Enabling TX/RX in et_init() will always fail when cable is not plugged in,
[dragonfly.git] / sys / dev / netif / et / if_et.c
blobfd115dfa73a10f8711bef9e4f310a042afe2651c
1 /*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Sepherosa Ziehau <sepherosa@gmail.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.4 2007/10/17 13:25:04 sephe Exp $
37 #include <sys/param.h>
38 #include <sys/bitops.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 #include <sys/serialize.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
50 #include <net/ethernet.h>
51 #include <net/if.h>
52 #include <net/bpf.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/ifq_var.h>
57 #include <net/vlan/if_vlan_var.h>
59 #include <dev/netif/mii_layer/miivar.h>
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcidevs.h>
65 #include <dev/netif/et/if_etreg.h>
66 #include <dev/netif/et/if_etvar.h>
68 #include "miibus_if.h"
70 static int et_probe(device_t);
71 static int et_attach(device_t);
72 static int et_detach(device_t);
73 static int et_shutdown(device_t);
75 static int et_miibus_readreg(device_t, int, int);
76 static int et_miibus_writereg(device_t, int, int, int);
77 static void et_miibus_statchg(device_t);
79 static void et_init(void *);
80 static int et_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
81 static void et_start(struct ifnet *);
82 static void et_watchdog(struct ifnet *);
83 static int et_ifmedia_upd(struct ifnet *);
84 static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
86 static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
87 static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
89 static void et_intr(void *);
90 static void et_enable_intrs(struct et_softc *, uint32_t);
91 static void et_disable_intrs(struct et_softc *);
92 static void et_rxeof(struct et_softc *);
93 static void et_txeof(struct et_softc *);
95 static int et_dma_alloc(device_t);
96 static void et_dma_free(device_t);
97 static int et_dma_mem_create(device_t, bus_size_t, bus_dma_tag_t *,
98 void **, bus_addr_t *, bus_dmamap_t *);
99 static void et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
100 static int et_dma_mbuf_create(device_t);
101 static void et_dma_mbuf_destroy(device_t, int, const int[]);
102 static void et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
103 static void et_dma_buf_addr(void *, bus_dma_segment_t *, int,
104 bus_size_t, int);
105 static int et_init_tx_ring(struct et_softc *);
106 static int et_init_rx_ring(struct et_softc *);
107 static void et_free_tx_ring(struct et_softc *);
108 static void et_free_rx_ring(struct et_softc *);
109 static int et_encap(struct et_softc *, struct mbuf **);
110 static int et_newbuf(struct et_rxbuf_data *, int, int, int);
111 static int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
112 static int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
114 static void et_stop(struct et_softc *);
115 static int et_chip_init(struct et_softc *);
116 static void et_chip_attach(struct et_softc *);
117 static void et_init_mac(struct et_softc *);
118 static void et_init_rxmac(struct et_softc *);
119 static void et_init_txmac(struct et_softc *);
120 static int et_init_rxdma(struct et_softc *);
121 static int et_init_txdma(struct et_softc *);
122 static int et_start_rxdma(struct et_softc *);
123 static int et_start_txdma(struct et_softc *);
124 static int et_stop_rxdma(struct et_softc *);
125 static int et_stop_txdma(struct et_softc *);
126 static int et_enable_txrx(struct et_softc *, int);
127 static void et_reset(struct et_softc *);
128 static int et_bus_config(device_t);
129 static void et_get_eaddr(device_t, uint8_t[]);
130 static void et_setmulti(struct et_softc *);
131 static void et_tick(void *);
132 static void et_setmedia(struct et_softc *);
134 static const struct et_dev {
135 uint16_t vid;
136 uint16_t did;
137 const char *desc;
138 } et_devices[] = {
139 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
140 "Agere ET1310 Gigabit Ethernet" },
141 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
142 "Agere ET1310 Fast Ethernet" },
143 { 0, 0, NULL }
146 static device_method_t et_methods[] = {
147 DEVMETHOD(device_probe, et_probe),
148 DEVMETHOD(device_attach, et_attach),
149 DEVMETHOD(device_detach, et_detach),
150 DEVMETHOD(device_shutdown, et_shutdown),
151 #if 0
152 DEVMETHOD(device_suspend, et_suspend),
153 DEVMETHOD(device_resume, et_resume),
154 #endif
156 DEVMETHOD(bus_print_child, bus_generic_print_child),
157 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
159 DEVMETHOD(miibus_readreg, et_miibus_readreg),
160 DEVMETHOD(miibus_writereg, et_miibus_writereg),
161 DEVMETHOD(miibus_statchg, et_miibus_statchg),
163 { 0, 0 }
166 static driver_t et_driver = {
167 "et",
168 et_methods,
169 sizeof(struct et_softc)
172 static devclass_t et_devclass;
174 DECLARE_DUMMY_MODULE(if_et);
175 MODULE_DEPEND(if_et, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_et, pci, et_driver, et_devclass, 0, 0);
177 DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
179 static int et_rx_intr_npkts = 32;
180 static int et_rx_intr_delay = 20; /* x10 usec */
181 static int et_tx_intr_nsegs = 126;
182 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
184 TUNABLE_INT("hw.et.timer", &et_timer);
185 TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
186 TUNABLE_INT("hw.et.rx_intr_intvl", &et_rx_intr_delay);
187 TUNABLE_INT("hw.et_tx_intr_nsegs", &et_tx_intr_nsegs);
189 struct et_bsize {
190 int bufsize;
191 et_newbuf_t newbuf;
194 static const struct et_bsize et_bufsize[ET_RX_NRING] = {
195 { .bufsize = 0, .newbuf = et_newbuf_hdr },
196 { .bufsize = 0, .newbuf = et_newbuf_cluster },
199 static int
200 et_probe(device_t dev)
202 const struct et_dev *d;
203 uint16_t did, vid;
205 vid = pci_get_vendor(dev);
206 did = pci_get_device(dev);
208 for (d = et_devices; d->desc != NULL; ++d) {
209 if (vid == d->vid && did == d->did) {
210 device_set_desc(dev, d->desc);
211 return 0;
214 return ENXIO;
217 static int
218 et_attach(device_t dev)
220 struct et_softc *sc = device_get_softc(dev);
221 struct ifnet *ifp = &sc->arpcom.ac_if;
222 uint8_t eaddr[ETHER_ADDR_LEN];
223 int error;
225 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
226 callout_init(&sc->sc_tick);
229 * Initialize tunables
231 sc->sc_rx_intr_npkts = et_rx_intr_npkts;
232 sc->sc_rx_intr_delay = et_rx_intr_delay;
233 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
234 sc->sc_timer = et_timer;
236 #ifndef BURN_BRIDGES
237 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
238 uint32_t irq, mem;
240 irq = pci_read_config(dev, PCIR_INTLINE, 4);
241 mem = pci_read_config(dev, ET_PCIR_BAR, 4);
243 device_printf(dev, "chip is in D%d power mode "
244 "-- setting to D0\n", pci_get_powerstate(dev));
246 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
248 pci_write_config(dev, PCIR_INTLINE, irq, 4);
249 pci_write_config(dev, ET_PCIR_BAR, mem, 4);
251 #endif /* !BURN_BRIDGE */
253 /* Enable bus mastering */
254 pci_enable_busmaster(dev);
