- Gigabyte G33-S2H fixup, due to the present of multiple competing
[dragonfly.git] / sys / kern / vfs_bio.c
blob979bccfeebec27b38ef637a920b5487ebbd9a6ee
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.95 2007/11/07 00:46:36 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
68 * Buffer queues.
70 #define BUFFER_QUEUES 6
71 enum bufq_type {
72 BQUEUE_NONE, /* not on any queue */
73 BQUEUE_LOCKED, /* locked buffers */
74 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
75 BQUEUE_DIRTY, /* B_DELWRI buffers */
76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
77 BQUEUE_EMPTY /* empty buffer headers */
79 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
81 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
83 struct buf *buf; /* buffer header pool */
85 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
86 vm_offset_t to);
87 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
88 vm_offset_t to);
89 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
90 int pageno, vm_page_t m);
91 static void vfs_clean_pages(struct buf *bp);
92 static void vfs_setdirty(struct buf *bp);
93 static void vfs_vmio_release(struct buf *bp);
94 static int flushbufqueues(void);
96 static void buf_daemon (void);
98 * bogus page -- for I/O to/from partially complete buffers
99 * this is a temporary solution to the problem, but it is not
100 * really that bad. it would be better to split the buffer
101 * for input in the case of buffers partially already in memory,
102 * but the code is intricate enough already.
104 vm_page_t bogus_page;
105 int runningbufspace;
108 * These are all static, but make the ones we export globals so we do
109 * not need to use compiler magic.
111 int bufspace, maxbufspace,
112 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
113 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
114 static int lorunningspace, hirunningspace, runningbufreq;
115 int numdirtybuffers, lodirtybuffers, hidirtybuffers;
116 static int numfreebuffers, lofreebuffers, hifreebuffers;
117 static int getnewbufcalls;
118 static int getnewbufrestarts;
120 static int needsbuffer; /* locked by needsbuffer_spin */
121 static int bd_request; /* locked by needsbuffer_spin */
122 static struct spinlock needsbuffer_spin;
125 * Sysctls for operational control of the buffer cache.
127 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
128 "Number of dirty buffers to flush before bufdaemon becomes inactive");
129 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
130 "High watermark used to trigger explicit flushing of dirty buffers");
131 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
132 "Low watermark for special reserve in low-memory situations");
133 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
134 "High watermark for special reserve in low-memory situations");
135 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
136 "Minimum amount of buffer space required for active I/O");
137 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
138 "Maximum amount of buffer space to usable for active I/O");
140 * Sysctls determining current state of the buffer cache.
142 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
143 "Pending number of dirty buffers");
144 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
145 "Number of free buffers on the buffer cache free list");
146 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
147 "I/O bytes currently in progress due to asynchronous writes");
148 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
149 "Hard limit on maximum amount of memory usable for buffer space");
150 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
151 "Soft limit on maximum amount of memory usable for buffer space");
152 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
153 "Minimum amount of memory to reserve for system buffer space");
154 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
155 "Amount of memory available for buffers");
156 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
157 0, "Maximum amount of memory reserved for buffers using malloc");
158 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
159 "Amount of memory left for buffers using malloc-scheme");
160 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
161 "New buffer header acquisition requests");
162 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
163 0, "New buffer header acquisition restarts");
164 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
165 "Buffer acquisition restarts due to fragmented buffer map");
166 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
167 "Amount of time KVA space was deallocated in an arbitrary buffer");
168 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
169 "Amount of time buffer re-use operations were successful");
170 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
171 "sizeof(struct buf)");
173 char *buf_wmesg = BUF_WMESG;
175 extern int vm_swap_size;
177 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
178 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
179 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
180 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
183 * numdirtywakeup:
185 * If someone is blocked due to there being too many dirty buffers,
186 * and numdirtybuffers is now reasonable, wake them up.
189 static __inline void
190 numdirtywakeup(int level)
192 if (numdirtybuffers <= level) {
193 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
194 spin_lock_wr(&needsbuffer_spin);
195 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
196 spin_unlock_wr(&needsbuffer_spin);
197 wakeup(&needsbuffer);
203 * bufspacewakeup:
205 * Called when buffer space is potentially available for recovery.
206 * getnewbuf() will block on this flag when it is unable to free
207 * sufficient buffer space. Buffer space becomes recoverable when
208 * bp's get placed back in the queues.
211 static __inline void
212 bufspacewakeup(void)
215 * If someone is waiting for BUF space, wake them up. Even
216 * though we haven't freed the kva space yet, the waiting
217 * process will be able to now.
219 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
220 spin_lock_wr(&needsbuffer_spin);
221 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
222 spin_unlock_wr(&needsbuffer_spin);
223 wakeup(&needsbuffer);
228 * runningbufwakeup:
230 * Accounting for I/O in progress.
233 static __inline void
234 runningbufwakeup(struct buf *bp)
236 if (bp->b_runningbufspace) {
237 runningbufspace -= bp->b_runningbufspace;
238 bp->b_runningbufspace = 0;
239 if (runningbufreq && runningbufspace <= lorunningspace) {
240 runningbufreq = 0;
241 wakeup(&runningbufreq);
247 * bufcountwakeup:
249 * Called when a buffer has been added to one of the free queues to
250 * account for the buffer and to wakeup anyone waiting for free buffers.
251 * This typically occurs when large amounts of metadata are being handled
252 * by the buffer cache ( else buffer space runs out first, usually ).
255 static __inline void
256 bufcountwakeup(void)
258 ++numfreebuffers;
259 if (needsbuffer) {
260 spin_lock_wr(&needsbuffer_spin);
261 needsbuffer &= ~VFS_BIO_NEED_ANY;
262 if (numfreebuffers >= hifreebuffers)
263 needsbuffer &= ~VFS_BIO_NEED_FREE;
264 spin_unlock_wr(&needsbuffer_spin);
265 wakeup(&needsbuffer);
270 * waitrunningbufspace()
272 * runningbufspace is a measure of the amount of I/O currently
273 * running. This routine is used in async-write situations to
274 * prevent creating huge backups of pending writes to a device.
275 * Only asynchronous writes are governed by this function.
277 * Reads will adjust runningbufspace, but will not block based on it.
278 * The read load has a side effect of reducing the allowed write load.
280 * This does NOT turn an async write into a sync write. It waits
281 * for earlier writes to complete and generally returns before the
282 * caller's write has reached the device.
284 static __inline void
285 waitrunningbufspace(void)
287 if (runningbufspace > hirunningspace) {
288 crit_enter();
289 while (runningbufspace > hirunningspace) {
290 ++runningbufreq;
291 tsleep(&runningbufreq, 0, "wdrain", 0);
293 crit_exit();
298 * vfs_buf_test_cache:
300 * Called when a buffer is extended. This function clears the B_CACHE
301 * bit if the newly extended portion of the buffer does not contain
302 * valid data.
304 static __inline__
305 void
306 vfs_buf_test_cache(struct buf *bp,
307 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
308 vm_page_t m)
310 if (bp->b_flags & B_CACHE) {
311 int base = (foff + off) & PAGE_MASK;
312 if (vm_page_is_valid(m, base, size) == 0)
313 bp->b_flags &= ~B_CACHE;
318 * bd_wakeup:
320 * Wake up the buffer daemon if the number of outstanding dirty buffers
321 * is above specified threshold 'dirtybuflevel'.
323 * The buffer daemon is explicitly woken up when (a) the pending number
324 * of dirty buffers exceeds the recovery and stall mid-point value,
325 * (b) during bwillwrite() or (c) buf freelist was exhausted.
327 static __inline__
328 void
329 bd_wakeup(int dirtybuflevel)
331 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
332 spin_lock_wr(&needsbuffer_spin);
333 bd_request = 1;
334 spin_unlock_wr(&needsbuffer_spin);
335 wakeup(&bd_request);
340 * bd_speedup:
342 * Speed up the buffer cache flushing process.
345 static __inline__
346 void
347 bd_speedup(void)
349 bd_wakeup(1);
353 * bufinit:
355 * Load time initialisation of the buffer cache, called from machine
356 * dependant initialization code.
358 void
359 bufinit(void)
361 struct buf *bp;
362 vm_offset_t bogus_offset;
363 int i;
365 spin_init(&needsbuffer_spin);
367 /* next, make a null set of free lists */
368 for (i = 0; i < BUFFER_QUEUES; i++)
369 TAILQ_INIT(&bufqueues[i]);
371 /* finally, initialize each buffer header and stick on empty q */
372 for (i = 0; i < nbuf; i++) {
373 bp = &buf[i];
374 bzero(bp, sizeof *bp);
375 bp->b_flags = B_INVAL; /* we're just an empty header */
376 bp->b_cmd = BUF_CMD_DONE;
377 bp->b_qindex = BQUEUE_EMPTY;
378 initbufbio(bp);
379 xio_init(&bp->b_xio);
380 buf_dep_init(bp);
381 BUF_LOCKINIT(bp);
382 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
386 * maxbufspace is the absolute maximum amount of buffer space we are
387 * allowed to reserve in KVM and in real terms. The absolute maximum
388 * is nominally used by buf_daemon. hibufspace is the nominal maximum
389 * used by most other processes. The differential is required to
390 * ensure that buf_daemon is able to run when other processes might
391 * be blocked waiting for buffer space.
393 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
394 * this may result in KVM fragmentation which is not handled optimally
395 * by the system.
397 maxbufspace = nbuf * BKVASIZE;
398 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
399 lobufspace = hibufspace - MAXBSIZE;
401 lorunningspace = 512 * 1024;
402 hirunningspace = 1024 * 1024;
405 * Limit the amount of malloc memory since it is wired permanently into
406 * the kernel space. Even though this is accounted for in the buffer
407 * allocation, we don't want the malloced region to grow uncontrolled.
408 * The malloc scheme improves memory utilization significantly on average
409 * (small) directories.
411 maxbufmallocspace = hibufspace / 20;
414 * Reduce the chance of a deadlock occuring by limiting the number
415 * of delayed-write dirty buffers we allow to stack up.
417 hidirtybuffers = nbuf / 4 + 20;
418 numdirtybuffers = 0;
420 * To support extreme low-memory systems, make sure hidirtybuffers cannot
421 * eat up all available buffer space. This occurs when our minimum cannot
422 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
423 * BKVASIZE'd (8K) buffers.
425 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
426 hidirtybuffers >>= 1;
428 lodirtybuffers = hidirtybuffers / 2;
431 * Try to keep the number of free buffers in the specified range,
432 * and give special processes (e.g. like buf_daemon) access to an
433 * emergency reserve.
435 lofreebuffers = nbuf / 18 + 5;
436 hifreebuffers = 2 * lofreebuffers;
437 numfreebuffers = nbuf;
440 * Maximum number of async ops initiated per buf_daemon loop. This is
441 * somewhat of a hack at the moment, we really need to limit ourselves
442 * based on the number of bytes of I/O in-transit that were initiated
443 * from buf_daemon.
446 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
447 bogus_page = vm_page_alloc(&kernel_object,
448 (bogus_offset >> PAGE_SHIFT),
449 VM_ALLOC_NORMAL);
450 vmstats.v_wire_count++;
455 * Initialize the embedded bio structures
457 void
458 initbufbio(struct buf *bp)
460 bp->b_bio1.bio_buf = bp;
461 bp->b_bio1.bio_prev = NULL;
462 bp->b_bio1.bio_offset = NOOFFSET;
463 bp->b_bio1.bio_next = &bp->b_bio2;
464 bp->b_bio1.bio_done = NULL;
466 bp->b_bio2.bio_buf = bp;
467 bp->b_bio2.bio_prev = &bp->b_bio1;
468 bp->b_bio2.bio_offset = NOOFFSET;
469 bp->b_bio2.bio_next = NULL;
470 bp->b_bio2.bio_done = NULL;
474 * Reinitialize the embedded bio structures as well as any additional
475 * translation cache layers.
477 void
478 reinitbufbio(struct buf *bp)
480 struct bio *bio;
482 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
483 bio->bio_done = NULL;
484 bio->bio_offset = NOOFFSET;
489 * Push another BIO layer onto an existing BIO and return it. The new
490 * BIO layer may already exist, holding cached translation data.
