- Gigabyte G33-S2H fixup, due to the present of multiple competing
[dragonfly.git] / sys / kern / subr_rman.c
blob5be5d1579361826b77e0eada40393b9d0f9f3e2e
1 /*
2 * Copyright 1998 Massachusetts Institute of Technology
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
14 * warranty.
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
30 * $DragonFly: src/sys/kern/subr_rman.c,v 1.13 2007/09/21 02:28:00 y0netan1 Exp $
34 * The kernel resource manager. This code is responsible for keeping track
35 * of hardware resources which are apportioned out to various drivers.
36 * It does not actually assign those resources, and it is not expected
37 * that end-device drivers will call into this code directly. Rather,
38 * the code which implements the buses that those devices are attached to,
39 * and the code which manages CPU resources, will call this code, and the
40 * end-device drivers will make upcalls to that code to actually perform
41 * the allocation.
43 * There are two sorts of resources managed by this code. The first is
44 * the more familiar array (RMAN_ARRAY) type; resources in this class
45 * consist of a sequence of individually-allocatable objects which have
46 * been numbered in some well-defined order. Most of the resources
47 * are of this type, as it is the most familiar. The second type is
48 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
49 * resources in which each instance is indistinguishable from every
50 * other instance). The principal anticipated application of gauges
51 * is in the context of power consumption, where a bus may have a specific
52 * power budget which all attached devices share. RMAN_GAUGE is not
53 * implemented yet.
55 * For array resources, we make one simplifying assumption: two clients
56 * sharing the same resource must use the same range of indices. That
57 * is to say, sharing of overlapping-but-not-identical regions is not
58 * permitted.
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/bus.h> /* XXX debugging */
67 #include <sys/rman.h>
68 #include <sys/sysctl.h>
70 int rman_debug = 0;
71 TUNABLE_INT("debug.rman_debug", &rman_debug);
72 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
73 &rman_debug, 0, "rman debug");
75 #define DPRINTF(params) if (rman_debug) kprintf params
77 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
79 struct rman_head rman_head;
80 static struct lwkt_token rman_tok; /* mutex to protect rman_head */
81 static int int_rman_activate_resource(struct rman *rm, struct resource *r,
82 struct resource **whohas);
83 static int int_rman_deactivate_resource(struct resource *r);
84 static int int_rman_release_resource(struct rman *rm, struct resource *r);
86 #define CIRCLEQ_TERMCOND(var, head) (var == (void *)&(head))
88 int
89 rman_init(struct rman *rm)
91 static int once;
92 lwkt_tokref ilock;
94 if (once == 0) {
95 once = 1;
96 TAILQ_INIT(&rman_head);
97 lwkt_token_init(&rman_tok);
100 if (rm->rm_type == RMAN_UNINIT)
101 panic("rman_init");
102 if (rm->rm_type == RMAN_GAUGE)
103 panic("implement RMAN_GAUGE");
105 CIRCLEQ_INIT(&rm->rm_list);
106 rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
107 if (rm->rm_slock == NULL)
108 return ENOMEM;
109 lwkt_token_init(rm->rm_slock);
111 lwkt_gettoken(&ilock, &rman_tok);
112 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
113 lwkt_reltoken(&ilock);
114 return 0;
118 * NB: this interface is not robust against programming errors which
119 * add multiple copies of the same region.
122 rman_manage_region(struct rman *rm, u_long start, u_long end)
124 struct resource *r, *s;
125 lwkt_tokref ilock;
127 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
128 rm->rm_descr, start, end));
129 r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT);
130 if (r == 0)
131 return ENOMEM;
132 bzero(r, sizeof *r);
133 r->r_sharehead = 0;
134 r->r_start = start;
135 r->r_end = end;
136 r->r_flags = 0;
137 r->r_dev = 0;
138 r->r_rm = rm;
140 lwkt_gettoken(&ilock, rm->rm_slock);
141 for (s = CIRCLEQ_FIRST(&rm->rm_list);
142 !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
143 s = CIRCLEQ_NEXT(s, r_link))
146 if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
147 CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
148 } else {
149 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
152 lwkt_reltoken(&ilock);
153 return 0;
157 rman_fini(struct rman *rm)
159 struct resource *r;
160 lwkt_tokref ilock;
162 lwkt_gettoken(&ilock, rm->rm_slock);
163 CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) {
164 if (r->r_flags & RF_ALLOCATED) {
165 lwkt_reltoken(&ilock);
166 return EBUSY;
171 * There really should only be one of these if we are in this
172 * state and the code is working properly, but it can't hurt.
