2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.74 2007/11/22 19:57:14 dillon Exp $
73 #include "opt_bootp.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
97 #include <machine/stdarg.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/in_pcb.h>
112 #include <netinet/ip_var.h>
113 #include <netinet/ip_icmp.h>
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 #include <net/netmsg2.h>
119 #include <sys/socketvar.h>
121 #include <net/ipfw/ip_fw.h>
122 #include <net/dummynet/ip_dummynet.h>
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
130 #include <netproto/ipsec/ipsec.h>
131 #include <netproto/ipsec/key.h>
135 static int ip_rsvp_on
;
136 struct socket
*ip_rsvpd
;
138 int ipforwarding
= 0;
139 SYSCTL_INT(_net_inet_ip
, IPCTL_FORWARDING
, forwarding
, CTLFLAG_RW
,
140 &ipforwarding
, 0, "Enable IP forwarding between interfaces");
142 static int ipsendredirects
= 1; /* XXX */
143 SYSCTL_INT(_net_inet_ip
, IPCTL_SENDREDIRECTS
, redirect
, CTLFLAG_RW
,
144 &ipsendredirects
, 0, "Enable sending IP redirects");
146 int ip_defttl
= IPDEFTTL
;
147 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFTTL
, ttl
, CTLFLAG_RW
,
148 &ip_defttl
, 0, "Maximum TTL on IP packets");
150 static int ip_dosourceroute
= 0;
151 SYSCTL_INT(_net_inet_ip
, IPCTL_SOURCEROUTE
, sourceroute
, CTLFLAG_RW
,
152 &ip_dosourceroute
, 0, "Enable forwarding source routed IP packets");
154 static int ip_acceptsourceroute
= 0;
155 SYSCTL_INT(_net_inet_ip
, IPCTL_ACCEPTSOURCEROUTE
, accept_sourceroute
,
156 CTLFLAG_RW
, &ip_acceptsourceroute
, 0,
157 "Enable accepting source routed IP packets");
159 static int ip_keepfaith
= 0;
160 SYSCTL_INT(_net_inet_ip
, IPCTL_KEEPFAITH
, keepfaith
, CTLFLAG_RW
,
162 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
164 static int nipq
= 0; /* total # of reass queues */
166 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragpackets
, CTLFLAG_RW
,
168 "Maximum number of IPv4 fragment reassembly queue entries");
170 static int maxfragsperpacket
;
171 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragsperpacket
, CTLFLAG_RW
,
172 &maxfragsperpacket
, 0,
173 "Maximum number of IPv4 fragments allowed per packet");
175 static int ip_sendsourcequench
= 0;
176 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, sendsourcequench
, CTLFLAG_RW
,
177 &ip_sendsourcequench
, 0,
178 "Enable the transmission of source quench packets");
180 int ip_do_randomid
= 1;
181 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, random_id
, CTLFLAG_RW
,
183 "Assign random ip_id values");
185 * XXX - Setting ip_checkinterface mostly implements the receive side of
186 * the Strong ES model described in RFC 1122, but since the routing table
187 * and transmit implementation do not implement the Strong ES model,
188 * setting this to 1 results in an odd hybrid.
190 * XXX - ip_checkinterface currently must be disabled if you use ipnat
191 * to translate the destination address to another local interface.
193 * XXX - ip_checkinterface must be disabled if you add IP aliases
194 * to the loopback interface instead of the interface where the
195 * packets for those addresses are received.
197 static int ip_checkinterface
= 0;
198 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, check_interface
, CTLFLAG_RW
,
199 &ip_checkinterface
, 0, "Verify packet arrives on correct interface");
202 static int ipprintfs
= 0;
205 extern struct domain inetdomain
;
206 extern struct protosw inetsw
[];
207 u_char ip_protox
[IPPROTO_MAX
];
208 struct in_ifaddrhead in_ifaddrhead
; /* first inet address */
209 struct in_ifaddrhashhead
*in_ifaddrhashtbl
; /* inet addr hash table */
210 u_long in_ifaddrhmask
; /* mask for hash table */
212 struct ip_stats ipstats_percpu
[MAXCPU
];
215 sysctl_ipstats(SYSCTL_HANDLER_ARGS
)
219 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
220 if ((error
= SYSCTL_OUT(req
, &ipstats_percpu
[cpu
],
221 sizeof(struct ip_stats
))))
223 if ((error
= SYSCTL_IN(req
, &ipstats_percpu
[cpu
],
224 sizeof(struct ip_stats
))))
230 SYSCTL_PROC(_net_inet_ip
, IPCTL_STATS
, stats
, (CTLTYPE_OPAQUE
| CTLFLAG_RW
),
231 0, 0, sysctl_ipstats
, "S,ip_stats", "IP statistics");
233 SYSCTL_STRUCT(_net_inet_ip
, IPCTL_STATS
, stats
, CTLFLAG_RW
,
234 &ipstat
, ip_stats
, "IP statistics");
237 /* Packet reassembly stuff */
238 #define IPREASS_NHASH_LOG2 6
239 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
240 #define IPREASS_HMASK (IPREASS_NHASH - 1)
241 #define IPREASS_HASH(x,y) \
242 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
244 static struct ipq ipq
[IPREASS_NHASH
];
247 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFMTU
, mtu
, CTLFLAG_RW
,
248 &ip_mtu
, 0, "Default MTU");
252 static int ipstealth
= 0;
253 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, stealth
, CTLFLAG_RW
, &ipstealth
, 0, "");
255 static const int ipstealth
= 0;
260 ip_fw_chk_t
*ip_fw_chk_ptr
;
261 ip_fw_dn_io_t
*ip_fw_dn_io_ptr
;
265 struct pfil_head inet_pfil_hook
;
268 * XXX this is ugly -- the following two global variables are
269 * used to store packet state while it travels through the stack.
270 * Note that the code even makes assumptions on the size and
271 * alignment of fields inside struct ip_srcrt so e.g. adding some
272 * fields will break the code. This needs to be fixed.
274 * We need to save the IP options in case a protocol wants to respond
275 * to an incoming packet over the same route if the packet got here
276 * using IP source routing. This allows connection establishment and
277 * maintenance when the remote end is on a network that is not known
280 static int ip_nhops
= 0;
282 static struct ip_srcrt
{
283 struct in_addr dst
; /* final destination */
284 char nop
; /* one NOP to align */
285 char srcopt
[IPOPT_OFFSET
+ 1]; /* OPTVAL, OLEN and OFFSET */
286 struct in_addr route
[MAX_IPOPTLEN
/sizeof(struct in_addr
)];
289 static MALLOC_DEFINE(M_IPQ
, "ipq", "IP Fragment Management");
290 static struct malloc_pipe ipq_mpipe
;
292 static void save_rte (u_char
*, struct in_addr
);
293 static int ip_dooptions (struct mbuf
*m
, int,
294 struct sockaddr_in
*next_hop
);
295 static void ip_forward (struct mbuf
*m
, boolean_t using_srcrt
,
296 struct sockaddr_in
*next_hop
);
297 static void ip_freef (struct ipq
*);
298 static void ip_input_handler (struct netmsg
*);
299 static struct mbuf
*ip_reass (struct mbuf
*, struct ipq
*,
300 struct ipq
*, u_int32_t
*);
303 * IP initialization: fill in IP protocol switch table.
304 * All protocols not implemented in kernel go to raw IP protocol handler.
316 * Make sure we can handle a reasonable number of fragments but
317 * cap it at 4000 (XXX).
