2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.61 2007/09/30 04:37:27 sephe Exp $
77 #include "opt_polling.h"
78 #include "opt_pctrack.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/kinfo.h>
86 #include <sys/malloc.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/timex.h>
90 #include <sys/timepps.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/thread2.h>
99 #include <machine/cpu.h>
100 #include <machine/limits.h>
101 #include <machine/smp.h>
104 #include <sys/gmon.h>
107 #ifdef DEVICE_POLLING
108 extern void init_device_poll_pcpu(int);
112 static void do_pctrack(struct intrframe
*frame
, int which
);
115 static void initclocks (void *dummy
);
116 SYSINIT(clocks
, SI_BOOT2_CLOCKS
, SI_ORDER_FIRST
, initclocks
, NULL
)
119 * Some of these don't belong here, but it's easiest to concentrate them.
120 * Note that cpu_time counts in microseconds, but most userland programs
121 * just compare relative times against the total by delta.
123 struct kinfo_cputime cputime_percpu
[MAXCPU
];
125 struct kinfo_pcheader cputime_pcheader
= { PCTRACK_SIZE
, PCTRACK_ARYSIZE
};
126 struct kinfo_pctrack cputime_pctrack
[MAXCPU
][PCTRACK_SIZE
];
131 sysctl_cputime(SYSCTL_HANDLER_ARGS
)
134 size_t size
= sizeof(struct kinfo_cputime
);
136 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
137 if ((error
= SYSCTL_OUT(req
, &cputime_percpu
[cpu
], size
)))
143 SYSCTL_PROC(_kern
, OID_AUTO
, cputime
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
144 sysctl_cputime
, "S,kinfo_cputime", "CPU time statistics");
146 SYSCTL_STRUCT(_kern
, OID_AUTO
, cputime
, CTLFLAG_RD
, &cpu_time
, kinfo_cputime
,
147 "CPU time statistics");
151 * boottime is used to calculate the 'real' uptime. Do not confuse this with
152 * microuptime(). microtime() is not drift compensated. The real uptime
153 * with compensation is nanotime() - bootime. boottime is recalculated
154 * whenever the real time is set based on the compensated elapsed time
155 * in seconds (gd->gd_time_seconds).
157 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
158 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
161 struct timespec boottime
; /* boot time (realtime) for reference only */
162 time_t time_second
; /* read-only 'passive' uptime in seconds */
165 * basetime is used to calculate the compensated real time of day. The
166 * basetime can be modified on a per-tick basis by the adjtime(),
167 * ntp_adjtime(), and sysctl-based time correction APIs.
169 * Note that frequency corrections can also be made by adjusting
172 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
173 * used on both SMP and UP systems to avoid MP races between cpu's and
174 * interrupt races on UP systems.
176 #define BASETIME_ARYSIZE 16
177 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
178 static struct timespec basetime
[BASETIME_ARYSIZE
];
179 static volatile int basetime_index
;
182 sysctl_get_basetime(SYSCTL_HANDLER_ARGS
)
189 * Because basetime data and index may be updated by another cpu,
190 * a load fence is required to ensure that the data we read has
191 * not been speculatively read relative to a possibly updated index.
193 index
= basetime_index
;
195 bt
= &basetime
[index
];
196 error
= SYSCTL_OUT(req
, bt
, sizeof(*bt
));
200 SYSCTL_STRUCT(_kern
, KERN_BOOTTIME
, boottime
, CTLFLAG_RD
,
201 &boottime
, timespec
, "System boottime");
202 SYSCTL_PROC(_kern
, OID_AUTO
, basetime
, CTLTYPE_STRUCT
|CTLFLAG_RD
, 0, 0,
203 sysctl_get_basetime
, "S,timespec", "System basetime");
205 static void hardclock(systimer_t info
, struct intrframe
*frame
);
206 static void statclock(systimer_t info
, struct intrframe
*frame
);
207 static void schedclock(systimer_t info
, struct intrframe
*frame
);
208 static void getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
);
210 int ticks
; /* system master ticks at hz */
211 int clocks_running
; /* tsleep/timeout clocks operational */
212 int64_t nsec_adj
; /* ntpd per-tick adjustment in nsec << 32 */
213 int64_t nsec_acc
; /* accumulator */
215 /* NTPD time correction fields */
216 int64_t ntp_tick_permanent
; /* per-tick adjustment in nsec << 32 */
217 int64_t ntp_tick_acc
; /* accumulator for per-tick adjustment */
218 int64_t ntp_delta
; /* one-time correction in nsec */
219 int64_t ntp_big_delta
= 1000000000;
220 int32_t ntp_tick_delta
; /* current adjustment rate */
221 int32_t ntp_default_tick_delta
; /* adjustment rate for ntp_delta */
222 time_t ntp_leap_second
; /* time of next leap second */
223 int ntp_leap_insert
; /* whether to insert or remove a second */
226 * Finish initializing clock frequencies and start all clocks running.
