em/emx/igb/ix: Increase opackets stats in if_start method
[dragonfly.git] / sys / dev / netif / em / if_em.c
blob938ca9ecb580f3795d47c5ecd26eb8a9878a4203
1 /*
2 * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
4 * Copyright (c) 2001-2014, Intel Corporation
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
34 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
36 * This code is derived from software contributed to The DragonFly Project
37 * by Matthew Dillon <dillon@backplane.com>
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in
47 * the documentation and/or other materials provided with the
48 * distribution.
49 * 3. Neither the name of The DragonFly Project nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific, prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
57 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
68 * SERIALIZATION API RULES:
70 * - We must call lwkt_serialize_handler_enable() prior to enabling the
71 * hardware interrupt and lwkt_serialize_handler_disable() after disabling
72 * the hardware interrupt in order to avoid handler execution races from
73 * scheduled interrupt threads.
76 #include "opt_ifpoll.h"
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
116 #define DEBUG_HW 0
118 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
119 #define EM_VER " 7.4.2"
121 #define _EM_DEVICE(id, ret) \
122 { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id) _EM_DEVICE(id, -100)
124 #define EM_DEVICE(id) _EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL { 0, 0, 0, NULL }
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 EM_DEVICE(82540EM),
129 EM_DEVICE(82540EM_LOM),
130 EM_DEVICE(82540EP),
131 EM_DEVICE(82540EP_LOM),
132 EM_DEVICE(82540EP_LP),
134 EM_DEVICE(82541EI),
135 EM_DEVICE(82541ER),
136 EM_DEVICE(82541ER_LOM),
137 EM_DEVICE(82541EI_MOBILE),
138 EM_DEVICE(82541GI),
139 EM_DEVICE(82541GI_LF),
140 EM_DEVICE(82541GI_MOBILE),
142 EM_DEVICE(82542),
144 EM_DEVICE(82543GC_FIBER),
145 EM_DEVICE(82543GC_COPPER),
147 EM_DEVICE(82544EI_COPPER),
148 EM_DEVICE(82544EI_FIBER),
149 EM_DEVICE(82544GC_COPPER),
150 EM_DEVICE(82544GC_LOM),
152 EM_DEVICE(82545EM_COPPER),
153 EM_DEVICE(82545EM_FIBER),
154 EM_DEVICE(82545GM_COPPER),
155 EM_DEVICE(82545GM_FIBER),
156 EM_DEVICE(82545GM_SERDES),
158 EM_DEVICE(82546EB_COPPER),
159 EM_DEVICE(82546EB_FIBER),
160 EM_DEVICE(82546EB_QUAD_COPPER),
161 EM_DEVICE(82546GB_COPPER),
162 EM_DEVICE(82546GB_FIBER),
163 EM_DEVICE(82546GB_SERDES),
164 EM_DEVICE(82546GB_PCIE),
165 EM_DEVICE(82546GB_QUAD_COPPER),
166 EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 EM_DEVICE(82547EI),
169 EM_DEVICE(82547EI_MOBILE),
170 EM_DEVICE(82547GI),
172 EM_EMX_DEVICE(82571EB_COPPER),
173 EM_EMX_DEVICE(82571EB_FIBER),
174 EM_EMX_DEVICE(82571EB_SERDES),
175 EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 EM_EMX_DEVICE(82572EI_COPPER),
184 EM_EMX_DEVICE(82572EI_FIBER),
185 EM_EMX_DEVICE(82572EI_SERDES),
186 EM_EMX_DEVICE(82572EI),
188 EM_EMX_DEVICE(82573E),
189 EM_EMX_DEVICE(82573E_IAMT),
190 EM_EMX_DEVICE(82573L),
192 EM_DEVICE(82583V),
194 EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 EM_DEVICE(ICH8_IGP_M_AMT),
200 EM_DEVICE(ICH8_IGP_AMT),
201 EM_DEVICE(ICH8_IGP_C),
202 EM_DEVICE(ICH8_IFE),
203 EM_DEVICE(ICH8_IFE_GT),
204 EM_DEVICE(ICH8_IFE_G),
205 EM_DEVICE(ICH8_IGP_M),
206 EM_DEVICE(ICH8_82567V_3),
208 EM_DEVICE(ICH9_IGP_M_AMT),
209 EM_DEVICE(ICH9_IGP_AMT),
210 EM_DEVICE(ICH9_IGP_C),
211 EM_DEVICE(ICH9_IGP_M),
212 EM_DEVICE(ICH9_IGP_M_V),
213 EM_DEVICE(ICH9_IFE),
214 EM_DEVICE(ICH9_IFE_GT),
215 EM_DEVICE(ICH9_IFE_G),
216 EM_DEVICE(ICH9_BM),
218 EM_EMX_DEVICE(82574L),
219 EM_EMX_DEVICE(82574LA),
221 EM_DEVICE(ICH10_R_BM_LM),
222 EM_DEVICE(ICH10_R_BM_LF),
223 EM_DEVICE(ICH10_R_BM_V),
224 EM_DEVICE(ICH10_D_BM_LM),
225 EM_DEVICE(ICH10_D_BM_LF),
226 EM_DEVICE(ICH10_D_BM_V),
228 EM_DEVICE(PCH_M_HV_LM),
229 EM_DEVICE(PCH_M_HV_LC),
230 EM_DEVICE(PCH_D_HV_DM),
231 EM_DEVICE(PCH_D_HV_DC),
233 EM_DEVICE(PCH2_LV_LM),
234 EM_DEVICE(PCH2_LV_V),
236 EM_EMX_DEVICE(PCH_LPT_I217_LM),
237 EM_EMX_DEVICE(PCH_LPT_I217_V),
238 EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
239 EM_EMX_DEVICE(PCH_LPTLP_I218_V),
240 EM_EMX_DEVICE(PCH_I218_LM2),
241 EM_EMX_DEVICE(PCH_I218_V2),
242 EM_EMX_DEVICE(PCH_I218_LM3),
243 EM_EMX_DEVICE(PCH_I218_V3),
245 /* required last entry */
246 EM_DEVICE_NULL
249 static int em_probe(device_t);
250 static int em_attach(device_t);
251 static int em_detach(device_t);
252 static int em_shutdown(device_t);
253 static int em_suspend(device_t);
254 static int em_resume(device_t);
256 static void em_init(void *);
257 static void em_stop(struct adapter *);
258 static int em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void em_start(struct ifnet *, struct ifaltq_subque *);
260 #ifdef IFPOLL_ENABLE
261 static void em_npoll(struct ifnet *, struct ifpoll_info *);
262 static void em_npoll_compat(struct ifnet *, void *, int);
263 #endif
264 static void em_watchdog(struct ifnet *);
265 static void em_media_status(struct ifnet *, struct ifmediareq *);
266 static int em_media_change(struct ifnet *);
267 static void em_timer(void *);
269 static void em_intr(void *);
270 static void em_intr_mask(void *);
271 static void em_intr_body(struct adapter *, boolean_t);
272 static void em_rxeof(struct adapter *, int);
273 static void em_txeof(struct adapter *);
274 static void em_tx_collect(struct adapter *);
275 static void em_tx_purge(struct adapter *);
276 static void em_enable_intr(struct adapter *);
277 static void em_disable_intr(struct adapter *);
279 static int em_dma_malloc(struct adapter *, bus_size_t,
280 struct em_dma_alloc *);
281 static void em_dma_free(struct adapter *, struct em_dma_alloc *);
282 static void em_init_tx_ring(struct adapter *);
283 static int em_init_rx_ring(struct adapter *);
284 static int em_create_tx_ring(struct adapter *);
285 static int em_create_rx_ring(struct adapter *);
286 static void em_destroy_tx_ring(struct adapter *, int);
287 static void em_destroy_rx_ring(struct adapter *, int);
288 static int em_newbuf(struct adapter *, int, int);
289 static int em_encap(struct adapter *, struct mbuf **, int *, int *);
290 static void em_rxcsum(struct adapter *, struct e1000_rx_desc *,
291 struct mbuf *);
292 static int em_txcsum(struct adapter *, struct mbuf *,
293 uint32_t *, uint32_t *);
294 static int em_tso_pullup(struct adapter *, struct mbuf **);
295 static int em_tso_setup(struct adapter *, struct mbuf *,
296 uint32_t *, uint32_t *);
298 static int em_get_hw_info(struct adapter *);
299 static int em_is_valid_eaddr(const uint8_t *);
300 static int em_alloc_pci_res(struct adapter *);
301 static void em_free_pci_res(struct adapter *);
302 static int em_reset(struct adapter *);
303 static void em_setup_ifp(struct adapter *);
304 static void em_init_tx_unit(struct adapter *);
305 static void em_init_rx_unit(struct adapter *);
306 static void em_update_stats(struct adapter *);
307 static void em_set_promisc(struct adapter *);
308 static void em_disable_promisc(struct adapter *);
309 static void em_set_multi(struct adapter *);
310 static void em_update_link_status(struct adapter *);
311 static void em_smartspeed(struct adapter *);
312 static void em_set_itr(struct adapter *, uint32_t);
313 static void em_disable_aspm(struct adapter *);
315 /* Hardware workarounds */
316 static int em_82547_fifo_workaround(struct adapter *, int);
317 static void em_82547_update_fifo_head(struct adapter *, int);
318 static int em_82547_tx_fifo_reset(struct adapter *);
319 static void em_82547_move_tail(void *);
320 static void em_82547_move_tail_serialized(struct adapter *);
321 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
323 static void em_print_debug_info(struct adapter *);
324 static void em_print_nvm_info(struct adapter *);
325 static void em_print_hw_stats(struct adapter *);
327 static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
328 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
329 static int em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
330 static int em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
331 static void em_add_sysctl(struct adapter *adapter);
333 /* Management and WOL Support */
334 static void em_get_mgmt(struct adapter *);
335 static void em_rel_mgmt(struct adapter *);
336 static void em_get_hw_control(struct adapter *);
337 static void em_rel_hw_control(struct adapter *);
338 static void em_enable_wol(device_t);
340 static device_method_t em_methods[] = {
341 /* Device interface */
342 DEVMETHOD(device_probe, em_probe),
343 DEVMETHOD(device_attach, em_attach),
344 DEVMETHOD(device_detach, em_detach),
345 DEVMETHOD(device_shutdown, em_shutdown),