492 struct bio *
493 push_bio(struct bio *bio)
495 struct bio *nbio;
497 if ((nbio = bio->bio_next) == NULL) {
498 int index = bio - &bio->bio_buf->b_bio_array[0];
499 if (index >= NBUF_BIO - 1) {
500 panic("push_bio: too many layers bp %p\n",
501 bio->bio_buf);
503 nbio = &bio->bio_buf->b_bio_array[index + 1];
504 bio->bio_next = nbio;
505 nbio->bio_prev = bio;
506 nbio->bio_buf = bio->bio_buf;
507 nbio->bio_offset = NOOFFSET;
508 nbio->bio_done = NULL;
509 nbio->bio_next = NULL;
511 KKASSERT(nbio->bio_done == NULL);
512 return(nbio);
515 void
516 pop_bio(struct bio *bio)
518 /* NOP */
521 void
522 clearbiocache(struct bio *bio)
524 while (bio) {
525 bio->bio_offset = NOOFFSET;
526 bio = bio->bio_next;
531 * bfreekva:
533 * Free the KVA allocation for buffer 'bp'.
535 * Must be called from a critical section as this is the only locking for
536 * buffer_map.
538 * Since this call frees up buffer space, we call bufspacewakeup().
540 static void
541 bfreekva(struct buf *bp)
543 int count;
545 if (bp->b_kvasize) {
546 ++buffreekvacnt;
547 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
548 vm_map_lock(&buffer_map);
549 bufspace -= bp->b_kvasize;
550 vm_map_delete(&buffer_map,
551 (vm_offset_t) bp->b_kvabase,
552 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
553 &count
555 vm_map_unlock(&buffer_map);
556 vm_map_entry_release(count);
557 bp->b_kvasize = 0;
558 bufspacewakeup();
563 * bremfree:
565 * Remove the buffer from the appropriate free list.
567 void
568 bremfree(struct buf *bp)
570 int old_qindex;
572 crit_enter();
573 old_qindex = bp->b_qindex;
575 if (bp->b_qindex != BQUEUE_NONE) {
576 KASSERT(BUF_REFCNTNB(bp) == 1,
577 ("bremfree: bp %p not locked",bp));
578 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
579 bp->b_qindex = BQUEUE_NONE;
580 } else {
581 if (BUF_REFCNTNB(bp) <= 1)
582 panic("bremfree: removing a buffer not on a queue");
586 * Fixup numfreebuffers count. If the buffer is invalid or not
587 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
588 * the buffer was free and we must decrement numfreebuffers.
590 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
591 switch(old_qindex) {
592 case BQUEUE_DIRTY:
593 case BQUEUE_CLEAN:
594 case BQUEUE_EMPTY:
595 case BQUEUE_EMPTYKVA:
596 --numfreebuffers;
597 break;
598 default:
599 break;
602 crit_exit();
607 * bread:
609 * Get a buffer with the specified data. Look in the cache first. We
610 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
611 * is set, the buffer is valid and we do not have to do anything ( see
612 * getblk() ).
615 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
617 struct buf *bp;
619 bp = getblk(vp, loffset, size, 0, 0);
620 *bpp = bp;
622 /* if not found in cache, do some I/O */
623 if ((bp->b_flags & B_CACHE) == 0) {
624 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
625 bp->b_flags &= ~(B_ERROR | B_INVAL);
626 bp->b_cmd = BUF_CMD_READ;
627 vfs_busy_pages(vp, bp);
628 vn_strategy(vp, &bp->b_bio1);
629 return (biowait(bp));
631 return (0);
635 * breadn:
637 * Operates like bread, but also starts asynchronous I/O on
638 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
639 * to initiating I/O . If B_CACHE is set, the buffer is valid
640 * and we do not have to do anything.
643 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
644 int *rabsize, int cnt, struct buf **bpp)
646 struct buf *bp, *rabp;
647 int i;
648 int rv = 0, readwait = 0;
650 *bpp = bp = getblk(vp, loffset, size, 0, 0);
652 /* if not found in cache, do some I/O */
653 if ((bp->b_flags & B_CACHE) == 0) {
654 bp->b_flags &= ~(B_ERROR | B_INVAL);
655 bp->b_cmd = BUF_CMD_READ;
656 vfs_busy_pages(vp, bp);
657 vn_strategy(vp, &bp->b_bio1);
658 ++readwait;
661 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
662 if (inmem(vp, *raoffset))
663 continue;
664 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
666 if ((rabp->b_flags & B_CACHE) == 0) {
667 rabp->b_flags |= B_ASYNC;
668 rabp->b_flags &= ~(B_ERROR | B_INVAL);
669 rabp->b_cmd = BUF_CMD_READ;
670 vfs_busy_pages(vp, rabp);
671 BUF_KERNPROC(rabp);
672 vn_strategy(vp, &rabp->b_bio1);
673 } else {
674 brelse(rabp);
678 if (readwait) {
679 rv = biowait(bp);
681 return (rv);
685 * bwrite:
687 * Write, release buffer on completion. (Done by iodone
688 * if async). Do not bother writing anything if the buffer
689 * is invalid.
691 * Note that we set B_CACHE here, indicating that buffer is
692 * fully valid and thus cacheable. This is true even of NFS
693 * now so we set it generally. This could be set either here
694 * or in biodone() since the I/O is synchronous. We put it
695 * here.
698 bwrite(struct buf *bp)
700 int oldflags;
702 if (bp->b_flags & B_INVAL) {
703 brelse(bp);
704 return (0);
707 oldflags = bp->b_flags;
709 if (BUF_REFCNTNB(bp) == 0)
710 panic("bwrite: buffer is not busy???");
711 crit_enter();
713 /* Mark the buffer clean */
714 bundirty(bp);
716 bp->b_flags &= ~B_ERROR;
717 bp->b_flags |= B_CACHE;
718 bp->b_cmd = BUF_CMD_WRITE;
719 vfs_busy_pages(bp->b_vp, bp);
722 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
723 * valid for vnode-backed buffers.
725 bp->b_runningbufspace = bp->b_bufsize;
726 runningbufspace += bp->b_runningbufspace;
728 crit_exit();
729 if (oldflags & B_ASYNC)
730 BUF_KERNPROC(bp);
731 vn_strategy(bp->b_vp, &bp->b_bio1);
733 if ((oldflags & B_ASYNC) == 0) {
734 int rtval = biowait(bp);
735 brelse(bp);
736 return (rtval);
737 } else if ((oldflags & B_NOWDRAIN) == 0) {
739 * don't allow the async write to saturate the I/O
740 * system. Deadlocks can occur only if a device strategy
741 * routine (like in VN) turns around and issues another
742 * high-level write, in which case B_NOWDRAIN is expected
743 * to be set. Otherwise we will not deadlock here because
744 * we are blocking waiting for I/O that is already in-progress
745 * to complete.
747 waitrunningbufspace();
750 return (0);
754 * bdwrite:
756 * Delayed write. (Buffer is marked dirty). Do not bother writing
757 * anything if the buffer is marked invalid.
759 * Note that since the buffer must be completely valid, we can safely
760 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
761 * biodone() in order to prevent getblk from writing the buffer
762 * out synchronously.
764 void
765 bdwrite(struct buf *bp)
767 if (BUF_REFCNTNB(bp) == 0)
768 panic("bdwrite: buffer is not busy");
770 if (bp->b_flags & B_INVAL) {
771 brelse(bp);
772 return;
774 bdirty(bp);
777 * Set B_CACHE, indicating that the buffer is fully valid. This is
778 * true even of NFS now.
780 bp->b_flags |= B_CACHE;
783 * This bmap keeps the system from needing to do the bmap later,
784 * perhaps when the system is attempting to do a sync. Since it
785 * is likely that the indirect block -- or whatever other datastructure
786 * that the filesystem needs is still in memory now, it is a good
787 * thing to do this. Note also, that if the pageout daemon is
788 * requesting a sync -- there might not be enough memory to do
789 * the bmap then... So, this is important to do.
791 if (bp->b_bio2.bio_offset == NOOFFSET) {
792 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
793 NULL, NULL);
797 * Set the *dirty* buffer range based upon the VM system dirty pages.
799 vfs_setdirty(bp);
802 * We need to do this here to satisfy the vnode_pager and the
803 * pageout daemon, so that it thinks that the pages have been
804 * "cleaned". Note that since the pages are in a delayed write
805 * buffer -- the VFS layer "will" see that the pages get written
806 * out on the next sync, or perhaps the cluster will be completed.
808 vfs_clean_pages(bp);
809 bqrelse(bp);
812 * Wakeup the buffer flushing daemon if we have a lot of dirty
813 * buffers (midpoint between our recovery point and our stall
814 * point).
816 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
819 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
820 * due to the softdep code.
825 * bdirty:
827 * Turn buffer into delayed write request by marking it B_DELWRI.
828 * B_RELBUF and B_NOCACHE must be cleared.
830 * We reassign the buffer to itself to properly update it in the
831 * dirty/clean lists.
833 * Since the buffer is not on a queue, we do not update the
834 * numfreebuffers count.
836 * Must be called from a critical section.
837 * The buffer must be on BQUEUE_NONE.
839 void
840 bdirty(struct buf *bp)
842 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
843 if (bp->b_flags & B_NOCACHE) {
844 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
845 bp->b_flags &= ~B_NOCACHE;
847 if (bp->b_flags & B_INVAL) {
848 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
850 bp->b_flags &= ~B_RELBUF;
852 if ((bp->b_flags & B_DELWRI) == 0) {
853 bp->b_flags |= B_DELWRI;
854 reassignbuf(bp);
855 ++numdirtybuffers;
856 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
861 * bundirty:
863 * Clear B_DELWRI for buffer.
865 * Since the buffer is not on a queue, we do not update the numfreebuffers
866 * count.
868 * Must be called from a critical section.
870 * The buffer is typically on BQUEUE_NONE but there is one case in
871 * brelse() that calls this function after placing the buffer on
872 * a different queue.
875 void
876 bundirty(struct buf *bp)
878 if (bp->b_flags & B_DELWRI) {
879 bp->b_flags &= ~B_DELWRI;
880 reassignbuf(bp);
881 --numdirtybuffers;
882 numdirtywakeup(lodirtybuffers);
885 * Since it is now being written, we can clear its deferred write flag.
887 bp->b_flags &= ~B_DEFERRED;
891 * bawrite:
893 * Asynchronous write. Start output on a buffer, but do not wait for
894 * it to complete. The buffer is released when the output completes.
896 * bwrite() ( or the VOP routine anyway ) is responsible for handling
897 * B_INVAL buffers. Not us.
899 void
900 bawrite(struct buf *bp)
902 bp->b_flags |= B_ASYNC;
903 bwrite(bp);
907 * bowrite:
909 * Ordered write. Start output on a buffer, and flag it so that the
910 * device will write it in the order it was queued. The buffer is
911 * released when the output completes. bwrite() ( or the VOP routine
912 * anyway ) is responsible for handling B_INVAL buffers.
915 bowrite(struct buf *bp)
917 bp->b_flags |= B_ORDERED | B_ASYNC;
918 return (bwrite(bp));
922 * bwillwrite:
924 * Called prior to the locking of any vnodes when we are expecting to
925 * write. We do not want to starve the buffer cache with too many
926 * dirty buffers so we block here. By blocking prior to the locking
927 * of any vnodes we attempt to avoid the situation where a locked vnode
928 * prevents the various system daemons from flushing related buffers.
931 void
932 bwillwrite(void)
934 if (numdirtybuffers >= hidirtybuffers) {
935 while (numdirtybuffers >= hidirtybuffers) {
936 bd_wakeup(1);
937 spin_lock_wr(&needsbuffer_spin);
938 if (numdirtybuffers >= hidirtybuffers) {
939 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
940 msleep(&needsbuffer, &needsbuffer_spin, 0,
941 "flswai", 0);
943 spin_unlock_wr(&needsbuffer_spin);
949 * buf_dirty_count_severe:
951 * Return true if we have too many dirty buffers.