230 initclocks(void *dummy
)
232 /*psratio = profhz / stathz;*/
238 * Called on a per-cpu basis
241 initclocks_pcpu(void)
243 struct globaldata
*gd
= mycpu
;
246 if (gd
->gd_cpuid
== 0) {
247 gd
->gd_time_seconds
= 1;
248 gd
->gd_cpuclock_base
= sys_cputimer
->count();
251 gd
->gd_time_seconds
= globaldata_find(0)->gd_time_seconds
;
252 gd
->gd_cpuclock_base
= globaldata_find(0)->gd_cpuclock_base
;
255 #ifdef DEVICE_POLLING
256 init_device_poll_pcpu(gd
->gd_cpuid
);
260 * Use a non-queued periodic systimer to prevent multiple ticks from
261 * building up if the sysclock jumps forward (8254 gets reset). The
262 * sysclock will never jump backwards. Our time sync is based on
263 * the actual sysclock, not the ticks count.
265 systimer_init_periodic_nq(&gd
->gd_hardclock
, hardclock
, NULL
, hz
);
266 systimer_init_periodic_nq(&gd
->gd_statclock
, statclock
, NULL
, stathz
);
267 /* XXX correct the frequency for scheduler / estcpu tests */
268 systimer_init_periodic_nq(&gd
->gd_schedclock
, schedclock
,
274 * This sets the current real time of day. Timespecs are in seconds and
275 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
276 * instead we adjust basetime so basetime + gd_* results in the current
277 * time of day. This way the gd_* fields are guarenteed to represent
278 * a monotonically increasing 'uptime' value.
280 * When set_timeofday() is called from userland, the system call forces it
281 * onto cpu #0 since only cpu #0 can update basetime_index.
284 set_timeofday(struct timespec
*ts
)
286 struct timespec
*nbt
;
290 * XXX SMP / non-atomic basetime updates
293 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
296 nbt
->tv_sec
= ts
->tv_sec
- nbt
->tv_sec
;
297 nbt
->tv_nsec
= ts
->tv_nsec
- nbt
->tv_nsec
;
298 if (nbt
->tv_nsec
< 0) {
299 nbt
->tv_nsec
+= 1000000000;
304 * Note that basetime diverges from boottime as the clock drift is
305 * compensated for, so we cannot do away with boottime. When setting
306 * the absolute time of day the drift is 0 (for an instant) and we
307 * can simply assign boottime to basetime.
309 * Note that nanouptime() is based on gd_time_seconds which is drift
310 * compensated up to a point (it is guarenteed to remain monotonically
311 * increasing). gd_time_seconds is thus our best uptime guess and
312 * suitable for use in the boottime calculation. It is already taken
313 * into account in the basetime calculation above.
315 boottime
.tv_sec
= nbt
->tv_sec
;
319 * We now have a new basetime, make sure all other cpus have it,
320 * then update the index.
329 * Each cpu has its own hardclock, but we only increments ticks and softticks
332 * NOTE! systimer! the MP lock might not be held here. We can only safely
333 * manipulate objects owned by the current cpu.
