sched_setaffinity.2: Small markup fix.
[dragonfly.git] / sys / vfs / nfs / nfs_bio.c
blobdeb8d00943f5b9b6b5a9e9077f9cf5ac9eeeb0ab
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
33 * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/resourcevar.h>
40 #include <sys/signalvar.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/vnode.h>
44 #include <sys/mount.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_pager.h>
53 #include <vm/vnode_pager.h>
55 #include <sys/buf2.h>
56 #include <sys/thread2.h>
57 #include <vm/vm_page2.h>
59 #include "rpcv2.h"
60 #include "nfsproto.h"
61 #include "nfs.h"
62 #include "nfsmount.h"
63 #include "nfsnode.h"
64 #include "xdr_subs.h"
65 #include "nfsm_subs.h"
68 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
69 int size, struct thread *td);
70 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
71 static void nfsiodone_sync(struct bio *bio);
72 static void nfs_readrpc_bio_done(nfsm_info_t info);
73 static void nfs_writerpc_bio_done(nfsm_info_t info);
74 static void nfs_commitrpc_bio_done(nfsm_info_t info);
76 static __inline
77 void
78 nfs_knote(struct vnode *vp, int flags)
80 if (flags)
81 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
85 * Vnode op for read using bio
87 int
88 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
90 struct nfsnode *np = VTONFS(vp);
91 int biosize, i;
92 struct buf *bp, *rabp;
93 struct vattr vattr;
94 struct thread *td;
95 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
96 off_t lbn, rabn;
97 off_t raoffset;
98 off_t loffset;
99 int seqcount;
100 int nra, error = 0;
101 int boff = 0;
102 size_t n;
104 #ifdef DIAGNOSTIC
105 if (uio->uio_rw != UIO_READ)
106 panic("nfs_read mode");
107 #endif
108 if (uio->uio_resid == 0)
109 return (0);
110 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
111 return (EINVAL);
112 td = uio->uio_td;
114 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
115 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
116 (void)nfs_fsinfo(nmp, vp, td);
117 if (vp->v_type != VDIR &&
118 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
119 return (EFBIG);
120 biosize = vp->v_mount->mnt_stat.f_iosize;
121 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / MAXBSIZE);
124 * For nfs, cache consistency can only be maintained approximately.
125 * Although RFC1094 does not specify the criteria, the following is
126 * believed to be compatible with the reference port.
128 * NFS: If local changes have been made and this is a
129 * directory, the directory must be invalidated and
130 * the attribute cache must be cleared.
132 * GETATTR is called to synchronize the file size.
134 * If remote changes are detected local data is flushed
135 * and the cache is invalidated.
137 * NOTE: In the normal case the attribute cache is not
138 * cleared which means GETATTR may use cached data and
139 * not immediately detect changes made on the server.
141 if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
142 nfs_invaldir(vp);
143 error = nfs_vinvalbuf(vp, V_SAVE, 1);
144 if (error)
145 return (error);
146 np->n_attrstamp = 0;
148 error = VOP_GETATTR(vp, &vattr);
149 if (error)
150 return (error);
153 * This can deadlock getpages/putpages for regular
154 * files. Only do it for directories.
156 if (np->n_flag & NRMODIFIED) {
157 if (vp->v_type == VDIR) {
158 nfs_invaldir(vp);
159 error = nfs_vinvalbuf(vp, V_SAVE, 1);
160 if (error)
161 return (error);
162 np->n_flag &= ~NRMODIFIED;
167 * Loop until uio exhausted or we hit EOF
169 do {
170 bp = NULL;
172 switch (vp->v_type) {
173 case VREG:
174 nfsstats.biocache_reads++;
175 lbn = uio->uio_offset / biosize;
176 boff = uio->uio_offset & (biosize - 1);
177 loffset = lbn * biosize;
180 * Start the read ahead(s), as required.
182 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) {
183 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
184 (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
185 rabn = lbn + 1 + nra;
186 raoffset = rabn * biosize;
187 if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) {
188 rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
189 if (!rabp)
190 return (EINTR);
191 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
192 rabp->b_cmd = BUF_CMD_READ;
193 vfs_busy_pages(vp, rabp);
194 nfs_asyncio(vp, &rabp->b_bio2);
195 } else {
196 brelse(rabp);
203 * Obtain the buffer cache block. Figure out the buffer size
204 * when we are at EOF. If we are modifying the size of the
205 * buffer based on an EOF condition we need to hold
206 * nfs_rslock() through obtaining the buffer to prevent
207 * a potential writer-appender from messing with n_size.
208 * Otherwise we may accidently truncate the buffer and
209 * lose dirty data.
211 * Note that bcount is *not* DEV_BSIZE aligned.
213 if (loffset + boff >= np->n_size) {
214 n = 0;
215 break;
217 bp = nfs_getcacheblk(vp, loffset, biosize, td);
219 if (bp == NULL)
220 return (EINTR);
223 * If B_CACHE is not set, we must issue the read. If this
224 * fails, we return an error.
226 if ((bp->b_flags & B_CACHE) == 0) {
227 bp->b_cmd = BUF_CMD_READ;
228 bp->b_bio2.bio_done = nfsiodone_sync;
229 bp->b_bio2.bio_flags |= BIO_SYNC;
230 vfs_busy_pages(vp, bp);
231 error = nfs_doio(vp, &bp->b_bio2, td);
232 if (error) {
233 brelse(bp);
234 return (error);
239 * on is the offset into the current bp. Figure out how many
240 * bytes we can copy out of the bp. Note that bcount is
241 * NOT DEV_BSIZE aligned.
243 * Then figure out how many bytes we can copy into the uio.