257 * Allocate IO memory
259 sc->sc_mem_rid = ET_PCIR_BAR;
260 sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
261 &sc->sc_mem_rid, RF_ACTIVE);
262 if (sc->sc_mem_res == NULL) {
263 device_printf(dev, "can't allocate IO memory\n");
264 return ENXIO;
266 sc->sc_mem_bt = rman_get_bustag(sc->sc_mem_res);
267 sc->sc_mem_bh = rman_get_bushandle(sc->sc_mem_res);
270 * Allocate IRQ
272 sc->sc_irq_rid = 0;
273 sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
274 &sc->sc_irq_rid,
275 RF_SHAREABLE | RF_ACTIVE);
276 if (sc->sc_irq_res == NULL) {
277 device_printf(dev, "can't allocate irq\n");
278 error = ENXIO;
279 goto fail;
283 * Create sysctl tree
285 sysctl_ctx_init(&sc->sc_sysctl_ctx);
286 sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
287 SYSCTL_STATIC_CHILDREN(_hw),
288 OID_AUTO,
289 device_get_nameunit(dev),
290 CTLFLAG_RD, 0, "");
291 if (sc->sc_sysctl_tree == NULL) {
292 device_printf(dev, "can't add sysctl node\n");
293 error = ENXIO;
294 goto fail;
297 SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
298 SYSCTL_CHILDREN(sc->sc_sysctl_tree),
299 OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW,
300 sc, 0, et_sysctl_rx_intr_npkts, "I",
301 "RX IM, # packets per RX interrupt");
302 SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
303 SYSCTL_CHILDREN(sc->sc_sysctl_tree),
304 OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW,
305 sc, 0, et_sysctl_rx_intr_delay, "I",
306 "RX IM, RX interrupt delay (x10 usec)");
307 SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
308 SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
309 "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
310 "TX IM, # segments per TX interrupt");
311 SYSCTL_ADD_UINT(&sc->sc_sysctl_ctx,
312 SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
313 "timer", CTLFLAG_RW, &sc->sc_timer, 0,
314 "TX timer");
316 error = et_bus_config(dev);
317 if (error)
318 goto fail;
320 et_get_eaddr(dev, eaddr);
322 CSR_WRITE_4(sc, ET_PM,
323 ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
325 et_reset(sc);
327 et_disable_intrs(sc);
329 error = et_dma_alloc(dev);
330 if (error)
331 goto fail;
333 ifp->if_softc = sc;
334 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
335 ifp->if_init = et_init;
336 ifp->if_ioctl = et_ioctl;
337 ifp->if_start = et_start;
338 ifp->if_watchdog = et_watchdog;
339 ifp->if_mtu = ETHERMTU;
340 ifp->if_capabilities = IFCAP_VLAN_MTU;
341 ifp->if_capenable = ifp->if_capabilities;
342 ifq_set_maxlen(&ifp->if_snd, ET_TX_NDESC);
343 ifq_set_ready(&ifp->if_snd);
345 et_chip_attach(sc);
347 error = mii_phy_probe(dev, &sc->sc_miibus,
348 et_ifmedia_upd, et_ifmedia_sts);
349 if (error) {
350 device_printf(dev, "can't probe any PHY\n");
351 goto fail;
354 ether_ifattach(ifp, eaddr, NULL);
356 error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, et_intr, sc,
357 &sc->sc_irq_handle, ifp->if_serializer);
358 if (error) {
359 ether_ifdetach(ifp);
360 device_printf(dev, "can't setup intr\n");
361 goto fail;
363 return 0;
364 fail:
365 et_detach(dev);
366 return error;
369 static int
370 et_detach(device_t dev)
372 struct et_softc *sc = device_get_softc(dev);
374 if (device_is_attached(dev)) {
375 struct ifnet *ifp = &sc->arpcom.ac_if;
377 lwkt_serialize_enter(ifp->if_serializer);
378 et_stop(sc);
379 bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
380 lwkt_serialize_exit(ifp->if_serializer);
382 ether_ifdetach(ifp);
385 if (sc->sc_sysctl_tree != NULL)
386 sysctl_ctx_free(&sc->sc_sysctl_ctx);
388 if (sc->sc_miibus != NULL)
389 device_delete_child(dev, sc->sc_miibus);
390 bus_generic_detach(dev);
392 if (sc->sc_irq_res != NULL) {
393 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
394 sc->sc_irq_res);
397 if (sc->sc_mem_res != NULL) {
398 bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
399 sc->sc_mem_res);
402 et_dma_free(dev);
404 return 0;
407 static int
408 et_shutdown(device_t dev)
410 struct et_softc *sc = device_get_softc(dev);
411 struct ifnet *ifp = &sc->arpcom.ac_if;
413 lwkt_serialize_enter(ifp->if_serializer);
414 et_stop(sc);
415 lwkt_serialize_exit(ifp->if_serializer);
416 return 0;
419 static int
420 et_miibus_readreg(device_t dev, int phy, int reg)
422 struct et_softc *sc = device_get_softc(dev);
423 uint32_t val;
424 int i, ret;
426 /* Stop any pending operations */
427 CSR_WRITE_4(sc, ET_MII_CMD, 0);
429 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
430 __SHIFTIN(reg, ET_MII_ADDR_REG);
431 CSR_WRITE_4(sc, ET_MII_ADDR, val);
433 /* Start reading */
434 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
436 #define NRETRY 50
438 for (i = 0; i < NRETRY; ++i) {
439 val = CSR_READ_4(sc, ET_MII_IND);
440 if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
441 break;
442 DELAY(50);
444 if (i == NRETRY) {
445 if_printf(&sc->arpcom.ac_if,
446 "read phy %d, reg %d timed out\n", phy, reg);
447 ret = 0;
448 goto back;
451 #undef NRETRY
453 val = CSR_READ_4(sc, ET_MII_STAT);
454 ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
456 back:
457 /* Make sure that the current operation is stopped */
458 CSR_WRITE_4(sc, ET_MII_CMD, 0);
459 return ret;
462 static int
463 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
465 struct et_softc *sc = device_get_softc(dev);
466 uint32_t val;
467 int i;
469 /* Stop any pending operations */
470 CSR_WRITE_4(sc, ET_MII_CMD, 0);
472 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
473 __SHIFTIN(reg, ET_MII_ADDR_REG);
474 CSR_WRITE_4(sc, ET_MII_ADDR, val);
476 /* Start writing */
477 CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
479 #define NRETRY 100
481 for (i = 0; i < NRETRY; ++i) {
482 val = CSR_READ_4(sc, ET_MII_IND);
483 if ((val & ET_MII_IND_BUSY) == 0)
484 break;
485 DELAY(50);
487 if (i == NRETRY) {
488 if_printf(&sc->arpcom.ac_if,
489 "write phy %d, reg %d timed out\n", phy, reg);
490 et_miibus_readreg(dev, phy, reg);
493 #undef NRETRY
495 /* Make sure that the current operation is stopped */
496 CSR_WRITE_4(sc, ET_MII_CMD, 0);
497 return 0;
500 static void
501 et_miibus_statchg(device_t dev)
503 et_setmedia(device_get_softc(dev));
506 static int
507 et_ifmedia_upd(struct ifnet *ifp)
509 struct et_softc *sc = ifp->if_softc;
510 struct mii_data *mii = device_get_softc(sc->sc_miibus);
512 if (mii->mii_instance != 0) {
513 struct mii_softc *miisc;
515 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
516 mii_phy_reset(miisc);
518 mii_mediachg(mii);
520 return 0;
523 static void
524 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
526 struct et_softc *sc = ifp->if_softc;
527 struct mii_data *mii = device_get_softc(sc->sc_miibus);
529 mii_pollstat(mii);
530 ifmr->ifm_active = mii->mii_media_active;
531 ifmr->ifm_status = mii->mii_media_status;
534 static void
535 et_stop(struct et_softc *sc)
537 struct ifnet *ifp = &sc->arpcom.ac_if;
539 ASSERT_SERIALIZED(ifp->if_serializer);
541 callout_stop(&sc->sc_tick);
543 et_stop_rxdma(sc);
544 et_stop_txdma(sc);
546 et_disable_intrs(sc);
548 et_free_tx_ring(sc);
549 et_free_rx_ring(sc);
551 et_reset(sc);