174 while (!CIRCLEQ_EMPTY(&rm->rm_list)) {
175 r = CIRCLEQ_FIRST(&rm->rm_list);
176 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
177 kfree(r, M_RMAN);
179 lwkt_reltoken(&ilock);
180 /* XXX what's the point of this if we are going to free the struct? */
181 lwkt_gettoken(&ilock, &rman_tok);
182 TAILQ_REMOVE(&rman_head, rm, rm_link);
183 lwkt_reltoken(&ilock);
184 kfree(rm->rm_slock, M_RMAN);
186 return 0;
189 struct resource *
190 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
191 u_int flags, struct device *dev)
193 u_int want_activate;
194 struct resource *r, *s, *rv;
195 u_long rstart, rend;
196 lwkt_tokref ilock;
198 rv = 0;
200 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
201 "%#lx, flags %u, device %s\n", rm->rm_descr, start, end,
202 count, flags,
203 dev == NULL ? "<null>" : device_get_nameunit(dev)));
204 want_activate = (flags & RF_ACTIVE);
205 flags &= ~RF_ACTIVE;
207 lwkt_gettoken(&ilock, rm->rm_slock);
209 for (r = CIRCLEQ_FIRST(&rm->rm_list);
210 !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
211 r = CIRCLEQ_NEXT(r, r_link))
214 if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
215 DPRINTF(("could not find a region\n"));
216 goto out;
220 * First try to find an acceptable totally-unshared region.
222 for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
223 s = CIRCLEQ_NEXT(s, r_link)) {
224 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
225 if (s->r_start > end) {
226 DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
227 s->r_start, end));
228 break;
230 if (s->r_flags & RF_ALLOCATED) {
231 DPRINTF(("region is allocated\n"));
232 continue;
234 rstart = max(s->r_start, start);
235 rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
236 ~((1ul << RF_ALIGNMENT(flags)) - 1);
237 rend = min(s->r_end, max(start + count, end));
238 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
239 rstart, rend, (rend - rstart + 1), count));
241 if ((rend - rstart + 1) >= count) {
242 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
243 rstart, rend, (rend - rstart + 1)));
244 if ((s->r_end - s->r_start + 1) == count) {
245 DPRINTF(("candidate region is entire chunk\n"));
246 rv = s;
247 rv->r_flags |= RF_ALLOCATED | flags;
248 rv->r_dev = dev;
249 goto out;
253 * If s->r_start < rstart and
254 * s->r_end > rstart + count - 1, then
255 * we need to split the region into three pieces
256 * (the middle one will get returned to the user).
257 * Otherwise, we are allocating at either the
258 * beginning or the end of s, so we only need to
259 * split it in two. The first case requires
260 * two new allocations; the second requires but one.
262 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT);
263 if (rv == 0)
264 goto out;
265 bzero(rv, sizeof *rv);
266 rv->r_start = rstart;
267 rv->r_end = rstart + count - 1;
268 rv->r_flags = flags | RF_ALLOCATED;
269 rv->r_dev = dev;
270 rv->r_sharehead = 0;
271 rv->r_rm = rm;
273 if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
274 DPRINTF(("splitting region in three parts: "
275 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
276 s->r_start, rv->r_start - 1,
277 rv->r_start, rv->r_end,
278 rv->r_end + 1, s->r_end));
280 * We are allocating in the middle.
282 r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT);
283 if (r == 0) {
284 kfree(rv, M_RMAN);
285 rv = 0;
286 goto out;
288 bzero(r, sizeof *r);
289 r->r_start = rv->r_end + 1;
290 r->r_end = s->r_end;
291 r->r_flags = s->r_flags;
292 r->r_dev = 0;
293 r->r_sharehead = 0;
294 r->r_rm = rm;
295 s->r_end = rv->r_start - 1;
296 CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
297 r_link);
298 CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
299 r_link);
300 } else if (s->r_start == rv->r_start) {
301 DPRINTF(("allocating from the beginning\n"));
303 * We are allocating at the beginning.
305 s->r_start = rv->r_end + 1;
306 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
307 r_link);
308 } else {
309 DPRINTF(("allocating at the end\n"));
311 * We are allocating at the end.