346 DEVMETHOD(device_suspend, em_suspend),
347 DEVMETHOD(device_resume, em_resume),
348 DEVMETHOD_END
351 static driver_t em_driver = {
352 "em",
353 em_methods,
354 sizeof(struct adapter),
357 static devclass_t em_devclass;
359 DECLARE_DUMMY_MODULE(if_em);
360 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
361 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
364 * Tunables
366 static int em_int_throttle_ceil = EM_DEFAULT_ITR;
367 static int em_rxd = EM_DEFAULT_RXD;
368 static int em_txd = EM_DEFAULT_TXD;
369 static int em_smart_pwr_down = 0;
371 /* Controls whether promiscuous also shows bad packets */
372 static int em_debug_sbp = FALSE;
374 static int em_82573_workaround = 1;
375 static int em_msi_enable = 1;
377 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
378 TUNABLE_INT("hw.em.rxd", &em_rxd);
379 TUNABLE_INT("hw.em.txd", &em_txd);
380 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
381 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
382 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
383 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
385 /* Global used in WOL setup with multiport cards */
386 static int em_global_quad_port_a = 0;
388 /* Set this to one to display debug statistics */
389 static int em_display_debug_stats = 0;
391 #if !defined(KTR_IF_EM)
392 #define KTR_IF_EM KTR_ALL
393 #endif
394 KTR_INFO_MASTER(if_em);
395 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
396 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
397 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
398 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
399 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
400 #define logif(name) KTR_LOG(if_em_ ## name)
402 static int
403 em_probe(device_t dev)
405 const struct em_vendor_info *ent;
406 uint16_t vid, did;
408 vid = pci_get_vendor(dev);
409 did = pci_get_device(dev);
411 for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
412 if (vid == ent->vendor_id && did == ent->device_id) {
413 device_set_desc(dev, ent->desc);
414 device_set_async_attach(dev, TRUE);
415 return (ent->ret);
418 return (ENXIO);
421 static int
422 em_attach(device_t dev)
424 struct adapter *adapter = device_get_softc(dev);
425 struct ifnet *ifp = &adapter->arpcom.ac_if;
426 int tsize, rsize;
427 int error = 0;
428 uint16_t eeprom_data, device_id, apme_mask;
429 driver_intr_t *intr_func;
431 adapter->dev = adapter->osdep.dev = dev;
433 callout_init_mp(&adapter->timer);
434 callout_init_mp(&adapter->tx_fifo_timer);
436 ifmedia_init(&adapter->media, IFM_IMASK,
437 em_media_change, em_media_status);
439 /* Determine hardware and mac info */
440 error = em_get_hw_info(adapter);
441 if (error) {
442 device_printf(dev, "Identify hardware failed\n");
443 goto fail;
446 /* Setup PCI resources */
447 error = em_alloc_pci_res(adapter);
448 if (error) {
449 device_printf(dev, "Allocation of PCI resources failed\n");
450 goto fail;
454 * For ICH8 and family we need to map the flash memory,
455 * and this must happen after the MAC is identified.
457 if (adapter->hw.mac.type == e1000_ich8lan ||
458 adapter->hw.mac.type == e1000_ich9lan ||
459 adapter->hw.mac.type == e1000_ich10lan ||
460 adapter->hw.mac.type == e1000_pchlan ||
461 adapter->hw.mac.type == e1000_pch2lan ||
462 adapter->hw.mac.type == e1000_pch_lpt) {
463 adapter->flash_rid = EM_BAR_FLASH;
465 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
466 &adapter->flash_rid, RF_ACTIVE);
467 if (adapter->flash == NULL) {
468 device_printf(dev, "Mapping of Flash failed\n");
469 error = ENXIO;
470 goto fail;
472 adapter->osdep.flash_bus_space_tag =
473 rman_get_bustag(adapter->flash);
474 adapter->osdep.flash_bus_space_handle =
475 rman_get_bushandle(adapter->flash);
478 * This is used in the shared code
479 * XXX this goof is actually not used.
481 adapter->hw.flash_address = (uint8_t *)adapter->flash;
484 switch (adapter->hw.mac.type) {
485 case e1000_82571:
486 case e1000_82572:
487 case e1000_pch_lpt:
489 * Pullup extra 4bytes into the first data segment for
490 * TSO, see:
491 * 82571/82572 specification update errata #7
493 * Same applies to I217 (and maybe I218).
495 * NOTE:
496 * 4bytes instead of 2bytes, which are mentioned in the
497 * errata, are pulled; mainly to keep rest of the data
498 * properly aligned.
500 adapter->flags |= EM_FLAG_TSO_PULLEX;
501 /* FALL THROUGH */
503 default:
504 if (pci_is_pcie(dev))
505 adapter->flags |= EM_FLAG_TSO;
506 break;
509 /* Do Shared Code initialization */
510 if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
511 device_printf(dev, "Setup of Shared code failed\n");
512 error = ENXIO;
513 goto fail;
516 e1000_get_bus_info(&adapter->hw);
519 * Validate number of transmit and receive descriptors. It
520 * must not exceed hardware maximum, and must be multiple
521 * of E1000_DBA_ALIGN.
523 if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
524 (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
525 (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
526 em_txd < EM_MIN_TXD) {
527 if (adapter->hw.mac.type < e1000_82544)
528 adapter->num_tx_desc = EM_MAX_TXD_82543;
529 else
530 adapter->num_tx_desc = EM_DEFAULT_TXD;
531 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
532 adapter->num_tx_desc, em_txd);
533 } else {
534 adapter->num_tx_desc = em_txd;
536 if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
537 (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
538 (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
539 em_rxd < EM_MIN_RXD) {
540 if (adapter->hw.mac.type < e1000_82544)
541 adapter->num_rx_desc = EM_MAX_RXD_82543;
542 else
543 adapter->num_rx_desc = EM_DEFAULT_RXD;
544 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
545 adapter->num_rx_desc, em_rxd);
546 } else {
547 adapter->num_rx_desc = em_rxd;
550 adapter->hw.mac.autoneg = DO_AUTO_NEG;
551 adapter->hw.phy.autoneg_wait_to_complete = FALSE;
552 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
553 adapter->rx_buffer_len = MCLBYTES;
556 * Interrupt throttle rate
558 if (em_int_throttle_ceil == 0) {
559 adapter->int_throttle_ceil = 0;
560 } else {
561 int throttle = em_int_throttle_ceil;
563 if (throttle < 0)
564 throttle = EM_DEFAULT_ITR;
566 /* Recalculate the tunable value to get the exact frequency. */
567 throttle = 1000000000 / 256 / throttle;
569 /* Upper 16bits of ITR is reserved and should be zero */
570 if (throttle & 0xffff0000)
571 throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
573 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
576 e1000_init_script_state_82541(&adapter->hw, TRUE);
577 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
579 /* Copper options */
580 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
581 adapter->hw.phy.mdix = AUTO_ALL_MODES;
582 adapter->hw.phy.disable_polarity_correction = FALSE;
583 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
586 /* Set the frame limits assuming standard ethernet sized frames. */
587 adapter->hw.mac.max_frame_size =
588 ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
589 adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
591 /* This controls when hardware reports transmit completion status. */
592 adapter->hw.mac.report_tx_early = 1;
595 * Create top level busdma tag
597 error = bus_dma_tag_create(NULL, 1, 0,
598 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
599 NULL, NULL,
600 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
601 0, &adapter->parent_dtag);
602 if (error) {
603 device_printf(dev, "could not create top level DMA tag\n");
604 goto fail;
608 * Allocate Transmit Descriptor ring
610 tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
611 EM_DBA_ALIGN);
612 error = em_dma_malloc(adapter, tsize, &adapter->txdma);
613 if (error) {
614 device_printf(dev, "Unable to allocate tx_desc memory\n");
615 goto fail;
617 adapter->tx_desc_base = adapter->txdma.dma_vaddr;
620 * Allocate Receive Descriptor ring
622 rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
623 EM_DBA_ALIGN);
624 error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
625 if (error) {
626 device_printf(dev, "Unable to allocate rx_desc memory\n");
627 goto fail;
629 adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
631 /* Allocate multicast array memory. */
632 adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
633 M_DEVBUF, M_WAITOK);
635 /* Indicate SOL/IDER usage */
636 if (e1000_check_reset_block(&adapter->hw)) {
637 device_printf(dev,
638 "PHY reset is blocked due to SOL/IDER session.\n");
641 /* Disable EEE */
642 adapter->hw.dev_spec.ich8lan.eee_disable = 1;
645 * Start from a known state, this is important in reading the
646 * nvm and mac from that.