319 mpipe_init(&ipq_mpipe
, M_IPQ
, sizeof(struct ipq
),
320 IFQ_MAXLEN
, 4000, 0, NULL
);
321 TAILQ_INIT(&in_ifaddrhead
);
322 in_ifaddrhashtbl
= hashinit(INADDR_NHASH
, M_IFADDR
, &in_ifaddrhmask
);
323 pr
= pffindproto(PF_INET
, IPPROTO_RAW
, SOCK_RAW
);
326 for (i
= 0; i
< IPPROTO_MAX
; i
++)
327 ip_protox
[i
] = pr
- inetsw
;
328 for (pr
= inetdomain
.dom_protosw
;
329 pr
< inetdomain
.dom_protoswNPROTOSW
; pr
++)
330 if (pr
->pr_domain
->dom_family
== PF_INET
&&
331 pr
->pr_protocol
&& pr
->pr_protocol
!= IPPROTO_RAW
)
332 ip_protox
[pr
->pr_protocol
] = pr
- inetsw
;
334 inet_pfil_hook
.ph_type
= PFIL_TYPE_AF
;
335 inet_pfil_hook
.ph_af
= AF_INET
;
336 if ((i
= pfil_head_register(&inet_pfil_hook
)) != 0) {
337 kprintf("%s: WARNING: unable to register pfil hook, "
338 "error %d\n", __func__
, i
);
341 for (i
= 0; i
< IPREASS_NHASH
; i
++)
342 ipq
[i
].next
= ipq
[i
].prev
= &ipq
[i
];
344 maxnipq
= nmbclusters
/ 32;
345 maxfragsperpacket
= 16;
347 ip_id
= time_second
& 0xffff;
350 * Initialize IP statistics counters for each CPU.
354 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
355 bzero(&ipstats_percpu
[cpu
], sizeof(struct ip_stats
));
358 bzero(&ipstat
, sizeof(struct ip_stats
));
361 netisr_register(NETISR_IP
, ip_mport
, ip_input_handler
);
365 * XXX watch out this one. It is perhaps used as a cache for
366 * the most recently used route ? it is cleared in in_addroute()
367 * when a new route is successfully created.
369 struct route ipforward_rt
[MAXCPU
];
371 /* Do transport protocol processing. */
373 transport_processing_oncpu(struct mbuf
*m
, int hlen
, struct ip
*ip
,
374 struct sockaddr_in
*nexthop
)
377 * Switch out to protocol's input routine.
379 if (nexthop
&& ip
->ip_p
== IPPROTO_TCP
) {
380 /* TCP needs IPFORWARD info if available */
383 tag
.mh_type
= MT_TAG
;
384 tag
.mh_flags
= PACKET_TAG_IPFORWARD
;
385 tag
.mh_data
= (caddr_t
)nexthop
;
388 (*inetsw
[ip_protox
[ip
->ip_p
]].pr_input
)
389 ((struct mbuf
*)&tag
, hlen
, ip
->ip_p
);
391 (*inetsw
[ip_protox
[ip
->ip_p
]].pr_input
)(m
, hlen
, ip
->ip_p
);
395 struct netmsg_transport_packet
{
396 struct netmsg nm_netmsg
;
397 struct mbuf
*nm_mbuf
;
399 boolean_t nm_hasnexthop
;
400 struct sockaddr_in nm_nexthop
;
404 transport_processing_handler(netmsg_t netmsg
)
406 struct netmsg_transport_packet
*msg
= (void *)netmsg
;
407 struct sockaddr_in
*nexthop
;
410 ip
= mtod(msg
->nm_mbuf
, struct ip
*);
411 nexthop
= msg
->nm_hasnexthop
? &msg
->nm_nexthop
: NULL
;
412 transport_processing_oncpu(msg
->nm_mbuf
, msg
->nm_hlen
, ip
, nexthop
);
413 lwkt_replymsg(&msg
->nm_netmsg
.nm_lmsg
, 0);
417 ip_input_handler(struct netmsg
*msg0
)
419 struct mbuf
*m
= ((struct netmsg_packet
*)msg0
)->nm_packet
;
422 /* msg0 was embedded in the mbuf, do not reply! */
426 * IP input routine. Checksum and byte swap header. If fragmented
427 * try to reassemble. Process options. Pass to next level.
430 ip_input(struct mbuf
*m
)
434 struct in_ifaddr
*ia
= NULL
;
436 int i
, hlen
, checkif
;
438 struct in_addr pkt_dst
;
439 u_int32_t divert_info
= 0; /* packet divert/tee info */
440 struct ip_fw_args args
;
441 boolean_t using_srcrt
= FALSE
; /* forward (by PFIL_HOOKS) */
442 boolean_t needredispatch
= FALSE
;
443 struct in_addr odst
; /* original dst address(NAT) */
446 struct tdb_ident
*tdbi
;
447 struct secpolicy
*sp
;
454 args
.next_hop
= NULL
;
456 /* Grab info from MT_TAG mbufs prepended to the chain. */
457 while (m
!= NULL
&& m
->m_type
== MT_TAG
) {
458 switch(m
->_m_tag_id
) {
459 case PACKET_TAG_IPFORWARD
:
460 args
.next_hop
= (struct sockaddr_in
*)m
->m_hdr
.mh_data
;
463 kprintf("ip_input: unrecognised MT_TAG tag %d\n",
469 KASSERT(m
!= NULL
&& (m
->m_flags
& M_PKTHDR
), ("ip_input: no HDR"));
471 /* Extract info from dummynet tag */
472 mtag
= m_tag_find(m
, PACKET_TAG_DUMMYNET
, NULL
);
474 args
.rule
= ((struct dn_pkt
*)m_tag_data(mtag
))->dn_priv
;
476 m_tag_delete(m
, mtag
);
480 if (args
.rule
!= NULL
) { /* dummynet already filtered us */
481 ip
= mtod(m
, struct ip
*);
482 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
488 /* length checks already done in ip_demux() */
489 KASSERT(m
->m_len
>= sizeof(ip
), ("IP header not in one mbuf"));
491 ip
= mtod(m
, struct ip
*);
493 if (IP_VHL_V(ip
->ip_vhl
) != IPVERSION
) {
494 ipstat
.ips_badvers
++;
498 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
499 /* length checks already done in ip_demux() */
500 KASSERT(hlen
>= sizeof(struct ip
), ("IP header len too small"));
501 KASSERT(m
->m_len
>= hlen
, ("packet shorter than IP header length"));
503 /* 127/8 must not appear on wire - RFC1122 */
504 if ((ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
505 (ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
) {
506 if (!(m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
)) {
507 ipstat
.ips_badaddr
++;
512 if (m
->m_pkthdr
.csum_flags
& CSUM_IP_CHECKED
) {
513 sum
= !(m
->m_pkthdr
.csum_flags
& CSUM_IP_VALID
);
515 if (hlen
== sizeof(struct ip
)) {
516 sum
= in_cksum_hdr(ip
);
518 sum
= in_cksum(m
, hlen
);
527 if (altq_input
!= NULL
&& (*altq_input
)(m
, AF_INET
) == 0) {
528 /* packet is dropped by traffic conditioner */
533 * Convert fields to host representation.
535 ip
->ip_len
= ntohs(ip
->ip_len
);
536 if (ip
->ip_len
< hlen
) {
540 ip
->ip_off
= ntohs(ip
->ip_off
);
543 * Check that the amount of data in the buffers
544 * is as at least much as the IP header would have us expect.
545 * Trim mbufs if longer than we expect.
546 * Drop packet if shorter than we expect.
548 if (m
->m_pkthdr
.len
< ip
->ip_len
) {
549 ipstat
.ips_tooshort
++;
552 if (m
->m_pkthdr
.len
> ip
->ip_len
) {
553 if (m
->m_len
== m
->m_pkthdr
.len
) {
554 m
->m_len
= ip
->ip_len
;
555 m
->m_pkthdr
.len
= ip
->ip_len
;
557 m_adj(m
, ip
->ip_len
- m
->m_pkthdr
.len
);
559 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
561 * Bypass packet filtering for packets from a tunnel (gif).
563 if (ipsec_gethist(m
, NULL
))
569 * Right now when no processing on packet has done
570 * and it is still fresh out of network we do our black
572 * - Firewall: deny/allow/divert
573 * - Xlate: translate packet's addr/port (NAT).
574 * - Pipe: pass pkt through dummynet.
575 * - Wrap: fake packet's addr/port <unimpl.>
576 * - Encapsulate: put it in another IP and send out. <unimp.>
582 * Run through list of hooks for input packets.