336 hardclock(systimer_t info
, struct intrframe
*frame
)
340 struct globaldata
*gd
= mycpu
;
343 * Realtime updates are per-cpu. Note that timer corrections as
344 * returned by microtime() and friends make an additional adjustment
345 * using a system-wise 'basetime', but the running time is always
346 * taken from the per-cpu globaldata area. Since the same clock
347 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
350 * Note that we never allow info->time (aka gd->gd_hardclock.time)
351 * to reverse index gd_cpuclock_base, but that it is possible for
352 * it to temporarily get behind in the seconds if something in the
353 * system locks interrupts for a long period of time. Since periodic
354 * timers count events, though everything should resynch again
357 cputicks
= info
->time
- gd
->gd_cpuclock_base
;
358 if (cputicks
>= sys_cputimer
->freq
) {
359 ++gd
->gd_time_seconds
;
360 gd
->gd_cpuclock_base
+= sys_cputimer
->freq
;
364 * The system-wide ticks counter and NTP related timedelta/tickdelta
365 * adjustments only occur on cpu #0. NTP adjustments are accomplished
366 * by updating basetime.
368 if (gd
->gd_cpuid
== 0) {
369 struct timespec
*nbt
;
377 if (tco
->tc_poll_pps
)
378 tco
->tc_poll_pps(tco
);
382 * Calculate the new basetime index. We are in a critical section
383 * on cpu #0 and can safely play with basetime_index. Start
384 * with the current basetime and then make adjustments.
386 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
388 *nbt
= basetime
[basetime_index
];
391 * Apply adjtime corrections. (adjtime() API)
393 * adjtime() only runs on cpu #0 so our critical section is
394 * sufficient to access these variables.
396 if (ntp_delta
!= 0) {
397 nbt
->tv_nsec
+= ntp_tick_delta
;
398 ntp_delta
-= ntp_tick_delta
;
399 if ((ntp_delta
> 0 && ntp_delta
< ntp_tick_delta
) ||
400 (ntp_delta
< 0 && ntp_delta
> ntp_tick_delta
)) {
401 ntp_tick_delta
= ntp_delta
;
406 * Apply permanent frequency corrections. (sysctl API)
408 if (ntp_tick_permanent
!= 0) {
409 ntp_tick_acc
+= ntp_tick_permanent
;
410 if (ntp_tick_acc
>= (1LL << 32)) {
411 nbt
->tv_nsec
+= ntp_tick_acc
>> 32;
412 ntp_tick_acc
-= (ntp_tick_acc
>> 32) << 32;
413 } else if (ntp_tick_acc
<= -(1LL << 32)) {
414 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
415 nbt
->tv_nsec
-= (-ntp_tick_acc
) >> 32;
416 ntp_tick_acc
+= ((-ntp_tick_acc
) >> 32) << 32;
420 if (nbt
->tv_nsec
>= 1000000000) {
422 nbt
->tv_nsec
-= 1000000000;
423 } else if (nbt
->tv_nsec
< 0) {
425 nbt
->tv_nsec
+= 1000000000;
429 * Another per-tick compensation. (for ntp_adjtime() API)
432 nsec_acc
+= nsec_adj
;
433 if (nsec_acc
>= 0x100000000LL
) {
434 nbt
->tv_nsec
+= nsec_acc
>> 32;
435 nsec_acc
= (nsec_acc
& 0xFFFFFFFFLL
);
436 } else if (nsec_acc
<= -0x100000000LL
) {
437 nbt
->tv_nsec
-= -nsec_acc
>> 32;
438 nsec_acc
= -(-nsec_acc
& 0xFFFFFFFFLL
);
440 if (nbt
->tv_nsec
>= 1000000000) {
441 nbt
->tv_nsec
-= 1000000000;
443 } else if (nbt
->tv_nsec
< 0) {
444 nbt
->tv_nsec
+= 1000000000;
449 /************************************************************
450 * LEAP SECOND CORRECTION *
451 ************************************************************
453 * Taking into account all the corrections made above, figure
454 * out the new real time. If the seconds field has changed
455 * then apply any pending leap-second corrections.
457 getnanotime_nbt(nbt
, &nts
);
459 if (time_second
!= nts
.tv_sec
) {
461 * Apply leap second (sysctl API). Adjust nts for changes
462 * so we do not have to call getnanotime_nbt again.