648 e1000_reset_hw(&adapter->hw);
650 /* Make sure we have a good EEPROM before we read from it */
651 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
653 * Some PCI-E parts fail the first check due to
654 * the link being in sleep state, call it again,
655 * if it fails a second time its a real issue.
657 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
658 device_printf(dev,
659 "The EEPROM Checksum Is Not Valid\n");
660 error = EIO;
661 goto fail;
665 /* Copy the permanent MAC address out of the EEPROM */
666 if (e1000_read_mac_addr(&adapter->hw) < 0) {
667 device_printf(dev, "EEPROM read error while reading MAC"
668 " address\n");
669 error = EIO;
670 goto fail;
672 if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
673 device_printf(dev, "Invalid MAC address\n");
674 error = EIO;
675 goto fail;
678 /* Disable ULP support */
679 e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
681 /* Allocate transmit descriptors and buffers */
682 error = em_create_tx_ring(adapter);
683 if (error) {
684 device_printf(dev, "Could not setup transmit structures\n");
685 goto fail;
688 /* Allocate receive descriptors and buffers */
689 error = em_create_rx_ring(adapter);
690 if (error) {
691 device_printf(dev, "Could not setup receive structures\n");
692 goto fail;
695 /* Manually turn off all interrupts */
696 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
698 /* Determine if we have to control management hardware */
699 if (e1000_enable_mng_pass_thru(&adapter->hw))
700 adapter->flags |= EM_FLAG_HAS_MGMT;
703 * Setup Wake-on-Lan
705 apme_mask = EM_EEPROM_APME;
706 eeprom_data = 0;
707 switch (adapter->hw.mac.type) {
708 case e1000_82542:
709 case e1000_82543:
710 break;
712 case e1000_82573:
713 case e1000_82583:
714 adapter->flags |= EM_FLAG_HAS_AMT;
715 /* FALL THROUGH */
717 case e1000_82546:
718 case e1000_82546_rev_3:
719 case e1000_82571:
720 case e1000_82572:
721 case e1000_80003es2lan:
722 if (adapter->hw.bus.func == 1) {
723 e1000_read_nvm(&adapter->hw,
724 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
725 } else {
726 e1000_read_nvm(&adapter->hw,
727 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
729 break;
731 case e1000_ich8lan:
732 case e1000_ich9lan:
733 case e1000_ich10lan:
734 case e1000_pchlan:
735 case e1000_pch2lan:
736 apme_mask = E1000_WUC_APME;
737 adapter->flags |= EM_FLAG_HAS_AMT;
738 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
739 break;
741 default:
742 e1000_read_nvm(&adapter->hw,
743 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
744 break;
746 if (eeprom_data & apme_mask)
747 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
750 * We have the eeprom settings, now apply the special cases
751 * where the eeprom may be wrong or the board won't support
752 * wake on lan on a particular port
754 device_id = pci_get_device(dev);
755 switch (device_id) {
756 case E1000_DEV_ID_82546GB_PCIE:
757 adapter->wol = 0;
758 break;
760 case E1000_DEV_ID_82546EB_FIBER:
761 case E1000_DEV_ID_82546GB_FIBER:
762 case E1000_DEV_ID_82571EB_FIBER:
764 * Wake events only supported on port A for dual fiber
765 * regardless of eeprom setting
767 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
768 E1000_STATUS_FUNC_1)
769 adapter->wol = 0;
770 break;
772 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
773 case E1000_DEV_ID_82571EB_QUAD_COPPER:
774 case E1000_DEV_ID_82571EB_QUAD_FIBER:
775 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
776 /* if quad port adapter, disable WoL on all but port A */
777 if (em_global_quad_port_a != 0)
778 adapter->wol = 0;
779 /* Reset for multiple quad port adapters */
780 if (++em_global_quad_port_a == 4)
781 em_global_quad_port_a = 0;
782 break;
785 /* XXX disable wol */
786 adapter->wol = 0;
788 /* Setup OS specific network interface */
789 em_setup_ifp(adapter);
791 /* Add sysctl tree, must after em_setup_ifp() */
792 em_add_sysctl(adapter);
794 #ifdef IFPOLL_ENABLE
795 /* Polling setup */
796 ifpoll_compat_setup(&adapter->npoll,
797 device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
798 device_get_unit(dev), ifp->if_serializer);
799 #endif
801 /* Reset the hardware */
802 error = em_reset(adapter);
803 if (error) {
805 * Some 82573 parts fail the first reset, call it again,
806 * if it fails a second time its a real issue.
808 error = em_reset(adapter);
809 if (error) {
810 device_printf(dev, "Unable to reset the hardware\n");
811 ether_ifdetach(ifp);
812 goto fail;
816 /* Initialize statistics */
817 em_update_stats(adapter);
819 adapter->hw.mac.get_link_status = 1;
820 em_update_link_status(adapter);
822 /* Do we need workaround for 82544 PCI-X adapter? */
823 if (adapter->hw.bus.type == e1000_bus_type_pcix &&
824 adapter->hw.mac.type == e1000_82544)
825 adapter->pcix_82544 = TRUE;
826 else
827 adapter->pcix_82544 = FALSE;
829 if (adapter->pcix_82544) {
831 * 82544 on PCI-X may split one TX segment
832 * into two TX descs, so we double its number
833 * of spare TX desc here.
835 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
836 } else {
837 adapter->spare_tx_desc = EM_TX_SPARE;
839 if (adapter->flags & EM_FLAG_TSO)
840 adapter->spare_tx_desc = EM_TX_SPARE_TSO;
841 adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
844 * Keep following relationship between spare_tx_desc, oact_tx_desc
845 * and tx_int_nsegs:
846 * (spare_tx_desc + EM_TX_RESERVED) <=
847 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
849 adapter->oact_tx_desc = adapter->num_tx_desc / 8;
850 if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
851 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
852 if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
853 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
855 adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
856 if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
857 adapter->tx_int_nsegs = adapter->oact_tx_desc;
859 /* Non-AMT based hardware can now take control from firmware */
860 if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
861 EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
862 em_get_hw_control(adapter);
864 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
867 * Missing Interrupt Following ICR read:
869 * 82571/82572 specification update errata #76
870 * 82573 specification update errata #31
871 * 82574 specification update errata #12
872 * 82583 specification update errata #4
874 intr_func = em_intr;
875 if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
876 (adapter->hw.mac.type == e1000_82571 ||
877 adapter->hw.mac.type == e1000_82572 ||
878 adapter->hw.mac.type == e1000_82573 ||
879 adapter->hw.mac.type == e1000_82574 ||
880 adapter->hw.mac.type == e1000_82583))
881 intr_func = em_intr_mask;
883 error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
884 intr_func, adapter, &adapter->intr_tag,
885 ifp->if_serializer);
886 if (error) {
887 device_printf(dev, "Failed to register interrupt handler");
888 ether_ifdetach(ifp);
889 goto fail;
891 return (0);
892 fail:
893 em_detach(dev);
894 return (error);
897 static int
898 em_detach(device_t dev)
900 struct adapter *adapter = device_get_softc(dev);
902 if (device_is_attached(dev)) {
903 struct ifnet *ifp = &adapter->arpcom.ac_if;
905 lwkt_serialize_enter(ifp->if_serializer);
907 em_stop(adapter);
909 e1000_phy_hw_reset(&adapter->hw);
911 em_rel_mgmt(adapter);
912 em_rel_hw_control(adapter);
914 if (adapter->wol) {
915 E1000_WRITE_REG(&adapter->hw, E1000_WUC,
916 E1000_WUC_PME_EN);
917 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
918 em_enable_wol(dev);
921 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
923 lwkt_serialize_exit(ifp->if_serializer);
925 ether_ifdetach(ifp);
926 } else if (adapter->memory != NULL) {