553 sc->sc_tx = 0;
554 sc->sc_tx_intr = 0;
555 sc->sc_txrx_enabled = 0;
557 ifp->if_timer = 0;
558 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
561 static int
562 et_bus_config(device_t dev)
564 uint32_t val, max_plsz;
565 uint16_t ack_latency, replay_timer;
568 * Test whether EEPROM is valid
569 * NOTE: Read twice to get the correct value
571 pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
572 val = pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
573 if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
574 device_printf(dev, "EEPROM status error 0x%02x\n", val);
575 return ENXIO;
578 /* TODO: LED */
581 * Configure ACK latency and replay timer according to
582 * max playload size
584 val = pci_read_config(dev, ET_PCIR_DEVICE_CAPS, 4);
585 max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
587 switch (max_plsz) {
588 case ET_PCIV_DEVICE_CAPS_PLSZ_128:
589 ack_latency = ET_PCIV_ACK_LATENCY_128;
590 replay_timer = ET_PCIV_REPLAY_TIMER_128;
591 break;
593 case ET_PCIV_DEVICE_CAPS_PLSZ_256:
594 ack_latency = ET_PCIV_ACK_LATENCY_256;
595 replay_timer = ET_PCIV_REPLAY_TIMER_256;
596 break;
598 default:
599 ack_latency = pci_read_config(dev, ET_PCIR_ACK_LATENCY, 2);
600 replay_timer = pci_read_config(dev, ET_PCIR_REPLAY_TIMER, 2);
601 device_printf(dev, "ack latency %u, replay timer %u\n",
602 ack_latency, replay_timer);
603 break;
605 if (ack_latency != 0) {
606 pci_write_config(dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
607 pci_write_config(dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2);
611 * Set L0s and L1 latency timer to 2us
613 val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
614 pci_write_config(dev, ET_PCIR_L0S_L1_LATENCY, val, 1);
617 * Set max read request size to 2048 bytes
619 val = pci_read_config(dev, ET_PCIR_DEVICE_CTRL, 2);
620 val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
621 val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
622 pci_write_config(dev, ET_PCIR_DEVICE_CTRL, val, 2);
624 return 0;
627 static void
628 et_get_eaddr(device_t dev, uint8_t eaddr[])
630 uint32_t val;
631 int i;
633 val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
634 for (i = 0; i < 4; ++i)
635 eaddr[i] = (val >> (8 * i)) & 0xff;
637 val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
638 for (; i < ETHER_ADDR_LEN; ++i)
639 eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
642 static void
643 et_reset(struct et_softc *sc)
645 CSR_WRITE_4(sc, ET_MAC_CFG1,
646 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
647 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
648 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
650 CSR_WRITE_4(sc, ET_SWRST,
651 ET_SWRST_TXDMA | ET_SWRST_RXDMA |
652 ET_SWRST_TXMAC | ET_SWRST_RXMAC |
653 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
655 CSR_WRITE_4(sc, ET_MAC_CFG1,
656 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
657 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
658 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
661 static void
662 et_disable_intrs(struct et_softc *sc)
664 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
667 static void
668 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
670 CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
673 static int
674 et_dma_alloc(device_t dev)
676 struct et_softc *sc = device_get_softc(dev);
677 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
678 struct et_txstatus_data *txsd = &sc->sc_tx_status;
679 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
680 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
681 int i, error;
684 * Create top level DMA tag
686 error = bus_dma_tag_create(NULL, 1, 0,
687 BUS_SPACE_MAXADDR_32BIT,
688 BUS_SPACE_MAXADDR,
689 NULL, NULL,
690 MAXBSIZE,
691 BUS_SPACE_UNRESTRICTED,
692 BUS_SPACE_MAXSIZE_32BIT,
693 0, &sc->sc_dtag);
694 if (error) {
695 device_printf(dev, "can't create DMA tag\n");
696 return error;
700 * Create TX ring DMA stuffs
702 error = et_dma_mem_create(dev, ET_TX_RING_SIZE, &tx_ring->tr_dtag,
703 (void **)&tx_ring->tr_desc,
704 &tx_ring->tr_paddr, &tx_ring->tr_dmap);
705 if (error) {
706 device_printf(dev, "can't create TX ring DMA stuffs\n");
707 return error;
711 * Create TX status DMA stuffs
713 error = et_dma_mem_create(dev, sizeof(uint32_t), &txsd->txsd_dtag,
714 (void **)&txsd->txsd_status,
715 &txsd->txsd_paddr, &txsd->txsd_dmap);
716 if (error) {
717 device_printf(dev, "can't create TX status DMA stuffs\n");
718 return error;
722 * Create DMA stuffs for RX rings
724 for (i = 0; i < ET_RX_NRING; ++i) {
725 static const uint32_t rx_ring_posreg[ET_RX_NRING] =
726 { ET_RX_RING0_POS, ET_RX_RING1_POS };
728 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
730 error = et_dma_mem_create(dev, ET_RX_RING_SIZE,
731 &rx_ring->rr_dtag,
732 (void **)&rx_ring->rr_desc,
733 &rx_ring->rr_paddr,
734 &rx_ring->rr_dmap);
735 if (error) {
736 device_printf(dev, "can't create DMA stuffs for "
737 "the %d RX ring\n", i);
738 return error;
740 rx_ring->rr_posreg = rx_ring_posreg[i];
744 * Create RX stat ring DMA stuffs
746 error = et_dma_mem_create(dev, ET_RXSTAT_RING_SIZE,
747 &rxst_ring->rsr_dtag,
748 (void **)&rxst_ring->rsr_stat,
749 &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap);
750 if (error) {
751 device_printf(dev, "can't create RX stat ring DMA stuffs\n");
752 return error;
756 * Create RX status DMA stuffs
758 error = et_dma_mem_create(dev, sizeof(struct et_rxstatus),
759 &rxsd->rxsd_dtag,
760 (void **)&rxsd->rxsd_status,
761 &rxsd->rxsd_paddr, &rxsd->rxsd_dmap);
762 if (error) {
763 device_printf(dev, "can't create RX status DMA stuffs\n");
764 return error;
768 * Create mbuf DMA stuffs
770 error = et_dma_mbuf_create(dev);
771 if (error)
772 return error;
774 return 0;
777 static void
778 et_dma_free(device_t dev)
780 struct et_softc *sc = device_get_softc(dev);
781 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
782 struct et_txstatus_data *txsd = &sc->sc_tx_status;
783 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
784 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
785 int i, rx_done[ET_RX_NRING];
788 * Destroy TX ring DMA stuffs
790 et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
791 tx_ring->tr_dmap);
794 * Destroy TX status DMA stuffs
796 et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
797 txsd->txsd_dmap);
800 * Destroy DMA stuffs for RX rings
802 for (i = 0; i < ET_RX_NRING; ++i) {
803 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
805 et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
806 rx_ring->rr_dmap);
810 * Destroy RX stat ring DMA stuffs
812 et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
813 rxst_ring->rsr_dmap);
816 * Destroy RX status DMA stuffs
818 et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
819 rxsd->rxsd_dmap);
822 * Destroy mbuf DMA stuffs
824 for (i = 0; i < ET_RX_NRING; ++i)
825 rx_done[i] = ET_RX_NDESC;
826 et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
829 * Destroy top level DMA tag
