start all cpus we cannot
816 * safely use broadcast IPIs.
819 cpumask_t smp_smurf_mask;
820 static cpumask_t smp_invltlb_mask;
821 #define LOOPRECOVER
822 #ifdef LOOPMASK_IN
823 cpumask_t smp_in_mask;
824 #endif
825 cpumask_t smp_invmask;
826 extern cpumask_t smp_idleinvl_mask;
827 extern cpumask_t smp_idleinvl_reqs;
830 * Atomically OR bits in *mask to smp_smurf_mask. Adjust *mask to remove
831 * bits that do not need to be IPId. These bits are still part of the command,
832 * but the target cpus have already been signalled and do not need to be
833 * sigalled again.
835 #include <sys/spinlock.h>
836 #include <sys/spinlock2.h>
838 static __noinline
839 void
840 smp_smurf_fetchset(cpumask_t *mask)
842 cpumask_t omask;
843 int i;
844 __uint64_t obits;
845 __uint64_t nbits;
847 i = 0;
848 while (i < CPUMASK_ELEMENTS) {
849 obits = smp_smurf_mask.ary[i];
850 cpu_ccfence();
851 nbits = obits | mask->ary[i];
852 if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
853 omask.ary[i] = obits;
854 ++i;
857 CPUMASK_NANDMASK(*mask, omask);
861 * This is a mechanism which guarantees that cpu_invltlb() will be executed
862 * on idle cpus without having to signal or wake them up. The invltlb will be
863 * executed when they wake up, prior to any scheduling or interrupt thread.
865 * (*mask) is modified to remove the cpus we successfully negotiate this
866 * function with. This function may only be used with semi-synchronous
867 * commands (typically invltlb's or semi-synchronous invalidations which
868 * are usually associated only with kernel memory).
870 void
871 smp_smurf_idleinvlclr(cpumask_t *mask)
873 if (optimized_invltlb) {
874 ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
875 /* cpu_lfence() not needed */
876 CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
881 * Issue cpu_invltlb() across all cpus except the current cpu.
883 * This function will arrange to avoid idle cpus, but still gurantee that
884 * invltlb is run on them when they wake up prior to any scheduling or
885 * nominal interrupt.
887 void
888 smp_invltlb(void)
890 struct mdglobaldata *md = mdcpu;
891 cpumask_t mask;
892 unsigned long rflags;
893 #ifdef LOOPRECOVER
894 uint64_t tsc_base = rdtsc();
895 int repeats = 0;
896 #endif
898 if (report_invltlb_src > 0) {
899 if (--report_invltlb_src <= 0)
900 print_backtrace(8);
904 * Disallow normal interrupts, set all active cpus except our own
905 * in the global smp_invltlb_mask.
907 ++md->mi.gd_cnt.v_smpinvltlb;
908 crit_enter_gd(&md->mi);
911 * Bits we want to set in smp_invltlb_mask. We do not want to signal
912 * our own cpu. Also try to remove bits associated with idle cpus
913 * that we can flag for auto-invltlb.
915 mask = smp_active_mask;
916 CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
917 smp_smurf_idleinvlclr(&mask);
919 rflags = read_rflags();
920 cpu_disable_intr();
921 ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
924 * IPI non-idle cpus represented by mask. The omask calculation
925 * removes cpus from the mask which already have a Xinvltlb IPI
926 * pending (avoid double-queueing the IPI).
928 * We must disable real interrupts when setting the smurf flags or
929 * we might race a XINVLTLB before we manage to send the ipi's for
930 * the bits we set.
932 * NOTE: We are not signalling ourselves, mask already does NOT
933 * include our own cpu.
935 smp_smurf_fetchset(&mask);
938 * Issue the IPI. Note that the XINVLTLB IPI runs regardless of
939 * the critical section count on the target cpus.
941 CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
942 if (all_but_self_ipi_enable &&
943 CPUMASK_CMPMASKEQ(smp_startup_mask, mask)) {
944 all_but_self_ipi(XINVLTLB_OFFSET);
945 } else {
946 CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
947 selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
951 * Wait for acknowledgement by all cpus. smp_inval_intr() will
952 * temporarily enable interrupts to avoid deadlocking the lapic,
953 * and will also handle running cpu_invltlb() and remote invlpg
954 * command son our cpu if some other cpu requests it of us.