927 em_rel_hw_control(adapter);
930 ifmedia_removeall(&adapter->media);
931 bus_generic_detach(dev);
933 em_free_pci_res(adapter);
935 em_destroy_tx_ring(adapter, adapter->num_tx_desc);
936 em_destroy_rx_ring(adapter, adapter->num_rx_desc);
938 /* Free Transmit Descriptor ring */
939 if (adapter->tx_desc_base)
940 em_dma_free(adapter, &adapter->txdma);
942 /* Free Receive Descriptor ring */
943 if (adapter->rx_desc_base)
944 em_dma_free(adapter, &adapter->rxdma);
946 /* Free top level busdma tag */
947 if (adapter->parent_dtag != NULL)
948 bus_dma_tag_destroy(adapter->parent_dtag);
950 if (adapter->mta != NULL)
951 kfree(adapter->mta, M_DEVBUF);
953 return (0);
956 static int
957 em_shutdown(device_t dev)
959 return em_suspend(dev);
962 static int
963 em_suspend(device_t dev)
965 struct adapter *adapter = device_get_softc(dev);
966 struct ifnet *ifp = &adapter->arpcom.ac_if;
968 lwkt_serialize_enter(ifp->if_serializer);
970 em_stop(adapter);
972 em_rel_mgmt(adapter);
973 em_rel_hw_control(adapter);
975 if (adapter->wol) {
976 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
977 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
978 em_enable_wol(dev);
981 lwkt_serialize_exit(ifp->if_serializer);
983 return bus_generic_suspend(dev);
986 static int
987 em_resume(device_t dev)
989 struct adapter *adapter = device_get_softc(dev);
990 struct ifnet *ifp = &adapter->arpcom.ac_if;
992 lwkt_serialize_enter(ifp->if_serializer);
994 if (adapter->hw.mac.type == e1000_pch2lan)
995 e1000_resume_workarounds_pchlan(&adapter->hw);
997 em_init(adapter);
998 em_get_mgmt(adapter);
999 if_devstart(ifp);
1001 lwkt_serialize_exit(ifp->if_serializer);
1003 return bus_generic_resume(dev);
1006 static void
1007 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1009 struct adapter *adapter = ifp->if_softc;
1010 struct mbuf *m_head;
1011 int idx = -1, nsegs = 0;
1013 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1014 ASSERT_SERIALIZED(ifp->if_serializer);
1016 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1017 return;
1019 if (!adapter->link_active) {
1020 ifq_purge(&ifp->if_snd);
1021 return;
1024 while (!ifq_is_empty(&ifp->if_snd)) {
1025 /* Now do we at least have a minimal? */
1026 if (EM_IS_OACTIVE(adapter)) {
1027 em_tx_collect(adapter);
1028 if (EM_IS_OACTIVE(adapter)) {
1029 ifq_set_oactive(&ifp->if_snd);
1030 adapter->no_tx_desc_avail1++;
1031 break;
1035 logif(pkt_txqueue);
1036 m_head = ifq_dequeue(&ifp->if_snd);
1037 if (m_head == NULL)
1038 break;
1040 if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1041 IFNET_STAT_INC(ifp, oerrors, 1);
1042 em_tx_collect(adapter);
1043 continue;
1047 * TX interrupt are aggressively aggregated, so increasing
1048 * opackets at TX interrupt time will make the opackets
1049 * statistics vastly inaccurate; we do the opackets increment
1050 * now.
1052 IFNET_STAT_INC(ifp, opackets, 1);
1054 if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1055 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1056 nsegs = 0;
1057 idx = -1;
1060 /* Send a copy of the frame to the BPF listener */
1061 ETHER_BPF_MTAP(ifp, m_head);
1063 /* Set timeout in case hardware has problems transmitting. */
1064 ifp->if_timer = EM_TX_TIMEOUT;
1066 if (idx >= 0)
1067 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1070 static int
1071 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1073 struct adapter *adapter = ifp->if_softc;
1074 struct ifreq *ifr = (struct ifreq *)data;
1075 uint16_t eeprom_data = 0;
1076 int max_frame_size, mask, reinit;
1077 int error = 0;
1079 ASSERT_SERIALIZED(ifp->if_serializer);
1081 switch (command) {
1082 case SIOCSIFMTU:
1083 switch (adapter->hw.mac.type) {
1084 case e1000_82573:
1086 * 82573 only supports jumbo frames
1087 * if ASPM is disabled.
1089 e1000_read_nvm(&adapter->hw,
1090 NVM_INIT_3GIO_3, 1, &eeprom_data);
1091 if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1092 max_frame_size = ETHER_MAX_LEN;
1093 break;
1095 /* FALL THROUGH */
1097 /* Limit Jumbo Frame size */
1098 case e1000_82571:
1099 case e1000_82572:
1100 case e1000_ich9lan:
1101 case e1000_ich10lan:
1102 case e1000_pch2lan:
1103 case e1000_pch_lpt:
1104 case e1000_82574:
1105 case e1000_82583:
1106 case e1000_80003es2lan:
1107 max_frame_size = 9234;
1108 break;
1110 case e1000_pchlan:
1111 max_frame_size = 4096;
1112 break;
1114 /* Adapters that do not support jumbo frames */
1115 case e1000_82542:
1116 case e1000_ich8lan:
1117 max_frame_size = ETHER_MAX_LEN;
1118 break;
1120 default:
1121 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1122 break;
1124 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1125 ETHER_CRC_LEN) {
1126 error = EINVAL;
1127 break;
1130 ifp->if_mtu = ifr->ifr_mtu;
1131 adapter->hw.mac.max_frame_size =
1132 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1134 if (ifp->if_flags & IFF_RUNNING)
1135 em_init(adapter);
1136 break;
1138 case SIOCSIFFLAGS:
1139 if (ifp->if_flags & IFF_UP) {
1140 if ((ifp->if_flags & IFF_RUNNING)) {
1141 if ((ifp->if_flags ^ adapter->if_flags) &
1142 (IFF_PROMISC | IFF_ALLMULTI)) {
1143 em_disable_promisc(adapter);
1144 em_set_promisc(adapter);
1146 } else {
1147 em_init(adapter);
1149 } else if (ifp->if_flags & IFF_RUNNING) {
1150 em_stop(adapter);
1152 adapter->if_flags = ifp->if_flags;
1153 break;
1155 case SIOCADDMULTI:
1156 case SIOCDELMULTI:
1157 if (ifp->if_flags & IFF_RUNNING) {
1158 em_disable_intr(adapter);
1159 em_set_multi(adapter);
1160 if (adapter->hw.mac.type == e1000_82542 &&
1161 adapter->hw.revision_id == E1000_REVISION_2)
1162 em_init_rx_unit(adapter);
1163 #ifdef IFPOLL_ENABLE
1164 if (!(ifp->if_flags & IFF_NPOLLING))
1165 #endif
1166 em_enable_intr(adapter);
1168 break;
1170 case SIOCSIFMEDIA:
1171 /* Check SOL/IDER usage */
1172 if (e1000_check_reset_block(&adapter->hw)) {
1173 device_printf(adapter->dev, "Media change is"
1174 " blocked due to SOL/IDER session.\n");
1175 break;
1177 /* FALL THROUGH */
1179 case SIOCGIFMEDIA:
1180 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1181 break;
1183 case SIOCSIFCAP:
1184 reinit = 0;
1185 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1186 if (mask & IFCAP_RXCSUM) {
1187 ifp->if_capenable ^= IFCAP_RXCSUM;
1188 reinit = 1;
1190 if (mask & IFCAP_TXCSUM) {
1191 ifp->if_capenable ^= IFCAP_TXCSUM;
1192 if (ifp->if_capenable & IFCAP_TXCSUM)
1193 ifp->if_hwassist |= EM_CSUM_FEATURES;
1194 else
1195 ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1197 if (mask & IFCAP_TSO) {
1198 ifp->if_capenable ^= IFCAP_TSO;
1199 if (ifp->if_capenable & IFCAP_TSO)
1200 ifp->if_hwassist |= CSUM_TSO;
1201 else
1202 ifp->if_hwassist &= ~CSUM_TSO;
1204 if (mask & IFCAP_VLAN_HWTAGGING) {
1205 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1206 reinit = 1;
1208 if (reinit && (ifp->if_flags & IFF_RUNNING))
1209 em_init(adapter);
1210 break;
1212 default:
1213 error = ether_ioctl(ifp, command, data);
1214 break;
1216 return (error);
1219 static void
1220 em_watchdog(struct ifnet *ifp)
1222 struct adapter *adapter = ifp->if_softc;
1224 ASSERT_SERIALIZED(ifp->if_serializer);
1227 * The timer is set to 5 every time start queues a packet.
1228 * Then txeof keeps resetting it as long as it cleans at
1229 * least one descriptor.
1230 * Finally, anytime all descriptors are clean the timer is
1231 * set to 0.
1234 if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1235 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1237 * If we reach here, all TX jobs are completed and
1238 * the TX engine should have been idled for some time.
1239 * We don't need to call if_devstart() here.
1241 ifq_clr_oactive(&ifp->if_snd);
1242 ifp->if_timer = 0;
1243 return;
1247 * If we are in this routine because of pause frames, then
1248 * don't reset the hardware.