584 * NB: Beware of the destination address changing (e.g.
585 * by NAT rewriting). When this happens, tell
586 * ip_forward to do the right thing.
588 if (pfil_has_hooks(&inet_pfil_hook
)) {
590 if (pfil_run_hooks(&inet_pfil_hook
, &m
,
591 m
->m_pkthdr
.rcvif
, PFIL_IN
)) {
594 if (m
== NULL
) /* consumed by filter */
596 ip
= mtod(m
, struct ip
*);
597 using_srcrt
= (odst
.s_addr
!= ip
->ip_dst
.s_addr
);
600 if (fw_enable
&& IPFW_LOADED
) {
602 * If we've been forwarded from the output side, then
603 * skip the firewall a second time
605 if (args
.next_hop
!= NULL
)
609 i
= ip_fw_chk_ptr(&args
);
612 if ((i
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) { /* drop */
617 ip
= mtod(m
, struct ip
*); /* just in case m changed */
618 if (i
== 0 && args
.next_hop
== NULL
) /* common case */
620 if (i
& IP_FW_PORT_DYNT_FLAG
) {
621 /* Send packet to the appropriate pipe */
622 ip_fw_dn_io_ptr(m
, i
&0xffff, DN_TO_IP_IN
, &args
);
626 if (i
!= 0 && !(i
& IP_FW_PORT_DYNT_FLAG
)) {
627 /* Divert or tee packet */
632 if (i
== 0 && args
.next_hop
!= NULL
)
635 * if we get here, the packet must be dropped
643 * Process options and, if not destined for us,
644 * ship it on. ip_dooptions returns 1 when an
645 * error was detected (causing an icmp message
646 * to be sent and the original packet to be freed).
648 ip_nhops
= 0; /* for source routed packets */
649 if (hlen
> sizeof(struct ip
) && ip_dooptions(m
, 0, args
.next_hop
))
652 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
653 * matter if it is destined to another node, or whether it is
654 * a multicast one, RSVP wants it! and prevents it from being forwarded
655 * anywhere else. Also checks if the rsvp daemon is running before
656 * grabbing the packet.
658 if (rsvp_on
&& ip
->ip_p
== IPPROTO_RSVP
)
662 * Check our list of addresses, to see if the packet is for us.
663 * If we don't have any addresses, assume any unicast packet
664 * we receive might be for us (and let the upper layers deal
667 if (TAILQ_EMPTY(&in_ifaddrhead
) && !(m
->m_flags
& (M_MCAST
| M_BCAST
)))
671 * Cache the destination address of the packet; this may be
672 * changed by use of 'ipfw fwd'.
674 pkt_dst
= args
.next_hop
? args
.next_hop
->sin_addr
: ip
->ip_dst
;
677 * Enable a consistency check between the destination address
678 * and the arrival interface for a unicast packet (the RFC 1122
679 * strong ES model) if IP forwarding is disabled and the packet
680 * is not locally generated and the packet is not subject to
683 * XXX - Checking also should be disabled if the destination
684 * address is ipnat'ed to a different interface.
686 * XXX - Checking is incompatible with IP aliases added
687 * to the loopback interface instead of the interface where
688 * the packets are received.
690 checkif
= ip_checkinterface
&&
692 m
->m_pkthdr
.rcvif
!= NULL
&&
693 !(m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) &&
694 (args
.next_hop
== NULL
);
697 * Check for exact addresses in the hash bucket.
699 LIST_FOREACH(ia
, INADDR_HASH(pkt_dst
.s_addr
), ia_hash
) {
701 * If the address matches, verify that the packet
702 * arrived via the correct interface if checking is
705 if (IA_SIN(ia
)->sin_addr
.s_addr
== pkt_dst
.s_addr
&&
706 (!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
))
710 * Check for broadcast addresses.
712 * Only accept broadcast packets that arrive via the matching
713 * interface. Reception of forwarded directed broadcasts would
714 * be handled via ip_forward() and ether_output() with the loopback
715 * into the stack for SIMPLEX interfaces handled by ether_output().
717 if (m
->m_pkthdr
.rcvif
->if_flags
& IFF_BROADCAST
) {
718 TAILQ_FOREACH(ifa
, &m
->m_pkthdr
.rcvif
->if_addrhead
, ifa_link
) {
719 if (ifa
->ifa_addr
== NULL
) /* shutdown/startup race */
721 if (ifa
->ifa_addr
->sa_family
!= AF_INET
)
724 if (satosin(&ia
->ia_broadaddr
)->sin_addr
.s_addr
==
727 if (ia
->ia_netbroadcast
.s_addr
== pkt_dst
.s_addr
)
730 if (IA_SIN(ia
)->sin_addr
.s_addr
== INADDR_ANY
)
735 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
))) {
736 struct in_multi
*inm
;
738 if (ip_mrouter
!= NULL
) {
740 * If we are acting as a multicast router, all
741 * incoming multicast packets are passed to the
742 * kernel-level multicast forwarding function.
743 * The packet is returned (relatively) intact; if
744 * ip_mforward() returns a non-zero value, the packet
745 * must be discarded, else it may be accepted below.
747 if (ip_mforward
!= NULL
&&
748 ip_mforward(ip
, m
->m_pkthdr
.rcvif
, m
, NULL
) != 0) {
749 ipstat
.ips_cantforward
++;
755 * The process-level routing daemon needs to receive
756 * all multicast IGMP packets, whether or not this
757 * host belongs to their destination groups.
759 if (ip
->ip_p
== IPPROTO_IGMP
)
761 ipstat
.ips_forward
++;
764 * See if we belong to the destination multicast group on the
767 IN_LOOKUP_MULTI(ip
->ip_dst
, m
->m_pkthdr
.rcvif
, inm
);
769 ipstat
.ips_notmember
++;
775 if (ip
->ip_dst
.s_addr
== INADDR_BROADCAST
)
777 if (ip
->ip_dst
.s_addr
== INADDR_ANY
)
781 * FAITH(Firewall Aided Internet Translator)
783 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
== IFT_FAITH
) {
785 if (ip
->ip_p
== IPPROTO_TCP
|| ip
->ip_p
== IPPROTO_ICMP
)
793 * Not for us; forward if possible and desirable.
796 ipstat
.ips_cantforward
++;
801 * Enforce inbound IPsec SPD.
803 if (ipsec4_in_reject(m
, NULL
)) {
804 ipsecstat
.in_polvio
++;
809 mtag
= m_tag_find(m
, PACKET_TAG_IPSEC_IN_DONE
, NULL
);
812 tdbi
= (struct tdb_ident
*)m_tag_data(mtag
);
813 sp
= ipsec_getpolicy(tdbi
, IPSEC_DIR_INBOUND
);
815 sp
= ipsec_getpolicybyaddr(m
, IPSEC_DIR_INBOUND
,
816 IP_FORWARDING
, &error
);
818 if (sp
== NULL
) { /* NB: can happen if error */
820 /*XXX error stat???*/
821 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
826 * Check security policy against packet attributes.
828 error
= ipsec_in_reject(sp
, m
);
832 ipstat
.ips_cantforward
++;
836 ip_forward(m
, using_srcrt
, args
.next_hop
);
843 * IPSTEALTH: Process non-routing options only
844 * if the packet is destined for us.
847 hlen
> sizeof(struct ip
) &&
848 ip_dooptions(m
, 1, args
.next_hop
))
851 /* Count the packet in the ip address stats */
853 ia
->ia_ifa
.if_ipackets
++;
854 ia
->ia_ifa
.if_ibytes
+= m
->m_pkthdr
.len
;
858 * If offset or IP_MF are set, must reassemble.
859 * Otherwise, nothing need be done.
860 * (We could look in the reassembly queue to see
861 * if the packet was previously fragmented,
862 * but it's not worth the time; just let them time out.)