464 if (ntp_leap_second
) {
465 if (ntp_leap_second
== nts
.tv_sec
) {
466 if (ntp_leap_insert
) {
478 * Apply leap second (ntp_adjtime() API), calculate a new
479 * nsec_adj field. ntp_update_second() returns nsec_adj
480 * as a per-second value but we need it as a per-tick value.
482 leap
= ntp_update_second(time_second
, &nsec_adj
);
488 * Update the time_second 'approximate time' global.
490 time_second
= nts
.tv_sec
;
494 * Finally, our new basetime is ready to go live!
500 * Figure out how badly the system is starved for memory
502 vm_fault_ratecheck();
506 * softticks are handled for all cpus
508 hardclock_softtick(gd
);
511 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
512 * is mpsafe on curproc, so XXX get the mplock.
514 if ((p
= curproc
) != NULL
&& try_mplock()) {
515 if (frame
&& CLKF_USERMODE(frame
) &&
516 timevalisset(&p
->p_timer
[ITIMER_VIRTUAL
].it_value
) &&
517 itimerdecr(&p
->p_timer
[ITIMER_VIRTUAL
], tick
) == 0)
518 ksignal(p
, SIGVTALRM
);
519 if (timevalisset(&p
->p_timer
[ITIMER_PROF
].it_value
) &&
520 itimerdecr(&p
->p_timer
[ITIMER_PROF
], tick
) == 0)
528 * The statistics clock typically runs at a 125Hz rate, and is intended
529 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
531 * NOTE! systimer! the MP lock might not be held here. We can only safely
532 * manipulate objects owned by the current cpu.
534 * The stats clock is responsible for grabbing a profiling sample.
535 * Most of the statistics are only used by user-level statistics programs.
536 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
539 * Like the other clocks, the stat clock is called from what is effectively
540 * a fast interrupt, so the context should be the thread/process that got
544 statclock(systimer_t info
, struct intrframe
*frame
)
557 * How big was our timeslice relative to the last time?
559 microuptime(&tv
); /* mpsafe */
560 stv
= &mycpu
->gd_stattv
;
561 if (stv
->tv_sec
== 0) {
564 bump
= tv
.tv_usec
- stv
->tv_usec
+
565 (tv
.tv_sec
- stv
->tv_sec
) * 1000000;
576 if (frame
&& CLKF_USERMODE(frame
)) {
578 * Came from userland, handle user time and deal with
581 if (p
&& (p
->p_flag
& P_PROFIL
))
582 addupc_intr(p
, CLKF_PC(frame
), 1);
583 td
->td_uticks
+= bump
;
586 * Charge the time as appropriate
588 if (p
&& p
->p_nice
> NZERO
)
589 cpu_time
.cp_nice
+= bump
;
591 cpu_time
.cp_user
+= bump
;
595 * Kernel statistics are just like addupc_intr, only easier.
598 if (g
->state
== GMON_PROF_ON
&& frame
) {
599 i
= CLKF_PC(frame
) - g
->lowpc
;
600 if (i
< g
->textsize
) {
601 i
/= HISTFRACTION
* sizeof(*g
->kcount
);
607 * Came from kernel mode, so we were:
608 * - handling an interrupt,
609 * - doing syscall or trap work on behalf of the current
611 * - spinning in the idle loop.
612 * Whichever it is, charge the time as appropriate.
613 * Note that we charge interrupts to the current process,
614 * regardless of whether they are ``for'' that process,
615 * so that we know how much of its real time was spent
616 * in ``non-process'' (i.e., interrupt) work.
618 * XXX assume system if frame is NULL. A NULL frame
619 * can occur if ipi processing is done from a crit_exit().
621 if (frame
&& CLKF_INTR(frame
))
622 td
->td_iticks
+= bump
;
624 td
->td_sticks
+= bump
;
626 if (frame
&& CLKF_INTR(frame
)) {
628 do_pctrack(frame
, PCTRACK_INT
);
630 cpu_time
.cp_intr
+= bump
;
632 if (td
== &mycpu
->gd_idlethread
) {
633 cpu_time
.cp_idle
+= bump
;
637 do_pctrack(frame
, PCTRACK_SYS
);
639 cpu_time
.cp_sys
+= bump
;
647 * Sample the PC when in the kernel or in an interrupt. User code can
648 * retrieve the information and generate a histogram or other output.