956 * WARNING! I originally tried to implement this as a hard loop
957 * checking only smp_invltlb_mask (and issuing a local
958 * cpu_invltlb() if requested), with interrupts enabled
959 * and without calling smp_inval_intr(). This DID NOT WORK.
960 * It resulted in weird races where smurf bits would get
961 * cleared without any action being taken.
963 smp_inval_intr();
964 CPUMASK_ASSZERO(mask);
965 while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
966 smp_inval_intr();
967 cpu_pause();
968 #ifdef LOOPRECOVER
969 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
970 kprintf("smp_invltlb %d: waited too long %08jx "
971 "dbg=%08jx %08jx\n",
972 md->mi.gd_cpuid,
973 smp_invltlb_mask.ary[0],
974 smp_idleinvl_mask.ary[0],
975 smp_idleinvl_reqs.ary[0]);
976 mdcpu->gd_xinvaltlb = 0;
977 ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
978 smp_invltlb_mask);
979 smp_invlpg(&smp_active_mask);
980 tsc_base = rdtsc();
981 if (++repeats > 10) {
982 kprintf("smp_invltlb: giving up\n");
983 CPUMASK_ASSZERO(smp_invltlb_mask);
986 #endif
988 write_rflags(rflags);
989 crit_exit_gd(&md->mi);
993 * Called from a critical section with interrupts hard-disabled.
994 * This function issues an XINVLTLB IPI and then executes any pending
995 * command on the current cpu before returning.
997 void
998 smp_invlpg(cpumask_t *cmdmask)
1000 struct mdglobaldata *md = mdcpu;
1001 cpumask_t mask;
1003 if (report_invlpg_src > 0) {
1004 if (--report_invlpg_src <= 0)
1005 print_backtrace(8);
1009 * Disallow normal interrupts, set all active cpus in the pmap,
1010 * plus our own for completion processing (it might or might not
1011 * be part of the set).
1013 mask = smp_active_mask;
1014 CPUMASK_ANDMASK(mask, *cmdmask);
1015 CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1018 * Avoid double-queuing IPIs, which can deadlock us. We must disable
1019 * real interrupts when setting the smurf flags or we might race a
1020 * XINVLTLB before we manage to send the ipi's for the bits we set.
1022 * NOTE: We might be including our own cpu in the smurf mask.
1024 smp_smurf_fetchset(&mask);
1027 * Issue the IPI. Note that the XINVLTLB IPI runs regardless of
1028 * the critical section count on the target cpus.
1030 * We do not include our own cpu when issuing the IPI.
1032 if (all_but_self_ipi_enable &&
1033 CPUMASK_CMPMASKEQ(smp_startup_mask, mask)) {
1034 all_but_self_ipi(XINVLTLB_OFFSET);
1035 } else {
1036 CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1037 selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
1041 * This will synchronously wait for our command to complete,
1042 * as well as process commands from other cpus. It also handles
1043 * reentrancy.
1045 * (interrupts are disabled and we are in a critical section here)
1047 smp_inval_intr();
1050 void
1051 smp_sniff(void)
1053 globaldata_t gd = mycpu;
1054 int dummy;
1057 * Ignore all_but_self_ipi_enable here and just use it.
1059 all_but_self_ipi(XSNIFF_OFFSET);
1060 gd->gd_sample_pc = smp_sniff;
1061 gd->gd_sample_sp = &dummy;
1065 * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1066 * critical section. gd_intr_nesting_level may or may not be bumped
1067 * depending on entry.
1069 * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1070 * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1071 * IS IN A CRITICAL SECTION.
1073 void
1074 smp_inval_intr(void)
1076 struct mdglobaldata *md = mdcpu;
1077 cpumask_t cpumask;
1078 #ifdef LOOPRECOVER
1079 uint64_t tsc_base = rdtsc();
1080 #endif
1082 #if 0
1084 * The idle code is in a critical section, but that doesn't stop
1085 * Xinvltlb from executing, so deal with the race which can occur
1086 * in that situation. Otherwise r-m-w operations by pmap_inval_intr()
1087 * may have problems.