864 if (ip
->ip_off
& (IP_MF
| IP_OFFMASK
)) {
866 /* If maxnipq is 0, never accept fragments. */
868 ipstat
.ips_fragments
++;
869 ipstat
.ips_fragdropped
++;
873 sum
= IPREASS_HASH(ip
->ip_src
.s_addr
, ip
->ip_id
);
875 * Look for queue of fragments
878 for (fp
= ipq
[sum
].next
; fp
!= &ipq
[sum
]; fp
= fp
->next
)
879 if (ip
->ip_id
== fp
->ipq_id
&&
880 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
881 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
882 ip
->ip_p
== fp
->ipq_p
)
888 * Enforce upper bound on number of fragmented packets
889 * for which we attempt reassembly;
890 * If maxnipq is -1, accept all fragments without limitation.
892 if ((nipq
> maxnipq
) && (maxnipq
> 0)) {
894 * drop something from the tail of the current queue
895 * before proceeding further
897 if (ipq
[sum
].prev
== &ipq
[sum
]) { /* gak */
898 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
899 if (ipq
[i
].prev
!= &ipq
[i
]) {
900 ipstat
.ips_fragtimeout
+=
901 ipq
[i
].prev
->ipq_nfrags
;
902 ip_freef(ipq
[i
].prev
);
907 ipstat
.ips_fragtimeout
+=
908 ipq
[sum
].prev
->ipq_nfrags
;
909 ip_freef(ipq
[sum
].prev
);
914 * Adjust ip_len to not reflect header,
915 * convert offset of this to bytes.
918 if (ip
->ip_off
& IP_MF
) {
920 * Make sure that fragments have a data length
921 * that's a non-zero multiple of 8 bytes.
923 if (ip
->ip_len
== 0 || (ip
->ip_len
& 0x7) != 0) {
924 ipstat
.ips_toosmall
++; /* XXX */
927 m
->m_flags
|= M_FRAG
;
929 m
->m_flags
&= ~M_FRAG
;
933 * Attempt reassembly; if it succeeds, proceed.
934 * ip_reass() will return a different mbuf, and update
935 * the divert info in divert_info.
937 ipstat
.ips_fragments
++;
938 m
->m_pkthdr
.header
= ip
;
939 m
= ip_reass(m
, fp
, &ipq
[sum
], &divert_info
);
942 ipstat
.ips_reassembled
++;
943 needredispatch
= TRUE
;
944 ip
= mtod(m
, struct ip
*);
945 /* Get the header length of the reassembled packet */
946 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
948 /* Restore original checksum before diverting packet */
949 if (divert_info
!= 0) {
951 ip
->ip_len
= htons(ip
->ip_len
);
952 ip
->ip_off
= htons(ip
->ip_off
);
954 if (hlen
== sizeof(struct ip
))
955 ip
->ip_sum
= in_cksum_hdr(ip
);
957 ip
->ip_sum
= in_cksum(m
, hlen
);
958 ip
->ip_off
= ntohs(ip
->ip_off
);
959 ip
->ip_len
= ntohs(ip
->ip_len
);
969 * Divert or tee packet to the divert protocol if required.
971 if (divert_info
!= 0) {
972 struct mbuf
*clone
= NULL
;
974 /* Clone packet if we're doing a 'tee' */
975 if ((divert_info
& IP_FW_PORT_TEE_FLAG
) != 0)
976 clone
= m_dup(m
, MB_DONTWAIT
);
978 /* Restore packet header fields to original values */
980 ip
->ip_len
= htons(ip
->ip_len
);
981 ip
->ip_off
= htons(ip
->ip_off
);
983 /* Deliver packet to divert input routine */
984 divert_packet(m
, 1, divert_info
& 0xffff);
985 ipstat
.ips_delivered
++;
987 /* If 'tee', continue with original packet */
991 ip
= mtod(m
, struct ip
*);
994 * Jump backwards to complete processing of the
995 * packet. But first clear divert_info to avoid
996 * entering this block again.
997 * We do not need to clear args.divert_rule
998 * or args.next_hop as they will not be used.
1000 * XXX Better safe than sorry, remove the DIVERT tag.
1002 mtag
= m_tag_find(m
, PACKET_TAG_IPFW_DIVERT
, NULL
);
1004 m_tag_delete(m
, mtag
);
1013 * enforce IPsec policy checking if we are seeing last header.
1014 * note that we do not visit this with protocols with pcb layer
1015 * code - like udp/tcp/raw ip.
1017 if ((inetsw
[ip_protox
[ip
->ip_p
]].pr_flags
& PR_LASTHDR
) &&
1018 ipsec4_in_reject(m
, NULL
)) {
1019 ipsecstat
.in_polvio
++;
1025 * enforce IPsec policy checking if we are seeing last header.
1026 * note that we do not visit this with protocols with pcb layer
1027 * code - like udp/tcp/raw ip.
1029 if (inetsw
[ip_protox
[ip
->ip_p
]].pr_flags
& PR_LASTHDR
) {
1031 * Check if the packet has already had IPsec processing
1032 * done. If so, then just pass it along. This tag gets
1033 * set during AH, ESP, etc. input handling, before the
1034 * packet is returned to the ip input queue for delivery.
1036 mtag
= m_tag_find(m
, PACKET_TAG_IPSEC_IN_DONE
, NULL
);
1039 tdbi
= (struct tdb_ident
*)m_tag_data(mtag
);
1040 sp
= ipsec_getpolicy(tdbi
, IPSEC_DIR_INBOUND
);
1042 sp
= ipsec_getpolicybyaddr(m
, IPSEC_DIR_INBOUND
,
1043 IP_FORWARDING
, &error
);
1047 * Check security policy against packet attributes.
1049 error
= ipsec_in_reject(sp
, m
);
1052 /* XXX error stat??? */
1054 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1061 #endif /* FAST_IPSEC */
1063 ipstat
.ips_delivered
++;
1064 if (needredispatch
) {
1065 struct netmsg_transport_packet
*msg
;
1068 ip
->ip_off
= htons(ip
->ip_off
);
1069 ip
->ip_len
= htons(ip
->ip_len
);
1070 port
= ip_mport(&m
);
1074 msg
= kmalloc(sizeof(struct netmsg_transport_packet
), M_LWKTMSG
,
1075 M_INTWAIT
| M_NULLOK
);
1079 netmsg_init(&msg
->nm_netmsg
, &netisr_afree_rport
, 0,
1080 transport_processing_handler
);
1081 msg
->nm_hlen
= hlen
;
1082 msg
->nm_hasnexthop
= (args
.next_hop
!= NULL
);
1083 if (msg
->nm_hasnexthop
)
1084 msg
->nm_nexthop
= *args
.next_hop
; /* structure copy */
1087 ip
= mtod(m
, struct ip
*);
1088 ip
->ip_len
= ntohs(ip
->ip_len
);
1089 ip
->ip_off
= ntohs(ip
->ip_off
);
1090 lwkt_sendmsg(port
, &msg
->nm_netmsg
.nm_lmsg
);
1092 transport_processing_oncpu(m
, hlen
, ip
, args
.next_hop
);
1101 * Take incoming datagram fragment and try to reassemble it into
1102 * whole datagram. If a chain for reassembly of this datagram already
1103 * exists, then it is given as fp; otherwise have to make a chain.
1105 * When IPDIVERT enabled, keep additional state with each packet that
1106 * tells us if we need to divert or tee the packet we're building.
1107 * In particular, *divinfo includes the port and TEE flag.
1110 static struct mbuf
*
1111 ip_reass(struct mbuf
*m
, struct ipq
*fp
, struct ipq
*where
,
1114 struct ip
*ip
= mtod(m
, struct ip
*);
1115 struct mbuf
*p
= NULL
, *q
, *nq
;
1117 int hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1124 * If the hardware has not done csum over this fragment
1125 * then csum_data is not valid at all.
1127 if ((m
->m_pkthdr
.csum_flags
& (CSUM_FRAG_NOT_CHECKED
| CSUM_DATA_VALID
))
1128 == (CSUM_FRAG_NOT_CHECKED
| CSUM_DATA_VALID
)) {
1129 m
->m_pkthdr
.csum_data
= 0;
1130 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
);
1134 * Presence of header sizes in mbufs
1135 * would confuse code below.