954 buf_dirty_count_severe(void)
956 return(numdirtybuffers >= hidirtybuffers);
960 * brelse:
962 * Release a busy buffer and, if requested, free its resources. The
963 * buffer will be stashed in the appropriate bufqueue[] allowing it
964 * to be accessed later as a cache entity or reused for other purposes.
966 void
967 brelse(struct buf *bp)
969 #ifdef INVARIANTS
970 int saved_flags = bp->b_flags;
971 #endif
973 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
975 crit_enter();
978 * If B_NOCACHE is set we are being asked to destroy the buffer and
979 * its backing store. Clear B_DELWRI.
981 * B_NOCACHE is set in two cases: (1) when the caller really wants
982 * to destroy the buffer and backing store and (2) when the caller
983 * wants to destroy the buffer and backing store after a write
984 * completes.
986 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
987 bundirty(bp);
990 if (bp->b_flags & B_LOCKED)
991 bp->b_flags &= ~B_ERROR;
994 * If a write error occurs and the caller does not want to throw
995 * away the buffer, redirty the buffer. This will also clear
996 * B_NOCACHE.
998 if (bp->b_cmd == BUF_CMD_WRITE &&
999 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
1001 * Failed write, redirty. Must clear B_ERROR to prevent
1002 * pages from being scrapped. If B_INVAL is set then
1003 * this case is not run and the next case is run to
1004 * destroy the buffer. B_INVAL can occur if the buffer
1005 * is outside the range supported by the underlying device.
1007 bp->b_flags &= ~B_ERROR;
1008 bdirty(bp);
1009 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1010 (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1012 * Either a failed I/O or we were asked to free or not
1013 * cache the buffer.
1015 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1016 * buffer cannot be immediately freed.
1018 bp->b_flags |= B_INVAL;
1019 if (LIST_FIRST(&bp->b_dep) != NULL)
1020 buf_deallocate(bp);
1021 if (bp->b_flags & B_DELWRI) {
1022 --numdirtybuffers;
1023 numdirtywakeup(lodirtybuffers);
1025 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1029 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1030 * If vfs_vmio_release() is called with either bit set, the
1031 * underlying pages may wind up getting freed causing a previous
1032 * write (bdwrite()) to get 'lost' because pages associated with
1033 * a B_DELWRI bp are marked clean. Pages associated with a
1034 * B_LOCKED buffer may be mapped by the filesystem.
1036 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1037 * if B_DELWRI is set.
1039 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1040 * on pages to return pages to the VM page queues.
1042 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1043 bp->b_flags &= ~B_RELBUF;
1044 else if (vm_page_count_severe())
1045 bp->b_flags |= B_RELBUF;
1048 * At this point destroying the buffer is governed by the B_INVAL
1049 * or B_RELBUF flags.
1051 bp->b_cmd = BUF_CMD_DONE;
1054 * VMIO buffer rundown. Make sure the VM page array is restored
1055 * after an I/O may have replaces some of the pages with bogus pages
1056 * in order to not destroy dirty pages in a fill-in read.
1058 * Note that due to the code above, if a buffer is marked B_DELWRI
1059 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1060 * B_INVAL may still be set, however.
1062 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1063 * but not the backing store. B_NOCACHE will destroy the backing
1064 * store.
1066 * Note that dirty NFS buffers contain byte-granular write ranges
1067 * and should not be destroyed w/ B_INVAL even if the backing store
1068 * is left intact.
1070 if (bp->b_flags & B_VMIO) {
1072 * Rundown for VMIO buffers which are not dirty NFS buffers.
1074 int i, j, resid;
1075 vm_page_t m;
1076 off_t foff;
1077 vm_pindex_t poff;
1078 vm_object_t obj;
1079 struct vnode *vp;
1081 vp = bp->b_vp;
1084 * Get the base offset and length of the buffer. Note that
1085 * in the VMIO case if the buffer block size is not
1086 * page-aligned then b_data pointer may not be page-aligned.
1087 * But our b_xio.xio_pages array *IS* page aligned.
1089 * block sizes less then DEV_BSIZE (usually 512) are not
1090 * supported due to the page granularity bits (m->valid,
1091 * m->dirty, etc...).
1093 * See man buf(9) for more information
1096 resid = bp->b_bufsize;
1097 foff = bp->b_loffset;
1099 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1100 m = bp->b_xio.xio_pages[i];
1101 vm_page_flag_clear(m, PG_ZERO);
1103 * If we hit a bogus page, fixup *all* of them
1104 * now. Note that we left these pages wired
1105 * when we removed them so they had better exist,
1106 * and they cannot be ripped out from under us so
1107 * no critical section protection is necessary.
1109 if (m == bogus_page) {
1110 obj = vp->v_object;
1111 poff = OFF_TO_IDX(bp->b_loffset);
1113 for (j = i; j < bp->b_xio.xio_npages; j++) {
1114 vm_page_t mtmp;
1116 mtmp = bp->b_xio.xio_pages[j];
1117 if (mtmp == bogus_page) {
1118 mtmp = vm_page_lookup(obj, poff + j);
1119 if (!mtmp) {
1120 panic("brelse: page missing");
1122 bp->b_xio.xio_pages[j] = mtmp;
1126 if ((bp->b_flags & B_INVAL) == 0) {
1127 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1128 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1130 m = bp->b_xio.xio_pages[i];
1134 * Invalidate the backing store if B_NOCACHE is set
1135 * (e.g. used with vinvalbuf()). If this is NFS
1136 * we impose a requirement that the block size be
1137 * a multiple of PAGE_SIZE and create a temporary
1138 * hack to basically invalidate the whole page. The
1139 * problem is that NFS uses really odd buffer sizes
1140 * especially when tracking piecemeal writes and
1141 * it also vinvalbuf()'s a lot, which would result
1142 * in only partial page validation and invalidation
1143 * here. If the file page is mmap()'d, however,
1144 * all the valid bits get set so after we invalidate
1145 * here we would end up with weird m->valid values
1146 * like 0xfc. nfs_getpages() can't handle this so
1147 * we clear all the valid bits for the NFS case
1148 * instead of just some of them.
1150 * The real bug is the VM system having to set m->valid
1151 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1152 * itself is an artifact of the whole 512-byte
1153 * granular mess that exists to support odd block
1154 * sizes and UFS meta-data block sizes (e.g. 6144).
1155 * A complete rewrite is required.
1157 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1158 int poffset = foff & PAGE_MASK;
1159 int presid;
1161 presid = PAGE_SIZE - poffset;
1162 if (bp->b_vp->v_tag == VT_NFS &&
1163 bp->b_vp->v_type == VREG) {
1164 ; /* entire page */
1165 } else if (presid > resid) {
1166 presid = resid;
1168 KASSERT(presid >= 0, ("brelse: extra page"));
1169 vm_page_set_invalid(m, poffset, presid);
1171 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1172 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1174 if (bp->b_flags & (B_INVAL | B_RELBUF))
1175 vfs_vmio_release(bp);
1176 } else {
1178 * Rundown for non-VMIO buffers.
1180 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1181 #if 0
1182 if (bp->b_vp)
1183 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1184 #endif
1185 if (bp->b_bufsize)
1186 allocbuf(bp, 0);
1187 if (bp->b_vp)
1188 brelvp(bp);
1192 if (bp->b_qindex != BQUEUE_NONE)
1193 panic("brelse: free buffer onto another queue???");
1194 if (BUF_REFCNTNB(bp) > 1) {
1195 /* Temporary panic to verify exclusive locking */
1196 /* This panic goes away when we allow shared refs */
1197 panic("brelse: multiple refs");
1198 /* do not release to free list */
1199 BUF_UNLOCK(bp);
1200 crit_exit();
1201 return;
1205 * Figure out the correct queue to place the cleaned up buffer on.
1206 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1207 * disassociated from their vnode.
1209 if (bp->b_flags & B_LOCKED) {
1211 * Buffers that are locked are placed in the locked queue
1212 * immediately, regardless of their state.
1214 bp->b_qindex = BQUEUE_LOCKED;
1215 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1216 } else if (bp->b_bufsize == 0) {
1218 * Buffers with no memory. Due to conditionals near the top
1219 * of brelse() such buffers should probably already be
1220 * marked B_INVAL and disassociated from their vnode.
1222 bp->b_flags |= B_INVAL;
1223 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1224 KKASSERT((bp->b_flags & B_HASHED) == 0);
1225 if (bp->b_kvasize) {
1226 bp->b_qindex = BQUEUE_EMPTYKVA;
1227 } else {
1228 bp->b_qindex = BQUEUE_EMPTY;
1230 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1231 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1233 * Buffers with junk contents. Again these buffers had better
1234 * already be disassociated from their vnode.
1236 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1237 KKASSERT((bp->b_flags & B_HASHED) == 0);
1238 bp->b_flags |= B_INVAL;
1239 bp->b_qindex = BQUEUE_CLEAN;
1240 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1241 } else {
1243 * Remaining buffers. These buffers are still associated with
1244 * their vnode.
1246 switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1247 case B_DELWRI | B_AGE:
1248 bp->b_qindex = BQUEUE_DIRTY;
1249 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1250 break;
1251 case B_DELWRI:
1252 bp->b_qindex = BQUEUE_DIRTY;
1253 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1254 break;
1255 case B_AGE:
1256 bp->b_qindex = BQUEUE_CLEAN;
1257 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1258 break;
1259 default:
1260 bp->b_qindex = BQUEUE_CLEAN;
1261 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1262 break;
1267 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1268 * on the correct queue.
1270 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1271 bundirty(bp);
1274 * Fixup numfreebuffers count. The bp is on an appropriate queue
1275 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1276 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1277 * if B_INVAL is set ).
1279 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1280 bufcountwakeup();
1283 * Something we can maybe free or reuse
1285 if (bp->b_bufsize || bp->b_kvasize)
1286 bufspacewakeup();
1289 * Clean up temporary flags and unlock the buffer.
1291 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1292 B_DIRECT | B_NOWDRAIN);
1293 BUF_UNLOCK(bp);
1294 crit_exit();
1298 * bqrelse:
1300 * Release a buffer back to the appropriate queue but do not try to free
1301 * it. The buffer is expected to be used again soon.
1303 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1304 * biodone() to requeue an async I/O on completion. It is also used when
1305 * known good buffers need to be requeued but we think we may need the data
1306 * again soon.
1308 * XXX we should be able to leave the B_RELBUF hint set on completion.
1310 void
1311 bqrelse(struct buf *bp)
1313 crit_enter();
1315 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1317 if (bp->b_qindex != BQUEUE_NONE)
1318 panic("bqrelse: free buffer onto another queue???");
1319 if (BUF_REFCNTNB(bp) > 1) {
1320 /* do not release to free list */
1321 panic("bqrelse: multiple refs");
1322 BUF_UNLOCK(bp);
1323 crit_exit();
1324 return;
1326 if (bp->b_flags & B_LOCKED) {
1328 * Locked buffers are released to the locked queue. However,
1329 * if the buffer is dirty it will first go into the dirty
1330 * queue and later on after the I/O completes successfully it
1331 * will be released to the locked queue.
1333 bp->b_flags &= ~B_ERROR;
1334 bp->b_qindex = BQUEUE_LOCKED;
1335 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1336 } else if (bp->b_flags & B_DELWRI) {
1337 bp->b_qindex = BQUEUE_DIRTY;
1338 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1339 } else if (vm_page_count_severe()) {
1341 * We are too low on memory, we have to try to free the
1342 * buffer (most importantly: the wired pages making up its
1343 * backing store) *now*.
1345 crit_exit();
1346 brelse(bp);
1347 return;
1348 } else {
1349 bp->b_qindex = BQUEUE_CLEAN;
1350 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1353 if ((bp->b_flags & B_LOCKED) == 0 &&
1354 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1355 bufcountwakeup();
1359 * Something we can maybe free or reuse.
1361 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1362 bufspacewakeup();
1365 * Final cleanup and unlock. Clear bits that are only used while a
1366 * buffer is actively locked.
1368 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1369 BUF_UNLOCK(bp);
1370 crit_exit();
1374 * vfs_vmio_release:
1376 * Return backing pages held by the buffer 'bp' back to the VM system
1377 * if possible. The pages are freed if they are no longer valid or
1378 * attempt to free if it was used for direct I/O otherwise they are
1379 * sent to the page cache.
