Remove old versions of OpenSSL.
[dragonfly.git] / crypto / openssl-0.9 / crypto / rc4 / asm / rc4-x86_64.pl
blob4b990cba077e21ac5233724af0e1f1d9d1045dcf
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ====================================================================
9 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
10 # "hand-coded assembler"] doesn't stand for the whole improvement
11 # coefficient. It turned out that eliminating RC4_CHAR from config
12 # line results in ~40% improvement (yes, even for C implementation).
13 # Presumably it has everything to do with AMD cache architecture and
14 # RAW or whatever penalties. Once again! The module *requires* config
15 # line *without* RC4_CHAR! As for coding "secret," I bet on partial
16 # register arithmetics. For example instead of 'inc %r8; and $255,%r8'
17 # I simply 'inc %r8b'. Even though optimization manual discourages
18 # to operate on partial registers, it turned out to be the best bet.
19 # At least for AMD... How IA32E would perform remains to be seen...
21 # As was shown by Marc Bevand reordering of couple of load operations
22 # results in even higher performance gain of 3.3x:-) At least on
23 # Opteron... For reference, 1x in this case is RC4_CHAR C-code
24 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
25 # Latter means that if you want to *estimate* what to expect from
26 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
28 # Intel P4 EM64T core was found to run the AMD64 code really slow...
29 # The only way to achieve comparable performance on P4 was to keep
30 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
31 # compose blended code, which would perform even within 30% marginal
32 # on either AMD and Intel platforms, I implement both cases. See
33 # rc4_skey.c for further details...
35 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
36 # those with add/sub results in 50% performance improvement of folded
37 # loop...
39 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
40 # performance by >30% [unlike P4 32-bit case that is]. But this is
41 # provided that loads are reordered even more aggressively! Both code
42 # pathes, AMD64 and EM64T, reorder loads in essentially same manner
43 # as my IA-64 implementation. On Opteron this resulted in modest 5%
44 # improvement [I had to test it], while final Intel P4 performance
45 # achieves respectful 432MBps on 2.8GHz processor now. For reference.
46 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
47 # RC4_INT code-path. While if executed on Opteron, it's only 25%
48 # slower than the RC4_INT one [meaning that if CPU ยต-arch detection
49 # is not implemented, then this final RC4_CHAR code-path should be
50 # preferred, as it provides better *all-round* performance].
52 $output=shift;
53 open STDOUT,"| $^X ../perlasm/x86_64-xlate.pl $output";
55 $dat="%rdi"; # arg1
56 $len="%rsi"; # arg2
57 $inp="%rdx"; # arg3
58 $out="%rcx"; # arg4
60 @XX=("%r8","%r10");
61 @TX=("%r9","%r11");
62 $YY="%r12";
63 $TY="%r13";
65 $code=<<___;
66 .text
68 .globl RC4
69 .type RC4,\@function,4
70 .align 16
71 RC4: or $len,$len
72 jne .Lentry
73 ret
74 .Lentry:
75 push %r12
76 push %r13
78 add \$8,$dat