1141 * If first fragment to arrive, create a reassembly queue.
1144 if ((fp
= mpipe_alloc_nowait(&ipq_mpipe
)) == NULL
)
1149 fp
->ipq_ttl
= IPFRAGTTL
;
1150 fp
->ipq_p
= ip
->ip_p
;
1151 fp
->ipq_id
= ip
->ip_id
;
1152 fp
->ipq_src
= ip
->ip_src
;
1153 fp
->ipq_dst
= ip
->ip_dst
;
1155 m
->m_nextpkt
= NULL
;
1157 fp
->ipq_div_info
= 0;
1164 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1167 * Find a segment which begins after this one does.
1169 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
)
1170 if (GETIP(q
)->ip_off
> ip
->ip_off
)
1174 * If there is a preceding segment, it may provide some of
1175 * our data already. If so, drop the data from the incoming
1176 * segment. If it provides all of our data, drop us, otherwise
1177 * stick new segment in the proper place.
1179 * If some of the data is dropped from the the preceding
1180 * segment, then it's checksum is invalidated.
1183 i
= GETIP(p
)->ip_off
+ GETIP(p
)->ip_len
- ip
->ip_off
;
1185 if (i
>= ip
->ip_len
)
1188 m
->m_pkthdr
.csum_flags
= 0;
1192 m
->m_nextpkt
= p
->m_nextpkt
;
1195 m
->m_nextpkt
= fp
->ipq_frags
;
1200 * While we overlap succeeding segments trim them or,
1201 * if they are completely covered, dequeue them.
1203 for (; q
!= NULL
&& ip
->ip_off
+ ip
->ip_len
> GETIP(q
)->ip_off
;
1205 i
= (ip
->ip_off
+ ip
->ip_len
) - GETIP(q
)->ip_off
;
1206 if (i
< GETIP(q
)->ip_len
) {
1207 GETIP(q
)->ip_len
-= i
;
1208 GETIP(q
)->ip_off
+= i
;
1210 q
->m_pkthdr
.csum_flags
= 0;
1215 ipstat
.ips_fragdropped
++;
1217 q
->m_nextpkt
= NULL
;
1225 * Transfer firewall instructions to the fragment structure.
1226 * Only trust info in the fragment at offset 0.
1228 if (ip
->ip_off
== 0) {
1229 fp
->ipq_div_info
= *divinfo
;
1231 mtag
= m_tag_find(m
, PACKET_TAG_IPFW_DIVERT
, NULL
);
1233 m_tag_delete(m
, mtag
);
1239 * Check for complete reassembly and perform frag per packet
1242 * Frag limiting is performed here so that the nth frag has
1243 * a chance to complete the packet before we drop the packet.
1244 * As a result, n+1 frags are actually allowed per packet, but
1245 * only n will ever be stored. (n = maxfragsperpacket.)
1249 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1250 if (GETIP(q
)->ip_off
!= next
) {
1251 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1252 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1257 next
+= GETIP(q
)->ip_len
;
1259 /* Make sure the last packet didn't have the IP_MF flag */
1260 if (p
->m_flags
& M_FRAG
) {
1261 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1262 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1269 * Reassembly is complete. Make sure the packet is a sane size.
1273 if (next
+ (IP_VHL_HL(ip
->ip_vhl
) << 2) > IP_MAXPACKET
) {
1274 ipstat
.ips_toolong
++;
1275 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1281 * Concatenate fragments.
1288 q
->m_nextpkt
= NULL
;
1289 for (q
= nq
; q
!= NULL
; q
= nq
) {
1291 q
->m_nextpkt
= NULL
;
1292 m
->m_pkthdr
.csum_flags
&= q
->m_pkthdr
.csum_flags
;
1293 m
->m_pkthdr
.csum_data
+= q
->m_pkthdr
.csum_data
;
1298 * Clean up the 1's complement checksum. Carry over 16 bits must
1299 * be added back. This assumes no more then 65535 packet fragments
1300 * were reassembled. A second carry can also occur (but not a third).
1302 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_data
& 0xffff) +
1303 (m
->m_pkthdr
.csum_data
>> 16);
1304 if (m
->m_pkthdr
.csum_data
> 0xFFFF)
1305 m
->m_pkthdr
.csum_data
-= 0xFFFF;
1310 * Extract firewall instructions from the fragment structure.
1312 *divinfo
= fp
->ipq_div_info
;
1316 * Create header for new ip packet by
1317 * modifying header of first packet;
1318 * dequeue and discard fragment reassembly header.
1319 * Make header visible.
1322 ip
->ip_src
= fp
->ipq_src
;
1323 ip
->ip_dst
= fp
->ipq_dst
;
1326 mpipe_free(&ipq_mpipe
, fp
);
1327 m
->m_len
+= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1328 m
->m_data
-= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1329 /* some debugging cruft by sklower, below, will go away soon */
1330 if (m
->m_flags
& M_PKTHDR
) { /* XXX this should be done elsewhere */
1333 for (n
= m
; n
; n
= n
->m_next
)
1335 m
->m_pkthdr
.len
= plen
;
1343 ipstat
.ips_fragdropped
++;
1353 * Free a fragment reassembly header and all
1354 * associated datagrams.
1357 ip_freef(struct ipq
*fp
)
1361 while (fp
->ipq_frags
) {
1363 fp
->ipq_frags
= q
->m_nextpkt
;
1364 q
->m_nextpkt
= NULL
;
1368 mpipe_free(&ipq_mpipe
, fp
);
1373 * IP timer processing;
1374 * if a timer expires on a reassembly
1375 * queue, discard it.
1384 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1388 while (fp
!= &ipq
[i
]) {
1391 if (fp
->prev
->ipq_ttl
== 0) {
1392 ipstat
.ips_fragtimeout
+= fp
->prev
->ipq_nfrags
;
1398 * If we are over the maximum number of fragments
1399 * (due to the limit being lowered), drain off
1400 * enough to get down to the new limit.
1402 if (maxnipq
>= 0 && nipq
> maxnipq
) {
1403 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1404 while (nipq
> maxnipq
&&
1405 (ipq
[i
].next
!= &ipq
[i
])) {
1406 ipstat
.ips_fragdropped
+=
1407 ipq
[i
].next
->ipq_nfrags
;
1408 ip_freef(ipq
[i
].next
);
1417 * Drain off all datagram fragments.
1424 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1425 while (ipq
[i
].next
!= &ipq
[i
]) {
1426 ipstat
.ips_fragdropped
+= ipq
[i
].next
->ipq_nfrags
;
1427 ip_freef(ipq
[i
].next
);
1434 * Do option processing on a datagram,
1435 * possibly discarding it if bad options are encountered,
1436 * or forwarding it if source-routed.
1437 * The pass argument is used when operating in the IPSTEALTH
1438 * mode to tell what options to process:
1439 * [LS]SRR (pass 0) or the others (pass 1).
1440 * The reason for as many as two passes is that when doing IPSTEALTH,
1441 * non-routing options should be processed only if the packet is for us.
1442 * Returns 1 if packet has been forwarded/freed,
1443 * 0 if the packet should be processed further.
1446 ip_dooptions(struct mbuf
*m
, int pass
, struct sockaddr_in
*next_hop
)
1448 struct sockaddr_in ipaddr
= { sizeof ipaddr
, AF_INET
};
1449 struct ip
*ip
= mtod(m
, struct ip
*);
1451 struct in_ifaddr
*ia
;
1452 int opt
, optlen
, cnt
, off
, code
, type
= ICMP_PARAMPROB
;
1453 boolean_t forward
= FALSE
;
1454 struct in_addr
*sin
, dst
;
1458 cp
= (u_char
*)(ip
+ 1);
1459 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof(struct ip
);
1460 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
1461 opt
= cp
[IPOPT_OPTVAL
];
1462 if (opt
== IPOPT_EOL
)
1464 if (opt
== IPOPT_NOP
)
1467 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
1468 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1471 optlen
= cp
[IPOPT_OLEN
];
1472 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
1473 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1483 * Source routing with record.