245 n = biosize - boff;
246 if (n > uio->uio_resid)
247 n = uio->uio_resid;
248 if (loffset + boff + n > np->n_size)
249 n = np->n_size - loffset - boff;
250 break;
251 case VLNK:
252 biosize = min(NFS_MAXPATHLEN, np->n_size);
253 nfsstats.biocache_readlinks++;
254 bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
255 if (bp == NULL)
256 return (EINTR);
257 if ((bp->b_flags & B_CACHE) == 0) {
258 bp->b_cmd = BUF_CMD_READ;
259 bp->b_bio2.bio_done = nfsiodone_sync;
260 bp->b_bio2.bio_flags |= BIO_SYNC;
261 vfs_busy_pages(vp, bp);
262 error = nfs_doio(vp, &bp->b_bio2, td);
263 if (error) {
264 bp->b_flags |= B_ERROR | B_INVAL;
265 brelse(bp);
266 return (error);
269 n = szmin(uio->uio_resid, (size_t)bp->b_bcount - bp->b_resid);
270 boff = 0;
271 break;
272 case VDIR:
273 nfsstats.biocache_readdirs++;
274 if (np->n_direofoffset &&
275 uio->uio_offset >= np->n_direofoffset
277 return (0);
279 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
280 boff = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
281 loffset = uio->uio_offset - boff;
282 bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
283 if (bp == NULL)
284 return (EINTR);
286 if ((bp->b_flags & B_CACHE) == 0) {
287 bp->b_cmd = BUF_CMD_READ;
288 bp->b_bio2.bio_done = nfsiodone_sync;
289 bp->b_bio2.bio_flags |= BIO_SYNC;
290 vfs_busy_pages(vp, bp);
291 error = nfs_doio(vp, &bp->b_bio2, td);
292 if (error)
293 brelse(bp);
294 while (error == NFSERR_BAD_COOKIE) {
295 kprintf("got bad cookie vp %p bp %p\n", vp, bp);
296 nfs_invaldir(vp);
297 error = nfs_vinvalbuf(vp, 0, 1);
299 * Yuck! The directory has been modified on the
300 * server. The only way to get the block is by
301 * reading from the beginning to get all the
302 * offset cookies.
304 * Leave the last bp intact unless there is an error.
305 * Loop back up to the while if the error is another
306 * NFSERR_BAD_COOKIE (double yuch!).
308 for (i = 0; i <= lbn && !error; i++) {
309 if (np->n_direofoffset
310 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
311 return (0);
312 bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
313 NFS_DIRBLKSIZ, td);
314 if (!bp)
315 return (EINTR);
316 if ((bp->b_flags & B_CACHE) == 0) {
317 bp->b_cmd = BUF_CMD_READ;
318 bp->b_bio2.bio_done = nfsiodone_sync;
319 bp->b_bio2.bio_flags |= BIO_SYNC;
320 vfs_busy_pages(vp, bp);
321 error = nfs_doio(vp, &bp->b_bio2, td);
323 * no error + B_INVAL == directory EOF,
324 * use the block.
326 if (error == 0 && (bp->b_flags & B_INVAL))
327 break;
330 * An error will throw away the block and the
331 * for loop will break out. If no error and this
332 * is not the block we want, we throw away the
333 * block and go for the next one via the for loop.
335 if (error || i < lbn)
336 brelse(bp);
340 * The above while is repeated if we hit another cookie
341 * error. If we hit an error and it wasn't a cookie error,
342 * we give up.
344 if (error)
345 return (error);
349 * If not eof and read aheads are enabled, start one.
350 * (You need the current block first, so that you have the
351 * directory offset cookie of the next block.)
353 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) &&
354 (bp->b_flags & B_INVAL) == 0 &&
355 (np->n_direofoffset == 0 ||
356 loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
357 findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL
359 rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
360 NFS_DIRBLKSIZ, td);
361 if (rabp) {
362 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
363 rabp->b_cmd = BUF_CMD_READ;
364 vfs_busy_pages(vp, rabp);
365 nfs_asyncio(vp, &rabp->b_bio2);
366 } else {
367 brelse(rabp);
372 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
373 * chopped for the EOF condition, we cannot tell how large
374 * NFS directories are going to be until we hit EOF. So
375 * an NFS directory buffer is *not* chopped to its EOF. Now,
376 * it just so happens that b_resid will effectively chop it
377 * to EOF. *BUT* this information is lost if the buffer goes
378 * away and is reconstituted into a B_CACHE state ( due to
379 * being VMIO ) later. So we keep track of the directory eof
380 * in np->n_direofoffset and chop it off as an extra step
381 * right here.
383 * NOTE: boff could already be beyond EOF.
385 if ((size_t)boff > NFS_DIRBLKSIZ - bp->b_resid) {
386 n = 0;
387 } else {
388 n = szmin(uio->uio_resid,
389 NFS_DIRBLKSIZ - bp->b_resid - (size_t)boff);
391 if (np->n_direofoffset &&
392 n > (size_t)(np->n_direofoffset - uio->uio_offset)) {
393 n = (size_t)(np->n_direofoffset - uio->uio_offset);
395 break;
396 default:
397 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
398 n = 0;
399 break;
402 switch (vp->v_type) {
403 case VREG:
404 if (n > 0)
405 error = uiomovebp(bp, bp->b_data + boff, n, uio);
406 break;
407 case VLNK:
408 if (n > 0)
409 error = uiomovebp(bp, bp->b_data + boff, n, uio);
410 n = 0;
411 break;
412 case VDIR:
413 if (n > 0) {
414 off_t old_off = uio->uio_offset;
415 caddr_t cpos, epos;
416 struct nfs_dirent *dp;
419 * We are casting cpos to nfs_dirent, it must be
420 * int-aligned.
422 if (boff & 3) {
423 error = EINVAL;
424 break;
427 cpos = bp->b_data + boff;
428 epos = bp->b_data + boff + n;
429 while (cpos < epos && error == 0 && uio->uio_resid > 0) {
430 dp = (struct nfs_dirent *)cpos;
431 error = nfs_check_dirent(dp, (int)(epos - cpos));
432 if (error)
433 break;
434 if (vop_write_dirent(&error, uio, dp->nfs_ino,
435 dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
436 break;
438 cpos += dp->nfs_reclen;
440 n = 0;
441 if (error == 0) {
442 uio->uio_offset = old_off + cpos -
443 bp->b_data - boff;
446 break;
447 default:
448 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
450 if (bp)
451 brelse(bp);
452 } while (error == 0 && uio->uio_resid > 0 && n > 0);
453 return (error);
457 * Userland can supply any 'seek' offset when reading a NFS directory.
458 * Validate the structure so we don't panic the kernel. Note that
459 * the element name is nul terminated and the nul is not included
460 * in nfs_namlen.