1089 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1090 ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1091 cpu_invltlb();
1092 cpu_mfence();
1094 #endif
1097 * This is a real mess. I'd like to just leave interrupts disabled
1098 * but it can cause the lapic to deadlock if too many interrupts queue
1099 * to it, due to the idiotic design of the lapic. So instead we have
1100 * to enter a critical section so normal interrupts are made pending
1101 * and track whether this one was reentered.
1103 if (md->gd_xinvaltlb) { /* reentrant on cpu */
1104 md->gd_xinvaltlb = 2;
1105 return;
1107 md->gd_xinvaltlb = 1;
1110 * Check only those cpus with active Xinvl* commands pending.
1112 * We are going to enable interrupts so make sure we are in a
1113 * critical section. This is necessary to avoid deadlocking
1114 * the lapic and to ensure that we execute our commands prior to
1115 * any nominal interrupt or preemption.
1117 * WARNING! It is very important that we only clear out but in
1118 * smp_smurf_mask once for each interrupt we take. In
1119 * this case, we clear it on initial entry and only loop
1120 * on the reentrancy detect (caused by another interrupt).
1122 cpumask = smp_invmask;
1123 loop:
1124 cpu_enable_intr();
1125 #ifdef LOOPMASK_IN
1126 ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1127 #endif
1128 ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1131 * Specific page request(s), and we can't return until all bits
1132 * are zero.
1134 for (;;) {
1135 int toolong;
1138 * Also execute any pending full invalidation request in
1139 * this loop.
1141 if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1142 ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1143 md->mi.gd_cpuid);
1144 cpu_invltlb();
1145 cpu_mfence();
1148 #ifdef LOOPRECOVER
1149 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1150 kprintf("smp_inval_intr %d inv=%08jx tlbm=%08jx "
1151 "idle=%08jx/%08jx\n",
1152 md->mi.gd_cpuid,
1153 smp_invmask.ary[0],
1154 smp_invltlb_mask.ary[0],
1155 smp_idleinvl_mask.ary[0],
1156 smp_idleinvl_reqs.ary[0]);
1157 tsc_base = rdtsc();
1158 toolong = 1;
1159 } else {
1160 toolong = 0;
1162 #else
1163 toolong = 0;
1164 #endif
1167 * We can only add bits to the cpumask to test during the
1168 * loop because the smp_invmask bit is cleared once the
1169 * originator completes the command (the targets may still
1170 * be cycling their own completions in this loop, afterwords).
1172 * lfence required prior to all tests as this Xinvltlb
1173 * interrupt could race the originator (already be in progress
1174 * wnen the originator decides to issue, due to an issue by
1175 * another cpu).
1177 cpu_lfence();
1178 CPUMASK_ORMASK(cpumask, smp_invmask);
1179 /*cpumask = smp_active_mask;*/ /* XXX */
1181 if (pmap_inval_intr(&cpumask, toolong) == 0) {
1183 * Clear our smurf mask to allow new IPIs, but deal
1184 * with potential races.
1186 break;
1190 * Test if someone sent us another invalidation IPI, break
1191 * out so we can take it to avoid deadlocking the lapic
1192 * interrupt queue (? stupid intel, amd).
1194 if (md->gd_xinvaltlb == 2)
1195 break;
1197 if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1198 break;
1203 * Full invalidation request
1205 if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1206 ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1207 md->mi.gd_cpuid);
1208 cpu_invltlb();
1209 cpu_mfence();
1212 #ifdef LOOPMASK_IN
1213 ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1214 #endif
1216 * Check to see if another Xinvltlb interrupt occurred and loop up
1217 * if it did.
1219 cpu_disable_intr();
1220 if (md->gd_xinvaltlb == 2) {
1221 md->gd_xinvaltlb = 1;
1222 goto loop;
1224 md->gd_xinvaltlb = 0;
1227 void
1228 cpu_wbinvd_on_all_cpus_callback(void *arg)
1230 wbinvd();
1234 * When called the executing CPU will send an IPI to all other CPUs
1235 * requesting that they halt execution.
1237 * Usually (but not necessarily) called with 'other_cpus' as its arg.
1239 * - Signals all CPUs in map to stop.
1240 * - Waits for each to stop.
1242 * Returns:
1243 * -1: error
1244 * 0: NA
1245 * 1: ok
1247 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1248 * from executing at same time.