1381 * Pages that were marked busy are left alone and skipped.
1383 * The KVA mapping (b_data) for the underlying pages is removed by
1384 * this function.
1386 static void
1387 vfs_vmio_release(struct buf *bp)
1389 int i;
1390 vm_page_t m;
1392 crit_enter();
1393 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1394 m = bp->b_xio.xio_pages[i];
1395 bp->b_xio.xio_pages[i] = NULL;
1397 * In order to keep page LRU ordering consistent, put
1398 * everything on the inactive queue.
1400 vm_page_unwire(m, 0);
1402 * We don't mess with busy pages, it is
1403 * the responsibility of the process that
1404 * busied the pages to deal with them.
1406 if ((m->flags & PG_BUSY) || (m->busy != 0))
1407 continue;
1409 if (m->wire_count == 0) {
1410 vm_page_flag_clear(m, PG_ZERO);
1412 * Might as well free the page if we can and it has
1413 * no valid data. We also free the page if the
1414 * buffer was used for direct I/O.
1416 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1417 m->hold_count == 0) {
1418 vm_page_busy(m);
1419 vm_page_protect(m, VM_PROT_NONE);
1420 vm_page_free(m);
1421 } else if (bp->b_flags & B_DIRECT) {
1422 vm_page_try_to_free(m);
1423 } else if (vm_page_count_severe()) {
1424 vm_page_try_to_cache(m);
1428 crit_exit();
1429 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1430 if (bp->b_bufsize) {
1431 bufspacewakeup();
1432 bp->b_bufsize = 0;
1434 bp->b_xio.xio_npages = 0;
1435 bp->b_flags &= ~B_VMIO;
1436 if (bp->b_vp)
1437 brelvp(bp);
1441 * vfs_bio_awrite:
1443 * Implement clustered async writes for clearing out B_DELWRI buffers.
1444 * This is much better then the old way of writing only one buffer at
1445 * a time. Note that we may not be presented with the buffers in the
1446 * correct order, so we search for the cluster in both directions.
1448 * The buffer is locked on call.
1451 vfs_bio_awrite(struct buf *bp)
1453 int i;
1454 int j;
1455 off_t loffset = bp->b_loffset;
1456 struct vnode *vp = bp->b_vp;
1457 int nbytes;
1458 struct buf *bpa;
1459 int nwritten;
1460 int size;
1462 crit_enter();
1464 * right now we support clustered writing only to regular files. If
1465 * we find a clusterable block we could be in the middle of a cluster
1466 * rather then at the beginning.
1468 * NOTE: b_bio1 contains the logical loffset and is aliased
1469 * to b_loffset. b_bio2 contains the translated block number.
1471 if ((vp->v_type == VREG) &&
1472 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1473 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1475 size = vp->v_mount->mnt_stat.f_iosize;
1477 for (i = size; i < MAXPHYS; i += size) {
1478 if ((bpa = findblk(vp, loffset + i)) &&
1479 BUF_REFCNT(bpa) == 0 &&
1480 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1481 (B_DELWRI | B_CLUSTEROK)) &&
1482 (bpa->b_bufsize == size)) {
1483 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1484 (bpa->b_bio2.bio_offset !=
1485 bp->b_bio2.bio_offset + i))
1486 break;
1487 } else {
1488 break;
1491 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1492 if ((bpa = findblk(vp, loffset - j)) &&
1493 BUF_REFCNT(bpa) == 0 &&
1494 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1495 (B_DELWRI | B_CLUSTEROK)) &&
1496 (bpa->b_bufsize == size)) {
1497 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1498 (bpa->b_bio2.bio_offset !=
1499 bp->b_bio2.bio_offset - j))
1500 break;
1501 } else {
1502 break;
1505 j -= size;
1506 nbytes = (i + j);
1508 * this is a possible cluster write
1510 if (nbytes != size) {
1511 BUF_UNLOCK(bp);
1512 nwritten = cluster_wbuild(vp, size,
1513 loffset - j, nbytes);
1514 crit_exit();
1515 return nwritten;
1519 bremfree(bp);
1520 bp->b_flags |= B_ASYNC;
1522 crit_exit();
1524 * default (old) behavior, writing out only one block
1526 * XXX returns b_bufsize instead of b_bcount for nwritten?
1528 nwritten = bp->b_bufsize;
1529 bwrite(bp);
1531 return nwritten;
1535 * getnewbuf:
1537 * Find and initialize a new buffer header, freeing up existing buffers
1538 * in the bufqueues as necessary. The new buffer is returned locked.
1540 * Important: B_INVAL is not set. If the caller wishes to throw the
1541 * buffer away, the caller must set B_INVAL prior to calling brelse().
1543 * We block if:
1544 * We have insufficient buffer headers
1545 * We have insufficient buffer space
1546 * buffer_map is too fragmented ( space reservation fails )
1547 * If we have to flush dirty buffers ( but we try to avoid this )
1549 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1550 * Instead we ask the buf daemon to do it for us. We attempt to
1551 * avoid piecemeal wakeups of the pageout daemon.
1554 static struct buf *
1555 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1557 struct buf *bp;
1558 struct buf *nbp;
1559 int defrag = 0;
1560 int nqindex;
1561 static int flushingbufs;
1564 * We can't afford to block since we might be holding a vnode lock,
1565 * which may prevent system daemons from running. We deal with
1566 * low-memory situations by proactively returning memory and running
1567 * async I/O rather then sync I/O.
1570 ++getnewbufcalls;
1571 --getnewbufrestarts;
1572 restart:
1573 ++getnewbufrestarts;
1576 * Setup for scan. If we do not have enough free buffers,
1577 * we setup a degenerate case that immediately fails. Note
1578 * that if we are specially marked process, we are allowed to
1579 * dip into our reserves.
1581 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1583 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1584 * However, there are a number of cases (defragging, reusing, ...)
1585 * where we cannot backup.
1587 nqindex = BQUEUE_EMPTYKVA;
1588 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1590 if (nbp == NULL) {
1592 * If no EMPTYKVA buffers and we are either
1593 * defragging or reusing, locate a CLEAN buffer
1594 * to free or reuse. If bufspace useage is low
1595 * skip this step so we can allocate a new buffer.
1597 if (defrag || bufspace >= lobufspace) {
1598 nqindex = BQUEUE_CLEAN;
1599 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1603 * If we could not find or were not allowed to reuse a
1604 * CLEAN buffer, check to see if it is ok to use an EMPTY
1605 * buffer. We can only use an EMPTY buffer if allocating
1606 * its KVA would not otherwise run us out of buffer space.
1608 if (nbp == NULL && defrag == 0 &&
1609 bufspace + maxsize < hibufspace) {
1610 nqindex = BQUEUE_EMPTY;
1611 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1616 * Run scan, possibly freeing data and/or kva mappings on the fly
1617 * depending.
1620 while ((bp = nbp) != NULL) {
1621 int qindex = nqindex;
1624 * Calculate next bp ( we can only use it if we do not block
1625 * or do other fancy things ).
1627 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1628 switch(qindex) {
1629 case BQUEUE_EMPTY:
1630 nqindex = BQUEUE_EMPTYKVA;
1631 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1632 break;
1633 /* fall through */
1634 case BQUEUE_EMPTYKVA:
1635 nqindex = BQUEUE_CLEAN;
1636 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1637 break;
1638 /* fall through */
1639 case BQUEUE_CLEAN:
1641 * nbp is NULL.
1643 break;
1648 * Sanity Checks
1650 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1653 * Note: we no longer distinguish between VMIO and non-VMIO
1654 * buffers.
1657 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1660 * If we are defragging then we need a buffer with
1661 * b_kvasize != 0. XXX this situation should no longer
1662 * occur, if defrag is non-zero the buffer's b_kvasize
1663 * should also be non-zero at this point. XXX
1665 if (defrag && bp->b_kvasize == 0) {
1666 kprintf("Warning: defrag empty buffer %p\n", bp);
1667 continue;
1671 * Start freeing the bp. This is somewhat involved. nbp
1672 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1673 * on the clean list must be disassociated from their
1674 * current vnode. Buffers on the empty[kva] lists have
1675 * already been disassociated.
1678 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1679 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1680 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1681 goto restart;
1683 if (bp->b_qindex != qindex) {
1684 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1685 BUF_UNLOCK(bp);
1686 goto restart;
1688 bremfree(bp);
1691 * Dependancies must be handled before we disassociate the
1692 * vnode.
1694 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1695 * be immediately disassociated. HAMMER then becomes
1696 * responsible for releasing the buffer.
1698 if (LIST_FIRST(&bp->b_dep) != NULL) {
1699 buf_deallocate(bp);
1700 if (bp->b_flags & B_LOCKED) {
1701 bqrelse(bp);
1702 goto restart;
1706 if (qindex == BQUEUE_CLEAN) {
1707 if (bp->b_flags & B_VMIO) {
1708 bp->b_flags &= ~B_ASYNC;
1709 vfs_vmio_release(bp);
1711 if (bp->b_vp)
1712 brelvp(bp);
1716 * NOTE: nbp is now entirely invalid. We can only restart
1717 * the scan from this point on.
1719 * Get the rest of the buffer freed up. b_kva* is still
1720 * valid after this operation.
1723 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1724 KKASSERT((bp->b_flags & B_HASHED) == 0);
1727 * critical section protection is not required when
1728 * scrapping a buffer's contents because it is already
1729 * wired.
1731 if (bp->b_bufsize)
1732 allocbuf(bp, 0);
1734 bp->b_flags = B_BNOCLIP;
1735 bp->b_cmd = BUF_CMD_DONE;
1736 bp->b_vp = NULL;
1737 bp->b_error = 0;
1738 bp->b_resid = 0;
1739 bp->b_bcount = 0;
1740 bp->b_xio.xio_npages = 0;
1741 bp->b_dirtyoff = bp->b_dirtyend = 0;
1742 reinitbufbio(bp);
1743 buf_dep_init(bp);
1746 * If we are defragging then free the buffer.
1748 if (defrag) {
1749 bp->b_flags |= B_INVAL;
1750 bfreekva(bp);
1751 brelse(bp);
1752 defrag = 0;
1753 goto restart;
1757 * If we are overcomitted then recover the buffer and its
1758 * KVM space. This occurs in rare situations when multiple
1759 * processes are blocked in getnewbuf() or allocbuf().
1761 if (bufspace >= hibufspace)
1762 flushingbufs = 1;
1763 if (flushingbufs && bp->b_kvasize != 0) {
1764 bp->b_flags |= B_INVAL;
1765 bfreekva(bp);
1766 brelse(bp);
1767 goto restart;
1769 if (bufspace < lobufspace)
1770 flushingbufs = 0;
1771 break;
1775 * If we exhausted our list, sleep as appropriate. We may have to
1776 * wakeup various daemons and write out some dirty buffers.
1778 * Generally we are sleeping due to insufficient buffer space.
1781 if (bp == NULL) {
1782 int flags;
1783 char *waitmsg;
1785 if (defrag) {
1786 flags = VFS_BIO_NEED_BUFSPACE;
1787 waitmsg = "nbufkv";
1788 } else if (bufspace >= hibufspace) {
1789 waitmsg = "nbufbs";
1790 flags = VFS_BIO_NEED_BUFSPACE;
1791 } else {
1792 waitmsg = "newbuf";
1793 flags = VFS_BIO_NEED_ANY;
1796 bd_speedup(); /* heeeelp */
1798 needsbuffer |= flags;
1799 while (needsbuffer & flags) {
1800 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1801 return (NULL);
1803 } else {
1805 * We finally have a valid bp. We aren't quite out of the
1806 * woods, we still have to reserve kva space. In order
1807 * to keep fragmentation sane we only allocate kva in
1808 * BKVASIZE chunks.
1810 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1812 if (maxsize != bp->b_kvasize) {
1813 vm_offset_t addr = 0;
1814 int count;
1816 bfreekva(bp);
1818 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1819 vm_map_lock(&buffer_map);
1821 if (vm_map_findspace(&buffer_map,
1822 vm_map_min(&buffer_map), maxsize,
1823 maxsize, &addr)) {
1825 * Uh oh. Buffer map is too fragmented. We
1826 * must defragment the map.