462 static
464 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
466 int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
468 if (nfs_name_off >= maxlen)
469 return (EINVAL);
470 if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
471 return (EINVAL);
472 if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
473 return (EINVAL);
474 if (dp->nfs_reclen & 3)
475 return (EINVAL);
476 return (0);
480 * Vnode op for write using bio
482 * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
483 * struct ucred *a_cred)
486 nfs_write(struct vop_write_args *ap)
488 struct uio *uio = ap->a_uio;
489 struct thread *td = uio->uio_td;
490 struct vnode *vp = ap->a_vp;
491 struct nfsnode *np = VTONFS(vp);
492 int ioflag = ap->a_ioflag;
493 struct buf *bp;
494 struct vattr vattr;
495 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
496 off_t loffset;
497 int boff, bytes;
498 int error = 0;
499 int haverslock = 0;
500 int bcount;
501 int biosize;
502 int trivial;
503 int kflags = 0;
505 #ifdef DIAGNOSTIC
506 if (uio->uio_rw != UIO_WRITE)
507 panic("nfs_write mode");
508 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
509 panic("nfs_write proc");
510 #endif
511 if (vp->v_type != VREG)
512 return (EIO);
514 lwkt_gettoken(&nmp->nm_token);
516 if (np->n_flag & NWRITEERR) {
517 np->n_flag &= ~NWRITEERR;
518 lwkt_reltoken(&nmp->nm_token);
519 return (np->n_error);
521 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
522 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
523 (void)nfs_fsinfo(nmp, vp, td);
527 * Synchronously flush pending buffers if we are in synchronous
528 * mode or if we are appending.
530 if (ioflag & (IO_APPEND | IO_SYNC)) {
531 if (np->n_flag & NLMODIFIED) {
532 np->n_attrstamp = 0;
533 error = nfs_flush(vp, MNT_WAIT, td, 0);
534 /* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
535 if (error)
536 goto done;
541 * If IO_APPEND then load uio_offset. We restart here if we cannot
542 * get the append lock.
544 restart:
545 if (ioflag & IO_APPEND) {
546 np->n_attrstamp = 0;
547 error = VOP_GETATTR(vp, &vattr);
548 if (error)
549 goto done;
550 uio->uio_offset = np->n_size;
553 if (uio->uio_offset < 0) {
554 error = EINVAL;
555 goto done;
557 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) {
558 error = EFBIG;
559 goto done;
561 if (uio->uio_resid == 0) {
562 error = 0;
563 goto done;
567 * We need to obtain the rslock if we intend to modify np->n_size
568 * in order to guarentee the append point with multiple contending
569 * writers, to guarentee that no other appenders modify n_size
570 * while we are trying to obtain a truncated buffer (i.e. to avoid
571 * accidently truncating data written by another appender due to
572 * the race), and to ensure that the buffer is populated prior to
573 * our extending of the file. We hold rslock through the entire
574 * operation.
576 * Note that we do not synchronize the case where someone truncates
577 * the file while we are appending to it because attempting to lock
578 * this case may deadlock other parts of the system unexpectedly.
580 if ((ioflag & IO_APPEND) ||
581 uio->uio_offset + uio->uio_resid > np->n_size) {
582 switch(nfs_rslock(np)) {
583 case ENOLCK:
584 goto restart;
585 /* not reached */
586 case EINTR:
587 case ERESTART:
588 error = EINTR;
589 goto done;
590 /* not reached */
591 default:
592 break;
594 haverslock = 1;
598 * Maybe this should be above the vnode op call, but so long as
599 * file servers have no limits, i don't think it matters
601 if (td && td->td_proc && uio->uio_offset + uio->uio_resid >
602 td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
603 lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
604 if (haverslock)
605 nfs_rsunlock(np);
606 error = EFBIG;
607 goto done;
610 biosize = vp->v_mount->mnt_stat.f_iosize;
612 do {
613 nfsstats.biocache_writes++;
614 boff = uio->uio_offset & (biosize-1);
615 loffset = uio->uio_offset - boff;
616 bytes = (int)szmin((unsigned)(biosize - boff), uio->uio_resid);
617 again:
619 * Handle direct append and file extension cases, calculate
620 * unaligned buffer size. When extending B_CACHE will be
621 * set if possible. See UIO_NOCOPY note below.
623 if (uio->uio_offset + bytes > np->n_size) {
624 np->n_flag |= NLMODIFIED;
625 trivial = (uio->uio_segflg != UIO_NOCOPY &&
626 uio->uio_offset <= np->n_size);
627 nfs_meta_setsize(vp, td, uio->uio_offset + bytes,
628 trivial);
629 kflags |= NOTE_EXTEND;
631 bp = nfs_getcacheblk(vp, loffset, biosize, td);
632 if (bp == NULL) {
633 error = EINTR;
634 break;
638 * Actual bytes in buffer which we care about
640 if (loffset + biosize < np->n_size)
641 bcount = biosize;
642 else
643 bcount = (int)(np->n_size - loffset);
646 * Avoid a read by setting B_CACHE where the data we
647 * intend to write covers the entire buffer. Note
648 * that the buffer may have been set to B_CACHE by
649 * nfs_meta_setsize() above or otherwise inherited the
650 * flag, but if B_CACHE isn't set the buffer may be
651 * uninitialized and must be zero'd to accomodate
652 * future seek+write's.
654 * See the comments in kern/vfs_bio.c's getblk() for
655 * more information.
657 * When doing a UIO_NOCOPY write the buffer is not
658 * overwritten and we cannot just set B_CACHE unconditionally
659 * for full-block writes.
661 if (boff == 0 && bytes == biosize &&
662 uio->uio_segflg != UIO_NOCOPY) {
663 bp->b_flags |= B_CACHE;
664 bp->b_flags &= ~(B_ERROR | B_INVAL);
668 * b_resid may be set due to file EOF if we extended out.
669 * The NFS bio code will zero the difference anyway so
670 * just acknowledged the fact and set b_resid to 0.
672 if ((bp->b_flags & B_CACHE) == 0) {
673 bp->b_cmd = BUF_CMD_READ;
674 bp->b_bio2.bio_done = nfsiodone_sync;
675 bp->b_bio2.bio_flags |= BIO_SYNC;
676 vfs_busy_pages(vp, bp);
677 error = nfs_doio(vp, &bp->b_bio2, td);
678 if (error) {
679 brelse(bp);
680 break;
682 bp->b_resid = 0;
684 np->n_flag |= NLMODIFIED;
685 kflags |= NOTE_WRITE;
688 * If dirtyend exceeds file size, chop it down. This should
689 * not normally occur but there is an append race where it
690 * might occur XXX, so we log it.
692 * If the chopping creates a reverse-indexed or degenerate
693 * situation with dirtyoff/end, we 0 both of them.
695 if (bp->b_dirtyend > bcount) {
696 kprintf("NFS append race @%08llx:%d\n",
697 (long long)bp->b_bio2.bio_offset,
698 bp->b_dirtyend - bcount);
699 bp->b_dirtyend = bcount;
702 if (bp->b_dirtyoff >= bp->b_dirtyend)
703 bp->b_dirtyoff = bp->b_dirtyend = 0;
706 * If the new write will leave a contiguous dirty
707 * area, just update the b_dirtyoff and b_dirtyend,
708 * otherwise force a write rpc of the old dirty area.