1251 stop_cpus(cpumask_t map)
1253 cpumask_t mask;
1255 CPUMASK_ANDMASK(map, smp_active_mask);
1257 /* send the Xcpustop IPI to all CPUs in map */
1258 selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1260 do {
1261 mask = stopped_cpus;
1262 CPUMASK_ANDMASK(mask, map);
1263 /* spin */
1264 } while (CPUMASK_CMPMASKNEQ(mask, map));
1266 return 1;
1271 * Called by a CPU to restart stopped CPUs.
1273 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1275 * - Signals all CPUs in map to restart.
1276 * - Waits for each to restart.
1278 * Returns:
1279 * -1: error
1280 * 0: NA
1281 * 1: ok
1284 restart_cpus(cpumask_t map)
1286 cpumask_t mask;
1288 /* signal other cpus to restart */
1289 mask = map;
1290 CPUMASK_ANDMASK(mask, smp_active_mask);
1291 cpu_ccfence();
1292 started_cpus = mask;
1293 cpu_ccfence();
1295 /* wait for each to clear its bit */
1296 while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1297 cpu_pause();
1299 return 1;
1303 * This is called once the mpboot code has gotten us properly relocated
1304 * and the MMU turned on, etc. ap_init() is actually the idle thread,
1305 * and when it returns the scheduler will call the real cpu_idle() main
1306 * loop for the idlethread. Interrupts are disabled on entry and should
1307 * remain disabled at return.
1309 void
1310 ap_init(void)
1312 int cpu_id;
1315 * Adjust smp_startup_mask to signal the BSP that we have started
1316 * up successfully. Note that we do not yet hold the BGL. The BSP
1317 * is waiting for our signal.
1319 * We can't set our bit in smp_active_mask yet because we are holding
1320 * interrupts physically disabled and remote cpus could deadlock
1321 * trying to send us an IPI.
1323 ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1324 cpu_mfence();
1327 * Interlock for LAPIC initialization. Wait until mp_finish_lapic is
1328 * non-zero, then get the MP lock.
1330 * Note: We are in a critical section.
1332 * Note: we are the idle thread, we can only spin.
1334 * Note: The load fence is memory volatile and prevents the compiler
1335 * from improperly caching mp_finish_lapic, and the cpu from improperly
1336 * caching it.
1338 while (mp_finish_lapic == 0) {
1339 cpu_pause();
1340 cpu_lfence();
1342 #if 0
1343 while (try_mplock() == 0) {
1344 cpu_pause();
1345 cpu_lfence();
1347 #endif
1349 if (cpu_feature & CPUID_TSC) {
1351 * The BSP is constantly updating tsc0_offset, figure out
1352 * the relative difference to synchronize ktrdump.
1354 tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1357 /* BSP may have changed PTD while we're waiting for the lock */
1358 cpu_invltlb();
1360 /* Build our map of 'other' CPUs. */
1361 mycpu->gd_other_cpus = smp_startup_mask;
1362 ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1364 /* A quick check from sanity claus */
1365 cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1366 if (mycpu->gd_cpuid != cpu_id) {
1367 kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1368 kprintf("SMP: actual cpuid = %d lapicid %d\n",
1369 cpu_id, (lapic->id & 0xff000000) >> 24);
1370 #if 0 /* JGXXX */
1371 kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1372 #endif
1373 panic("cpuid mismatch! boom!!");
1376 /* Initialize AP's local APIC for irq's */
1377 lapic_init(FALSE);
1379 /* LAPIC initialization is done */
1380 ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1381 cpu_mfence();
1383 #if 0
1384 /* Let BSP move onto the next initialization stage */
1385 rel_mplock();
1386 #endif
1389 * Interlock for finalization. Wait until mp_finish is non-zero,
1390 * then get the MP lock.
1392 * Note: We are in a critical section.
1394 * Note: we are the idle thread, we can only spin.
1396 * Note: The load fence is memory volatile and prevents the compiler
1397 * from improperly caching mp_finish, and the cpu from improperly
1398 * caching it.
1400 while (mp_finish == 0) {
1401 cpu_pause();
1402 cpu_lfence();
1405 /* BSP may have changed PTD while we're waiting for the lock */
1406 cpu_invltlb();
1408 /* Set memory range attributes for this CPU to match the BSP */
1409 mem_range_AP_init();
1412 * Once we go active we must process any IPIQ messages that may
1413 * have been queued, because no actual IPI will occur until we
1414 * set our bit in the smp_active_mask. If we don't the IPI
1415 * message interlock could be left set which would also prevent
1416 * further IPIs.