1250 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1251 E1000_STATUS_TXOFF) {
1252 ifp->if_timer = EM_TX_TIMEOUT;
1253 return;
1256 if (e1000_check_for_link(&adapter->hw) == 0)
1257 if_printf(ifp, "watchdog timeout -- resetting\n");
1259 IFNET_STAT_INC(ifp, oerrors, 1);
1260 adapter->watchdog_events++;
1262 em_init(adapter);
1264 if (!ifq_is_empty(&ifp->if_snd))
1265 if_devstart(ifp);
1268 static void
1269 em_init(void *xsc)
1271 struct adapter *adapter = xsc;
1272 struct ifnet *ifp = &adapter->arpcom.ac_if;
1273 device_t dev = adapter->dev;
1275 ASSERT_SERIALIZED(ifp->if_serializer);
1277 em_stop(adapter);
1279 /* Get the latest mac address, User can use a LAA */
1280 bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1282 /* Put the address into the Receive Address Array */
1283 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1286 * With the 82571 adapter, RAR[0] may be overwritten
1287 * when the other port is reset, we make a duplicate
1288 * in RAR[14] for that eventuality, this assures
1289 * the interface continues to function.
1291 if (adapter->hw.mac.type == e1000_82571) {
1292 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1293 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1294 E1000_RAR_ENTRIES - 1);
1297 /* Reset the hardware */
1298 if (em_reset(adapter)) {
1299 device_printf(dev, "Unable to reset the hardware\n");
1300 /* XXX em_stop()? */
1301 return;
1303 em_update_link_status(adapter);
1305 /* Setup VLAN support, basic and offload if available */
1306 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1308 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1309 uint32_t ctrl;
1311 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1312 ctrl |= E1000_CTRL_VME;
1313 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1316 /* Configure for OS presence */
1317 em_get_mgmt(adapter);
1319 /* Prepare transmit descriptors and buffers */
1320 em_init_tx_ring(adapter);
1321 em_init_tx_unit(adapter);
1323 /* Setup Multicast table */
1324 em_set_multi(adapter);
1326 /* Prepare receive descriptors and buffers */
1327 if (em_init_rx_ring(adapter)) {
1328 device_printf(dev, "Could not setup receive structures\n");
1329 em_stop(adapter);
1330 return;
1332 em_init_rx_unit(adapter);
1334 /* Don't lose promiscuous settings */
1335 em_set_promisc(adapter);
1337 ifp->if_flags |= IFF_RUNNING;
1338 ifq_clr_oactive(&ifp->if_snd);
1340 callout_reset(&adapter->timer, hz, em_timer, adapter);
1341 e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1343 /* MSI/X configuration for 82574 */
1344 if (adapter->hw.mac.type == e1000_82574) {
1345 int tmp;
1347 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1348 tmp |= E1000_CTRL_EXT_PBA_CLR;
1349 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1351 * XXX MSIX
1352 * Set the IVAR - interrupt vector routing.
1353 * Each nibble represents a vector, high bit
1354 * is enable, other 3 bits are the MSIX table
1355 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1356 * Link (other) to 2, hence the magic number.
1358 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1361 #ifdef IFPOLL_ENABLE
1363 * Only enable interrupts if we are not polling, make sure
1364 * they are off otherwise.
1366 if (ifp->if_flags & IFF_NPOLLING)
1367 em_disable_intr(adapter);
1368 else
1369 #endif /* IFPOLL_ENABLE */
1370 em_enable_intr(adapter);
1372 /* AMT based hardware can now take control from firmware */
1373 if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1374 (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1375 adapter->hw.mac.type >= e1000_82571)
1376 em_get_hw_control(adapter);
1379 #ifdef IFPOLL_ENABLE
1381 static void
1382 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1384 struct adapter *adapter = ifp->if_softc;
1386 ASSERT_SERIALIZED(ifp->if_serializer);
1388 if (adapter->npoll.ifpc_stcount-- == 0) {
1389 uint32_t reg_icr;
1391 adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1393 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1394 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1395 callout_stop(&adapter->timer);
1396 adapter->hw.mac.get_link_status = 1;
1397 em_update_link_status(adapter);
1398 callout_reset(&adapter->timer, hz, em_timer, adapter);
1402 em_rxeof(adapter, count);
1403 em_txeof(adapter);
1405 if (!ifq_is_empty(&ifp->if_snd))
1406 if_devstart(ifp);
1409 static void
1410 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1412 struct adapter *adapter = ifp->if_softc;
1414 ASSERT_SERIALIZED(ifp->if_serializer);
1416 if (info != NULL) {
1417 int cpuid = adapter->npoll.ifpc_cpuid;
1419 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1420 info->ifpi_rx[cpuid].arg = NULL;
1421 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1423 if (ifp->if_flags & IFF_RUNNING)
1424 em_disable_intr(adapter);
1425 ifq_set_cpuid(&ifp->if_snd, cpuid);
1426 } else {
1427 if (ifp->if_flags & IFF_RUNNING)
1428 em_enable_intr(adapter);
1429 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1433 #endif /* IFPOLL_ENABLE */
1435 static void
1436 em_intr(void *xsc)
1438 em_intr_body(xsc, TRUE);
1441 static void
1442 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1444 struct ifnet *ifp = &adapter->arpcom.ac_if;
1445 uint32_t reg_icr;
1447 logif(intr_beg);
1448 ASSERT_SERIALIZED(ifp->if_serializer);
1450 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1452 if (chk_asserted &&
1453 ((adapter->hw.mac.type >= e1000_82571 &&
1454 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1455 reg_icr == 0)) {
1456 logif(intr_end);
1457 return;
1461 * XXX: some laptops trigger several spurious interrupts
1462 * on em(4) when in the resume cycle. The ICR register
1463 * reports all-ones value in this case. Processing such
1464 * interrupts would lead to a freeze. I don't know why.
1466 if (reg_icr == 0xffffffff) {
1467 logif(intr_end);
1468 return;
1471 if (ifp->if_flags & IFF_RUNNING) {
1472 if (reg_icr &
1473 (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1474 em_rxeof(adapter, -1);
1475 if (reg_icr & E1000_ICR_TXDW) {
1476 em_txeof(adapter);
1477 if (!ifq_is_empty(&ifp->if_snd))
1478 if_devstart(ifp);
1482 /* Link status change */
1483 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1484 callout_stop(&adapter->timer);
1485 adapter->hw.mac.get_link_status = 1;
1486 em_update_link_status(adapter);
1488 /* Deal with TX cruft when link lost */
1489 em_tx_purge(adapter);
1491 callout_reset(&adapter->timer, hz, em_timer, adapter);
1494 if (reg_icr & E1000_ICR_RXO)
1495 adapter->rx_overruns++;
1497 logif(intr_end);
1500 static void
1501 em_intr_mask(void *xsc)
1503 struct adapter *adapter = xsc;
1505 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1507 * NOTE:
1508 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1509 * so don't check it.
1511 em_intr_body(adapter, FALSE);
1512 E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1515 static void
1516 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1518 struct adapter *adapter = ifp->if_softc;
1519 u_char fiber_type = IFM_1000_SX;
1521 ASSERT_SERIALIZED(ifp->if_serializer);
1523 em_update_link_status(adapter);
1525 ifmr->ifm_status = IFM_AVALID;
1526 ifmr->ifm_active = IFM_ETHER;
1528 if (!adapter->link_active)
1529 return;
1531 ifmr->ifm_status |= IFM_ACTIVE;
1533 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1534 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1535 if (adapter->hw.mac.type == e1000_82545)
1536 fiber_type = IFM_1000_LX;
1537 ifmr->ifm_active |= fiber_type | IFM_FDX;
1538 } else {
1539 switch (adapter->link_speed) {
1540 case 10:
1541 ifmr->ifm_active |= IFM_10_T;
1542 break;
1543 case 100:
1544 ifmr->ifm_active |= IFM_100_TX;
1545 break;
1547 case 1000:
1548 ifmr->ifm_active |= IFM_1000_T;
1549 break;
1551 if (adapter->link_duplex == FULL_DUPLEX)
1552 ifmr->ifm_active |= IFM_FDX;
1553 else
1554 ifmr->ifm_active |= IFM_HDX;
1558 static int
1559 em_media_change(struct ifnet *ifp)
1561 struct adapter *adapter = ifp->if_softc;
1562 struct ifmedia *ifm = &adapter->media;
1564 ASSERT_SERIALIZED(ifp->if_serializer);
1566 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1567 return (EINVAL);
1569 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1570 case IFM_AUTO:
1571 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1572 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1573 break;
1575 case IFM_1000_LX:
1576 case IFM_1000_SX:
1577 case IFM_1000_T:
1578 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1579 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1580 break;
1582 case IFM_100_TX:
1583 adapter->hw.mac.autoneg = FALSE;
1584 adapter->hw.phy.autoneg_advertised = 0;
1585 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1586 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1587 else
1588 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1589 break;
1591 case IFM_10_T:
1592 adapter->hw.mac.autoneg = FALSE;
1593 adapter->hw.phy.autoneg_advertised = 0;
1594 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1595 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1596 else
1597 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1598 break;
1600 default:
1601 if_printf(ifp, "Unsupported media type\n");
1602 break;
1605 em_init(adapter);
1607 return (0);
1610 static int
1611 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1612 int *segs_used, int *idx)
1614 bus_dma_segment_t segs[EM_MAX_SCATTER];
1615 bus_dmamap_t map;
1616 struct em_buffer *tx_buffer, *tx_buffer_mapped;
1617 struct e1000_tx_desc *ctxd = NULL;
1618 struct mbuf *m_head = *m_headp;
1619 uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1620 int maxsegs, nsegs, i, j, first, last = 0, error;
1622 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1623 error = em_tso_pullup(adapter, m_headp);
1624 if (error)
1625 return error;
1626 m_head = *m_headp;
1629 txd_upper = txd_lower = 0;
1630 txd_used = 0;
1633 * Capture the first descriptor index, this descriptor
1634 * will have the index of the EOP which is the only one
1635 * that now gets a DONE bit writeback.