831 if (sc->sc_dtag != NULL)
832 bus_dma_tag_destroy(sc->sc_dtag);
835 static int
836 et_dma_mbuf_create(device_t dev)
838 struct et_softc *sc = device_get_softc(dev);
839 struct et_txbuf_data *tbd = &sc->sc_tx_data;
840 int i, error, rx_done[ET_RX_NRING];
843 * Create mbuf DMA tag
845 error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
846 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
847 NULL, NULL,
848 MCLBYTES, ET_NSEG_MAX,
849 BUS_SPACE_MAXSIZE_32BIT,
850 BUS_DMA_ALLOCNOW, &sc->sc_mbuf_dtag);
851 if (error) {
852 device_printf(dev, "can't create mbuf DMA tag\n");
853 return error;
857 * Create spare DMA map for RX mbufs
859 error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &sc->sc_mbuf_tmp_dmap);
860 if (error) {
861 device_printf(dev, "can't create spare mbuf DMA map\n");
862 bus_dma_tag_destroy(sc->sc_mbuf_dtag);
863 sc->sc_mbuf_dtag = NULL;
864 return error;
868 * Create DMA maps for RX mbufs
870 bzero(rx_done, sizeof(rx_done));
871 for (i = 0; i < ET_RX_NRING; ++i) {
872 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
873 int j;
875 for (j = 0; j < ET_RX_NDESC; ++j) {
876 error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
877 &rbd->rbd_buf[j].rb_dmap);
878 if (error) {
879 device_printf(dev, "can't create %d RX mbuf "
880 "for %d RX ring\n", j, i);
881 rx_done[i] = j;
882 et_dma_mbuf_destroy(dev, 0, rx_done);
883 return error;
886 rx_done[i] = ET_RX_NDESC;
888 rbd->rbd_softc = sc;
889 rbd->rbd_ring = &sc->sc_rx_ring[i];
893 * Create DMA maps for TX mbufs
895 for (i = 0; i < ET_TX_NDESC; ++i) {
896 error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
897 &tbd->tbd_buf[i].tb_dmap);
898 if (error) {
899 device_printf(dev, "can't create %d TX mbuf "
900 "DMA map\n", i);
901 et_dma_mbuf_destroy(dev, i, rx_done);
902 return error;
906 return 0;
909 static void
910 et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
912 struct et_softc *sc = device_get_softc(dev);
913 struct et_txbuf_data *tbd = &sc->sc_tx_data;
914 int i;
916 if (sc->sc_mbuf_dtag == NULL)
917 return;
920 * Destroy DMA maps for RX mbufs
922 for (i = 0; i < ET_RX_NRING; ++i) {
923 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
924 int j;
926 for (j = 0; j < rx_done[i]; ++j) {
927 struct et_rxbuf *rb = &rbd->rbd_buf[j];
929 KASSERT(rb->rb_mbuf == NULL,
930 ("RX mbuf in %d RX ring is not freed yet\n", i));
931 bus_dmamap_destroy(sc->sc_mbuf_dtag, rb->rb_dmap);
936 * Destroy DMA maps for TX mbufs
938 for (i = 0; i < tx_done; ++i) {
939 struct et_txbuf *tb = &tbd->tbd_buf[i];
941 KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
942 bus_dmamap_destroy(sc->sc_mbuf_dtag, tb->tb_dmap);
946 * Destroy spare mbuf DMA map
948 bus_dmamap_destroy(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap);
951 * Destroy mbuf DMA tag
953 bus_dma_tag_destroy(sc->sc_mbuf_dtag);
954 sc->sc_mbuf_dtag = NULL;
957 static int
958 et_dma_mem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
959 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
961 struct et_softc *sc = device_get_softc(dev);
962 int error;
964 error = bus_dma_tag_create(sc->sc_dtag, ET_ALIGN, 0,
965 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
966 NULL, NULL,
967 size, 1, BUS_SPACE_MAXSIZE_32BIT,
968 0, dtag);
969 if (error) {
970 device_printf(dev, "can't create DMA tag\n");
971 return error;
974 error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
975 dmap);
976 if (error) {
977 device_printf(dev, "can't allocate DMA mem\n");
978 bus_dma_tag_destroy(*dtag);
979 *dtag = NULL;
980 return error;
983 error = bus_dmamap_load(*dtag, *dmap, *addr, size,
984 et_dma_ring_addr, paddr, BUS_DMA_WAITOK);
985 if (error) {
986 device_printf(dev, "can't load DMA mem\n");
987 bus_dmamem_free(*dtag, *addr, *dmap);
988 bus_dma_tag_destroy(*dtag);
989 *dtag = NULL;
990 return error;
992 return 0;
995 static void
996 et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
998 if (dtag != NULL) {
999 bus_dmamap_unload(dtag, dmap);
1000 bus_dmamem_free(dtag, addr, dmap);
1001 bus_dma_tag_destroy(dtag);
1005 static void
1006 et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1008 KASSERT(nseg == 1, ("too many segments\n"));
1009 *((bus_addr_t *)arg) = seg->ds_addr;
1012 static void
1013 et_chip_attach(struct et_softc *sc)
1015 uint32_t val;
1018 * Perform minimal initialization
1021 /* Disable loopback */
1022 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1024 /* Reset MAC */
1025 CSR_WRITE_4(sc, ET_MAC_CFG1,
1026 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1027 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1028 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1031 * Setup half duplex mode
1033 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1034 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1035 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1036 ET_MAC_HDX_EXC_DEFER;
1037 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1039 /* Clear MAC control */
1040 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1042 /* Reset MII */
1043 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1045 /* Bring MAC out of reset state */
1046 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1048 /* Enable memory controllers */
1049 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1052 static void
1053 et_intr(void *xsc)
1055 struct et_softc *sc = xsc;
1056 struct ifnet *ifp = &sc->arpcom.ac_if;
1057 uint32_t intrs;
1059 ASSERT_SERIALIZED(ifp->if_serializer);
1061 if ((ifp->if_flags & IFF_RUNNING) == 0)
1062 return;
1064 et_disable_intrs(sc);
1066 intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1067 intrs &= ET_INTRS;
1068 if (intrs == 0) /* Not interested */
1069 goto back;
1071 if (intrs & ET_INTR_RXEOF)
1072 et_rxeof(sc);
1073 if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1074 et_txeof(sc);
1075 if (intrs & ET_INTR_TIMER)
1076 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1077 back:
1078 et_enable_intrs(sc, ET_INTRS);
1081 static void
1082 et_init(void *xsc)
1084 struct et_softc *sc = xsc;
1085 struct ifnet *ifp = &sc->arpcom.ac_if;
1086 const struct et_bsize *arr;
1087 int error, i;
1089 ASSERT_SERIALIZED(ifp->if_serializer);
1091 et_stop(sc);
1093 arr = ifp->if_mtu <= ETHERMTU ? et_bufsize : NULL;
1094 for (i = 0; i < ET_RX_NRING; ++i) {
1095 sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
1096 sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
1099 error = et_init_tx_ring(sc);
1100 if (error)
1101 goto back;
1103 error = et_init_rx_ring(sc);
1104 if (error)
1105 goto back;
1107 error = et_chip_init(sc);
1108 if (error)
1109 goto back;
1111 error = et_enable_txrx(sc, 1);
1112 if (error)
1113 goto back;
1115 et_enable_intrs(sc, ET_INTRS);
1117 callout_reset(&sc->sc_tick, hz, et_tick, sc);
1119 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1121 ifp->if_flags |= IFF_RUNNING;
1122 ifp->if_flags &= ~IFF_OACTIVE;
1123 back:
1124 if (error)
1125 et_stop(sc);
1128 static int
1129 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1131 struct et_softc *sc = ifp->if_softc;