79 movl -8($dat),$XX[0]#d
80 movl -4($dat),$YY#d
81 cmpl \$-1,256($dat)
82 je .LRC4_CHAR
83 inc $XX[0]#b
84 movl ($dat,$XX[0],4),$TX[0]#d
85 test \$-8,$len
86 jz .Lloop1
87 jmp .Lloop8
88 .align 16
89 .Lloop8:
90 ___
91 for ($i=0;$i<8;$i++) {
92 $code.=<<___;
93 add $TX[0]#b,$YY#b
94 mov $XX[0],$XX[1]
95 movl ($dat,$YY,4),$TY#d
96 ror \$8,%rax # ror is redundant when $i=0
97 inc $XX[1]#b
98 movl ($dat,$XX[1],4),$TX[1]#d
99 cmp $XX[1],$YY
100 movl $TX[0]#d,($dat,$YY,4)
101 cmove $TX[0],$TX[1]
102 movl $TY#d,($dat,$XX[0],4)
103 add $TX[0]#b,$TY#b
104 movb ($dat,$TY,4),%al
106 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
108 $code.=<<___;
109 ror \$8,%rax
110 sub \$8,$len
112 xor ($inp),%rax
113 add \$8,$inp
114 mov %rax,($out)
115 add \$8,$out
117 test \$-8,$len
118 jnz .Lloop8
119 cmp \$0,$len
120 jne .Lloop1
122 $code.=<<___;
123 .Lexit:
124 sub \$1,$XX[0]#b
125 movl $XX[0]#d,-8($dat)
126 movl $YY#d,-4($dat)
128 pop %r13
129 pop %r12
131 .align 16
132 .Lloop1:
133 add $TX[0]#b,$YY#b
134 movl ($dat,$YY,4),$TY#d
135 movl $TX[0]#d,($dat,$YY,4)
136 movl $TY#d,($dat,$XX[0],4)
137 add $TY#b,$TX[0]#b
138 inc $XX[0]#b
139 movl ($dat,$TX[0],4),$TY#d
140 movl ($dat,$XX[0],4),$TX[0]#d
141 xorb ($inp),$TY#b
142 inc $inp
143 movb $TY#b,($out)
144 inc $out
145 dec $len
146 jnz .Lloop1
147 jmp .Lexit
149 .align 16
150 .LRC4_CHAR:
151 add \$1,$XX[0]#b
152 movzb ($dat,$XX[0]),$TX[0]#d
153 test \$-8,$len
154 jz .Lcloop1
155 push %rbx
156 jmp .Lcloop8
157 .align 16
158 .Lcloop8:
159 mov ($inp),%eax
160 mov 4($inp),%ebx
162 # unroll 2x4-wise, because 64-bit rotates kill Intel P4...
163 for ($i=0;$i<4;$i++) {
164 $code.=<<___;
165 add $TX[0]#b,$YY#b
166 lea 1($XX[0]),$XX[1]
167 movzb ($dat,$YY),$TY#d
168 movzb $XX[1]#b,$XX[1]#d
169 movzb ($dat,$XX[1]),$TX[1]#d
170 movb $TX[0]#b,($dat,$YY)
171 cmp $XX[1],$YY
172 movb $TY#b,($dat,$XX[0])
173 jne .Lcmov$i # Intel cmov is sloooow...
174 mov $TX[0],$TX[1]
175 .Lcmov$i:
176 add $TX[0]#b,$TY#b
177 xor ($dat,$TY),%al
178 ror \$8,%eax
180 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
182 for ($i=4;$i<8;$i++) {
183 $code.=<<___;
184 add $TX[0]#b,$YY#b
185 lea 1($XX[0]),$XX[1]
186 movzb ($dat,$YY),$TY#d
187 movzb $XX[1]#b,$XX[1]#d
188 movzb ($dat,$XX[1]),$TX[1]#d
189 movb $TX[0]#b,($dat,$YY)
190 cmp $XX[1],$YY
191 movb $TY#b,($dat,$XX[0])
192 jne .Lcmov$i # Intel cmov is sloooow...
193 mov $TX[0],$TX[1]
194 .Lcmov$i:
195 add $TX[0]#b,$TY#b
196 xor ($dat,$TY),%bl
197 ror \$8,%ebx
199 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
201 $code.=<<___;
202 lea -8($len),$len
203 mov %eax,($out)
204 lea 8($inp),$inp
205 mov %ebx,4($out)
206 lea 8($out),$out
208 test \$-8,$len
209 jnz .Lcloop8
210 pop %rbx
211 cmp \$0,$len
212 jne .Lcloop1
213 jmp .Lexit
215 $code.=<<___;
216 .align 16
217 .Lcloop1:
218 add $TX[0]#b,$YY#b
219 movzb ($dat,$YY),$TY#d
220 movb $TX[0]#b,($dat,$YY)
221 movb $TY#b,($dat,$XX[0])
222 add $TX[0]#b,$TY#b
223 add \$1,$XX[0]#b
224 movzb ($dat,$TY),$TY#d
225 movzb ($dat,$XX[0]),$TX[0]#d
226 xorb ($inp),$TY#b
227 lea 1($inp),$inp
228 movb $TY#b,($out)
229 lea 1($out),$out
230 sub \$1,$len
231 jnz .Lcloop1
232 jmp .Lexit
233 .size RC4,.-RC4
236 $code =~ s/#([bwd])/$1/gm;
238 print $code;
240 close STDOUT;