710 * While it is possible to merge discontiguous writes due to
711 * our having a B_CACHE buffer ( and thus valid read data
712 * for the hole), we don't because it could lead to
713 * significant cache coherency problems with multiple clients,
714 * especially if locking is implemented later on.
716 * as an optimization we could theoretically maintain
717 * a linked list of discontinuous areas, but we would still
718 * have to commit them separately so there isn't much
719 * advantage to it except perhaps a bit of asynchronization.
721 if (bp->b_dirtyend > 0 &&
722 (boff > bp->b_dirtyend ||
723 (boff + bytes) < bp->b_dirtyoff)
725 if (bwrite(bp) == EINTR) {
726 error = EINTR;
727 break;
729 goto again;
732 error = uiomovebp(bp, bp->b_data + boff, bytes, uio);
735 * Since this block is being modified, it must be written
736 * again and not just committed. Since write clustering does
737 * not work for the stage 1 data write, only the stage 2
738 * commit rpc, we have to clear B_CLUSTEROK as well.
740 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
742 if (error) {
743 brelse(bp);
744 break;
748 * Only update dirtyoff/dirtyend if not a degenerate
749 * condition.
751 * The underlying VM pages have been marked valid by
752 * virtue of acquiring the bp. Because the entire buffer
753 * is marked dirty we do not have to worry about cleaning
754 * out the related dirty bits (and wouldn't really know
755 * how to deal with byte ranges anyway)
757 if (bytes) {
758 if (bp->b_dirtyend > 0) {
759 bp->b_dirtyoff = imin(boff, bp->b_dirtyoff);
760 bp->b_dirtyend = imax(boff + bytes,
761 bp->b_dirtyend);
762 } else {
763 bp->b_dirtyoff = boff;
764 bp->b_dirtyend = boff + bytes;
769 * If the lease is non-cachable or IO_SYNC do bwrite().
771 * IO_INVAL appears to be unused. The idea appears to be
772 * to turn off caching in this case. Very odd. XXX
774 * If nfs_async is set bawrite() will use an unstable write
775 * (build dirty bufs on the server), so we might as well
776 * push it out with bawrite(). If nfs_async is not set we
777 * use bdwrite() to cache dirty bufs on the client.
779 if (ioflag & IO_SYNC) {
780 if (ioflag & IO_INVAL)
781 bp->b_flags |= B_NOCACHE;
782 error = bwrite(bp);
783 if (error)
784 break;
785 } else if (boff + bytes == biosize && nfs_async) {
786 bawrite(bp);
787 } else {
788 bdwrite(bp);
790 } while (uio->uio_resid > 0 && bytes > 0);
792 if (haverslock)
793 nfs_rsunlock(np);
795 done:
796 nfs_knote(vp, kflags);
797 lwkt_reltoken(&nmp->nm_token);
798 return (error);
802 * Get an nfs cache block.
804 * Allocate a new one if the block isn't currently in the cache
805 * and return the block marked busy. If the calling process is
806 * interrupted by a signal for an interruptible mount point, return
807 * NULL.
809 * The caller must carefully deal with the possible B_INVAL state of
810 * the buffer. nfs_startio() clears B_INVAL (and nfs_asyncio() clears it
811 * indirectly), so synchronous reads can be issued without worrying about
812 * the B_INVAL state. We have to be a little more careful when dealing
813 * with writes (see comments in nfs_write()) when extending a file past
814 * its EOF.
816 static struct buf *
817 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
819 struct buf *bp;
820 struct mount *mp;
821 struct nfsmount *nmp;
823 mp = vp->v_mount;
824 nmp = VFSTONFS(mp);
826 if (nmp->nm_flag & NFSMNT_INT) {
827 bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
828 while (bp == NULL) {
829 if (nfs_sigintr(nmp, NULL, td))
830 return (NULL);
831 bp = getblk(vp, loffset, size, 0, 2 * hz);
833 } else {
834 bp = getblk(vp, loffset, size, 0, 0);
838 * bio2, the 'device' layer. Since BIOs use 64 bit byte offsets
839 * now, no translation is necessary.
841 bp->b_bio2.bio_offset = loffset;
842 return (bp);
846 * Flush and invalidate all dirty buffers. If another process is already
847 * doing the flush, just wait for completion.
850 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
852 struct nfsnode *np = VTONFS(vp);
853 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
854 int error = 0, slpflag, slptimeo;
855 thread_t td = curthread;
857 if (vp->v_flag & VRECLAIMED)
858 return (0);
860 if ((nmp->nm_flag & NFSMNT_INT) == 0)
861 intrflg = 0;
862 if (intrflg) {
863 slpflag = PCATCH;
864 slptimeo = 2 * hz;
865 } else {
866 slpflag = 0;
867 slptimeo = 0;
870 * First wait for any other process doing a flush to complete.
872 while (np->n_flag & NFLUSHINPROG) {
873 np->n_flag |= NFLUSHWANT;
874 error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
875 if (error && intrflg && nfs_sigintr(nmp, NULL, td))
876 return (EINTR);
880 * Now, flush as required.
882 np->n_flag |= NFLUSHINPROG;
883 error = vinvalbuf(vp, flags, slpflag, 0);
884 while (error) {
885 if (intrflg && nfs_sigintr(nmp, NULL, td)) {
886 np->n_flag &= ~NFLUSHINPROG;
887 if (np->n_flag & NFLUSHWANT) {
888 np->n_flag &= ~NFLUSHWANT;
889 wakeup((caddr_t)&np->n_flag);
891 return (EINTR);
893 error = vinvalbuf(vp, flags, 0, slptimeo);
895 np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
896 if (np->n_flag & NFLUSHWANT) {
897 np->n_flag &= ~NFLUSHWANT;
898 wakeup((caddr_t)&np->n_flag);
900 return (0);
904 * Return true (non-zero) if the txthread and rxthread are operational
905 * and we do not already have too many not-yet-started BIO's built up.
908 nfs_asyncok(struct nfsmount *nmp)
910 return (nmp->nm_bioqlen < nfs_maxasyncbio &&
911 nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE &&
912 nmp->nm_rxstate <= NFSSVC_PENDING &&
913 nmp->nm_txstate <= NFSSVC_PENDING);
917 * The read-ahead code calls this to queue a bio to the txthread.
919 * We don't touch the bio otherwise... that is, we do not even
920 * construct or send the initial rpc. The txthread will do it
921 * for us.
923 * NOTE! nm_bioqlen is not decremented until the request completes,
924 * so it does not reflect the number of bio's on bioq.