1132 struct mii_data *mii = device_get_softc(sc->sc_miibus);
1133 struct ifreq *ifr = (struct ifreq *)data;
1134 int error = 0;
1136 ASSERT_SERIALIZED(ifp->if_serializer);
1138 switch (cmd) {
1139 case SIOCSIFFLAGS:
1140 if (ifp->if_flags & IFF_UP) {
1141 if (ifp->if_flags & IFF_RUNNING) {
1142 if ((ifp->if_flags ^ sc->sc_if_flags) &
1143 (IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST))
1144 et_setmulti(sc);
1145 } else {
1146 et_init(sc);
1148 } else {
1149 if (ifp->if_flags & IFF_RUNNING)
1150 et_stop(sc);
1152 sc->sc_if_flags = ifp->if_flags;
1153 break;
1155 case SIOCSIFMEDIA:
1156 case SIOCGIFMEDIA:
1157 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1158 break;
1160 case SIOCADDMULTI:
1161 case SIOCDELMULTI:
1162 if (ifp->if_flags & IFF_RUNNING)
1163 et_setmulti(sc);
1164 break;
1166 case SIOCSIFMTU:
1167 /* TODO */
1168 error = EOPNOTSUPP;
1169 break;
1171 default:
1172 error = ether_ioctl(ifp, cmd, data);
1173 break;
1175 return error;
1178 static void
1179 et_start(struct ifnet *ifp)
1181 struct et_softc *sc = ifp->if_softc;
1182 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1183 int trans;
1185 ASSERT_SERIALIZED(ifp->if_serializer);
1187 if (!sc->sc_txrx_enabled)
1188 return;
1190 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1191 return;
1193 trans = 0;
1194 for (;;) {
1195 struct mbuf *m;
1197 if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1198 ifp->if_flags |= IFF_OACTIVE;
1199 break;
1202 m = ifq_dequeue(&ifp->if_snd, NULL);
1203 if (m == NULL)
1204 break;
1206 if (et_encap(sc, &m)) {
1207 ifp->if_oerrors++;
1208 ifp->if_flags |= IFF_OACTIVE;
1209 break;
1211 trans = 1;
1213 BPF_MTAP(ifp, m);
1216 if (trans)
1217 ifp->if_timer = 5;
1220 static void
1221 et_watchdog(struct ifnet *ifp)
1223 ASSERT_SERIALIZED(ifp->if_serializer);
1225 if_printf(ifp, "watchdog timed out\n");
1227 ifp->if_init(ifp->if_softc);
1228 ifp->if_start(ifp);
1231 static int
1232 et_stop_rxdma(struct et_softc *sc)
1234 CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1235 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1237 DELAY(5);
1238 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1239 if_printf(&sc->arpcom.ac_if, "can't stop RX DMA engine\n");
1240 return ETIMEDOUT;
1242 return 0;
1245 static int
1246 et_stop_txdma(struct et_softc *sc)
1248 CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1249 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1250 return 0;
1253 static void
1254 et_free_tx_ring(struct et_softc *sc)
1256 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1257 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1258 int i;
1260 for (i = 0; i < ET_TX_NDESC; ++i) {
1261 struct et_txbuf *tb = &tbd->tbd_buf[i];
1263 if (tb->tb_mbuf != NULL) {
1264 bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
1265 m_freem(tb->tb_mbuf);
1266 tb->tb_mbuf = NULL;
1270 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1271 bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
1272 BUS_DMASYNC_PREWRITE);
1275 static void
1276 et_free_rx_ring(struct et_softc *sc)
1278 int n;
1280 for (n = 0; n < ET_RX_NRING; ++n) {
1281 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1282 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1283 int i;
1285 for (i = 0; i < ET_RX_NDESC; ++i) {
1286 struct et_rxbuf *rb = &rbd->rbd_buf[i];
1288 if (rb->rb_mbuf != NULL) {
1289 bus_dmamap_unload(sc->sc_mbuf_dtag,
1290 rb->rb_dmap);
1291 m_freem(rb->rb_mbuf);
1292 rb->rb_mbuf = NULL;
1296 bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1297 bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
1298 BUS_DMASYNC_PREWRITE);
1302 static void
1303 et_setmulti(struct et_softc *sc)
1305 struct ifnet *ifp = &sc->arpcom.ac_if;
1306 uint32_t hash[4] = { 0, 0, 0, 0 };
1307 uint32_t rxmac_ctrl, pktfilt;
1308 struct ifmultiaddr *ifma;
1309 int i, count;
1311 pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1312 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1314 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1315 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1316 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1317 goto back;
1320 count = 0;
1321 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1322 uint32_t *hp, h;
1324 if (ifma->ifma_addr->sa_family != AF_LINK)
1325 continue;
1327 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1328 ifma->ifma_addr), ETHER_ADDR_LEN);
1329 h = (h & 0x3f800000) >> 23;
1331 hp = &hash[0];
1332 if (h >= 32 && h < 64) {
1333 h -= 32;
1334 hp = &hash[1];
1335 } else if (h >= 64 && h < 96) {
1336 h -= 64;
1337 hp = &hash[2];
1338 } else if (h >= 96) {
1339 h -= 96;
1340 hp = &hash[3];
1342 *hp |= (1 << h);
1344 ++count;
1347 for (i = 0; i < 4; ++i)
1348 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1350 if (count > 0)
1351 pktfilt |= ET_PKTFILT_MCAST;
1352 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1353 back:
1354 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1355 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1358 static int
1359 et_chip_init(struct et_softc *sc)
1361 struct ifnet *ifp = &sc->arpcom.ac_if;
1362 uint32_t rxq_end;
1363 int error;
1366 * Split internal memory between TX and RX according to MTU
1368 if (ifp->if_mtu < 2048)
1369 rxq_end = 0x2bc;
1370 else if (ifp->if_mtu < 8192)
1371 rxq_end = 0x1ff;
1372 else
1373 rxq_end = 0x1b3;
1374 CSR_WRITE_4(sc, ET_RXQ_START, 0);
1375 CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1376 CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1377 CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1379 /* No loopback */
1380 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1382 /* Clear MSI configure */
1383 CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1385 /* Disable timer */
1386 CSR_WRITE_4(sc, ET_TIMER, 0);
1388 /* Initialize MAC */
1389 et_init_mac(sc);
1391 /* Enable memory controllers */
1392 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1394 /* Initialize RX MAC */
1395 et_init_rxmac(sc);
1397 /* Initialize TX MAC */
1398 et_init_txmac(sc);
1400 /* Initialize RX DMA engine */
1401 error = et_init_rxdma(sc);
1402 if (error)
1403 return error;
1405 /* Initialize TX DMA engine */
1406 error = et_init_txdma(sc);
1407 if (error)
1408 return error;
1410 return 0;
1413 static int
1414 et_init_tx_ring(struct et_softc *sc)
1416 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1417 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1418 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1420 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1421 bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
1422 BUS_DMASYNC_PREWRITE);
1424 tbd->tbd_start_index = 0;
1425 tbd->tbd_start_wrap = 0;
1426 tbd->tbd_used = 0;
1428 bzero(txsd->txsd_status, sizeof(uint32_t));
1429 bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap,
1430 BUS_DMASYNC_PREWRITE);
1431 return 0;
1434 static int
1435 et_init_rx_ring(struct et_softc *sc)