1828 vm_map_unlock(&buffer_map);
1829 vm_map_entry_release(count);
1830 ++bufdefragcnt;
1831 defrag = 1;
1832 bp->b_flags |= B_INVAL;
1833 brelse(bp);
1834 goto restart;
1836 if (addr) {
1837 vm_map_insert(&buffer_map, &count,
1838 NULL, 0,
1839 addr, addr + maxsize,
1840 VM_MAPTYPE_NORMAL,
1841 VM_PROT_ALL, VM_PROT_ALL,
1842 MAP_NOFAULT);
1844 bp->b_kvabase = (caddr_t) addr;
1845 bp->b_kvasize = maxsize;
1846 bufspace += bp->b_kvasize;
1847 ++bufreusecnt;
1849 vm_map_unlock(&buffer_map);
1850 vm_map_entry_release(count);
1852 bp->b_data = bp->b_kvabase;
1854 return(bp);
1858 * buf_daemon:
1860 * Buffer flushing daemon. Buffers are normally flushed by the
1861 * update daemon but if it cannot keep up this process starts to
1862 * take the load in an attempt to prevent getnewbuf() from blocking.
1865 static struct thread *bufdaemonthread;
1867 static struct kproc_desc buf_kp = {
1868 "bufdaemon",
1869 buf_daemon,
1870 &bufdaemonthread
1872 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1874 static void
1875 buf_daemon(void)
1878 * This process needs to be suspended prior to shutdown sync.
1880 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1881 bufdaemonthread, SHUTDOWN_PRI_LAST);
1884 * This process is allowed to take the buffer cache to the limit
1886 crit_enter();
1888 for (;;) {
1889 kproc_suspend_loop();
1892 * Do the flush. Limit the amount of in-transit I/O we
1893 * allow to build up, otherwise we would completely saturate
1894 * the I/O system. Wakeup any waiting processes before we
1895 * normally would so they can run in parallel with our drain.
1897 while (numdirtybuffers > lodirtybuffers) {
1898 if (flushbufqueues() == 0)
1899 break;
1900 waitrunningbufspace();
1901 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1905 * Only clear bd_request if we have reached our low water
1906 * mark. The buf_daemon normally waits 5 seconds and
1907 * then incrementally flushes any dirty buffers that have
1908 * built up, within reason.
1910 * If we were unable to hit our low water mark and couldn't
1911 * find any flushable buffers, we sleep half a second.
1912 * Otherwise we loop immediately.
1914 if (numdirtybuffers <= lodirtybuffers) {
1916 * We reached our low water mark, reset the
1917 * request and sleep until we are needed again.
1918 * The sleep is just so the suspend code works.
1920 spin_lock_wr(&needsbuffer_spin);
1921 bd_request = 0;
1922 msleep(&bd_request, &needsbuffer_spin, 0, "psleep", hz);
1923 spin_unlock_wr(&needsbuffer_spin);
1924 } else {
1926 * We couldn't find any flushable dirty buffers but
1927 * still have too many dirty buffers, we
1928 * have to sleep and try again. (rare)
1930 tsleep(&bd_request, 0, "qsleep", hz / 2);
1936 * flushbufqueues:
1938 * Try to flush a buffer in the dirty queue. We must be careful to
1939 * free up B_INVAL buffers instead of write them, which NFS is
1940 * particularly sensitive to.
1943 static int
1944 flushbufqueues(void)
1946 struct buf *bp;
1947 int r = 0;
1949 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1951 while (bp) {
1952 KASSERT((bp->b_flags & B_DELWRI),
1953 ("unexpected clean buffer %p", bp));
1954 if (bp->b_flags & B_DELWRI) {
1955 if (bp->b_flags & B_INVAL) {
1956 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1957 panic("flushbufqueues: locked buf");
1958 bremfree(bp);
1959 brelse(bp);
1960 ++r;
1961 break;
1963 if (LIST_FIRST(&bp->b_dep) != NULL &&
1964 (bp->b_flags & B_DEFERRED) == 0 &&
1965 buf_countdeps(bp, 0)) {
1966 TAILQ_REMOVE(&bufqueues[BQUEUE_DIRTY],
1967 bp, b_freelist);
1968 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY],
1969 bp, b_freelist);
1970 bp->b_flags |= B_DEFERRED;
1971 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1972 continue;
1976 * Only write it out if we can successfully lock
1977 * it. If the buffer has a dependancy,
1978 * buf_checkwrite must also return 0.
1980 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1981 if (LIST_FIRST(&bp->b_dep) != NULL &&
1982 buf_checkwrite(bp)) {
1983 bremfree(bp);
1984 brelse(bp);
1985 } else {
1986 vfs_bio_awrite(bp);
1988 ++r;
1989 break;
1992 bp = TAILQ_NEXT(bp, b_freelist);
1994 return (r);
1998 * inmem:
2000 * Returns true if no I/O is needed to access the associated VM object.
2001 * This is like findblk except it also hunts around in the VM system for
2002 * the data.
2004 * Note that we ignore vm_page_free() races from interrupts against our
2005 * lookup, since if the caller is not protected our return value will not
2006 * be any more valid then otherwise once we exit the critical section.
2009 inmem(struct vnode *vp, off_t loffset)
2011 vm_object_t obj;
2012 vm_offset_t toff, tinc, size;
2013 vm_page_t m;
2015 if (findblk(vp, loffset))
2016 return 1;
2017 if (vp->v_mount == NULL)
2018 return 0;
2019 if ((obj = vp->v_object) == NULL)
2020 return 0;
2022 size = PAGE_SIZE;
2023 if (size > vp->v_mount->mnt_stat.f_iosize)
2024 size = vp->v_mount->mnt_stat.f_iosize;
2026 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2027 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2028 if (m == NULL)
2029 return 0;
2030 tinc = size;
2031 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2032 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2033 if (vm_page_is_valid(m,
2034 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2035 return 0;
2037 return 1;
2041 * vfs_setdirty:
2043 * Sets the dirty range for a buffer based on the status of the dirty
2044 * bits in the pages comprising the buffer.
2046 * The range is limited to the size of the buffer.
2048 * This routine is primarily used by NFS, but is generalized for the
2049 * B_VMIO case.
2051 static void
2052 vfs_setdirty(struct buf *bp)
2054 int i;
2055 vm_object_t object;
2058 * Degenerate case - empty buffer
2061 if (bp->b_bufsize == 0)
2062 return;
2065 * We qualify the scan for modified pages on whether the
2066 * object has been flushed yet. The OBJ_WRITEABLE flag
2067 * is not cleared simply by protecting pages off.
2070 if ((bp->b_flags & B_VMIO) == 0)
2071 return;
2073 object = bp->b_xio.xio_pages[0]->object;
2075 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2076 kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2077 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2078 kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2080 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2081 vm_offset_t boffset;
2082 vm_offset_t eoffset;
2085 * test the pages to see if they have been modified directly
2086 * by users through the VM system.
2088 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2089 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2090 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2094 * Calculate the encompassing dirty range, boffset and eoffset,
2095 * (eoffset - boffset) bytes.
2098 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2099 if (bp->b_xio.xio_pages[i]->dirty)
2100 break;
2102 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2104 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2105 if (bp->b_xio.xio_pages[i]->dirty) {
2106 break;
2109 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2112 * Fit it to the buffer.
2115 if (eoffset > bp->b_bcount)
2116 eoffset = bp->b_bcount;
2119 * If we have a good dirty range, merge with the existing
2120 * dirty range.
2123 if (boffset < eoffset) {
2124 if (bp->b_dirtyoff > boffset)
2125 bp->b_dirtyoff = boffset;
2126 if (bp->b_dirtyend < eoffset)
2127 bp->b_dirtyend = eoffset;
2133 * findblk:
2135 * Locate and return the specified buffer, or NULL if the buffer does
2136 * not exist. Do not attempt to lock the buffer or manipulate it in
2137 * any way. The caller must validate that the correct buffer has been
2138 * obtain after locking it.
2140 struct buf *
2141 findblk(struct vnode *vp, off_t loffset)
2143 struct buf *bp;
2145 crit_enter();
2146 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2147 crit_exit();
2148 return(bp);
2152 * getblk:
2154 * Get a block given a specified block and offset into a file/device.
2155 * B_INVAL may or may not be set on return. The caller should clear
2156 * B_INVAL prior to initiating a READ.
2158 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2159 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2160 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2161 * without doing any of those things the system will likely believe
2162 * the buffer to be valid (especially if it is not B_VMIO), and the
2163 * next getblk() will return the buffer with B_CACHE set.
2165 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2166 * an existing buffer.
2168 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2169 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2170 * and then cleared based on the backing VM. If the previous buffer is
2171 * non-0-sized but invalid, B_CACHE will be cleared.
2173 * If getblk() must create a new buffer, the new buffer is returned with
2174 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2175 * case it is returned with B_INVAL clear and B_CACHE set based on the
2176 * backing VM.
2178 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2179 * B_CACHE bit is clear.
2181 * What this means, basically, is that the caller should use B_CACHE to
2182 * determine whether the buffer is fully valid or not and should clear
2183 * B_INVAL prior to issuing a read. If the caller intends to validate
2184 * the buffer by loading its data area with something, the caller needs
2185 * to clear B_INVAL. If the caller does this without issuing an I/O,
2186 * the caller should set B_CACHE ( as an optimization ), else the caller
2187 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2188 * a write attempt or if it was a successfull read. If the caller
2189 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2190 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2192 struct buf *
2193 getblk(struct vnode *vp, off_t loffset, int size, int slpflag, int slptimeo)
2195 struct buf *bp;
2197 if (size > MAXBSIZE)
2198 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2199 if (vp->v_object == NULL)
2200 panic("getblk: vnode %p has no object!", vp);
2202 crit_enter();
2203 loop:
2205 * Block if we are low on buffers. Certain processes are allowed
2206 * to completely exhaust the buffer cache.
2208 * If this check ever becomes a bottleneck it may be better to
2209 * move it into the else, when findblk() fails. At the moment
2210 * it isn't a problem.
2212 * XXX remove, we cannot afford to block anywhere if holding a vnode
2213 * lock in low-memory situation, so take it to the max.
2215 if (numfreebuffers == 0) {
2216 if (!curproc)
2217 return NULL;
2218 needsbuffer |= VFS_BIO_NEED_ANY;
2219 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2222 if ((bp = findblk(vp, loffset))) {
2224 * The buffer was found in the cache, but we need to lock it.
2225 * Even with LK_NOWAIT the lockmgr may break our critical
2226 * section, so double-check the validity of the buffer
2227 * once the lock has been obtained.
2229 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2230 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2231 if (slpflag & PCATCH)
2232 lkflags |= LK_PCATCH;
2233 if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2234 ENOLCK) {
2235 goto loop;
2237 crit_exit();
2238 return (NULL);
2242 * Once the buffer has been locked, make sure we didn't race
2243 * a buffer recyclement. Buffers that are no longer hashed
2244 * will have b_vp == NULL, so this takes care of that check
2245 * as well.
2247 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2248 kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2249 BUF_UNLOCK(bp);
2250 goto loop;
2254 * All vnode-based buffers must be backed by a VM object.
2256 KKASSERT(bp->b_flags & B_VMIO);
2257 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2260 * Make sure that B_INVAL buffers do not have a cached
2261 * block number translation.
2263 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2264 kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2265 clearbiocache(&bp->b_bio2);
2269 * The buffer is locked. B_CACHE is cleared if the buffer is
2270 * invalid.
2272 if (bp->b_flags & B_INVAL)
2273 bp->b_flags &= ~B_CACHE;
2274 bremfree(bp);
2277 * Any size inconsistancy with a dirty buffer or a buffer
2278 * with a softupdates dependancy must be resolved. Resizing
2279 * the buffer in such circumstances can lead to problems.