1418 * The idle loop doesn't expect the BGL to be held and while
1419 * lwkt_switch() normally cleans things up this is a special case
1420 * because we returning almost directly into the idle loop.
1422 * The idle thread is never placed on the runq, make sure
1423 * nothing we've done put it there.
1427 * Hold a critical section and allow real interrupts to occur. Zero
1428 * any spurious interrupts which have accumulated, then set our
1429 * smp_active_mask indicating that we are fully operational.
1431 crit_enter();
1432 __asm __volatile("sti; pause; pause"::);
1433 bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1434 ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1437 * Wait until all cpus have set their smp_active_mask and have fully
1438 * operational interrupts before proceeding.
1440 * We need a final cpu_invltlb() because we would not have received
1441 * any until we set our bit in smp_active_mask.
1443 while (mp_finish == 1) {
1444 cpu_pause();
1445 cpu_lfence();
1447 cpu_invltlb();
1450 * Initialize per-cpu clocks and do other per-cpu initialization.
1451 * At this point code is expected to be able to use the full kernel
1452 * API.
1454 initclocks_pcpu(); /* clock interrupts (via IPIs) */
1457 * Since we may have cleaned up the interrupt triggers, manually
1458 * process any pending IPIs before exiting our critical section.
1459 * Once the critical section has exited, normal interrupt processing
1460 * may occur.
1462 atomic_swap_int(&mycpu->gd_npoll, 0);
1463 lwkt_process_ipiq();
1464 crit_exit();
1467 * Final final, allow the waiting BSP to resume the boot process,
1468 * return 'into' the idle thread bootstrap.
1470 ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1471 KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1475 * Get SMP fully working before we start initializing devices.
1477 static
1478 void
1479 ap_finish(void)
1481 if (bootverbose)
1482 kprintf("Finish MP startup\n");
1483 rel_mplock();
1486 * Wait for the active mask to complete, after which all cpus will
1487 * be accepting interrupts.
1489 mp_finish = 1;
1490 while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1491 cpu_pause();
1492 cpu_lfence();
1496 * Wait for the finalization mask to complete, after which all cpus
1497 * have completely finished initializing and are entering or are in
1498 * their idle thread.
1500 * BSP should have received all required invltlbs but do another
1501 * one just in case.
1503 cpu_invltlb();
1504 mp_finish = 2;
1505 while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1506 cpu_pause();
1507 cpu_lfence();
1510 while (try_mplock() == 0) {
1511 cpu_pause();
1512 cpu_lfence();
1515 if (bootverbose) {
1516 kprintf("Active CPU Mask: %016jx\n",
1517 (uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1521 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1523 void
1524 cpu_send_ipiq(int dcpu)
1526 if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1527 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1530 #if 0 /* single_apic_ipi_passive() not working yet */
1532 * Returns 0 on failure, 1 on success
1535 cpu_send_ipiq_passive(int dcpu)
1537 int r = 0;
1538 if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1539 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1540 APIC_DELMODE_FIXED);
1542 return(r);
1544 #endif
1546 static void
1547 mp_bsp_simple_setup(void)
1549 struct mdglobaldata *gd;
1550 size_t ipiq_size;
1552 /* build our map of 'other' CPUs */
1553 mycpu->gd_other_cpus = smp_startup_mask;
1554 CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1556 gd = (struct mdglobaldata *)mycpu;
1557 gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1559 ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1560 mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
1561 bzero(mycpu->gd_ipiq, ipiq_size);
1563 pmap_set_opt();
1565 if (cpu_feature & CPUID_TSC)
1566 tsc0_offset = rdtsc();
1571 * CPU TOPOLOGY DETECTION FUNCTIONS
1574 /* Detect intel topology using CPUID
1575 * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1577 static void
1578 detect_intel_topology(int count_htt_cores)
1580 int shift = 0;
1581 int ecx_index = 0;
1582 int core_plus_logical_bits = 0;
1583 int cores_per_package;
1584 int logical_per_package;
1585 int logical_per_core;
1586 unsigned int p[4];
1588 if (cpu_high >= 0xb) {
1589 goto FUNC_B;