1484 * Find interface with current destination address.
1485 * If none on this machine then drop if strictly routed,
1486 * or do nothing if loosely routed.
1487 * Record interface address and bring up next address
1488 * component. If strictly routed make sure next
1489 * address is on directly accessible net.
1493 if (ipstealth
&& pass
> 0)
1495 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1496 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1499 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1500 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1503 ipaddr
.sin_addr
= ip
->ip_dst
;
1504 ia
= (struct in_ifaddr
*)
1505 ifa_ifwithaddr((struct sockaddr
*)&ipaddr
);
1507 if (opt
== IPOPT_SSRR
) {
1508 type
= ICMP_UNREACH
;
1509 code
= ICMP_UNREACH_SRCFAIL
;
1512 if (!ip_dosourceroute
)
1513 goto nosourcerouting
;
1515 * Loose routing, and not at next destination
1516 * yet; nothing to do except forward.
1520 off
--; /* 0 origin */
1521 if (off
> optlen
- (int)sizeof(struct in_addr
)) {
1523 * End of source route. Should be for us.
1525 if (!ip_acceptsourceroute
)
1526 goto nosourcerouting
;
1527 save_rte(cp
, ip
->ip_src
);
1532 if (!ip_dosourceroute
) {
1534 char buf
[sizeof "aaa.bbb.ccc.ddd"];
1537 * Acting as a router, so generate ICMP
1540 strcpy(buf
, inet_ntoa(ip
->ip_dst
));
1542 "attempted source route from %s to %s\n",
1543 inet_ntoa(ip
->ip_src
), buf
);
1544 type
= ICMP_UNREACH
;
1545 code
= ICMP_UNREACH_SRCFAIL
;
1549 * Not acting as a router,
1553 ipstat
.ips_cantforward
++;
1560 * locate outgoing interface
1562 memcpy(&ipaddr
.sin_addr
, cp
+ off
,
1563 sizeof ipaddr
.sin_addr
);
1565 if (opt
== IPOPT_SSRR
) {
1566 #define INA struct in_ifaddr *
1567 #define SA struct sockaddr *
1568 if ((ia
= (INA
)ifa_ifwithdstaddr((SA
)&ipaddr
))
1570 ia
= (INA
)ifa_ifwithnet((SA
)&ipaddr
);
1572 ia
= ip_rtaddr(ipaddr
.sin_addr
,
1573 &ipforward_rt
[mycpuid
]);
1575 type
= ICMP_UNREACH
;
1576 code
= ICMP_UNREACH_SRCFAIL
;
1579 ip
->ip_dst
= ipaddr
.sin_addr
;
1580 memcpy(cp
+ off
, &IA_SIN(ia
)->sin_addr
,
1581 sizeof(struct in_addr
));
1582 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1584 * Let ip_intr's mcast routing check handle mcast pkts
1586 forward
= !IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
));
1590 if (ipstealth
&& pass
== 0)
1592 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1593 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1596 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1597 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1601 * If no space remains, ignore.
1603 off
--; /* 0 origin */
1604 if (off
> optlen
- (int)sizeof(struct in_addr
))
1606 memcpy(&ipaddr
.sin_addr
, &ip
->ip_dst
,
1607 sizeof ipaddr
.sin_addr
);
1609 * locate outgoing interface; if we're the destination,
1610 * use the incoming interface (should be same).
1612 if ((ia
= (INA
)ifa_ifwithaddr((SA
)&ipaddr
)) == NULL
&&
1613 (ia
= ip_rtaddr(ipaddr
.sin_addr
,
1614 &ipforward_rt
[mycpuid
]))
1616 type
= ICMP_UNREACH
;
1617 code
= ICMP_UNREACH_HOST
;
1620 memcpy(cp
+ off
, &IA_SIN(ia
)->sin_addr
,
1621 sizeof(struct in_addr
));
1622 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1626 if (ipstealth
&& pass
== 0)
1628 code
= cp
- (u_char
*)ip
;
1629 if (optlen
< 4 || optlen
> 40) {
1630 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1633 if ((off
= cp
[IPOPT_OFFSET
]) < 5) {
1634 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1637 if (off
> optlen
- (int)sizeof(int32_t)) {
1638 cp
[IPOPT_OFFSET
+ 1] += (1 << 4);
1639 if ((cp
[IPOPT_OFFSET
+ 1] & 0xf0) == 0) {
1640 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1645 off
--; /* 0 origin */
1646 sin
= (struct in_addr
*)(cp
+ off
);
1647 switch (cp
[IPOPT_OFFSET
+ 1] & 0x0f) {
1649 case IPOPT_TS_TSONLY
:
1652 case IPOPT_TS_TSANDADDR
:
1653 if (off
+ sizeof(n_time
) +
1654 sizeof(struct in_addr
) > optlen
) {
1655 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1658 ipaddr
.sin_addr
= dst
;
1659 ia
= (INA
)ifaof_ifpforaddr((SA
)&ipaddr
,
1663 memcpy(sin
, &IA_SIN(ia
)->sin_addr
,
1664 sizeof(struct in_addr
));
1665 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1666 off
+= sizeof(struct in_addr
);
1669 case IPOPT_TS_PRESPEC
:
1670 if (off
+ sizeof(n_time
) +
1671 sizeof(struct in_addr
) > optlen
) {
1672 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1675 memcpy(&ipaddr
.sin_addr
, sin
,
1676 sizeof(struct in_addr
));
1677 if (ifa_ifwithaddr((SA
)&ipaddr
) == NULL
)
1679 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1680 off
+= sizeof(struct in_addr
);
1684 code
= &cp
[IPOPT_OFFSET
+ 1] - (u_char
*)ip
;
1688 memcpy(cp
+ off
, &ntime
, sizeof(n_time
));
1689 cp
[IPOPT_OFFSET
] += sizeof(n_time
);
1692 if (forward
&& ipforwarding
) {
1693 ip_forward(m
, TRUE
, next_hop
);
1698 icmp_error(m
, type
, code
, 0, 0);
1699 ipstat
.ips_badoptions
++;
1704 * Given address of next destination (final or next hop),
1705 * return internet address info of interface to be used to get there.
1708 ip_rtaddr(struct in_addr dst
, struct route
*ro
)
1710 struct sockaddr_in
*sin
;
1712 sin
= (struct sockaddr_in
*)&ro
->ro_dst
;
1714 if (ro
->ro_rt
== NULL
|| dst
.s_addr
!= sin
->sin_addr
.s_addr
) {
1715 if (ro
->ro_rt
!= NULL
) {
1719 sin
->sin_family
= AF_INET
;
1720 sin
->sin_len
= sizeof *sin
;
1721 sin
->sin_addr
= dst
;
1722 rtalloc_ign(ro
, RTF_PRCLONING
);
1725 if (ro
->ro_rt
== NULL
)
1728 return (ifatoia(ro
->ro_rt
->rt_ifa
));
1732 * Save incoming source route for use in replies,
1733 * to be picked up later by ip_srcroute if the receiver is interested.
1736 save_rte(u_char
*option
, struct in_addr dst
)
1740 olen
= option
[IPOPT_OLEN
];
1743 kprintf("save_rte: olen %d\n", olen
);
1745 if (olen
> sizeof(ip_srcrt
) - (1 + sizeof(dst
)))
1747 bcopy(option
, ip_srcrt
.srcopt
, olen
);
1748 ip_nhops
= (olen
- IPOPT_OFFSET
- 1) / sizeof(struct in_addr
);
1753 * Retrieve incoming source route for use in replies,
1754 * in the same form used by setsockopt.
1755 * The first hop is placed before the options, will be removed later.