2281 if (size != bp->b_bcount) {
2282 if (bp->b_flags & B_DELWRI) {
2283 bp->b_flags |= B_NOCACHE;
2284 bwrite(bp);
2285 } else if (LIST_FIRST(&bp->b_dep)) {
2286 bp->b_flags |= B_NOCACHE;
2287 bwrite(bp);
2288 } else {
2289 bp->b_flags |= B_RELBUF;
2290 brelse(bp);
2292 goto loop;
2294 KKASSERT(size <= bp->b_kvasize);
2295 KASSERT(bp->b_loffset != NOOFFSET,
2296 ("getblk: no buffer offset"));
2299 * A buffer with B_DELWRI set and B_CACHE clear must
2300 * be committed before we can return the buffer in
2301 * order to prevent the caller from issuing a read
2302 * ( due to B_CACHE not being set ) and overwriting
2303 * it.
2305 * Most callers, including NFS and FFS, need this to
2306 * operate properly either because they assume they
2307 * can issue a read if B_CACHE is not set, or because
2308 * ( for example ) an uncached B_DELWRI might loop due
2309 * to softupdates re-dirtying the buffer. In the latter
2310 * case, B_CACHE is set after the first write completes,
2311 * preventing further loops.
2313 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2314 * above while extending the buffer, we cannot allow the
2315 * buffer to remain with B_CACHE set after the write
2316 * completes or it will represent a corrupt state. To
2317 * deal with this we set B_NOCACHE to scrap the buffer
2318 * after the write.
2320 * We might be able to do something fancy, like setting
2321 * B_CACHE in bwrite() except if B_DELWRI is already set,
2322 * so the below call doesn't set B_CACHE, but that gets real
2323 * confusing. This is much easier.
2326 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2327 bp->b_flags |= B_NOCACHE;
2328 bwrite(bp);
2329 goto loop;
2331 crit_exit();
2332 } else {
2334 * Buffer is not in-core, create new buffer. The buffer
2335 * returned by getnewbuf() is locked. Note that the returned
2336 * buffer is also considered valid (not marked B_INVAL).
2338 * Calculating the offset for the I/O requires figuring out
2339 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2340 * the mount's f_iosize otherwise. If the vnode does not
2341 * have an associated mount we assume that the passed size is
2342 * the block size.
2344 * Note that vn_isdisk() cannot be used here since it may
2345 * return a failure for numerous reasons. Note that the
2346 * buffer size may be larger then the block size (the caller
2347 * will use block numbers with the proper multiple). Beware
2348 * of using any v_* fields which are part of unions. In
2349 * particular, in DragonFly the mount point overloading
2350 * mechanism uses the namecache only and the underlying
2351 * directory vnode is not a special case.
2353 int bsize, maxsize;
2355 if (vp->v_type == VBLK || vp->v_type == VCHR)
2356 bsize = DEV_BSIZE;
2357 else if (vp->v_mount)
2358 bsize = vp->v_mount->mnt_stat.f_iosize;
2359 else
2360 bsize = size;
2362 maxsize = size + (loffset & PAGE_MASK);
2363 maxsize = imax(maxsize, bsize);
2365 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2366 if (slpflag || slptimeo) {
2367 crit_exit();
2368 return NULL;
2370 goto loop;
2374 * This code is used to make sure that a buffer is not
2375 * created while the getnewbuf routine is blocked.
2376 * This can be a problem whether the vnode is locked or not.
2377 * If the buffer is created out from under us, we have to
2378 * throw away the one we just created. There is no window
2379 * race because we are safely running in a critical section
2380 * from the point of the duplicate buffer creation through
2381 * to here, and we've locked the buffer.
2383 if (findblk(vp, loffset)) {
2384 bp->b_flags |= B_INVAL;
2385 brelse(bp);
2386 goto loop;
2390 * Insert the buffer into the hash, so that it can
2391 * be found by findblk().
2393 * Make sure the translation layer has been cleared.
2395 bp->b_loffset = loffset;
2396 bp->b_bio2.bio_offset = NOOFFSET;
2397 /* bp->b_bio2.bio_next = NULL; */
2399 bgetvp(vp, bp);
2402 * All vnode-based buffers must be backed by a VM object.
2404 KKASSERT(vp->v_object != NULL);
2405 bp->b_flags |= B_VMIO;
2406 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2408 allocbuf(bp, size);
2410 crit_exit();
2412 return (bp);
2416 * regetblk(bp)
2418 * Reacquire a buffer that was previously released to the locked queue,
2419 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2420 * set B_LOCKED (which handles the acquisition race).
2422 * To this end, either B_LOCKED must be set or the dependancy list must be
2423 * non-empty.
2425 void
2426 regetblk(struct buf *bp)
2428 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2429 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2430 crit_enter();
2431 bremfree(bp);
2432 crit_exit();
2436 * geteblk:
2438 * Get an empty, disassociated buffer of given size. The buffer is
2439 * initially set to B_INVAL.
2441 * critical section protection is not required for the allocbuf()
2442 * call because races are impossible here.
2444 struct buf *
2445 geteblk(int size)
2447 struct buf *bp;
2448 int maxsize;
2450 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2452 crit_enter();
2453 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2455 crit_exit();
2456 allocbuf(bp, size);
2457 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2458 return (bp);
2463 * allocbuf:
2465 * This code constitutes the buffer memory from either anonymous system
2466 * memory (in the case of non-VMIO operations) or from an associated
2467 * VM object (in the case of VMIO operations). This code is able to
2468 * resize a buffer up or down.
2470 * Note that this code is tricky, and has many complications to resolve
2471 * deadlock or inconsistant data situations. Tread lightly!!!
2472 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2473 * the caller. Calling this code willy nilly can result in the loss of data.
2475 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2476 * B_CACHE for the non-VMIO case.
2478 * This routine does not need to be called from a critical section but you
2479 * must own the buffer.
2482 allocbuf(struct buf *bp, int size)
2484 int newbsize, mbsize;
2485 int i;
2487 if (BUF_REFCNT(bp) == 0)
2488 panic("allocbuf: buffer not busy");
2490 if (bp->b_kvasize < size)
2491 panic("allocbuf: buffer too small");
2493 if ((bp->b_flags & B_VMIO) == 0) {
2494 caddr_t origbuf;
2495 int origbufsize;
2497 * Just get anonymous memory from the kernel. Don't
2498 * mess with B_CACHE.
2500 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2501 if (bp->b_flags & B_MALLOC)
2502 newbsize = mbsize;
2503 else
2504 newbsize = round_page(size);
2506 if (newbsize < bp->b_bufsize) {
2508 * Malloced buffers are not shrunk
2510 if (bp->b_flags & B_MALLOC) {
2511 if (newbsize) {
2512 bp->b_bcount = size;
2513 } else {
2514 kfree(bp->b_data, M_BIOBUF);
2515 if (bp->b_bufsize) {
2516 bufmallocspace -= bp->b_bufsize;
2517 bufspacewakeup();
2518 bp->b_bufsize = 0;
2520 bp->b_data = bp->b_kvabase;
2521 bp->b_bcount = 0;
2522 bp->b_flags &= ~B_MALLOC;
2524 return 1;
2526 vm_hold_free_pages(
2528 (vm_offset_t) bp->b_data + newbsize,
2529 (vm_offset_t) bp->b_data + bp->b_bufsize);
2530 } else if (newbsize > bp->b_bufsize) {
2532 * We only use malloced memory on the first allocation.
2533 * and revert to page-allocated memory when the buffer
2534 * grows.
2536 if ((bufmallocspace < maxbufmallocspace) &&
2537 (bp->b_bufsize == 0) &&
2538 (mbsize <= PAGE_SIZE/2)) {
2540 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2541 bp->b_bufsize = mbsize;
2542 bp->b_bcount = size;
2543 bp->b_flags |= B_MALLOC;
2544 bufmallocspace += mbsize;
2545 return 1;
2547 origbuf = NULL;
2548 origbufsize = 0;
2550 * If the buffer is growing on its other-than-first
2551 * allocation, then we revert to the page-allocation
2552 * scheme.
2554 if (bp->b_flags & B_MALLOC) {
2555 origbuf = bp->b_data;
2556 origbufsize = bp->b_bufsize;
2557 bp->b_data = bp->b_kvabase;
2558 if (bp->b_bufsize) {
2559 bufmallocspace -= bp->b_bufsize;
2560 bufspacewakeup();
2561 bp->b_bufsize = 0;
2563 bp->b_flags &= ~B_MALLOC;
2564 newbsize = round_page(newbsize);
2566 vm_hold_load_pages(
2568 (vm_offset_t) bp->b_data + bp->b_bufsize,
2569 (vm_offset_t) bp->b_data + newbsize);
2570 if (origbuf) {
2571 bcopy(origbuf, bp->b_data, origbufsize);
2572 kfree(origbuf, M_BIOBUF);
2575 } else {
2576 vm_page_t m;
2577 int desiredpages;
2579 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2580 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2581 newbsize + PAGE_MASK) >> PAGE_SHIFT;
2582 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2584 if (bp->b_flags & B_MALLOC)
2585 panic("allocbuf: VMIO buffer can't be malloced");
2587 * Set B_CACHE initially if buffer is 0 length or will become
2588 * 0-length.
2590 if (size == 0 || bp->b_bufsize == 0)
2591 bp->b_flags |= B_CACHE;
2593 if (newbsize < bp->b_bufsize) {
2595 * DEV_BSIZE aligned new buffer size is less then the
2596 * DEV_BSIZE aligned existing buffer size. Figure out
2597 * if we have to remove any pages.
2599 if (desiredpages < bp->b_xio.xio_npages) {
2600 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2602 * the page is not freed here -- it
2603 * is the responsibility of
2604 * vnode_pager_setsize
2606 m = bp->b_xio.xio_pages[i];
2607 KASSERT(m != bogus_page,
2608 ("allocbuf: bogus page found"));
2609 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2612 bp->b_xio.xio_pages[i] = NULL;
2613 vm_page_unwire(m, 0);
2615 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2616 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2617 bp->b_xio.xio_npages = desiredpages;
2619 } else if (size > bp->b_bcount) {
2621 * We are growing the buffer, possibly in a
2622 * byte-granular fashion.
2624 struct vnode *vp;
2625 vm_object_t obj;
2626 vm_offset_t toff;
2627 vm_offset_t tinc;
2630 * Step 1, bring in the VM pages from the object,
2631 * allocating them if necessary. We must clear
2632 * B_CACHE if these pages are not valid for the
2633 * range covered by the buffer.
2635 * critical section protection is required to protect
2636 * against interrupts unbusying and freeing pages
2637 * between our vm_page_lookup() and our
2638 * busycheck/wiring call.
2640 vp = bp->b_vp;
2641 obj = vp->v_object;
2643 crit_enter();
2644 while (bp->b_xio.xio_npages < desiredpages) {
2645 vm_page_t m;
2646 vm_pindex_t pi;
2648 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2649 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2651 * note: must allocate system pages
2652 * since blocking here could intefere
2653 * with paging I/O, no matter which
2654 * process we are.
2656 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2657 if (m == NULL) {
2658 vm_wait();
2659 vm_pageout_deficit += desiredpages -
2660 bp->b_xio.xio_npages;
2661 } else {
2662 vm_page_wire(m);
2663 vm_page_wakeup(m);
2664 bp->b_flags &= ~B_CACHE;
2665 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2666 ++bp->b_xio.xio_npages;
2668 continue;
2672 * We found a page. If we have to sleep on it,
2673 * retry because it might have gotten freed out
2674 * from under us.
2676 * We can only test PG_BUSY here. Blocking on
2677 * m->busy might lead to a deadlock:
2679 * vm_fault->getpages->cluster_read->allocbuf
2683 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2684 continue;
2687 * We have a good page. Should we wakeup the
2688 * page daemon?
2690 if ((curthread != pagethread) &&
2691 ((m->queue - m->pc) == PQ_CACHE) &&
2692 ((vmstats.v_free_count + vmstats.v_cache_count) <
2693 (vmstats.v_free_min + vmstats.v_cache_min))) {
2694 pagedaemon_wakeup();
2696 vm_page_flag_clear(m, PG_ZERO);
2697 vm_page_wire(m);
2698 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2699 ++bp->b_xio.xio_npages;
2701 crit_exit();
2704 * Step 2. We've loaded the pages into the buffer,
2705 * we have to figure out if we can still have B_CACHE
2706 * set. Note that B_CACHE is set according to the
2707 * byte-granular range ( bcount and size ), not the
2708 * aligned range ( newbsize ).