926 void
927 nfs_asyncio(struct vnode *vp, struct bio *bio)
929 struct buf *bp = bio->bio_buf;
930 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
932 KKASSERT(vp->v_tag == VT_NFS);
933 BUF_KERNPROC(bp);
936 * Shortcut swap cache (not done automatically because we are not
937 * using bread()).
939 if (vn_cache_strategy(vp, bio))
940 return;
942 bio->bio_driver_info = vp;
943 crit_enter();
944 TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
945 atomic_add_int(&nmp->nm_bioqlen, 1);
946 crit_exit();
947 nfssvc_iod_writer_wakeup(nmp);
951 * nfs_doio() - Execute a BIO operation synchronously. The BIO will be
952 * completed and its error returned. The caller is responsible
953 * for brelse()ing it. ONLY USE FOR BIO_SYNC IOs! Otherwise
954 * our error probe will be against an invalid pointer.
956 * nfs_startio()- Execute a BIO operation assynchronously.
958 * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation,
959 * which basically just queues it to the txthread. nfs_startio()
960 * actually initiates the I/O AFTER it has gotten to the txthread.
962 * NOTE: td might be NULL.
964 * NOTE: Caller has already busied the I/O.
966 void
967 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td)
969 struct buf *bp = bio->bio_buf;
971 KKASSERT(vp->v_tag == VT_NFS);
974 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We
975 * do this here so we do not have to do it in all the code that
976 * calls us.
978 bp->b_flags &= ~(B_ERROR | B_INVAL);
980 KASSERT(bp->b_cmd != BUF_CMD_DONE,
981 ("nfs_doio: bp %p already marked done!", bp));
983 if (bp->b_cmd == BUF_CMD_READ) {
984 switch (vp->v_type) {
985 case VREG:
986 nfsstats.read_bios++;
987 nfs_readrpc_bio(vp, bio);
988 break;
989 case VLNK:
990 #if 0
991 bio->bio_offset = 0;
992 nfsstats.readlink_bios++;
993 nfs_readlinkrpc_bio(vp, bio);
994 #else
995 nfs_doio(vp, bio, td);
996 #endif
997 break;
998 case VDIR:
1000 * NOTE: If nfs_readdirplusrpc_bio() is requested but
1001 * not supported, it will chain to
1002 * nfs_readdirrpc_bio().
1004 #if 0
1005 nfsstats.readdir_bios++;
1006 uiop->uio_offset = bio->bio_offset;
1007 if (nmp->nm_flag & NFSMNT_RDIRPLUS)
1008 nfs_readdirplusrpc_bio(vp, bio);
1009 else
1010 nfs_readdirrpc_bio(vp, bio);
1011 #else
1012 nfs_doio(vp, bio, td);
1013 #endif
1014 break;
1015 default:
1016 kprintf("nfs_doio: type %x unexpected\n",vp->v_type);
1017 bp->b_flags |= B_ERROR;
1018 bp->b_error = EINVAL;
1019 biodone(bio);
1020 break;
1022 } else {
1024 * If we only need to commit, try to commit. If this fails
1025 * it will chain through to the write. Basically all the logic
1026 * in nfs_doio() is replicated.
1028 KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1029 if (bp->b_flags & B_NEEDCOMMIT)
1030 nfs_commitrpc_bio(vp, bio);
1031 else
1032 nfs_writerpc_bio(vp, bio);
1037 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1039 struct buf *bp = bio->bio_buf;
1040 struct uio *uiop;
1041 struct nfsnode *np;
1042 struct nfsmount *nmp;
1043 int error = 0;
1044 int iomode, must_commit;
1045 size_t n;
1046 struct uio uio;
1047 struct iovec io;
1049 #if 0
1051 * Shortcut swap cache (not done automatically because we are not
1052 * using bread()).
1054 * XXX The biowait is a hack until we can figure out how to stop a
1055 * biodone chain when a middle element is BIO_SYNC. BIO_SYNC is
1056 * set so the bp shouldn't get ripped out from under us. The only
1057 * use-cases are fully synchronous I/O cases.
1059 * XXX This is having problems, give up for now.
1061 if (vn_cache_strategy(vp, bio)) {
1062 error = biowait(&bio->bio_buf->b_bio1, "nfsrsw");
1063 return (error);
1065 #endif
1067 KKASSERT(vp->v_tag == VT_NFS);
1068 np = VTONFS(vp);
1069 nmp = VFSTONFS(vp->v_mount);
1070 uiop = &uio;
1071 uiop->uio_iov = &io;
1072 uiop->uio_iovcnt = 1;
1073 uiop->uio_segflg = UIO_SYSSPACE;
1074 uiop->uio_td = td;
1077 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We
1078 * do this here so we do not have to do it in all the code that
1079 * calls us.
1081 bp->b_flags &= ~(B_ERROR | B_INVAL);
1083 KASSERT(bp->b_cmd != BUF_CMD_DONE,
1084 ("nfs_doio: bp %p already marked done!", bp));
1086 if (bp->b_cmd == BUF_CMD_READ) {
1087 io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount;
1088 io.iov_base = bp->b_data;
1089 uiop->uio_rw = UIO_READ;
1091 switch (vp->v_type) {
1092 case VREG:
1094 * When reading from a regular file zero-fill any residual.
1095 * Note that this residual has nothing to do with NFS short
1096 * reads, which nfs_readrpc_uio() will handle for us.
1098 * We have to do this because when we are write extending
1099 * a file the server may not have the same notion of
1100 * filesize as we do. Our BIOs should already be sized
1101 * (b_bcount) to account for the file EOF.
1103 nfsstats.read_bios++;
1104 uiop->uio_offset = bio->bio_offset;
1105 error = nfs_readrpc_uio(vp, uiop);
1106 if (error == 0 && uiop->uio_resid) {
1107 n = (size_t)bp->b_bcount - uiop->uio_resid;
1108 bzero(bp->b_data + n, bp->b_bcount - n);
1109 uiop->uio_resid = 0;
1111 if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1112 np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1113 uprintf("Process killed due to text file modification\n");
1114 ksignal(td->td_proc, SIGKILL);
1116 break;
1117 case VLNK:
1118 uiop->uio_offset = 0;
1119 nfsstats.readlink_bios++;
1120 error = nfs_readlinkrpc_uio(vp, uiop);
1121 break;
1122 case VDIR:
1123 nfsstats.readdir_bios++;
1124 uiop->uio_offset = bio->bio_offset;
1125 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1126 error = nfs_readdirplusrpc_uio(vp, uiop);
1127 if (error == NFSERR_NOTSUPP)
1128 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1130 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1131 error = nfs_readdirrpc_uio(vp, uiop);
1133 * end-of-directory sets B_INVAL but does not generate an
1134 * error.