1637 first = adapter->next_avail_tx_desc;
1638 tx_buffer = &adapter->tx_buffer_area[first];
1639 tx_buffer_mapped = tx_buffer;
1640 map = tx_buffer->map;
1642 maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1643 KASSERT(maxsegs >= adapter->spare_tx_desc,
1644 ("not enough spare TX desc"));
1645 if (adapter->pcix_82544) {
1646 /* Half it; see the comment in em_attach() */
1647 maxsegs >>= 1;
1649 if (maxsegs > EM_MAX_SCATTER)
1650 maxsegs = EM_MAX_SCATTER;
1652 error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1653 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1654 if (error) {
1655 if (error == ENOBUFS)
1656 adapter->mbuf_alloc_failed++;
1657 else
1658 adapter->no_tx_dma_setup++;
1660 m_freem(*m_headp);
1661 *m_headp = NULL;
1662 return error;
1664 bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1666 m_head = *m_headp;
1667 adapter->tx_nsegs += nsegs;
1668 *segs_used += nsegs;
1670 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1671 /* TSO will consume one TX desc */
1672 i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1673 adapter->tx_nsegs += i;
1674 *segs_used += i;
1675 } else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1676 /* TX csum offloading will consume one TX desc */
1677 i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1678 adapter->tx_nsegs += i;
1679 *segs_used += i;
1682 /* Handle VLAN tag */
1683 if (m_head->m_flags & M_VLANTAG) {
1684 /* Set the vlan id. */
1685 txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1686 /* Tell hardware to add tag */
1687 txd_lower |= htole32(E1000_TXD_CMD_VLE);
1690 i = adapter->next_avail_tx_desc;
1692 /* Set up our transmit descriptors */
1693 for (j = 0; j < nsegs; j++) {
1694 /* If adapter is 82544 and on PCIX bus */
1695 if(adapter->pcix_82544) {
1696 DESC_ARRAY desc_array;
1697 uint32_t array_elements, counter;
1700 * Check the Address and Length combination and
1701 * split the data accordingly
1703 array_elements = em_82544_fill_desc(segs[j].ds_addr,
1704 segs[j].ds_len, &desc_array);
1705 for (counter = 0; counter < array_elements; counter++) {
1706 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1708 tx_buffer = &adapter->tx_buffer_area[i];
1709 ctxd = &adapter->tx_desc_base[i];
1711 ctxd->buffer_addr = htole64(
1712 desc_array.descriptor[counter].address);
1713 ctxd->lower.data = htole32(
1714 E1000_TXD_CMD_IFCS | txd_lower |
1715 desc_array.descriptor[counter].length);
1716 ctxd->upper.data = htole32(txd_upper);
1718 last = i;
1719 if (++i == adapter->num_tx_desc)
1720 i = 0;
1722 txd_used++;
1724 } else {
1725 tx_buffer = &adapter->tx_buffer_area[i];
1726 ctxd = &adapter->tx_desc_base[i];
1728 ctxd->buffer_addr = htole64(segs[j].ds_addr);
1729 ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1730 txd_lower | segs[j].ds_len);
1731 ctxd->upper.data = htole32(txd_upper);
1733 last = i;
1734 if (++i == adapter->num_tx_desc)
1735 i = 0;
1739 adapter->next_avail_tx_desc = i;
1740 if (adapter->pcix_82544) {
1741 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1742 adapter->num_tx_desc_avail -= txd_used;
1743 } else {
1744 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1745 adapter->num_tx_desc_avail -= nsegs;
1748 tx_buffer->m_head = m_head;
1749 tx_buffer_mapped->map = tx_buffer->map;
1750 tx_buffer->map = map;
1752 if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1753 adapter->tx_nsegs = 0;
1756 * Report Status (RS) is turned on
1757 * every tx_int_nsegs descriptors.
1759 cmd = E1000_TXD_CMD_RS;
1762 * Keep track of the descriptor, which will
1763 * be written back by hardware.
1765 adapter->tx_dd[adapter->tx_dd_tail] = last;
1766 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1767 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1771 * Last Descriptor of Packet needs End Of Packet (EOP)
1773 ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1775 if (adapter->hw.mac.type == e1000_82547) {
1777 * Advance the Transmit Descriptor Tail (TDT), this tells the
1778 * E1000 that this frame is available to transmit.
1780 if (adapter->link_duplex == HALF_DUPLEX) {
1781 em_82547_move_tail_serialized(adapter);
1782 } else {
1783 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1784 em_82547_update_fifo_head(adapter,
1785 m_head->m_pkthdr.len);
1787 } else {
1789 * Defer TDT updating, until enough descriptors are setup
1791 *idx = i;
1793 return (0);
1797 * 82547 workaround to avoid controller hang in half-duplex environment.
1798 * The workaround is to avoid queuing a large packet that would span
1799 * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1800 * in this case. We do that only when FIFO is quiescent.
1802 static void
1803 em_82547_move_tail_serialized(struct adapter *adapter)
1805 struct e1000_tx_desc *tx_desc;
1806 uint16_t hw_tdt, sw_tdt, length = 0;
1807 bool eop = 0;
1809 ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1811 hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1812 sw_tdt = adapter->next_avail_tx_desc;
1814 while (hw_tdt != sw_tdt) {
1815 tx_desc = &adapter->tx_desc_base[hw_tdt];
1816 length += tx_desc->lower.flags.length;
1817 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1818 if (++hw_tdt == adapter->num_tx_desc)
1819 hw_tdt = 0;
1821 if (eop) {
1822 if (em_82547_fifo_workaround(adapter, length)) {
1823 adapter->tx_fifo_wrk_cnt++;
1824 callout_reset(&adapter->tx_fifo_timer, 1,
1825 em_82547_move_tail, adapter);
1826 break;
1828 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1829 em_82547_update_fifo_head(adapter, length);
1830 length = 0;
1835 static void
1836 em_82547_move_tail(void *xsc)
1838 struct adapter *adapter = xsc;
1839 struct ifnet *ifp = &adapter->arpcom.ac_if;
1841 lwkt_serialize_enter(ifp->if_serializer);
1842 em_82547_move_tail_serialized(adapter);
1843 lwkt_serialize_exit(ifp->if_serializer);
1846 static int
1847 em_82547_fifo_workaround(struct adapter *adapter, int len)
1849 int fifo_space, fifo_pkt_len;
1851 fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1853 if (adapter->link_duplex == HALF_DUPLEX) {
1854 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1856 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1857 if (em_82547_tx_fifo_reset(adapter))
1858 return (0);
1859 else
1860 return (1);
1863 return (0);
1866 static void
1867 em_82547_update_fifo_head(struct adapter *adapter, int len)
1869 int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1871 /* tx_fifo_head is always 16 byte aligned */
1872 adapter->tx_fifo_head += fifo_pkt_len;
1873 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1874 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1877 static int
1878 em_82547_tx_fifo_reset(struct adapter *adapter)
1880 uint32_t tctl;
1882 if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1883 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1884 (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1885 E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1886 (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1887 E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1888 (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1889 /* Disable TX unit */
1890 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1891 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1892 tctl & ~E1000_TCTL_EN);
1894 /* Reset FIFO pointers */
1895 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1896 adapter->tx_head_addr);
1897 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1898 adapter->tx_head_addr);
1899 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1900 adapter->tx_head_addr);
1901 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1902 adapter->tx_head_addr);
1904 /* Re-enable TX unit */
1905 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1906 E1000_WRITE_FLUSH(&adapter->hw);
1908 adapter->tx_fifo_head = 0;
1909 adapter->tx_fifo_reset_cnt++;
1911 return (TRUE);
1912 } else {
1913 return (FALSE);
1917 static void
1918 em_set_promisc(struct adapter *adapter)
1920 struct ifnet *ifp = &adapter->arpcom.ac_if;
1921 uint32_t reg_rctl;
1923 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1925 if (ifp->if_flags & IFF_PROMISC) {
1926 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1927 /* Turn this on if you want to see bad packets */
1928 if (em_debug_sbp)
1929 reg_rctl |= E1000_RCTL_SBP;
1930 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1931 } else if (ifp->if_flags & IFF_ALLMULTI) {
1932 reg_rctl |= E1000_RCTL_MPE;
1933 reg_rctl &= ~E1000_RCTL_UPE;
1934 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1938 static void
1939 em_disable_promisc(struct adapter *adapter)
1941 uint32_t reg_rctl;
1943 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1945 reg_rctl &= ~E1000_RCTL_UPE;
1946 reg_rctl &= ~E1000_RCTL_MPE;
1947 reg_rctl &= ~E1000_RCTL_SBP;
1948 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1951 static void
1952 em_set_multi(struct adapter *adapter)
1954 struct ifnet *ifp = &adapter->arpcom.ac_if;
1955 struct ifmultiaddr *ifma;
1956 uint32_t reg_rctl = 0;
1957 uint8_t *mta;
1958 int mcnt = 0;
1960 mta = adapter->mta;
1961 bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1963 if (adapter->hw.mac.type == e1000_82542 &&
1964 adapter->hw.revision_id == E1000_REVISION_2) {
1965 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1966 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1967 e1000_pci_clear_mwi(&adapter->hw);
1968 reg_rctl |= E1000_RCTL_RST;
1969 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1970 msec_delay(5);
1973 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1974 if (ifma->ifma_addr->sa_family != AF_LINK)
1975 continue;
1977 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1978 break;
1980 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1981 &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1982 mcnt++;
1985 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1986 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1987 reg_rctl |= E1000_RCTL_MPE;
1988 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1989 } else {
1990 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1993 if (adapter->hw.mac.type == e1000_82542 &&
1994 adapter->hw.revision_id == E1000_REVISION_2) {
1995 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1996 reg_rctl &= ~E1000_RCTL_RST;
1997 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1998 msec_delay(5);
1999 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2000 e1000_pci_set_mwi(&adapter->hw);
2005 * This routine checks for link status and updates statistics.