1437 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1438 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1439 int n;
1441 for (n = 0; n < ET_RX_NRING; ++n) {
1442 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1443 int i, error;
1445 for (i = 0; i < ET_RX_NDESC; ++i) {
1446 error = rbd->rbd_newbuf(rbd, i, 1);
1447 if (error) {
1448 if_printf(&sc->arpcom.ac_if, "%d ring %d buf, "
1449 "newbuf failed: %d\n", n, i, error);
1450 return error;
1455 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1456 bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
1457 BUS_DMASYNC_PREWRITE);
1459 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1460 bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
1461 BUS_DMASYNC_PREWRITE);
1463 return 0;
1466 static void
1467 et_dma_buf_addr(void *xctx, bus_dma_segment_t *segs, int nsegs,
1468 bus_size_t mapsz __unused, int error)
1470 struct et_dmamap_ctx *ctx = xctx;
1471 int i;
1473 if (error)
1474 return;
1476 if (nsegs > ctx->nsegs) {
1477 ctx->nsegs = 0;
1478 return;
1481 ctx->nsegs = nsegs;
1482 for (i = 0; i < nsegs; ++i)
1483 ctx->segs[i] = segs[i];
1486 static int
1487 et_init_rxdma(struct et_softc *sc)
1489 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1490 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1491 struct et_rxdesc_ring *rx_ring;
1492 int error;
1494 error = et_stop_rxdma(sc);
1495 if (error) {
1496 if_printf(&sc->arpcom.ac_if, "can't init RX DMA engine\n");
1497 return error;
1501 * Install RX status
1503 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1504 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1507 * Install RX stat ring
1509 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1510 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1511 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1512 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1513 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1515 /* Match ET_RXSTAT_POS */
1516 rxst_ring->rsr_index = 0;
1517 rxst_ring->rsr_wrap = 0;
1520 * Install the 2nd RX descriptor ring
1522 rx_ring = &sc->sc_rx_ring[1];
1523 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1524 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1525 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1526 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1527 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1529 /* Match ET_RX_RING1_POS */
1530 rx_ring->rr_index = 0;
1531 rx_ring->rr_wrap = 1;
1534 * Install the 1st RX descriptor ring
1536 rx_ring = &sc->sc_rx_ring[0];
1537 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1538 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1539 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1540 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1541 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1543 /* Match ET_RX_RING0_POS */
1544 rx_ring->rr_index = 0;
1545 rx_ring->rr_wrap = 1;
1548 * RX intr moderation
1550 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1551 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1553 return 0;
1556 static int
1557 et_init_txdma(struct et_softc *sc)
1559 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1560 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1561 int error;
1563 error = et_stop_txdma(sc);
1564 if (error) {
1565 if_printf(&sc->arpcom.ac_if, "can't init TX DMA engine\n");
1566 return error;
1570 * Install TX descriptor ring
1572 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1573 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1574 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1577 * Install TX status
1579 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1580 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1582 CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1584 /* Match ET_TX_READY_POS */
1585 tx_ring->tr_ready_index = 0;
1586 tx_ring->tr_ready_wrap = 0;
1588 return 0;
1591 static void
1592 et_init_mac(struct et_softc *sc)
1594 struct ifnet *ifp = &sc->arpcom.ac_if;
1595 const uint8_t *eaddr = IF_LLADDR(ifp);
1596 uint32_t val;
1598 /* Reset MAC */
1599 CSR_WRITE_4(sc, ET_MAC_CFG1,
1600 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1601 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1602 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1605 * Setup inter packet gap
1607 val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1608 __SHIFTIN(88, ET_IPG_NONB2B_2) |
1609 __SHIFTIN(80, ET_IPG_MINIFG) |
1610 __SHIFTIN(96, ET_IPG_B2B);
1611 CSR_WRITE_4(sc, ET_IPG, val);
1614 * Setup half duplex mode
1616 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1617 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1618 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1619 ET_MAC_HDX_EXC_DEFER;
1620 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1622 /* Clear MAC control */
1623 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1625 /* Reset MII */
1626 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1629 * Set MAC address
1631 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1632 CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1633 val = (eaddr[0] << 16) | (eaddr[1] << 24);
1634 CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1636 /* Set max frame length */
1637 CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1638 ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN);
1640 /* Bring MAC out of reset state */
1641 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1644 static void
1645 et_init_rxmac(struct et_softc *sc)
1647 struct ifnet *ifp = &sc->arpcom.ac_if;
1648 const uint8_t *eaddr = IF_LLADDR(ifp);
1649 uint32_t val;
1650 int i;
1652 /* Disable RX MAC and WOL */
1653 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1656 * Clear all WOL related registers
1658 for (i = 0; i < 3; ++i)
1659 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1660 for (i = 0; i < 20; ++i)
1661 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1664 * Set WOL source address. XXX is this necessary?
1666 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1667 CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1668 val = (eaddr[0] << 8) | eaddr[1];
1669 CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1671 /* Clear packet filters */
1672 CSR_WRITE_4(sc, ET_PKTFILT, 0);
1674 /* No ucast filtering */
1675 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1676 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1677 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1679 if (ifp->if_mtu > 8192) {
1681 * In order to transmit jumbo packets greater than 8k,
1682 * the FIFO between RX MAC and RX DMA needs to be reduced
1683 * in size to (16k - MTU). In order to implement this, we
1684 * must use "cut through" mode in the RX MAC, which chops
1685 * packets down into segments which are (max_size * 16).
1686 * In this case we selected 256 bytes, since this is the
1687 * size of the PCI-Express TLP's that the 1310 uses.