1136 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1137 bp->b_flags |= B_INVAL;
1138 break;
1139 default:
1140 kprintf("nfs_doio: type %x unexpected\n",vp->v_type);
1141 break;
1143 if (error) {
1144 bp->b_flags |= B_ERROR;
1145 bp->b_error = error;
1147 bp->b_resid = uiop->uio_resid;
1148 } else {
1150 * If we only need to commit, try to commit.
1152 * NOTE: The I/O has already been staged for the write and
1153 * its pages busied, so b_dirtyoff/end is valid.
1155 KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1156 if (bp->b_flags & B_NEEDCOMMIT) {
1157 int retv;
1158 off_t off;
1160 off = bio->bio_offset + bp->b_dirtyoff;
1161 retv = nfs_commitrpc_uio(vp, off,
1162 bp->b_dirtyend - bp->b_dirtyoff,
1163 td);
1164 if (retv == 0) {
1165 bp->b_dirtyoff = bp->b_dirtyend = 0;
1166 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1167 bp->b_resid = 0;
1168 biodone(bio);
1169 return(0);
1171 if (retv == NFSERR_STALEWRITEVERF) {
1172 nfs_clearcommit(vp->v_mount);
1177 * Setup for actual write
1179 if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1180 bp->b_dirtyend = np->n_size - bio->bio_offset;
1182 if (bp->b_dirtyend > bp->b_dirtyoff) {
1183 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1184 - bp->b_dirtyoff;
1185 uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1186 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1187 uiop->uio_rw = UIO_WRITE;
1188 nfsstats.write_bios++;
1190 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1191 iomode = NFSV3WRITE_UNSTABLE;
1192 else
1193 iomode = NFSV3WRITE_FILESYNC;
1195 must_commit = 0;
1196 error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit);
1199 * We no longer try to use kern/vfs_bio's cluster code to
1200 * cluster commits, so B_CLUSTEROK is no longer set with
1201 * B_NEEDCOMMIT. The problem is that a vfs_busy_pages()
1202 * may have to clear B_NEEDCOMMIT if it finds underlying
1203 * pages have been redirtied through a memory mapping
1204 * and doing this on a clustered bp will probably cause
1205 * a panic, plus the flag in the underlying NFS bufs
1206 * making up the cluster bp will not be properly cleared.
1208 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1209 bp->b_flags |= B_NEEDCOMMIT;
1210 #if 0
1211 /* XXX do not enable commit clustering */
1212 if (bp->b_dirtyoff == 0
1213 && bp->b_dirtyend == bp->b_bcount)
1214 bp->b_flags |= B_CLUSTEROK;
1215 #endif
1216 } else {
1217 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1221 * For an interrupted write, the buffer is still valid
1222 * and the write hasn't been pushed to the server yet,
1223 * so we can't set B_ERROR and report the interruption
1224 * by setting B_EINTR. For the async case, B_EINTR
1225 * is not relevant, so the rpc attempt is essentially
1226 * a noop. For the case of a V3 write rpc not being
1227 * committed to stable storage, the block is still
1228 * dirty and requires either a commit rpc or another
1229 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1230 * the block is reused. This is indicated by setting
1231 * the B_DELWRI and B_NEEDCOMMIT flags.
1233 * If the buffer is marked B_PAGING, it does not reside on
1234 * the vp's paging queues so we cannot call bdirty(). The
1235 * bp in this case is not an NFS cache block so we should
1236 * be safe. XXX
1238 if (error == EINTR
1239 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1240 crit_enter();
1241 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1242 if ((bp->b_flags & B_PAGING) == 0)
1243 bdirty(bp);
1244 if (error)
1245 bp->b_flags |= B_EINTR;
1246 crit_exit();
1247 } else {
1248 if (error) {
1249 bp->b_flags |= B_ERROR;
1250 bp->b_error = np->n_error = error;
1251 np->n_flag |= NWRITEERR;
1253 bp->b_dirtyoff = bp->b_dirtyend = 0;
1255 if (must_commit)
1256 nfs_clearcommit(vp->v_mount);
1257 bp->b_resid = uiop->uio_resid;
1258 } else {
1259 bp->b_resid = 0;
1264 * I/O was run synchronously, biodone() it and calculate the
1265 * error to return.
1267 biodone(bio);
1268 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
1269 if (bp->b_flags & B_EINTR)
1270 return (EINTR);
1271 if (bp->b_flags & B_ERROR)
1272 return (bp->b_error ? bp->b_error : EIO);
1273 return (0);
1277 * Handle all truncation, write-extend, and ftruncate()-extend operations
1278 * on the NFS lcient side.
1280 * We use the new API in kern/vfs_vm.c to perform these operations in a
1281 * VM-friendly way. With this API VM pages are properly zerod and pages
1282 * still mapped into the buffer straddling EOF are not invalidated.
1285 nfs_meta_setsize(struct vnode *vp, struct thread *td, off_t nsize, int trivial)
1287 struct nfsnode *np = VTONFS(vp);
1288 off_t osize;
1289 int biosize = vp->v_mount->mnt_stat.f_iosize;
1290 int error;
1292 osize = np->n_size;
1293 np->n_size = nsize;
1295 if (nsize < osize) {
1296 error = nvtruncbuf(vp, nsize, biosize, -1, 0);
1297 } else {
1298 error = nvextendbuf(vp, osize, nsize,
1299 biosize, biosize, -1, -1,
1300 trivial);
1302 return(error);
1306 * Synchronous completion for nfs_doio. Call bpdone() with elseit=FALSE.
1307 * Caller is responsible for brelse()'ing the bp.