652 do_pctrack(struct intrframe
*frame
, int which
)
654 struct kinfo_pctrack
*pctrack
;
656 pctrack
= &cputime_pctrack
[mycpu
->gd_cpuid
][which
];
657 pctrack
->pc_array
[pctrack
->pc_index
& PCTRACK_ARYMASK
] =
658 (void *)CLKF_PC(frame
);
663 sysctl_pctrack(SYSCTL_HANDLER_ARGS
)
665 struct kinfo_pcheader head
;
670 head
.pc_ntrack
= PCTRACK_SIZE
;
671 head
.pc_arysize
= PCTRACK_ARYSIZE
;
673 if ((error
= SYSCTL_OUT(req
, &head
, sizeof(head
))) != 0)
676 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
677 for (ntrack
= 0; ntrack
< PCTRACK_SIZE
; ++ntrack
) {
678 error
= SYSCTL_OUT(req
, &cputime_pctrack
[cpu
][ntrack
],
679 sizeof(struct kinfo_pctrack
));
688 SYSCTL_PROC(_kern
, OID_AUTO
, pctrack
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
689 sysctl_pctrack
, "S,kinfo_pcheader", "CPU PC tracking");
694 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
695 * the MP lock might not be held. We can safely manipulate parts of curproc
696 * but that's about it.
698 * Each cpu has its own scheduler clock.
701 schedclock(systimer_t info
, struct intrframe
*frame
)
708 if ((lp
= lwkt_preempted_proc()) != NULL
) {
710 * Account for cpu time used and hit the scheduler. Note
711 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
715 lp
->lwp_proc
->p_usched
->schedulerclock(lp
, info
->periodic
,
718 if ((lp
= curthread
->td_lwp
) != NULL
) {
720 * Update resource usage integrals and maximums.
722 if ((ru
= &lp
->lwp_proc
->p_ru
) &&
723 (vm
= lp
->lwp_proc
->p_vmspace
) != NULL
) {
724 ru
->ru_ixrss
+= pgtok(vm
->vm_tsize
);
725 ru
->ru_idrss
+= pgtok(vm
->vm_dsize
);
726 ru
->ru_isrss
+= pgtok(vm
->vm_ssize
);
727 rss
= pgtok(vmspace_resident_count(vm
));
728 if (ru
->ru_maxrss
< rss
)
735 * Compute number of ticks for the specified amount of time. The
736 * return value is intended to be used in a clock interrupt timed
737 * operation and guarenteed to meet or exceed the requested time.
738 * If the representation overflows, return INT_MAX. The minimum return
739 * value is 1 ticks and the function will average the calculation up.
740 * If any value greater then 0 microseconds is supplied, a value
741 * of at least 2 will be returned to ensure that a near-term clock
742 * interrupt does not cause the timeout to occur (degenerately) early.
744 * Note that limit checks must take into account microseconds, which is
745 * done simply by using the smaller signed long maximum instead of
746 * the unsigned long maximum.
748 * If ints have 32 bits, then the maximum value for any timeout in
749 * 10ms ticks is 248 days.
752 tvtohz_high(struct timeval
*tv
)
769 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
773 } else if (sec
<= INT_MAX
/ hz
) {
774 ticks
= (int)(sec
* hz
+
775 ((u_long
)usec
+ (tick
- 1)) / tick
) + 1;
783 * Compute number of ticks for the specified amount of time, erroring on
784 * the side of it being too low to ensure that sleeping the returned number
785 * of ticks will not result in a late return.
787 * The supplied timeval may not be negative and should be normalized. A
788 * return value of 0 is possible if the timeval converts to less then
791 * If ints have 32 bits, then the maximum value for any timeout in
792 * 10ms ticks is 248 days.
795 tvtohz_low(struct timeval
*tv
)
801 if (sec
<= INT_MAX
/ hz
)
802 ticks
= (int)(sec
* hz
+ (u_long
)tv
->tv_usec
/ tick
);
810 * Start profiling on a process.