1591 } else if (cpu_high >= 0x4) {
1592 goto FUNC_4;
1594 } else {
1595 core_bits = 0;
1596 for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1598 logical_CPU_bits = 1 << shift;
1599 return;
1602 FUNC_B:
1603 cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1605 /* if 0xb not supported - fallback to 0x4 */
1606 if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1607 goto FUNC_4;
1610 logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1612 ecx_index = FUNC_B_THREAD_LEVEL + 1;
1613 do {
1614 cpuid_count(0xb, ecx_index, p);
1616 /* Check for the Core type in the implemented sub leaves. */
1617 if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1618 core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1619 break;
1622 ecx_index++;
1624 } while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1626 core_bits = core_plus_logical_bits - logical_CPU_bits;
1628 return;
1630 FUNC_4:
1631 cpuid_count(0x4, 0, p);
1632 cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1634 logical_per_package = count_htt_cores;
1635 logical_per_core = logical_per_package / cores_per_package;
1637 for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1639 logical_CPU_bits = shift;
1641 for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1643 core_bits = shift;
1645 return;
1648 /* Detect AMD topology using CPUID
1649 * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1651 static void
1652 detect_amd_topology(int count_htt_cores)
1654 int shift = 0;
1655 if ((cpu_feature & CPUID_HTT)
1656 && (amd_feature2 & AMDID2_CMP)) {
1658 if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1659 core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE)
1660 >> AMDID_COREID_SIZE_SHIFT;
1661 } else {
1662 core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1663 for (shift = 0; (1 << shift) < core_bits; ++shift)
1665 core_bits = shift;
1668 logical_CPU_bits = count_htt_cores >> core_bits;
1669 for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1671 logical_CPU_bits = shift;
1672 } else {
1673 for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1675 core_bits = shift;
1676 logical_CPU_bits = 0;
1680 static void
1681 amd_get_compute_unit_id(void *arg)
1683 u_int regs[4];
1685 do_cpuid(0x8000001e, regs);
1686 cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1688 * AMD - CPUID Specification September 2010
1689 * page 34 - //ComputeUnitID = ebx[0:7]//
1691 mynode->compute_unit_id = regs[1] & 0xff;
1695 fix_amd_topology(void)
1697 cpumask_t mask;
1699 if (cpu_vendor_id != CPU_VENDOR_AMD)
1700 return -1;
1701 if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1702 return -1;
1704 CPUMASK_ASSALLONES(mask);
1705 lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1707 kprintf("Compute unit iDS:\n");
1708 int i;
1709 for (i = 0; i < ncpus; i++) {
1710 kprintf("%d-%d; \n",
1711 i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1714 return 0;
1717 /* Calculate
1718 * - logical_CPU_bits
1719 * - core_bits
1720 * With the values above (for AMD or INTEL) we are able to generally
1721 * detect the CPU topology (number of cores for each level):
1722 * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1723 * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1725 void
1726 detect_cpu_topology(void)
1728 static int topology_detected = 0;
1729 int count = 0;
1731 if (topology_detected)
1732 goto OUT;
1733 if ((cpu_feature & CPUID_HTT) == 0) {
1734 core_bits = 0;
1735 logical_CPU_bits = 0;
1736 goto OUT;
1738 count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
1740 if (cpu_vendor_id == CPU_VENDOR_INTEL)
1741 detect_intel_topology(count);
1742 else if (cpu_vendor_id == CPU_VENDOR_AMD)
1743 detect_amd_topology(count);
1744 topology_detected = 1;
1746 OUT:
1747 if (bootverbose)
1748 kprintf("Bits within APICID: logical_CPU_bits: %d; core_bits: %d\n",
1749 logical_CPU_bits, core_bits);
1752 /* Interface functions to calculate chip_ID,
1753 * core_number and logical_number
1754 * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1757 get_chip_ID(int cpuid)
1759 return get_apicid_from_cpuid(cpuid) >>
1760 (logical_CPU_bits + core_bits);
1764 get_core_number_within_chip(int cpuid)
1766 return (get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1767 ( (1 << core_bits) -1);
1771 get_logical_CPU_number_within_core(int cpuid)
1773 return get_apicid_from_cpuid(cpuid) &
1774 ( (1 << logical_CPU_bits) -1);