1760 struct in_addr
*p
, *q
;
1765 m
= m_get(MB_DONTWAIT
, MT_HEADER
);
1769 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1771 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1772 m
->m_len
= ip_nhops
* sizeof(struct in_addr
) + sizeof(struct in_addr
) +
1776 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops
, m
->m_len
);
1780 * First save first hop for return route
1782 p
= &ip_srcrt
.route
[ip_nhops
- 1];
1783 *(mtod(m
, struct in_addr
*)) = *p
--;
1786 kprintf(" hops %x", ntohl(mtod(m
, struct in_addr
*)->s_addr
));
1790 * Copy option fields and padding (nop) to mbuf.
1792 ip_srcrt
.nop
= IPOPT_NOP
;
1793 ip_srcrt
.srcopt
[IPOPT_OFFSET
] = IPOPT_MINOFF
;
1794 memcpy(mtod(m
, caddr_t
) + sizeof(struct in_addr
), &ip_srcrt
.nop
,
1796 q
= (struct in_addr
*)(mtod(m
, caddr_t
) +
1797 sizeof(struct in_addr
) + OPTSIZ
);
1800 * Record return path as an IP source route,
1801 * reversing the path (pointers are now aligned).
1803 while (p
>= ip_srcrt
.route
) {
1806 kprintf(" %x", ntohl(q
->s_addr
));
1811 * Last hop goes to final destination.
1816 kprintf(" %x\n", ntohl(q
->s_addr
));
1822 * Strip out IP options.
1825 ip_stripoptions(struct mbuf
*m
)
1828 struct ip
*ip
= mtod(m
, struct ip
*);
1832 optlen
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof(struct ip
);
1833 opts
= (caddr_t
)(ip
+ 1);
1834 datalen
= m
->m_len
- (sizeof(struct ip
) + optlen
);
1835 bcopy(opts
+ optlen
, opts
, datalen
);
1837 if (m
->m_flags
& M_PKTHDR
)
1838 m
->m_pkthdr
.len
-= optlen
;
1839 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, sizeof(struct ip
) >> 2);
1842 u_char inetctlerrmap
[PRC_NCMDS
] = {
1844 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
1845 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
1846 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
1848 ENOPROTOOPT
, ECONNREFUSED
1852 * Forward a packet. If some error occurs return the sender
1853 * an icmp packet. Note we can't always generate a meaningful
1854 * icmp message because icmp doesn't have a large enough repertoire
1855 * of codes and types.
1857 * If not forwarding, just drop the packet. This could be confusing
1858 * if ipforwarding was zero but some routing protocol was advancing
1859 * us as a gateway to somewhere. However, we must let the routing
1860 * protocol deal with that.
1862 * The using_srcrt parameter indicates whether the packet is being forwarded
1863 * via a source route.
1866 ip_forward(struct mbuf
*m
, boolean_t using_srcrt
, struct sockaddr_in
*next_hop
)
1868 struct ip
*ip
= mtod(m
, struct ip
*);
1869 struct sockaddr_in
*ipforward_rtaddr
;
1871 int error
, type
= 0, code
= 0, destmtu
= 0;
1874 struct in_addr pkt_dst
;
1876 struct route
*cache_rt
= &ipforward_rt
[mycpuid
];
1880 * Cache the destination address of the packet; this may be
1881 * changed by use of 'ipfw fwd'.
1883 pkt_dst
= (next_hop
!= NULL
) ? next_hop
->sin_addr
: ip
->ip_dst
;
1887 kprintf("forward: src %x dst %x ttl %x\n",
1888 ip
->ip_src
.s_addr
, pkt_dst
.s_addr
, ip
->ip_ttl
);
1891 if (m
->m_flags
& (M_BCAST
| M_MCAST
) || !in_canforward(pkt_dst
)) {
1892 ipstat
.ips_cantforward
++;
1896 if (!ipstealth
&& ip
->ip_ttl
<= IPTTLDEC
) {
1897 icmp_error(m
, ICMP_TIMXCEED
, ICMP_TIMXCEED_INTRANS
, dest
, 0);
1901 ipforward_rtaddr
= (struct sockaddr_in
*) &cache_rt
->ro_dst
;
1902 if (cache_rt
->ro_rt
== NULL
||
1903 ipforward_rtaddr
->sin_addr
.s_addr
!= pkt_dst
.s_addr
) {
1904 if (cache_rt
->ro_rt
!= NULL
) {
1905 RTFREE(cache_rt
->ro_rt
);
1906 cache_rt
->ro_rt
= NULL
;
1908 ipforward_rtaddr
->sin_family
= AF_INET
;
1909 ipforward_rtaddr
->sin_len
= sizeof(struct sockaddr_in
);
1910 ipforward_rtaddr
->sin_addr
= pkt_dst
;
1911 rtalloc_ign(cache_rt
, RTF_PRCLONING
);
1912 if (cache_rt
->ro_rt
== NULL
) {
1913 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_HOST
, dest
, 0);
1917 rt
= cache_rt
->ro_rt
;
1920 * Save the IP header and at most 8 bytes of the payload,
1921 * in case we need to generate an ICMP message to the src.
1923 * XXX this can be optimized a lot by saving the data in a local
1924 * buffer on the stack (72 bytes at most), and only allocating the
1925 * mbuf if really necessary. The vast majority of the packets
1926 * are forwarded without having to send an ICMP back (either
1927 * because unnecessary, or because rate limited), so we are
1928 * really we are wasting a lot of work here.
1930 * We don't use m_copy() because it might return a reference
1931 * to a shared cluster. Both this function and ip_output()
1932 * assume exclusive access to the IP header in `m', so any
1933 * data in a cluster may change before we reach icmp_error().
1935 MGETHDR(mcopy
, MB_DONTWAIT
, m
->m_type
);
1936 if (mcopy
!= NULL
&& !m_dup_pkthdr(mcopy
, m
, MB_DONTWAIT
)) {
1938 * It's probably ok if the pkthdr dup fails (because
1939 * the deep copy of the tag chain failed), but for now
1940 * be conservative and just discard the copy since
1941 * code below may some day want the tags.
1946 if (mcopy
!= NULL
) {
1947 mcopy
->m_len
= imin((IP_VHL_HL(ip
->ip_vhl
) << 2) + 8,
1949 mcopy
->m_pkthdr
.len
= mcopy
->m_len
;
1950 m_copydata(m
, 0, mcopy
->m_len
, mtod(mcopy
, caddr_t
));
1954 ip
->ip_ttl
-= IPTTLDEC
;
1957 * If forwarding packet using same interface that it came in on,
1958 * perhaps should send a redirect to sender to shortcut a hop.
1959 * Only send redirect if source is sending directly to us,
1960 * and if packet was not source routed (or has any options).
1961 * Also, don't send redirect if forwarding using a default route
1962 * or a route modified by a redirect.
1964 if (rt
->rt_ifp
== m
->m_pkthdr
.rcvif
&&
1965 !(rt
->rt_flags
& (RTF_DYNAMIC
| RTF_MODIFIED
)) &&
1966 satosin(rt_key(rt
))->sin_addr
.s_addr
!= INADDR_ANY
&&
1967 ipsendredirects
&& !using_srcrt
&& next_hop
== NULL
) {
1968 u_long src
= ntohl(ip
->ip_src
.s_addr
);
1969 struct in_ifaddr
*rt_ifa
= (struct in_ifaddr
*)rt
->rt_ifa
;
1971 if (rt_ifa
!= NULL
&&
1972 (src
& rt_ifa
->ia_subnetmask
) == rt_ifa
->ia_subnet
) {
1973 if (rt
->rt_flags
& RTF_GATEWAY
)
1974 dest
= satosin(rt
->rt_gateway
)->sin_addr
.s_addr
;
1976 dest
= pkt_dst
.s_addr
;
1978 * Router requirements says to only send
1981 type
= ICMP_REDIRECT
;
1982 code
= ICMP_REDIRECT_HOST
;
1985 kprintf("redirect (%d) to %x\n", code
, dest
);
1990 if (next_hop
!= NULL
) {
1991 /* Pass IPFORWARD info if available */
1992 tag
.mh_type
= MT_TAG
;
1993 tag
.mh_flags
= PACKET_TAG_IPFORWARD
;
1994 tag
.mh_data
= (caddr_t
)next_hop
;
1996 m
= (struct mbuf
*)&tag
;
1999 error
= ip_output(m
, NULL
, cache_rt
, IP_FORWARDING
, NULL
,
2002 ipstat
.ips_forward
++;
2005 ipflow_create(cache_rt
, mcopy
);
2008 return; /* most common case */
2010 ipstat
.ips_redirectsent
++;
2013 ipstat
.ips_cantforward
++;
2020 * Send ICMP message.