812 * Kernel profiling passes proc0 which never exits and hence
813 * keeps the profile clock running constantly.
816 startprofclock(struct proc
*p
)
818 if ((p
->p_flag
& P_PROFIL
) == 0) {
819 p
->p_flag
|= P_PROFIL
;
821 if (++profprocs
== 1 && stathz
!= 0) {
824 setstatclockrate(profhz
);
832 * Stop profiling on a process.
835 stopprofclock(struct proc
*p
)
837 if (p
->p_flag
& P_PROFIL
) {
838 p
->p_flag
&= ~P_PROFIL
;
840 if (--profprocs
== 0 && stathz
!= 0) {
843 setstatclockrate(stathz
);
851 * Return information about system clocks.
854 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS
)
856 struct kinfo_clockinfo clkinfo
;
858 * Construct clockinfo structure.
861 clkinfo
.ci_tick
= tick
;
862 clkinfo
.ci_tickadj
= ntp_default_tick_delta
/ 1000;
863 clkinfo
.ci_profhz
= profhz
;
864 clkinfo
.ci_stathz
= stathz
? stathz
: hz
;
865 return (sysctl_handle_opaque(oidp
, &clkinfo
, sizeof clkinfo
, req
));
868 SYSCTL_PROC(_kern
, KERN_CLOCKRATE
, clockrate
, CTLTYPE_STRUCT
|CTLFLAG_RD
,
869 0, 0, sysctl_kern_clockrate
, "S,clockinfo","");
872 * We have eight functions for looking at the clock, four for
873 * microseconds and four for nanoseconds. For each there is fast
874 * but less precise version "get{nano|micro}[up]time" which will
875 * return a time which is up to 1/HZ previous to the call, whereas
876 * the raw version "{nano|micro}[up]time" will return a timestamp
877 * which is as precise as possible. The "up" variants return the
878 * time relative to system boot, these are well suited for time
879 * interval measurements.
881 * Each cpu independantly maintains the current time of day, so all
882 * we need to do to protect ourselves from changes is to do a loop
883 * check on the seconds field changing out from under us.
885 * The system timer maintains a 32 bit count and due to various issues
886 * it is possible for the calculated delta to occassionally exceed
887 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
888 * multiplication can easily overflow, so we deal with the case. For
889 * uniformity we deal with the case in the usec case too.
892 getmicrouptime(struct timeval
*tvp
)
894 struct globaldata
*gd
= mycpu
;
898 tvp
->tv_sec
= gd
->gd_time_seconds
;
899 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
900 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
902 if (delta
>= sys_cputimer
->freq
) {
903 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
904 delta
%= sys_cputimer
->freq
;
906 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
907 if (tvp
->tv_usec
>= 1000000) {
908 tvp
->tv_usec
-= 1000000;
914 getnanouptime(struct timespec
*tsp
)
916 struct globaldata
*gd
= mycpu
;
920 tsp
->tv_sec
= gd
->gd_time_seconds
;
921 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
922 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
924 if (delta
>= sys_cputimer
->freq
) {
925 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
926 delta
%= sys_cputimer
->freq
;
928 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
932 microuptime(struct timeval
*tvp
)
934 struct globaldata
*gd
= mycpu
;
938 tvp
->tv_sec
= gd
->gd_time_seconds
;
939 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
940 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
942 if (delta
>= sys_cputimer
->freq
) {
943 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
944 delta
%= sys_cputimer
->freq
;
946 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
950 nanouptime(struct timespec
*tsp
)
952 struct globaldata
*gd
= mycpu
;
956 tsp
->tv_sec
= gd
->gd_time_seconds
;
957 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