2007 static void
2008 em_timer(void *xsc)
2010 struct adapter *adapter = xsc;
2011 struct ifnet *ifp = &adapter->arpcom.ac_if;
2013 lwkt_serialize_enter(ifp->if_serializer);
2015 em_update_link_status(adapter);
2016 em_update_stats(adapter);
2018 /* Reset LAA into RAR[0] on 82571 */
2019 if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2020 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2022 if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2023 em_print_hw_stats(adapter);
2025 em_smartspeed(adapter);
2027 callout_reset(&adapter->timer, hz, em_timer, adapter);
2029 lwkt_serialize_exit(ifp->if_serializer);
2032 static void
2033 em_update_link_status(struct adapter *adapter)
2035 struct e1000_hw *hw = &adapter->hw;
2036 struct ifnet *ifp = &adapter->arpcom.ac_if;
2037 device_t dev = adapter->dev;
2038 uint32_t link_check = 0;
2040 /* Get the cached link value or read phy for real */
2041 switch (hw->phy.media_type) {
2042 case e1000_media_type_copper:
2043 if (hw->mac.get_link_status) {
2044 /* Do the work to read phy */
2045 e1000_check_for_link(hw);
2046 link_check = !hw->mac.get_link_status;
2047 if (link_check) /* ESB2 fix */
2048 e1000_cfg_on_link_up(hw);
2049 } else {
2050 link_check = TRUE;
2052 break;
2054 case e1000_media_type_fiber:
2055 e1000_check_for_link(hw);
2056 link_check =
2057 E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2058 break;
2060 case e1000_media_type_internal_serdes:
2061 e1000_check_for_link(hw);
2062 link_check = adapter->hw.mac.serdes_has_link;
2063 break;
2065 case e1000_media_type_unknown:
2066 default:
2067 break;
2070 /* Now check for a transition */
2071 if (link_check && adapter->link_active == 0) {
2072 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2073 &adapter->link_duplex);
2076 * Check if we should enable/disable SPEED_MODE bit on
2077 * 82571/82572
2079 if (adapter->link_speed != SPEED_1000 &&
2080 (hw->mac.type == e1000_82571 ||
2081 hw->mac.type == e1000_82572)) {
2082 int tarc0;
2084 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2085 tarc0 &= ~SPEED_MODE_BIT;
2086 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2088 if (bootverbose) {
2089 device_printf(dev, "Link is up %d Mbps %s\n",
2090 adapter->link_speed,
2091 ((adapter->link_duplex == FULL_DUPLEX) ?
2092 "Full Duplex" : "Half Duplex"));
2094 adapter->link_active = 1;
2095 adapter->smartspeed = 0;
2096 ifp->if_baudrate = adapter->link_speed * 1000000;
2097 ifp->if_link_state = LINK_STATE_UP;
2098 if_link_state_change(ifp);
2099 } else if (!link_check && adapter->link_active == 1) {
2100 ifp->if_baudrate = adapter->link_speed = 0;
2101 adapter->link_duplex = 0;
2102 if (bootverbose)
2103 device_printf(dev, "Link is Down\n");
2104 adapter->link_active = 0;
2105 #if 0
2106 /* Link down, disable watchdog */
2107 if->if_timer = 0;
2108 #endif
2109 ifp->if_link_state = LINK_STATE_DOWN;
2110 if_link_state_change(ifp);
2114 static void
2115 em_stop(struct adapter *adapter)
2117 struct ifnet *ifp = &adapter->arpcom.ac_if;
2118 int i;
2120 ASSERT_SERIALIZED(ifp->if_serializer);
2122 em_disable_intr(adapter);
2124 callout_stop(&adapter->timer);
2125 callout_stop(&adapter->tx_fifo_timer);
2127 ifp->if_flags &= ~IFF_RUNNING;
2128 ifq_clr_oactive(&ifp->if_snd);
2129 ifp->if_timer = 0;
2131 e1000_reset_hw(&adapter->hw);
2132 if (adapter->hw.mac.type >= e1000_82544)
2133 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2135 for (i = 0; i < adapter->num_tx_desc; i++) {
2136 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2138 if (tx_buffer->m_head != NULL) {
2139 bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2140 m_freem(tx_buffer->m_head);
2141 tx_buffer->m_head = NULL;
2145 for (i = 0; i < adapter->num_rx_desc; i++) {
2146 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2148 if (rx_buffer->m_head != NULL) {
2149 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2150 m_freem(rx_buffer->m_head);
2151 rx_buffer->m_head = NULL;
2155 if (adapter->fmp != NULL)
2156 m_freem(adapter->fmp);
2157 adapter->fmp = NULL;
2158 adapter->lmp = NULL;
2160 adapter->csum_flags = 0;
2161 adapter->csum_lhlen = 0;
2162 adapter->csum_iphlen = 0;
2163 adapter->csum_thlen = 0;
2164 adapter->csum_mss = 0;
2165 adapter->csum_pktlen = 0;
2167 adapter->tx_dd_head = 0;
2168 adapter->tx_dd_tail = 0;
2169 adapter->tx_nsegs = 0;
2172 static int
2173 em_get_hw_info(struct adapter *adapter)
2175 device_t dev = adapter->dev;
2177 /* Save off the information about this board */
2178 adapter->hw.vendor_id = pci_get_vendor(dev);
2179 adapter->hw.device_id = pci_get_device(dev);
2180 adapter->hw.revision_id = pci_get_revid(dev);
2181 adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2182 adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2184 /* Do Shared Code Init and Setup */
2185 if (e1000_set_mac_type(&adapter->hw))
2186 return ENXIO;
2187 return 0;
2190 static int
2191 em_alloc_pci_res(struct adapter *adapter)
2193 device_t dev = adapter->dev;
2194 u_int intr_flags;
2195 int val, rid, msi_enable;
2197 /* Enable bus mastering */
2198 pci_enable_busmaster(dev);
2200 adapter->memory_rid = EM_BAR_MEM;
2201 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2202 &adapter->memory_rid, RF_ACTIVE);
2203 if (adapter->memory == NULL) {
2204 device_printf(dev, "Unable to allocate bus resource: memory\n");
2205 return (ENXIO);
2207 adapter->osdep.mem_bus_space_tag =
2208 rman_get_bustag(adapter->memory);
2209 adapter->osdep.mem_bus_space_handle =
2210 rman_get_bushandle(adapter->memory);
2212 /* XXX This is quite goofy, it is not actually used */
2213 adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2215 /* Only older adapters use IO mapping */
2216 if (adapter->hw.mac.type > e1000_82543 &&
2217 adapter->hw.mac.type < e1000_82571) {
2218 /* Figure our where our IO BAR is ? */
2219 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2220 val = pci_read_config(dev, rid, 4);
2221 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2222 adapter->io_rid = rid;
2223 break;
2225 rid += 4;
2226 /* check for 64bit BAR */
2227 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2228 rid += 4;
2230 if (rid >= PCIR_CARDBUSCIS) {
2231 device_printf(dev, "Unable to locate IO BAR\n");
2232 return (ENXIO);
2234 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2235 &adapter->io_rid, RF_ACTIVE);
2236 if (adapter->ioport == NULL) {
2237 device_printf(dev, "Unable to allocate bus resource: "
2238 "ioport\n");
2239 return (ENXIO);
2241 adapter->hw.io_base = 0;
2242 adapter->osdep.io_bus_space_tag =
2243 rman_get_bustag(adapter->ioport);
2244 adapter->osdep.io_bus_space_handle =
2245 rman_get_bushandle(adapter->ioport);
2249 * Don't enable MSI-X on 82574, see:
2250 * 82574 specification update errata #15
2252 * Don't enable MSI on PCI/PCI-X chips, see:
2253 * 82540 specification update errata #6
2254 * 82545 specification update errata #4
2256 * Don't enable MSI on 82571/82572, see:
2257 * 82571/82572 specification update errata #63
2259 msi_enable = em_msi_enable;
2260 if (msi_enable &&
2261 (!pci_is_pcie(dev) ||
2262 adapter->hw.mac.type == e1000_82571 ||
2263 adapter->hw.mac.type == e1000_82572))
2264 msi_enable = 0;
2266 adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2267 &adapter->intr_rid, &intr_flags);
2269 if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2270 int unshared;
2272 unshared = device_getenv_int(dev, "irq.unshared", 0);
2273 if (!unshared) {
2274 adapter->flags |= EM_FLAG_SHARED_INTR;
2275 if (bootverbose)
2276 device_printf(dev, "IRQ shared\n");
2277 } else {
2278 intr_flags &= ~RF_SHAREABLE;
2279 if (bootverbose)
2280 device_printf(dev, "IRQ unshared\n");
2284 adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2285 &adapter->intr_rid, intr_flags);
2286 if (adapter->intr_res == NULL) {
2287 device_printf(dev, "Unable to allocate bus resource: "
2288 "interrupt\n");