1689 val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1690 ET_RXMAC_MC_SEGSZ_ENABLE;
1691 } else {
1692 val = 0;
1694 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1696 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1698 /* Initialize RX MAC management register */
1699 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1701 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1703 CSR_WRITE_4(sc, ET_RXMAC_MGT,
1704 ET_RXMAC_MGT_PASS_ECRC |
1705 ET_RXMAC_MGT_PASS_ELEN |
1706 ET_RXMAC_MGT_PASS_ETRUNC |
1707 ET_RXMAC_MGT_CHECK_PKT);
1710 * Configure runt filtering (may not work on certain chip generation)
1712 val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1713 CSR_WRITE_4(sc, ET_PKTFILT, val);
1715 /* Enable RX MAC but leave WOL disabled */
1716 CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1717 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1720 * Setup multicast hash and allmulti/promisc mode
1722 et_setmulti(sc);
1725 static void
1726 et_init_txmac(struct et_softc *sc)
1728 /* Disable TX MAC and FC(?) */
1729 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1731 /* No flow control yet */
1732 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1734 /* Enable TX MAC but leave FC(?) diabled */
1735 CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1736 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1739 static int
1740 et_start_rxdma(struct et_softc *sc)
1742 uint32_t val = 0;
1744 val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1745 ET_RXDMA_CTRL_RING0_SIZE) |
1746 ET_RXDMA_CTRL_RING0_ENABLE;
1747 val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1748 ET_RXDMA_CTRL_RING1_SIZE) |
1749 ET_RXDMA_CTRL_RING1_ENABLE;
1751 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1753 DELAY(5);
1755 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1756 if_printf(&sc->arpcom.ac_if, "can't start RX DMA engine\n");
1757 return ETIMEDOUT;
1759 return 0;
1762 static int
1763 et_start_txdma(struct et_softc *sc)
1765 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1766 return 0;
1769 static int
1770 et_enable_txrx(struct et_softc *sc, int media_upd)
1772 struct ifnet *ifp = &sc->arpcom.ac_if;
1773 uint32_t val;
1774 int i, error;
1776 val = CSR_READ_4(sc, ET_MAC_CFG1);
1777 val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1778 val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1779 ET_MAC_CFG1_LOOPBACK);
1780 CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1782 if (media_upd)
1783 et_ifmedia_upd(ifp);
1784 else
1785 et_setmedia(sc);
1787 #define NRETRY 100
1789 for (i = 0; i < NRETRY; ++i) {
1790 val = CSR_READ_4(sc, ET_MAC_CFG1);
1791 if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1792 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1793 break;
1795 DELAY(10);
1797 if (i == NRETRY) {
1798 if_printf(ifp, "can't enable RX/TX\n");
1799 return 0;
1801 sc->sc_txrx_enabled = 1;
1803 #undef NRETRY
1806 * Start TX/RX DMA engine
1808 error = et_start_rxdma(sc);
1809 if (error)
1810 return error;
1812 error = et_start_txdma(sc);
1813 if (error)
1814 return error;
1816 return 0;
1819 static void
1820 et_rxeof(struct et_softc *sc)
1822 struct ifnet *ifp = &sc->arpcom.ac_if;
1823 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1824 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1825 uint32_t rxs_stat_ring;
1826 int rxst_wrap, rxst_index;
1828 if (!sc->sc_txrx_enabled)
1829 return;
1831 bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
1832 BUS_DMASYNC_POSTREAD);
1833 bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
1834 BUS_DMASYNC_POSTREAD);
1836 rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1837 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1838 rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1840 while (rxst_index != rxst_ring->rsr_index ||
1841 rxst_wrap != rxst_ring->rsr_wrap) {
1842 struct et_rxbuf_data *rbd;
1843 struct et_rxdesc_ring *rx_ring;
1844 struct et_rxstat *st;
1845 struct et_rxbuf *rb;
1846 struct mbuf *m;
1847 int buflen, buf_idx, ring_idx;
1848 uint32_t rxstat_pos, rxring_pos;
1850 KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1851 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1853 buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1854 buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1855 ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1857 if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1858 rxst_ring->rsr_index = 0;
1859 rxst_ring->rsr_wrap ^= 1;
1861 rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1862 ET_RXSTAT_POS_INDEX);
1863 if (rxst_ring->rsr_wrap)
1864 rxstat_pos |= ET_RXSTAT_POS_WRAP;
1865 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1867 if (ring_idx >= ET_RX_NRING) {
1868 ifp->if_ierrors++;
1869 if_printf(ifp, "invalid ring index %d\n", ring_idx);
1870 continue;
1872 if (buf_idx >= ET_RX_NDESC) {
1873 ifp->if_ierrors++;
1874 if_printf(ifp, "invalid buf index %d\n", buf_idx);
1875 continue;
1878 rbd = &sc->sc_rx_data[ring_idx];
1879 rb = &rbd->rbd_buf[buf_idx];
1880 m = rb->rb_mbuf;
1881 bus_dmamap_sync(sc->sc_mbuf_dtag, rb->rb_dmap,
1882 BUS_DMASYNC_POSTREAD);
1884 if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1885 m->m_pkthdr.len = m->m_len = buflen;
1886 m->m_pkthdr.rcvif = ifp;
1888 ifp->if_ipackets++;
1889 ifp->if_input(ifp, m);
1890 } else {
1891 ifp->if_ierrors++;
1894 rx_ring = &sc->sc_rx_ring[ring_idx];
1896 if (buf_idx != rx_ring->rr_index) {
1897 if_printf(ifp, "WARNING!! ring %d, "
1898 "buf_idx %d, rr_idx %d\n",
1899 ring_idx, buf_idx, rx_ring->rr_index);
1902 KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1903 if (++rx_ring->rr_index == ET_RX_NDESC) {
1904 rx_ring->rr_index = 0;
1905 rx_ring->rr_wrap ^= 1;
1907 rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1908 if (rx_ring->rr_wrap)
1909 rxring_pos |= ET_RX_RING_POS_WRAP;
1910 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1914 static int
1915 et_encap(struct et_softc *sc, struct mbuf **m0)
1917 struct mbuf *m = *m0;
1918 bus_dma_segment_t segs[ET_NSEG_MAX];
1919 struct et_dmamap_ctx ctx;
1920 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1921 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1922 struct et_txdesc *td;
1923 bus_dmamap_t map;
1924 int error, maxsegs, first_idx, last_idx, i;
1925 uint32_t tx_ready_pos, last_td_ctrl2;
1927 maxsegs = ET_TX_NDESC - tbd->tbd_used;
1928 if (maxsegs > ET_NSEG_MAX)
1929 maxsegs = ET_NSEG_MAX;
1930 KASSERT(maxsegs >= ET_NSEG_SPARE,
1931 ("not enough spare TX desc (%d)\n", maxsegs));
1933 KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1934 first_idx = tx_ring->tr_ready_index;
1935 map = tbd->tbd_buf[first_idx].tb_dmap;
1937 ctx.nsegs = maxsegs;
1938 ctx.segs = segs;
1939 error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
1940 et_dma_buf_addr, &ctx, BUS_DMA_NOWAIT);
1941 if (!error && ctx.nsegs == 0) {
1942 bus_dmamap_unload(sc->sc_mbuf_dtag, map);
1943 error = EFBIG;
1945 if (error && error != EFBIG) {
1946 if_printf(&sc->arpcom.ac_if, "can't load TX mbuf");
1947 goto back;
1949 if (error) { /* error == EFBIG */
1950 struct mbuf *m_new;
1952 m_new = m_defrag(m, MB_DONTWAIT);
1953 if (m_new == NULL) {
1954 if_printf(&sc->arpcom.ac_if, "can't defrag TX mbuf\n");
1955 error = ENOBUFS;
1956 goto back;
1957 } else {
1958 *m0 = m = m_new;
1961 ctx.nsegs = maxsegs;
1962 ctx.segs = segs;
1963 error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
1964 et_dma_buf_addr, &ctx,
1965 BUS_DMA_NOWAIT);
1966 if (error || ctx.nsegs == 0) {
1967 if (ctx.nsegs == 0) {
1968 bus_dmamap_unload(sc->sc_mbuf_dtag, map);
1969 error = EFBIG;
1971 if_printf(&sc->arpcom.ac_if,
1972 "can't load defraged TX mbuf\n");
1973 goto back;
1977 bus_dmamap_sync(sc->sc_mbuf_dtag, map, BUS_DMASYNC_PREWRITE);
1979 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1980 sc->sc_tx += ctx.nsegs;
1981 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1982 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1983 last_td_ctrl2 |= ET_TDCTRL2_INTR;