958 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
960 if (delta
>= sys_cputimer
->freq
) {
961 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
962 delta
%= sys_cputimer
->freq
;
964 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
972 getmicrotime(struct timeval
*tvp
)
974 struct globaldata
*gd
= mycpu
;
979 tvp
->tv_sec
= gd
->gd_time_seconds
;
980 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
981 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
983 if (delta
>= sys_cputimer
->freq
) {
984 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
985 delta
%= sys_cputimer
->freq
;
987 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
989 bt
= &basetime
[basetime_index
];
990 tvp
->tv_sec
+= bt
->tv_sec
;
991 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
992 while (tvp
->tv_usec
>= 1000000) {
993 tvp
->tv_usec
-= 1000000;
999 getnanotime(struct timespec
*tsp
)
1001 struct globaldata
*gd
= mycpu
;
1002 struct timespec
*bt
;
1006 tsp
->tv_sec
= gd
->gd_time_seconds
;
1007 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
1008 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1010 if (delta
>= sys_cputimer
->freq
) {
1011 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1012 delta
%= sys_cputimer
->freq
;
1014 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1016 bt
= &basetime
[basetime_index
];
1017 tsp
->tv_sec
+= bt
->tv_sec
;
1018 tsp
->tv_nsec
+= bt
->tv_nsec
;
1019 while (tsp
->tv_nsec
>= 1000000000) {
1020 tsp
->tv_nsec
-= 1000000000;
1026 getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
)
1028 struct globaldata
*gd
= mycpu
;
1032 tsp
->tv_sec
= gd
->gd_time_seconds
;
1033 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
1034 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1036 if (delta
>= sys_cputimer
->freq
) {
1037 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1038 delta
%= sys_cputimer
->freq
;
1040 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1042 tsp
->tv_sec
+= nbt
->tv_sec
;
1043 tsp
->tv_nsec
+= nbt
->tv_nsec
;
1044 while (tsp
->tv_nsec
>= 1000000000) {
1045 tsp
->tv_nsec
-= 1000000000;
1052 microtime(struct timeval
*tvp
)
1054 struct globaldata
*gd
= mycpu
;
1055 struct timespec
*bt
;
1059 tvp
->tv_sec
= gd
->gd_time_seconds
;
1060 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1061 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
1063 if (delta
>= sys_cputimer
->freq
) {
1064 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1065 delta
%= sys_cputimer
->freq
;
1067 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
1069 bt
= &basetime
[basetime_index
];
1070 tvp
->tv_sec
+= bt
->tv_sec
;
1071 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
1072 while (tvp
->tv_usec
>= 1000000) {
1073 tvp
->tv_usec
-= 1000000;
1079 nanotime(struct timespec
*tsp
)
1081 struct globaldata
*gd
= mycpu
;
1082 struct timespec
*bt
;
1086 tsp
->tv_sec
= gd
->gd_time_seconds
;
1087 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1088 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1090 if (delta
>= sys_cputimer
->freq
) {
1091 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1092 delta
%= sys_cputimer
->freq
;
1094 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1096 bt
= &basetime
[basetime_index
];
1097 tsp
->tv_sec
+= bt
->tv_sec
;
1098 tsp
->tv_nsec
+= bt
->tv_nsec
;
1099 while (tsp
->tv_nsec
>= 1000000000) {
1100 tsp
->tv_nsec
-= 1000000000;
1106 * note: this is not exactly synchronized with real time. To do that we
1107 * would have to do what microtime does and check for a nanoseconds overflow.