313 s->r_end = rv->r_start - 1;
314 CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
315 r_link);
317 goto out;
322 * Now find an acceptable shared region, if the client's requirements
323 * allow sharing. By our implementation restriction, a candidate
324 * region must match exactly by both size and sharing type in order
325 * to be considered compatible with the client's request. (The
326 * former restriction could probably be lifted without too much
327 * additional work, but this does not seem warranted.)
329 DPRINTF(("no unshared regions found\n"));
330 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
331 goto out;
333 for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
334 s = CIRCLEQ_NEXT(s, r_link)) {
335 if (s->r_start > end)
336 break;
337 if ((s->r_flags & flags) != flags)
338 continue;
339 rstart = max(s->r_start, start);
340 rend = min(s->r_end, max(start + count, end));
341 if (s->r_start >= start && s->r_end <= end
342 && (s->r_end - s->r_start + 1) == count) {
343 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT);
344 if (rv == 0)
345 goto out;
346 bzero(rv, sizeof *rv);
347 rv->r_start = s->r_start;
348 rv->r_end = s->r_end;
349 rv->r_flags = s->r_flags &
350 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
351 rv->r_dev = dev;
352 rv->r_rm = rm;
353 if (s->r_sharehead == 0) {
354 s->r_sharehead = kmalloc(sizeof *s->r_sharehead,
355 M_RMAN, M_NOWAIT);
356 if (s->r_sharehead == 0) {
357 kfree(rv, M_RMAN);
358 rv = 0;
359 goto out;
361 bzero(s->r_sharehead, sizeof *s->r_sharehead);
362 LIST_INIT(s->r_sharehead);
363 LIST_INSERT_HEAD(s->r_sharehead, s,
364 r_sharelink);
365 s->r_flags |= RF_FIRSTSHARE;
367 rv->r_sharehead = s->r_sharehead;
368 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
369 goto out;
374 * We couldn't find anything.
376 out:
378 * If the user specified RF_ACTIVE in the initial flags,
379 * which is reflected in `want_activate', we attempt to atomically
380 * activate the resource. If this fails, we release the resource
381 * and indicate overall failure. (This behavior probably doesn't
382 * make sense for RF_TIMESHARE-type resources.)
384 if (rv && want_activate) {
385 struct resource *whohas;
386 if (int_rman_activate_resource(rm, rv, &whohas)) {
387 int_rman_release_resource(rm, rv);
388 rv = 0;
391 lwkt_reltoken(&ilock);
392 return (rv);
395 static int
396 int_rman_activate_resource(struct rman *rm, struct resource *r,
397 struct resource **whohas)
399 struct resource *s;
400 int ok;
403 * If we are not timesharing, then there is nothing much to do.
404 * If we already have the resource, then there is nothing at all to do.
405 * If we are not on a sharing list with anybody else, then there is
406 * little to do.
408 if ((r->r_flags & RF_TIMESHARE) == 0
409 || (r->r_flags & RF_ACTIVE) != 0
410 || r->r_sharehead == 0) {
411 r->r_flags |= RF_ACTIVE;
412 return 0;
415 ok = 1;
416 for (s = LIST_FIRST(r->r_sharehead); s && ok;
417 s = LIST_NEXT(s, r_sharelink)) {
418 if ((s->r_flags & RF_ACTIVE) != 0) {
419 ok = 0;
420 *whohas = s;
423 if (ok) {
424 r->r_flags |= RF_ACTIVE;
425 return 0;
427 return EBUSY;
431 rman_activate_resource(struct resource *r)
433 int rv;
434 struct resource *whohas;
435 lwkt_tokref ilock;
436 struct rman *rm;
438 rm = r->r_rm;
439 lwkt_gettoken(&ilock, rm->rm_slock);
440 rv = int_rman_activate_resource(rm, r, &whohas);
441 lwkt_reltoken(&ilock);
442 return rv;
445 #if 0
447 /* XXX */
449 rman_await_resource(struct resource *r, lwkt_tokref_t ilock, int slpflags, int timo)
451 int rv;
452 struct resource *whohas;
453 struct rman *rm;
455 rm = r->r_rm;
456 for (;;) {
457 lwkt_gettoken(ilock, rm->rm_slock);
458 rv = int_rman_activate_resource(rm, r, &whohas);
459 if (rv != EBUSY)
460 return (rv); /* returns with ilock held */
462 if (r->r_sharehead == 0)