1309 static void
1310 nfsiodone_sync(struct bio *bio)
1312 bio->bio_flags = 0;
1313 bpdone(bio->bio_buf, 0);
1317 * nfs read rpc - BIO version
1319 void
1320 nfs_readrpc_bio(struct vnode *vp, struct bio *bio)
1322 struct buf *bp = bio->bio_buf;
1323 u_int32_t *tl;
1324 struct nfsmount *nmp;
1325 int error = 0, len, tsiz;
1326 struct nfsm_info *info;
1328 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1329 info->mrep = NULL;
1330 info->v3 = NFS_ISV3(vp);
1332 nmp = VFSTONFS(vp->v_mount);
1333 tsiz = bp->b_bcount;
1334 KKASSERT(tsiz <= nmp->nm_rsize);
1335 if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) {
1336 error = EFBIG;
1337 goto nfsmout;
1339 nfsstats.rpccnt[NFSPROC_READ]++;
1340 len = tsiz;
1341 nfsm_reqhead(info, vp, NFSPROC_READ,
1342 NFSX_FH(info->v3) + NFSX_UNSIGNED * 3);
1343 ERROROUT(nfsm_fhtom(info, vp));
1344 tl = nfsm_build(info, NFSX_UNSIGNED * 3);
1345 if (info->v3) {
1346 txdr_hyper(bio->bio_offset, tl);
1347 *(tl + 2) = txdr_unsigned(len);
1348 } else {
1349 *tl++ = txdr_unsigned(bio->bio_offset);
1350 *tl++ = txdr_unsigned(len);
1351 *tl = 0;
1353 info->bio = bio;
1354 info->done = nfs_readrpc_bio_done;
1355 nfsm_request_bio(info, vp, NFSPROC_READ, NULL,
1356 nfs_vpcred(vp, ND_READ));
1357 return;
1358 nfsmout:
1359 kfree(info, M_NFSREQ);
1360 bp->b_error = error;
1361 bp->b_flags |= B_ERROR;
1362 biodone(bio);
1365 static void
1366 nfs_readrpc_bio_done(nfsm_info_t info)
1368 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1369 struct bio *bio = info->bio;
1370 struct buf *bp = bio->bio_buf;
1371 u_int32_t *tl;
1372 int attrflag;
1373 int retlen;
1374 int eof;
1375 int error = 0;
1377 KKASSERT(info->state == NFSM_STATE_DONE);
1379 lwkt_gettoken(&nmp->nm_token);
1381 ERROROUT(info->error);
1382 if (info->v3) {
1383 ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag,
1384 NFS_LATTR_NOSHRINK));
1385 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED));
1386 eof = fxdr_unsigned(int, *(tl + 1));
1387 } else {
1388 ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1389 eof = 0;
1391 NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize));
1392 ERROROUT(nfsm_mtobio(info, bio, retlen));
1393 m_freem(info->mrep);
1394 info->mrep = NULL;
1397 * No error occured, if retlen is less then bcount and no EOF
1398 * and NFSv3 a zero-fill short read occured.
1400 * For NFSv2 a short-read indicates EOF.
1402 if (retlen < bp->b_bcount && info->v3 && eof == 0) {
1403 bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1404 retlen = bp->b_bcount;
1408 * If we hit an EOF we still zero-fill, but return the expected
1409 * b_resid anyway. This should normally not occur since async
1410 * BIOs are not used for read-before-write case. Races against
1411 * the server can cause it though and we don't want to leave
1412 * garbage in the buffer.
1414 if (retlen < bp->b_bcount) {
1415 bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1417 bp->b_resid = 0;
1418 /* bp->b_resid = bp->b_bcount - retlen; */
1419 nfsmout:
1420 lwkt_reltoken(&nmp->nm_token);
1421 kfree(info, M_NFSREQ);
1422 if (error) {
1423 bp->b_error = error;
1424 bp->b_flags |= B_ERROR;
1426 biodone(bio);
1430 * nfs write call - BIO version
1432 * NOTE: Caller has already busied the I/O.
1434 void
1435 nfs_writerpc_bio(struct vnode *vp, struct bio *bio)
1437 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1438 struct nfsnode *np = VTONFS(vp);
1439 struct buf *bp = bio->bio_buf;
1440 u_int32_t *tl;
1441 int len;
1442 int iomode;
1443 int error = 0;
1444 struct nfsm_info *info;
1445 off_t offset;
1448 * Setup for actual write. Just clean up the bio if there
1449 * is nothing to do. b_dirtyoff/end have already been staged
1450 * by the bp's pages getting busied.
1452 if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1453 bp->b_dirtyend = np->n_size - bio->bio_offset;
1455 if (bp->b_dirtyend <= bp->b_dirtyoff) {
1456 bp->b_resid = 0;
1457 biodone(bio);
1458 return;
1460 len = bp->b_dirtyend - bp->b_dirtyoff;
1461 offset = bio->bio_offset + bp->b_dirtyoff;
1462 if (offset + len > nmp->nm_maxfilesize) {
1463 bp->b_flags |= B_ERROR;
1464 bp->b_error = EFBIG;
1465 biodone(bio);
1466 return;
1468 bp->b_resid = len;
1469 nfsstats.write_bios++;
1471 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1472 info->mrep = NULL;
1473 info->v3 = NFS_ISV3(vp);
1474 info->info_writerpc.must_commit = 0;
1475 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1476 iomode = NFSV3WRITE_UNSTABLE;
1477 else
1478 iomode = NFSV3WRITE_FILESYNC;
1480 KKASSERT(len <= nmp->nm_wsize);
1482 nfsstats.rpccnt[NFSPROC_WRITE]++;
1483 nfsm_reqhead(info, vp, NFSPROC_WRITE,
1484 NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1485 ERROROUT(nfsm_fhtom(info, vp));
1486 if (info->v3) {
1487 tl = nfsm_build(info, 5 * NFSX_UNSIGNED);
1488 txdr_hyper(offset, tl);
1489 tl += 2;
1490 *tl++ = txdr_unsigned(len);
1491 *tl++ = txdr_unsigned(iomode);
1492 *tl = txdr_unsigned(len);
1493 } else {
1494 u_int32_t x;
1496 tl = nfsm_build(info, 4 * NFSX_UNSIGNED);
1497 /* Set both "begin" and "current" to non-garbage. */
1498 x = txdr_unsigned((u_int32_t)offset);
1499 *tl++ = x; /* "begin offset" */
1500 *tl++ = x; /* "current offset" */
1501 x = txdr_unsigned(len);
1502 *tl++ = x; /* total to this offset */
1503 *tl = x; /* size of this write */
1505 ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len));
1506 info->bio = bio;
1507 info->done = nfs_writerpc_bio_done;
1508 nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL,
1509 nfs_vpcred(vp, ND_WRITE));
1510 return;
1511 nfsmout:
1512 kfree(info, M_NFSREQ);
1513 bp->b_error = error;
1514 bp->b_flags |= B_ERROR;
1515 biodone(bio);
1518 static void
1519 nfs_writerpc_bio_done(nfsm_info_t info)
1521 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1522 struct nfsnode *np = VTONFS(info->vp);
1523 struct bio *bio = info->bio;
1524 struct buf *bp = bio->bio_buf;
1525 int wccflag = NFSV3_WCCRATTR;
1526 int iomode = NFSV3WRITE_FILESYNC;
1527 int commit;
1528 int rlen;
1529 int error;
1530 int len = bp->b_resid; /* b_resid was set to shortened length */
1531 u_int32_t *tl;
1533 lwkt_gettoken(&nmp->nm_token);
1535 ERROROUT(info->error);
1536 if (info->v3) {
1538 * The write RPC returns a before and after mtime. The
1539 * nfsm_wcc_data() macro checks the before n_mtime
1540 * against the before time and stores the after time
1541 * in the nfsnode's cached vattr and n_mtime field.