1110 get_approximate_time_t(void)
1112 struct globaldata
*gd
= mycpu
;
1113 struct timespec
*bt
;
1115 bt
= &basetime
[basetime_index
];
1116 return(gd
->gd_time_seconds
+ bt
->tv_sec
);
1120 pps_ioctl(u_long cmd
, caddr_t data
, struct pps_state
*pps
)
1123 struct pps_fetch_args
*fapi
;
1125 struct pps_kcbind_args
*kapi
;
1129 case PPS_IOC_CREATE
:
1131 case PPS_IOC_DESTROY
:
1133 case PPS_IOC_SETPARAMS
:
1134 app
= (pps_params_t
*)data
;
1135 if (app
->mode
& ~pps
->ppscap
)
1137 pps
->ppsparam
= *app
;
1139 case PPS_IOC_GETPARAMS
:
1140 app
= (pps_params_t
*)data
;
1141 *app
= pps
->ppsparam
;
1142 app
->api_version
= PPS_API_VERS_1
;
1144 case PPS_IOC_GETCAP
:
1145 *(int*)data
= pps
->ppscap
;
1148 fapi
= (struct pps_fetch_args
*)data
;
1149 if (fapi
->tsformat
&& fapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1151 if (fapi
->timeout
.tv_sec
|| fapi
->timeout
.tv_nsec
)
1152 return (EOPNOTSUPP
);
1153 pps
->ppsinfo
.current_mode
= pps
->ppsparam
.mode
;
1154 fapi
->pps_info_buf
= pps
->ppsinfo
;
1156 case PPS_IOC_KCBIND
:
1158 kapi
= (struct pps_kcbind_args
*)data
;
1159 /* XXX Only root should be able to do this */
1160 if (kapi
->tsformat
&& kapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1162 if (kapi
->kernel_consumer
!= PPS_KC_HARDPPS
)
1164 if (kapi
->edge
& ~pps
->ppscap
)
1166 pps
->kcmode
= kapi
->edge
;
1169 return (EOPNOTSUPP
);
1177 pps_init(struct pps_state
*pps
)
1179 pps
->ppscap
|= PPS_TSFMT_TSPEC
;
1180 if (pps
->ppscap
& PPS_CAPTUREASSERT
)
1181 pps
->ppscap
|= PPS_OFFSETASSERT
;
1182 if (pps
->ppscap
& PPS_CAPTURECLEAR
)
1183 pps
->ppscap
|= PPS_OFFSETCLEAR
;
1187 pps_event(struct pps_state
*pps
, sysclock_t count
, int event
)
1189 struct globaldata
*gd
;
1190 struct timespec
*tsp
;
1191 struct timespec
*osp
;
1192 struct timespec
*bt
;
1205 /* Things would be easier with arrays... */
1206 if (event
== PPS_CAPTUREASSERT
) {
1207 tsp
= &pps
->ppsinfo
.assert_timestamp
;
1208 osp
= &pps
->ppsparam
.assert_offset
;
1209 foff
= pps
->ppsparam
.mode
& PPS_OFFSETASSERT
;
1210 fhard
= pps
->kcmode
& PPS_CAPTUREASSERT
;
1211 pcount
= &pps
->ppscount
[0];
1212 pseq
= &pps
->ppsinfo
.assert_sequence
;
1214 tsp
= &pps
->ppsinfo
.clear_timestamp
;
1215 osp
= &pps
->ppsparam
.clear_offset
;
1216 foff
= pps
->ppsparam
.mode
& PPS_OFFSETCLEAR
;
1217 fhard
= pps
->kcmode
& PPS_CAPTURECLEAR
;
1218 pcount
= &pps
->ppscount
[1];
1219 pseq
= &pps
->ppsinfo
.clear_sequence
;
1222 /* Nothing really happened */
1223 if (*pcount
== count
)
1229 ts
.tv_sec
= gd
->gd_time_seconds
;
1230 delta
= count
- gd
->gd_cpuclock_base
;
1231 } while (ts
.tv_sec
!= gd
->gd_time_seconds
);
1233 if (delta
>= sys_cputimer
->freq
) {
1234 ts
.tv_sec
+= delta
/ sys_cputimer
->freq
;
1235 delta
%= sys_cputimer
->freq
;
1237 ts
.tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1238 bt
= &basetime
[basetime_index
];
1239 ts
.tv_sec
+= bt
->tv_sec
;
1240 ts
.tv_nsec
+= bt
->tv_nsec
;
1241 while (ts
.tv_nsec
>= 1000000000) {
1242 ts
.tv_nsec
-= 1000000000;
1250 timespecadd(tsp
, osp
);
1251 if (tsp
->tv_nsec
< 0) {
1252 tsp
->tv_nsec
+= 1000000000;
1258 /* magic, at its best... */
1259 tcount
= count
- pps
->ppscount
[2];
1260 pps
->ppscount
[2] = count
;
1261 if (tcount
>= sys_cputimer
->freq
) {
1262 delta
= (1000000000 * (tcount
/ sys_cputimer
->freq
) +
1263 sys_cputimer
->freq64_nsec
*
1264 (tcount
% sys_cputimer
->freq
)) >> 32;
1266 delta
= (sys_cputimer
->freq64_nsec
* tcount
) >> 32;
1268 hardpps(tsp
, delta
);