2025 case 0: /* forwarded, but need redirect */
2026 /* type, code set above */
2029 case ENETUNREACH
: /* shouldn't happen, checked above */
2034 type
= ICMP_UNREACH
;
2035 code
= ICMP_UNREACH_HOST
;
2039 type
= ICMP_UNREACH
;
2040 code
= ICMP_UNREACH_NEEDFRAG
;
2043 * If the packet is routed over IPsec tunnel, tell the
2044 * originator the tunnel MTU.
2045 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2048 if (cache_rt
->ro_rt
!= NULL
) {
2049 struct secpolicy
*sp
= NULL
;
2054 sp
= ipsec4_getpolicybyaddr(mcopy
,
2060 destmtu
= cache_rt
->ro_rt
->rt_ifp
->if_mtu
;
2062 /* count IPsec header size */
2063 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2068 * find the correct route for outer IPv4
2069 * header, compute tunnel MTU.
2072 if (sp
->req
!= NULL
&& sp
->req
->sav
!= NULL
&&
2073 sp
->req
->sav
->sah
!= NULL
) {
2074 ro
= &sp
->req
->sav
->sah
->sa_route
;
2075 if (ro
->ro_rt
!= NULL
&&
2076 ro
->ro_rt
->rt_ifp
!= NULL
) {
2078 ro
->ro_rt
->rt_ifp
->if_mtu
;
2079 destmtu
-= ipsechdr
;
2088 * If the packet is routed over IPsec tunnel, tell the
2089 * originator the tunnel MTU.
2090 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2093 if (cache_rt
->ro_rt
!= NULL
) {
2094 struct secpolicy
*sp
= NULL
;
2099 sp
= ipsec_getpolicybyaddr(mcopy
,
2105 destmtu
= cache_rt
->ro_rt
->rt_ifp
->if_mtu
;
2107 /* count IPsec header size */
2108 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2113 * find the correct route for outer IPv4
2114 * header, compute tunnel MTU.
2117 if (sp
->req
!= NULL
&&
2118 sp
->req
->sav
!= NULL
&&
2119 sp
->req
->sav
->sah
!= NULL
) {
2120 ro
= &sp
->req
->sav
->sah
->sa_route
;
2121 if (ro
->ro_rt
!= NULL
&&
2122 ro
->ro_rt
->rt_ifp
!= NULL
) {
2124 ro
->ro_rt
->rt_ifp
->if_mtu
;
2125 destmtu
-= ipsechdr
;
2132 #else /* !IPSEC && !FAST_IPSEC */
2133 if (cache_rt
->ro_rt
!= NULL
)
2134 destmtu
= cache_rt
->ro_rt
->rt_ifp
->if_mtu
;
2136 ipstat
.ips_cantfrag
++;
2141 * A router should not generate ICMP_SOURCEQUENCH as
2142 * required in RFC1812 Requirements for IP Version 4 Routers.
2143 * Source quench could be a big problem under DoS attacks,
2144 * or if the underlying interface is rate-limited.
2145 * Those who need source quench packets may re-enable them
2146 * via the net.inet.ip.sendsourcequench sysctl.
2148 if (!ip_sendsourcequench
) {
2152 type
= ICMP_SOURCEQUENCH
;
2157 case EACCES
: /* ipfw denied packet */
2161 icmp_error(mcopy
, type
, code
, dest
, destmtu
);
2165 ip_savecontrol(struct inpcb
*inp
, struct mbuf
**mp
, struct ip
*ip
,
2168 if (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) {
2172 *mp
= sbcreatecontrol((caddr_t
) &tv
, sizeof(tv
),
2173 SCM_TIMESTAMP
, SOL_SOCKET
);
2175 mp
= &(*mp
)->m_next
;
2177 if (inp
->inp_flags
& INP_RECVDSTADDR
) {
2178 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_dst
,
2179 sizeof(struct in_addr
), IP_RECVDSTADDR
, IPPROTO_IP
);
2181 mp
= &(*mp
)->m_next
;
2183 if (inp
->inp_flags
& INP_RECVTTL
) {
2184 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_ttl
,
2185 sizeof(u_char
), IP_RECVTTL
, IPPROTO_IP
);
2187 mp
= &(*mp
)->m_next
;
2191 * Moving these out of udp_input() made them even more broken
2192 * than they already were.
2194 /* options were tossed already */
2195 if (inp
->inp_flags
& INP_RECVOPTS
) {
2196 *mp
= sbcreatecontrol((caddr_t
) opts_deleted_above
,
2197 sizeof(struct in_addr
), IP_RECVOPTS
, IPPROTO_IP
);
2199 mp
= &(*mp
)->m_next
;
2201 /* ip_srcroute doesn't do what we want here, need to fix */
2202 if (inp
->inp_flags
& INP_RECVRETOPTS
) {
2203 *mp
= sbcreatecontrol((caddr_t
) ip_srcroute(),
2204 sizeof(struct in_addr
), IP_RECVRETOPTS
, IPPROTO_IP
);
2206 mp
= &(*mp
)->m_next
;
2209 if (inp
->inp_flags
& INP_RECVIF
) {
2212 struct sockaddr_dl sdl
;
2215 struct sockaddr_dl
*sdp
;
2216 struct sockaddr_dl
*sdl2
= &sdlbuf
.sdl
;
2218 if (((ifp
= m
->m_pkthdr
.rcvif
)) &&
2219 ((ifp
->if_index
!= 0) && (ifp
->if_index
<= if_index
))) {
2220 sdp
= IF_LLSOCKADDR(ifp
);
2222 * Change our mind and don't try copy.
2224 if ((sdp
->sdl_family
!= AF_LINK
) ||
2225 (sdp
->sdl_len
> sizeof(sdlbuf
))) {
2228 bcopy(sdp
, sdl2
, sdp
->sdl_len
);
2232 offsetof(struct sockaddr_dl
, sdl_data
[0]);
2233 sdl2
->sdl_family
= AF_LINK
;
2234 sdl2
->sdl_index
= 0;
2235 sdl2
->sdl_nlen
= sdl2
->sdl_alen
= sdl2
->sdl_slen
= 0;
2237 *mp
= sbcreatecontrol((caddr_t
) sdl2
, sdl2
->sdl_len
,
2238 IP_RECVIF
, IPPROTO_IP
);
2240 mp
= &(*mp
)->m_next
;
2245 * XXX these routines are called from the upper part of the kernel.
2247 * They could also be moved to ip_mroute.c, since all the RSVP
2248 * handling is done there already.
2251 ip_rsvp_init(struct socket
*so
)
2253 if (so
->so_type
!= SOCK_RAW
||
2254 so
->so_proto
->pr_protocol
!= IPPROTO_RSVP
)
2257 if (ip_rsvpd
!= NULL
)
2262 * This may seem silly, but we need to be sure we don't over-increment
2263 * the RSVP counter, in case something slips up.
2278 * This may seem silly, but we need to be sure we don't over-decrement
2279 * the RSVP counter, in case something slips up.
2289 rsvp_input(struct mbuf
*m
, ...) /* XXX must fixup manually */
2295 off
= __va_arg(ap
, int);
2296 proto
= __va_arg(ap
, int);
2299 if (rsvp_input_p
) { /* call the real one if loaded */
2300 rsvp_input_p(m
, off
, proto
);
2304 /* Can still get packets with rsvp_on = 0 if there is a local member
2305 * of the group to which the RSVP packet is addressed. But in this
2306 * case we want to throw the packet away.
2314 if (ip_rsvpd
!= NULL
) {
2315 rip_input(m
, off
, proto
);
2318 /* Drop the packet */