2710 * The VM test is against m->valid, which is DEV_BSIZE
2711 * aligned. Needless to say, the validity of the data
2712 * needs to also be DEV_BSIZE aligned. Note that this
2713 * fails with NFS if the server or some other client
2714 * extends the file's EOF. If our buffer is resized,
2715 * B_CACHE may remain set! XXX
2718 toff = bp->b_bcount;
2719 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2721 while ((bp->b_flags & B_CACHE) && toff < size) {
2722 vm_pindex_t pi;
2724 if (tinc > (size - toff))
2725 tinc = size - toff;
2727 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2728 PAGE_SHIFT;
2730 vfs_buf_test_cache(
2731 bp,
2732 bp->b_loffset,
2733 toff,
2734 tinc,
2735 bp->b_xio.xio_pages[pi]
2737 toff += tinc;
2738 tinc = PAGE_SIZE;
2742 * Step 3, fixup the KVM pmap. Remember that
2743 * bp->b_data is relative to bp->b_loffset, but
2744 * bp->b_loffset may be offset into the first page.
2747 bp->b_data = (caddr_t)
2748 trunc_page((vm_offset_t)bp->b_data);
2749 pmap_qenter(
2750 (vm_offset_t)bp->b_data,
2751 bp->b_xio.xio_pages,
2752 bp->b_xio.xio_npages
2754 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2755 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2758 if (newbsize < bp->b_bufsize)
2759 bufspacewakeup();
2760 bp->b_bufsize = newbsize; /* actual buffer allocation */
2761 bp->b_bcount = size; /* requested buffer size */
2762 return 1;
2766 * biowait:
2768 * Wait for buffer I/O completion, returning error status. The buffer
2769 * is left locked on return. B_EINTR is converted into an EINTR error
2770 * and cleared.
2772 * NOTE! The original b_cmd is lost on return, since b_cmd will be
2773 * set to BUF_CMD_DONE.
2776 biowait(struct buf *bp)
2778 crit_enter();
2779 while (bp->b_cmd != BUF_CMD_DONE) {
2780 if (bp->b_cmd == BUF_CMD_READ)
2781 tsleep(bp, 0, "biord", 0);
2782 else
2783 tsleep(bp, 0, "biowr", 0);
2785 crit_exit();
2786 if (bp->b_flags & B_EINTR) {
2787 bp->b_flags &= ~B_EINTR;
2788 return (EINTR);
2790 if (bp->b_flags & B_ERROR) {
2791 return (bp->b_error ? bp->b_error : EIO);
2792 } else {
2793 return (0);
2798 * This associates a tracking count with an I/O. vn_strategy() and
2799 * dev_dstrategy() do this automatically but there are a few cases
2800 * where a vnode or device layer is bypassed when a block translation
2801 * is cached. In such cases bio_start_transaction() may be called on
2802 * the bypassed layers so the system gets an I/O in progress indication
2803 * for those higher layers.
2805 void
2806 bio_start_transaction(struct bio *bio, struct bio_track *track)
2808 bio->bio_track = track;
2809 atomic_add_int(&track->bk_active, 1);
2813 * Initiate I/O on a vnode.
2815 void
2816 vn_strategy(struct vnode *vp, struct bio *bio)
2818 struct bio_track *track;
2820 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2821 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2822 track = &vp->v_track_read;
2823 else
2824 track = &vp->v_track_write;
2825 bio->bio_track = track;
2826 atomic_add_int(&track->bk_active, 1);
2827 vop_strategy(*vp->v_ops, vp, bio);
2832 * biodone:
2834 * Finish I/O on a buffer, optionally calling a completion function.
2835 * This is usually called from an interrupt so process blocking is
2836 * not allowed.
2838 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2839 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2840 * assuming B_INVAL is clear.
2842 * For the VMIO case, we set B_CACHE if the op was a read and no
2843 * read error occured, or if the op was a write. B_CACHE is never
2844 * set if the buffer is invalid or otherwise uncacheable.
2846 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2847 * initiator to leave B_INVAL set to brelse the buffer out of existance
2848 * in the biodone routine.
2850 void
2851 biodone(struct bio *bio)
2853 struct buf *bp = bio->bio_buf;
2854 buf_cmd_t cmd;
2856 crit_enter();
2858 KASSERT(BUF_REFCNTNB(bp) > 0,
2859 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2860 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2861 ("biodone: bp %p already done!", bp));
2863 runningbufwakeup(bp);
2866 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
2868 while (bio) {
2869 biodone_t *done_func;
2870 struct bio_track *track;
2873 * BIO tracking. Most but not all BIOs are tracked.
2875 if ((track = bio->bio_track) != NULL) {
2876 atomic_subtract_int(&track->bk_active, 1);
2877 if (track->bk_active < 0) {
2878 panic("biodone: bad active count bio %p\n",
2879 bio);
2881 if (track->bk_waitflag) {
2882 track->bk_waitflag = 0;
2883 wakeup(track);
2885 bio->bio_track = NULL;
2889 * A bio_done function terminates the loop. The function
2890 * will be responsible for any further chaining and/or
2891 * buffer management.
2893 * WARNING! The done function can deallocate the buffer!
2895 if ((done_func = bio->bio_done) != NULL) {
2896 bio->bio_done = NULL;
2897 done_func(bio);
2898 crit_exit();
2899 return;
2901 bio = bio->bio_prev;
2904 cmd = bp->b_cmd;
2905 bp->b_cmd = BUF_CMD_DONE;
2908 * Only reads and writes are processed past this point.
2910 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
2911 brelse(bp);
2912 crit_exit();
2913 return;
2917 * Warning: softupdates may re-dirty the buffer.
2919 if (LIST_FIRST(&bp->b_dep) != NULL)
2920 buf_complete(bp);
2922 if (bp->b_flags & B_VMIO) {
2923 int i;
2924 vm_ooffset_t foff;
2925 vm_page_t m;
2926 vm_object_t obj;
2927 int iosize;
2928 struct vnode *vp = bp->b_vp;
2930 obj = vp->v_object;
2932 #if defined(VFS_BIO_DEBUG)
2933 if (vp->v_auxrefs == 0)
2934 panic("biodone: zero vnode hold count");
2935 if ((vp->v_flag & VOBJBUF) == 0)
2936 panic("biodone: vnode is not setup for merged cache");
2937 #endif
2939 foff = bp->b_loffset;
2940 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
2941 KASSERT(obj != NULL, ("biodone: missing VM object"));
2943 #if defined(VFS_BIO_DEBUG)
2944 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2945 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2946 obj->paging_in_progress, bp->b_xio.xio_npages);
2948 #endif
2951 * Set B_CACHE if the op was a normal read and no error
2952 * occured. B_CACHE is set for writes in the b*write()
2953 * routines.
2955 iosize = bp->b_bcount - bp->b_resid;
2956 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
2957 bp->b_flags |= B_CACHE;
2960 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2961 int bogusflag = 0;
2962 int resid;
2964 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2965 if (resid > iosize)
2966 resid = iosize;
2969 * cleanup bogus pages, restoring the originals. Since
2970 * the originals should still be wired, we don't have
2971 * to worry about interrupt/freeing races destroying
2972 * the VM object association.
2974 m = bp->b_xio.xio_pages[i];
2975 if (m == bogus_page) {
2976 bogusflag = 1;
2977 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2978 if (m == NULL)
2979 panic("biodone: page disappeared");
2980 bp->b_xio.xio_pages[i] = m;
2981 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2982 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2984 #if defined(VFS_BIO_DEBUG)
2985 if (OFF_TO_IDX(foff) != m->pindex) {
2986 kprintf(
2987 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2988 (unsigned long)foff, m->pindex);
2990 #endif
2993 * In the write case, the valid and clean bits are
2994 * already changed correctly ( see bdwrite() ), so we
2995 * only need to do this here in the read case.
2997 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
2998 vfs_page_set_valid(bp, foff, i, m);
3000 vm_page_flag_clear(m, PG_ZERO);
3003 * when debugging new filesystems or buffer I/O methods, this
3004 * is the most common error that pops up. if you see this, you
3005 * have not set the page busy flag correctly!!!
3007 if (m->busy == 0) {
3008 kprintf("biodone: page busy < 0, "
3009 "pindex: %d, foff: 0x(%x,%x), "
3010 "resid: %d, index: %d\n",
3011 (int) m->pindex, (int)(foff >> 32),
3012 (int) foff & 0xffffffff, resid, i);
3013 if (!vn_isdisk(vp, NULL))
3014 kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3015 bp->b_vp->v_mount->mnt_stat.f_iosize,
3016 bp->b_loffset,
3017 bp->b_flags, bp->b_xio.xio_npages);
3018 else
3019 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3020 bp->b_loffset,
3021 bp->b_flags, bp->b_xio.xio_npages);
3022 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3023 m->valid, m->dirty, m->wire_count);
3024 panic("biodone: page busy < 0");
3026 vm_page_io_finish(m);
3027 vm_object_pip_subtract(obj, 1);
3028 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3029 iosize -= resid;
3031 if (obj)
3032 vm_object_pip_wakeupn(obj, 0);
3036 * For asynchronous completions, release the buffer now. The brelse
3037 * will do a wakeup there if necessary - so no need to do a wakeup
3038 * here in the async case. The sync case always needs to do a wakeup.
3041 if (bp->b_flags & B_ASYNC) {
3042 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3043 brelse(bp);
3044 else
3045 bqrelse(bp);
3046 } else {
3047 wakeup(bp);
3049 crit_exit();
3053 * vfs_unbusy_pages:
3055 * This routine is called in lieu of iodone in the case of
3056 * incomplete I/O. This keeps the busy status for pages
3057 * consistant.
3059 void
3060 vfs_unbusy_pages(struct buf *bp)
3062 int i;
3064 runningbufwakeup(bp);
3065 if (bp->b_flags & B_VMIO) {
3066 struct vnode *vp = bp->b_vp;
3067 vm_object_t obj;
3069 obj = vp->v_object;
3071 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3072 vm_page_t m = bp->b_xio.xio_pages[i];
3075 * When restoring bogus changes the original pages
3076 * should still be wired, so we are in no danger of
3077 * losing the object association and do not need
3078 * critical section protection particularly.
3080 if (m == bogus_page) {
3081 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3082 if (!m) {
3083 panic("vfs_unbusy_pages: page missing");
3085 bp->b_xio.xio_pages[i] = m;
3086 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3087 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3089 vm_object_pip_subtract(obj, 1);
3090 vm_page_flag_clear(m, PG_ZERO);
3091 vm_page_io_finish(m);
3093 vm_object_pip_wakeupn(obj, 0);
3098 * vfs_page_set_valid:
3100 * Set the valid bits in a page based on the supplied offset. The
3101 * range is restricted to the buffer's size.
3103 * This routine is typically called after a read completes.
3105 static void
3106 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3108 vm_ooffset_t soff, eoff;
3111 * Start and end offsets in buffer. eoff - soff may not cross a
3112 * page boundry or cross the end of the buffer. The end of the
3113 * buffer, in this case, is our file EOF, not the allocation size
3114 * of the buffer.
3116 soff = off;
3117 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3118 if (eoff > bp->b_loffset + bp->b_bcount)
3119 eoff = bp->b_loffset + bp->b_bcount;
3122 * Set valid range. This is typically the entire buffer and thus the
3123 * entire page.
3125 if (eoff > soff) {
3126 vm_page_set_validclean(
3128 (vm_offset_t) (soff & PAGE_MASK),
3129 (vm_offset_t) (eoff - soff)
3135 * vfs_busy_pages:
3137 * This routine is called before a device strategy routine.
3138 * It is used to tell the VM system that paging I/O is in
3139 * progress, and treat the pages associated with the buffer
3140 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3141 * flag is handled to make sure that the object doesn't become
3142 * inconsistant.
3144 * Since I/O has not been initiated yet, certain buffer flags
3145 * such as B_ERROR or B_INVAL may be in an inconsistant state
3146 * and should be ignored.