1542 * The NRMODIFIED bit will be set if the before
1543 * time did not match the original mtime.
1545 wccflag = NFSV3_WCCCHK;
1546 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1547 if (error == 0) {
1548 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1549 rlen = fxdr_unsigned(int, *tl++);
1550 if (rlen == 0) {
1551 error = NFSERR_IO;
1552 m_freem(info->mrep);
1553 info->mrep = NULL;
1554 goto nfsmout;
1555 } else if (rlen < len) {
1556 #if 0
1558 * XXX what do we do here?
1560 backup = len - rlen;
1561 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1562 uiop->uio_iov->iov_len += backup;
1563 uiop->uio_offset -= backup;
1564 uiop->uio_resid += backup;
1565 len = rlen;
1566 #endif
1568 commit = fxdr_unsigned(int, *tl++);
1571 * Return the lowest committment level
1572 * obtained by any of the RPCs.
1574 if (iomode == NFSV3WRITE_FILESYNC)
1575 iomode = commit;
1576 else if (iomode == NFSV3WRITE_DATASYNC &&
1577 commit == NFSV3WRITE_UNSTABLE)
1578 iomode = commit;
1579 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1580 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1581 nmp->nm_state |= NFSSTA_HASWRITEVERF;
1582 } else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) {
1583 info->info_writerpc.must_commit = 1;
1584 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1587 } else {
1588 ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1590 m_freem(info->mrep);
1591 info->mrep = NULL;
1592 len = 0;
1593 nfsmout:
1594 if (info->vp->v_mount->mnt_flag & MNT_ASYNC)
1595 iomode = NFSV3WRITE_FILESYNC;
1596 bp->b_resid = len;
1599 * End of RPC. Now clean up the bp.
1601 * We no longer enable write clustering for commit operations,
1602 * See around line 1157 for a more detailed comment.
1604 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1605 bp->b_flags |= B_NEEDCOMMIT;
1606 #if 0
1607 /* XXX do not enable commit clustering */
1608 if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount)
1609 bp->b_flags |= B_CLUSTEROK;
1610 #endif
1611 } else {
1612 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1616 * For an interrupted write, the buffer is still valid
1617 * and the write hasn't been pushed to the server yet,
1618 * so we can't set B_ERROR and report the interruption
1619 * by setting B_EINTR. For the async case, B_EINTR
1620 * is not relevant, so the rpc attempt is essentially
1621 * a noop. For the case of a V3 write rpc not being
1622 * committed to stable storage, the block is still
1623 * dirty and requires either a commit rpc or another
1624 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1625 * the block is reused. This is indicated by setting
1626 * the B_DELWRI and B_NEEDCOMMIT flags.
1628 * If the buffer is marked B_PAGING, it does not reside on
1629 * the vp's paging queues so we cannot call bdirty(). The
1630 * bp in this case is not an NFS cache block so we should
1631 * be safe. XXX
1633 if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1634 crit_enter();
1635 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1636 if ((bp->b_flags & B_PAGING) == 0)
1637 bdirty(bp);
1638 if (error)
1639 bp->b_flags |= B_EINTR;
1640 crit_exit();
1641 } else {
1642 if (error) {
1643 bp->b_flags |= B_ERROR;
1644 bp->b_error = np->n_error = error;
1645 np->n_flag |= NWRITEERR;
1647 bp->b_dirtyoff = bp->b_dirtyend = 0;
1649 if (info->info_writerpc.must_commit)
1650 nfs_clearcommit(info->vp->v_mount);
1651 lwkt_reltoken(&nmp->nm_token);
1653 kfree(info, M_NFSREQ);
1654 if (error) {
1655 bp->b_flags |= B_ERROR;
1656 bp->b_error = error;
1658 biodone(bio);
1662 * Nfs Version 3 commit rpc - BIO version
1664 * This function issues the commit rpc and will chain to a write
1665 * rpc if necessary.
1667 void
1668 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio)
1670 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1671 struct buf *bp = bio->bio_buf;
1672 struct nfsm_info *info;
1673 int error = 0;
1674 u_int32_t *tl;
1676 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
1677 bp->b_dirtyoff = bp->b_dirtyend = 0;
1678 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1679 bp->b_resid = 0;
1680 biodone(bio);
1681 return;
1684 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1685 info->mrep = NULL;
1686 info->v3 = 1;
1688 nfsstats.rpccnt[NFSPROC_COMMIT]++;
1689 nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1));
1690 ERROROUT(nfsm_fhtom(info, vp));
1691 tl = nfsm_build(info, 3 * NFSX_UNSIGNED);
1692 txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl);
1693 tl += 2;
1694 *tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff);
1695 info->bio = bio;
1696 info->done = nfs_commitrpc_bio_done;
1697 nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL,
1698 nfs_vpcred(vp, ND_WRITE));
1699 return;
1700 nfsmout:
1702 * Chain to write RPC on (early) error
1704 kfree(info, M_NFSREQ);
1705 nfs_writerpc_bio(vp, bio);
1708 static void
1709 nfs_commitrpc_bio_done(nfsm_info_t info)
1711 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1712 struct bio *bio = info->bio;
1713 struct buf *bp = bio->bio_buf;
1714 u_int32_t *tl;
1715 int wccflag = NFSV3_WCCRATTR;
1716 int error = 0;
1718 lwkt_gettoken(&nmp->nm_token);
1720 ERROROUT(info->error);
1721 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1722 if (error == 0) {
1723 NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF));
1724 if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) {
1725 bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF);
1726 error = NFSERR_STALEWRITEVERF;
1729 m_freem(info->mrep);
1730 info->mrep = NULL;
1733 * On completion we must chain to a write bio if an
1734 * error occurred.
1736 nfsmout:
1737 if (error == 0) {
1738 bp->b_dirtyoff = bp->b_dirtyend = 0;
1739 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1740 bp->b_resid = 0;
1741 biodone(bio);
1742 } else {
1743 nfs_writerpc_bio(info->vp, bio);
1745 kfree(info, M_NFSREQ);
1746 lwkt_reltoken(&nmp->nm_token);