463 panic("rman_await_resource");
465 * A critical section will hopefully will prevent a race
466 * between lwkt_reltoken and tsleep where a process
467 * could conceivably get in and release the resource
468 * before we have a chance to sleep on it. YYY
470 crit_enter();
471 whohas->r_flags |= RF_WANTED;
472 rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo);
473 if (rv) {
474 lwkt_reltoken(ilock);
475 crit_exit();
476 return rv;
478 crit_exit();
482 #endif
484 static int
485 int_rman_deactivate_resource(struct resource *r)
487 struct rman *rm;
489 rm = r->r_rm;
490 r->r_flags &= ~RF_ACTIVE;
491 if (r->r_flags & RF_WANTED) {
492 r->r_flags &= ~RF_WANTED;
493 wakeup(r->r_sharehead);
495 return 0;
499 rman_deactivate_resource(struct resource *r)
501 lwkt_tokref ilock;
502 struct rman *rm;
504 rm = r->r_rm;
505 lwkt_gettoken(&ilock, rm->rm_slock);
506 int_rman_deactivate_resource(r);
507 lwkt_reltoken(&ilock);
508 return 0;
511 static int
512 int_rman_release_resource(struct rman *rm, struct resource *r)
514 struct resource *s, *t;
516 if (r->r_flags & RF_ACTIVE)
517 int_rman_deactivate_resource(r);
520 * Check for a sharing list first. If there is one, then we don't
521 * have to think as hard.
523 if (r->r_sharehead) {
525 * If a sharing list exists, then we know there are at
526 * least two sharers.
528 * If we are in the main circleq, appoint someone else.
530 LIST_REMOVE(r, r_sharelink);
531 s = LIST_FIRST(r->r_sharehead);
532 if (r->r_flags & RF_FIRSTSHARE) {
533 s->r_flags |= RF_FIRSTSHARE;
534 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
535 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
539 * Make sure that the sharing list goes away completely
540 * if the resource is no longer being shared at all.
542 if (LIST_NEXT(s, r_sharelink) == 0) {
543 kfree(s->r_sharehead, M_RMAN);
544 s->r_sharehead = 0;
545 s->r_flags &= ~RF_FIRSTSHARE;
547 goto out;
551 * Look at the adjacent resources in the list and see if our
552 * segment can be merged with any of them.
554 s = CIRCLEQ_PREV(r, r_link);
555 t = CIRCLEQ_NEXT(r, r_link);
557 if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
558 && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
560 * Merge all three segments.
562 s->r_end = t->r_end;
563 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
564 CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
565 kfree(t, M_RMAN);
566 } else if (s != (void *)&rm->rm_list
567 && (s->r_flags & RF_ALLOCATED) == 0) {
569 * Merge previous segment with ours.
571 s->r_end = r->r_end;
572 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
573 } else if (t != (void *)&rm->rm_list
574 && (t->r_flags & RF_ALLOCATED) == 0) {
576 * Merge next segment with ours.
578 t->r_start = r->r_start;
579 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
580 } else {
582 * At this point, we know there is nothing we
583 * can potentially merge with, because on each
584 * side, there is either nothing there or what is
585 * there is still allocated. In that case, we don't
586 * want to remove r from the list; we simply want to
587 * change it to an unallocated region and return
588 * without freeing anything.
590 r->r_flags &= ~RF_ALLOCATED;
591 return 0;
594 out:
595 kfree(r, M_RMAN);
596 return 0;
600 rman_release_resource(struct resource *r)
602 struct rman *rm = r->r_rm;
603 lwkt_tokref ilock;
604 int rv;
606 lwkt_gettoken(&ilock, rm->rm_slock);
607 rv = int_rman_release_resource(rm, r);
608 lwkt_reltoken(&ilock);
609 return (rv);
612 uint32_t
613 rman_make_alignment_flags(uint32_t size)
615 int i;
618 * Find the hightest bit set, and add one if more than one bit
619 * set. We're effectively computing the ceil(log2(size)) here.
621 for (i = 32; i > 0; i--)
622 if ((1 << i) & size)
623 break;
624 if (~(1 << i) & size)
625 i++;
627 return(RF_ALIGNMENT_LOG2(i));