1986 last_idx = -1;
1987 for (i = 0; i < ctx.nsegs; ++i) {
1988 int idx;
1990 idx = (first_idx + i) % ET_TX_NDESC;
1991 td = &tx_ring->tr_desc[idx];
1992 td->td_addr_hi = ET_ADDR_HI(segs[i].ds_addr);
1993 td->td_addr_lo = ET_ADDR_LO(segs[i].ds_addr);
1994 td->td_ctrl1 = __SHIFTIN(segs[i].ds_len, ET_TDCTRL1_LEN);
1996 if (i == ctx.nsegs - 1) { /* Last frag */
1997 td->td_ctrl2 = last_td_ctrl2;
1998 last_idx = idx;
2001 KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
2002 if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
2003 tx_ring->tr_ready_index = 0;
2004 tx_ring->tr_ready_wrap ^= 1;
2007 td = &tx_ring->tr_desc[first_idx];
2008 td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
2010 KKASSERT(last_idx >= 0);
2011 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
2012 tbd->tbd_buf[last_idx].tb_dmap = map;
2013 tbd->tbd_buf[last_idx].tb_mbuf = m;
2015 tbd->tbd_used += ctx.nsegs;
2016 KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
2018 bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
2019 BUS_DMASYNC_PREWRITE);
2021 tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
2022 ET_TX_READY_POS_INDEX);
2023 if (tx_ring->tr_ready_wrap)
2024 tx_ready_pos |= ET_TX_READY_POS_WRAP;
2025 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
2027 error = 0;
2028 back:
2029 if (error) {
2030 m_freem(m);
2031 *m0 = NULL;
2033 return error;
2036 static void
2037 et_txeof(struct et_softc *sc)
2039 struct ifnet *ifp = &sc->arpcom.ac_if;
2040 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
2041 struct et_txbuf_data *tbd = &sc->sc_tx_data;
2042 uint32_t tx_done;
2043 int end, wrap;
2045 if (!sc->sc_txrx_enabled)
2046 return;
2048 if (tbd->tbd_used == 0)
2049 return;
2051 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2052 end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2053 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2055 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2056 struct et_txbuf *tb;
2058 KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2059 tb = &tbd->tbd_buf[tbd->tbd_start_index];
2061 bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2062 sizeof(struct et_txdesc));
2063 bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
2064 BUS_DMASYNC_PREWRITE);
2066 if (tb->tb_mbuf != NULL) {
2067 bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
2068 m_freem(tb->tb_mbuf);
2069 tb->tb_mbuf = NULL;
2072 if (++tbd->tbd_start_index == ET_TX_NDESC) {
2073 tbd->tbd_start_index = 0;
2074 tbd->tbd_start_wrap ^= 1;
2077 KKASSERT(tbd->tbd_used > 0);
2078 tbd->tbd_used--;
2081 if (tbd->tbd_used == 0)
2082 ifp->if_timer = 0;
2083 if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2084 ifp->if_flags &= ~IFF_OACTIVE;
2086 ifp->if_start(ifp);
2089 static void
2090 et_tick(void *xsc)
2092 struct et_softc *sc = xsc;
2093 struct ifnet *ifp = &sc->arpcom.ac_if;
2094 struct mii_data *mii = device_get_softc(sc->sc_miibus);
2096 lwkt_serialize_enter(ifp->if_serializer);
2098 mii_tick(mii);
2099 if (!sc->sc_txrx_enabled && (mii->mii_media_status & IFM_ACTIVE) &&
2100 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2101 if_printf(ifp, "Link up, enable TX/RX\n");
2102 if (et_enable_txrx(sc, 0) == 0)
2103 ifp->if_start(ifp);
2105 callout_reset(&sc->sc_tick, hz, et_tick, sc);
2107 lwkt_serialize_exit(ifp->if_serializer);
2110 static int
2111 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2113 return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2116 static int
2117 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2119 return et_newbuf(rbd, buf_idx, init, MHLEN);
2122 static int
2123 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2125 struct et_softc *sc = rbd->rbd_softc;
2126 struct et_rxdesc_ring *rx_ring;
2127 struct et_rxdesc *desc;
2128 struct et_rxbuf *rb;
2129 struct mbuf *m;
2130 struct et_dmamap_ctx ctx;
2131 bus_dma_segment_t seg;
2132 bus_dmamap_t dmap;
2133 int error, len;
2135 KKASSERT(buf_idx < ET_RX_NDESC);
2136 rb = &rbd->rbd_buf[buf_idx];
2138 m = m_getl(len0, init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR, &len);
2139 if (m == NULL) {
2140 error = ENOBUFS;
2142 /* XXX for debug */
2143 if_printf(&sc->arpcom.ac_if,
2144 "m_getl failed, size %d\n", len0);
2145 if (init) {
2146 return error;
2147 } else {
2148 goto back;
2151 m->m_len = m->m_pkthdr.len = len;
2154 * Try load RX mbuf into temporary DMA tag
2156 ctx.nsegs = 1;
2157 ctx.segs = &seg;
2158 error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap, m,
2159 et_dma_buf_addr, &ctx,
2160 init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2161 if (error || ctx.nsegs == 0) {
2162 if (!error) {
2163 bus_dmamap_unload(sc->sc_mbuf_dtag,
2164 sc->sc_mbuf_tmp_dmap);
2165 error = EFBIG;
2166 if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2168 m_freem(m);
2170 /* XXX for debug */
2171 if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2172 if (init) {
2173 return error;
2174 } else {
2175 goto back;
2179 if (!init)
2180 bus_dmamap_unload(sc->sc_mbuf_dtag, rb->rb_dmap);
2181 rb->rb_mbuf = m;
2182 rb->rb_paddr = seg.ds_addr;
2185 * Swap RX buf's DMA map with the loaded temporary one
2187 dmap = rb->rb_dmap;
2188 rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2189 sc->sc_mbuf_tmp_dmap = dmap;
2191 error = 0;
2192 back:
2193 rx_ring = rbd->rbd_ring;
2194 desc = &rx_ring->rr_desc[buf_idx];
2196 desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2197 desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2198 desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2200 bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
2201 BUS_DMASYNC_PREWRITE);
2202 return error;
2205 static int
2206 et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
2208 struct et_softc *sc = arg1;
2209 struct ifnet *ifp = &sc->arpcom.ac_if;
2210 int error = 0, v;
2212 lwkt_serialize_enter(ifp->if_serializer);
2214 v = sc->sc_rx_intr_npkts;
2215 error = sysctl_handle_int(oidp, &v, 0, req);
2216 if (error || req->newptr == NULL)
2217 goto back;
2218 if (v <= 0) {
2219 error = EINVAL;
2220 goto back;
2223 if (sc->sc_rx_intr_npkts != v) {
2224 if (ifp->if_flags & IFF_RUNNING)
2225 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
2226 sc->sc_rx_intr_npkts = v;
2228 back:
2229 lwkt_serialize_exit(ifp->if_serializer);
2230 return error;
2233 static int
2234 et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
2236 struct et_softc *sc = arg1;
2237 struct ifnet *ifp = &sc->arpcom.ac_if;
2238 int error = 0, v;
2240 lwkt_serialize_enter(ifp->if_serializer);
2242 v = sc->sc_rx_intr_delay;
2243 error = sysctl_handle_int(oidp, &v, 0, req);
2244 if (error || req->newptr == NULL)
2245 goto back;
2246 if (v <= 0) {
2247 error = EINVAL;
2248 goto back;
2251 if (sc->sc_rx_intr_delay != v) {
2252 if (ifp->if_flags & IFF_RUNNING)
2253 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
2254 sc->sc_rx_intr_delay = v;
2256 back:
2257 lwkt_serialize_exit(ifp->if_serializer);
2258 return error;
2261 static void
2262 et_setmedia(struct et_softc *sc)
2264 struct mii_data *mii = device_get_softc(sc->sc_miibus);
2265 uint32_t cfg2, ctrl;
2267 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
2268 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
2269 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
2270 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
2271 __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
2273 ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
2274 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
2276 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
2277 cfg2 |= ET_MAC_CFG2_MODE_GMII;
2278 } else {
2279 cfg2 |= ET_MAC_CFG2_MODE_MII;
2280 ctrl |= ET_MAC_CTRL_MODE_MII;
2283 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
2284 cfg2 |= ET_MAC_CFG2_FDX;
2285 else
2286 ctrl |= ET_MAC_CTRL_GHDX;
2288 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
2289 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);