3148 void
3149 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3151 int i, bogus;
3152 struct lwp *lp = curthread->td_lwp;
3155 * The buffer's I/O command must already be set. If reading,
3156 * B_CACHE must be 0 (double check against callers only doing
3157 * I/O when B_CACHE is 0).
3159 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3160 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3162 if (bp->b_flags & B_VMIO) {
3163 vm_object_t obj;
3164 vm_ooffset_t foff;
3166 obj = vp->v_object;
3167 foff = bp->b_loffset;
3168 KASSERT(bp->b_loffset != NOOFFSET,
3169 ("vfs_busy_pages: no buffer offset"));
3170 vfs_setdirty(bp);
3172 retry:
3173 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3174 vm_page_t m = bp->b_xio.xio_pages[i];
3175 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3176 goto retry;
3179 bogus = 0;
3180 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3181 vm_page_t m = bp->b_xio.xio_pages[i];
3183 vm_page_flag_clear(m, PG_ZERO);
3184 if ((bp->b_flags & B_CLUSTER) == 0) {
3185 vm_object_pip_add(obj, 1);
3186 vm_page_io_start(m);
3190 * When readying a vnode-backed buffer for a write
3191 * we must zero-fill any invalid portions of the
3192 * backing VM pages.
3194 * When readying a vnode-backed buffer for a read
3195 * we must replace any dirty pages with a bogus
3196 * page so we do not destroy dirty data when
3197 * filling in gaps. Dirty pages might not
3198 * necessarily be marked dirty yet, so use m->valid
3199 * as a reasonable test.
3201 * Bogus page replacement is, uh, bogus. We need
3202 * to find a better way.
3204 vm_page_protect(m, VM_PROT_NONE);
3205 if (bp->b_cmd == BUF_CMD_WRITE) {
3206 vfs_page_set_valid(bp, foff, i, m);
3207 } else if (m->valid == VM_PAGE_BITS_ALL) {
3208 bp->b_xio.xio_pages[i] = bogus_page;
3209 bogus++;
3211 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3213 if (bogus)
3214 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3215 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3219 * This is the easiest place to put the process accounting for the I/O
3220 * for now.
3222 if (lp != NULL) {
3223 if (bp->b_cmd == BUF_CMD_READ)
3224 lp->lwp_ru.ru_inblock++;
3225 else
3226 lp->lwp_ru.ru_oublock++;
3231 * vfs_clean_pages:
3233 * Tell the VM system that the pages associated with this buffer
3234 * are clean. This is used for delayed writes where the data is
3235 * going to go to disk eventually without additional VM intevention.
3237 * Note that while we only really need to clean through to b_bcount, we
3238 * just go ahead and clean through to b_bufsize.
3240 static void
3241 vfs_clean_pages(struct buf *bp)
3243 int i;
3245 if (bp->b_flags & B_VMIO) {
3246 vm_ooffset_t foff;
3248 foff = bp->b_loffset;
3249 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3250 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3251 vm_page_t m = bp->b_xio.xio_pages[i];
3252 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3253 vm_ooffset_t eoff = noff;
3255 if (eoff > bp->b_loffset + bp->b_bufsize)
3256 eoff = bp->b_loffset + bp->b_bufsize;
3257 vfs_page_set_valid(bp, foff, i, m);
3258 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3259 foff = noff;
3265 * vfs_bio_set_validclean:
3267 * Set the range within the buffer to valid and clean. The range is
3268 * relative to the beginning of the buffer, b_loffset. Note that
3269 * b_loffset itself may be offset from the beginning of the first page.
3272 void
3273 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3275 if (bp->b_flags & B_VMIO) {
3276 int i;
3277 int n;
3280 * Fixup base to be relative to beginning of first page.
3281 * Set initial n to be the maximum number of bytes in the
3282 * first page that can be validated.
3285 base += (bp->b_loffset & PAGE_MASK);
3286 n = PAGE_SIZE - (base & PAGE_MASK);
3288 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3289 vm_page_t m = bp->b_xio.xio_pages[i];
3291 if (n > size)
3292 n = size;
3294 vm_page_set_validclean(m, base & PAGE_MASK, n);
3295 base += n;
3296 size -= n;
3297 n = PAGE_SIZE;
3303 * vfs_bio_clrbuf:
3305 * Clear a buffer. This routine essentially fakes an I/O, so we need
3306 * to clear B_ERROR and B_INVAL.
3308 * Note that while we only theoretically need to clear through b_bcount,
3309 * we go ahead and clear through b_bufsize.
3312 void
3313 vfs_bio_clrbuf(struct buf *bp)
3315 int i, mask = 0;
3316 caddr_t sa, ea;
3317 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3318 bp->b_flags &= ~(B_INVAL|B_ERROR);
3319 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3320 (bp->b_loffset & PAGE_MASK) == 0) {
3321 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3322 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3323 bp->b_resid = 0;
3324 return;
3326 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3327 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3328 bzero(bp->b_data, bp->b_bufsize);
3329 bp->b_xio.xio_pages[0]->valid |= mask;
3330 bp->b_resid = 0;
3331 return;
3334 ea = sa = bp->b_data;
3335 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3336 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3337 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3338 ea = (caddr_t)(vm_offset_t)ulmin(
3339 (u_long)(vm_offset_t)ea,
3340 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3341 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3342 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3343 continue;
3344 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3345 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3346 bzero(sa, ea - sa);
3348 } else {
3349 for (; sa < ea; sa += DEV_BSIZE, j++) {
3350 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3351 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3352 bzero(sa, DEV_BSIZE);
3355 bp->b_xio.xio_pages[i]->valid |= mask;
3356 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3358 bp->b_resid = 0;
3359 } else {
3360 clrbuf(bp);
3365 * vm_hold_load_pages:
3367 * Load pages into the buffer's address space. The pages are
3368 * allocated from the kernel object in order to reduce interference
3369 * with the any VM paging I/O activity. The range of loaded
3370 * pages will be wired.
3372 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3373 * retrieve the full range (to - from) of pages.
3376 void
3377 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3379 vm_offset_t pg;
3380 vm_page_t p;
3381 int index;
3383 to = round_page(to);
3384 from = round_page(from);
3385 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3387 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3389 tryagain:
3392 * Note: must allocate system pages since blocking here
3393 * could intefere with paging I/O, no matter which
3394 * process we are.
3396 p = vm_page_alloc(&kernel_object,
3397 (pg >> PAGE_SHIFT),
3398 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3399 if (!p) {
3400 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3401 vm_wait();
3402 goto tryagain;
3404 vm_page_wire(p);
3405 p->valid = VM_PAGE_BITS_ALL;
3406 vm_page_flag_clear(p, PG_ZERO);
3407 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3408 bp->b_xio.xio_pages[index] = p;
3409 vm_page_wakeup(p);
3411 bp->b_xio.xio_npages = index;
3415 * vm_hold_free_pages:
3417 * Return pages associated with the buffer back to the VM system.
3419 * The range of pages underlying the buffer's address space will
3420 * be unmapped and un-wired.
3422 void
3423 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3425 vm_offset_t pg;
3426 vm_page_t p;
3427 int index, newnpages;
3429 from = round_page(from);
3430 to = round_page(to);
3431 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3433 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3434 p = bp->b_xio.xio_pages[index];
3435 if (p && (index < bp->b_xio.xio_npages)) {
3436 if (p->busy) {
3437 kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3438 bp->b_bio2.bio_offset, bp->b_loffset);
3440 bp->b_xio.xio_pages[index] = NULL;
3441 pmap_kremove(pg);
3442 vm_page_busy(p);
3443 vm_page_unwire(p, 0);
3444 vm_page_free(p);
3447 bp->b_xio.xio_npages = newnpages;
3451 * vmapbuf:
3453 * Map a user buffer into KVM via a pbuf. On return the buffer's
3454 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3455 * initialized.
3458 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3460 caddr_t addr;
3461 vm_offset_t va;
3462 vm_page_t m;
3463 int vmprot;
3464 int error;
3465 int pidx;
3466 int i;
3469 * bp had better have a command and it better be a pbuf.
3471 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3472 KKASSERT(bp->b_flags & B_PAGING);
3474 if (bytes < 0)
3475 return (-1);
3478 * Map the user data into KVM. Mappings have to be page-aligned.
3480 addr = (caddr_t)trunc_page((vm_offset_t)udata);
3481 pidx = 0;
3483 vmprot = VM_PROT_READ;
3484 if (bp->b_cmd == BUF_CMD_READ)
3485 vmprot |= VM_PROT_WRITE;
3487 while (addr < udata + bytes) {
3489 * Do the vm_fault if needed; do the copy-on-write thing
3490 * when reading stuff off device into memory.
3492 * vm_fault_page*() returns a held VM page.
3494 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3495 va = trunc_page(va);
3497 m = vm_fault_page_quick(va, vmprot, &error);
3498 if (m == NULL) {
3499 for (i = 0; i < pidx; ++i) {
3500 vm_page_unhold(bp->b_xio.xio_pages[i]);
3501 bp->b_xio.xio_pages[i] = NULL;
3503 return(-1);
3505 bp->b_xio.xio_pages[pidx] = m;
3506 addr += PAGE_SIZE;
3507 ++pidx;
3511 * Map the page array and set the buffer fields to point to
3512 * the mapped data buffer.
3514 if (pidx > btoc(MAXPHYS))
3515 panic("vmapbuf: mapped more than MAXPHYS");
3516 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3518 bp->b_xio.xio_npages = pidx;
3519 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3520 bp->b_bcount = bytes;
3521 bp->b_bufsize = bytes;
3522 return(0);
3526 * vunmapbuf:
3528 * Free the io map PTEs associated with this IO operation.
3529 * We also invalidate the TLB entries and restore the original b_addr.
3531 void
3532 vunmapbuf(struct buf *bp)
3534 int pidx;
3535 int npages;
3537 KKASSERT(bp->b_flags & B_PAGING);
3539 npages = bp->b_xio.xio_npages;
3540 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3541 for (pidx = 0; pidx < npages; ++pidx) {
3542 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3543 bp->b_xio.xio_pages[pidx] = NULL;
3545 bp->b_xio.xio_npages = 0;
3546 bp->b_data = bp->b_kvabase;
3550 * Scan all buffers in the system and issue the callback.
3553 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3555 int count = 0;
3556 int error;
3557 int n;
3559 for (n = 0; n < nbuf; ++n) {
3560 if ((error = callback(&buf[n], info)) < 0) {
3561 count = error;
3562 break;
3564 count += error;
3566 return (count);
3570 * print out statistics from the current status of the buffer pool
3571 * this can be toggeled by the system control option debug.syncprt
3573 #ifdef DEBUG
3574 void
3575 vfs_bufstats(void)
3577 int i, j, count;
3578 struct buf *bp;
3579 struct bqueues *dp;
3580 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3581 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3583 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3584 count = 0;
3585 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3586 counts[j] = 0;
3587 crit_enter();
3588 TAILQ_FOREACH(bp, dp, b_freelist) {
3589 counts[bp->b_bufsize/PAGE_SIZE]++;
3590 count++;
3592 crit_exit();
3593 kprintf("%s: total-%d", bname[i], count);
3594 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3595 if (counts[j] != 0)
3596 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3597 kprintf("\n");
3600 #endif
3602 #ifdef DDB
3604 DB_SHOW_COMMAND(buffer, db_show_buffer)
3606 /* get args */
3607 struct buf *bp = (struct buf *)addr;
3609 if (!have_addr) {
3610 db_printf("usage: show buffer <addr>\n");
3611 return;
3614 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3615 db_printf("b_cmd = %d\n", bp->b_cmd);
3616 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3617 "b_resid = %d\n, b_data = %p, "
3618 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3619 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3620 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3621 if (bp->b_xio.xio_npages) {
3622 int i;
3623 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3624 bp->b_xio.xio_npages);
3625 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3626 vm_page_t m;
3627 m = bp->b_xio.xio_pages[i];
3628 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3629 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3630 if ((i + 1) < bp->b_xio.xio_npages)
3631 db_printf(",");
3633 db_printf("\n");
3636 #endif /* DDB */