2289 return (ENXIO);
2292 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2293 adapter->hw.back = &adapter->osdep;
2294 return (0);
2297 static void
2298 em_free_pci_res(struct adapter *adapter)
2300 device_t dev = adapter->dev;
2302 if (adapter->intr_res != NULL) {
2303 bus_release_resource(dev, SYS_RES_IRQ,
2304 adapter->intr_rid, adapter->intr_res);
2307 if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2308 pci_release_msi(dev);
2310 if (adapter->memory != NULL) {
2311 bus_release_resource(dev, SYS_RES_MEMORY,
2312 adapter->memory_rid, adapter->memory);
2315 if (adapter->flash != NULL) {
2316 bus_release_resource(dev, SYS_RES_MEMORY,
2317 adapter->flash_rid, adapter->flash);
2320 if (adapter->ioport != NULL) {
2321 bus_release_resource(dev, SYS_RES_IOPORT,
2322 adapter->io_rid, adapter->ioport);
2326 static int
2327 em_reset(struct adapter *adapter)
2329 device_t dev = adapter->dev;
2330 uint16_t rx_buffer_size;
2331 uint32_t pba;
2333 /* When hardware is reset, fifo_head is also reset */
2334 adapter->tx_fifo_head = 0;
2336 /* Set up smart power down as default off on newer adapters. */
2337 if (!em_smart_pwr_down &&
2338 (adapter->hw.mac.type == e1000_82571 ||
2339 adapter->hw.mac.type == e1000_82572)) {
2340 uint16_t phy_tmp = 0;
2342 /* Speed up time to link by disabling smart power down. */
2343 e1000_read_phy_reg(&adapter->hw,
2344 IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2345 phy_tmp &= ~IGP02E1000_PM_SPD;
2346 e1000_write_phy_reg(&adapter->hw,
2347 IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2351 * Packet Buffer Allocation (PBA)
2352 * Writing PBA sets the receive portion of the buffer
2353 * the remainder is used for the transmit buffer.
2355 * Devices before the 82547 had a Packet Buffer of 64K.
2356 * Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2357 * After the 82547 the buffer was reduced to 40K.
2358 * Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2359 * Note: default does not leave enough room for Jumbo Frame >10k.
2361 switch (adapter->hw.mac.type) {
2362 case e1000_82547:
2363 case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2364 if (adapter->hw.mac.max_frame_size > 8192)
2365 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2366 else
2367 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2368 adapter->tx_fifo_head = 0;
2369 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2370 adapter->tx_fifo_size =
2371 (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2372 break;
2374 /* Total Packet Buffer on these is 48K */
2375 case e1000_82571:
2376 case e1000_82572:
2377 case e1000_80003es2lan:
2378 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2379 break;
2381 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2382 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2383 break;
2385 case e1000_82574:
2386 case e1000_82583:
2387 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2388 break;
2390 case e1000_ich8lan:
2391 pba = E1000_PBA_8K;
2392 break;
2394 case e1000_ich9lan:
2395 case e1000_ich10lan:
2396 #define E1000_PBA_10K 0x000A
2397 pba = E1000_PBA_10K;
2398 break;
2400 case e1000_pchlan:
2401 case e1000_pch2lan:
2402 case e1000_pch_lpt:
2403 pba = E1000_PBA_26K;
2404 break;
2406 default:
2407 /* Devices before 82547 had a Packet Buffer of 64K. */
2408 if (adapter->hw.mac.max_frame_size > 8192)
2409 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2410 else
2411 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2413 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2416 * These parameters control the automatic generation (Tx) and
2417 * response (Rx) to Ethernet PAUSE frames.
2418 * - High water mark should allow for at least two frames to be
2419 * received after sending an XOFF.
2420 * - Low water mark works best when it is very near the high water mark.
2421 * This allows the receiver to restart by sending XON when it has
2422 * drained a bit. Here we use an arbitary value of 1500 which will
2423 * restart after one full frame is pulled from the buffer. There
2424 * could be several smaller frames in the buffer and if so they will
2425 * not trigger the XON until their total number reduces the buffer
2426 * by 1500.
2427 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2429 rx_buffer_size =
2430 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2432 adapter->hw.fc.high_water = rx_buffer_size -
2433 roundup2(adapter->hw.mac.max_frame_size, 1024);
2434 adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2436 if (adapter->hw.mac.type == e1000_80003es2lan)
2437 adapter->hw.fc.pause_time = 0xFFFF;
2438 else
2439 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2441 adapter->hw.fc.send_xon = TRUE;
2443 adapter->hw.fc.requested_mode = e1000_fc_full;
2446 * Device specific overrides/settings
2448 switch (adapter->hw.mac.type) {
2449 case e1000_pchlan:
2450 /* Workaround: no TX flow ctrl for PCH */
2451 adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2452 adapter->hw.fc.pause_time = 0xFFFF; /* override */
2453 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2454 adapter->hw.fc.high_water = 0x3500;
2455 adapter->hw.fc.low_water = 0x1500;
2456 } else {
2457 adapter->hw.fc.high_water = 0x5000;
2458 adapter->hw.fc.low_water = 0x3000;
2460 adapter->hw.fc.refresh_time = 0x1000;
2461 break;
2463 case e1000_pch2lan:
2464 case e1000_pch_lpt:
2465 adapter->hw.fc.high_water = 0x5C20;
2466 adapter->hw.fc.low_water = 0x5048;
2467 adapter->hw.fc.pause_time = 0x0650;
2468 adapter->hw.fc.refresh_time = 0x0400;
2469 /* Jumbos need adjusted PBA */
2470 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2471 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2472 else
2473 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2474 break;
2476 case e1000_ich9lan:
2477 case e1000_ich10lan:
2478 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2479 adapter->hw.fc.high_water = 0x2800;
2480 adapter->hw.fc.low_water =
2481 adapter->hw.fc.high_water - 8;
2482 break;
2484 /* FALL THROUGH */
2485 default:
2486 if (adapter->hw.mac.type == e1000_80003es2lan)
2487 adapter->hw.fc.pause_time = 0xFFFF;
2488 break;
2491 /* Issue a global reset */
2492 e1000_reset_hw(&adapter->hw);
2493 if (adapter->hw.mac.type >= e1000_82544)
2494 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2495 em_disable_aspm(adapter);
2497 if (e1000_init_hw(&adapter->hw) < 0) {
2498 device_printf(dev, "Hardware Initialization Failed\n");
2499 return (EIO);
2502 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2503 e1000_get_phy_info(&adapter->hw);
2504 e1000_check_for_link(&adapter->hw);
2506 return (0);
2509 static void
2510 em_setup_ifp(struct adapter *adapter)
2512 struct ifnet *ifp = &adapter->arpcom.ac_if;
2514 if_initname(ifp, device_get_name(adapter->dev),
2515 device_get_unit(adapter->dev));
2516 ifp->if_softc = adapter;
2517 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2518 ifp->if_init = em_init;
2519 ifp->if_ioctl = em_ioctl;
2520 ifp->if_start = em_start;
2521 #ifdef IFPOLL_ENABLE
2522 ifp->if_npoll = em_npoll;
2523 #endif
2524 ifp->if_watchdog = em_watchdog;
2525 ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2526 ifq_set_ready(&ifp->if_snd);
2528 ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2530 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2531 if (adapter->hw.mac.type >= e1000_82543)
2532 ifp->if_capabilities |= IFCAP_HWCSUM;
2533 if (adapter->flags & EM_FLAG_TSO)
2534 ifp->if_capabilities |= IFCAP_TSO;
2535 ifp->if_capenable = ifp->if_capabilities;
2537 if (ifp->if_capenable & IFCAP_TXCSUM)
2538 ifp->if_hwassist |= EM_CSUM_FEATURES;
2539 if (ifp->if_capenable & IFCAP_TSO)
2540 ifp->if_hwassist |= CSUM_TSO;
2543 * Tell the upper layer(s) we support long frames.
2545 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2548 * Specify the media types supported by this adapter and register
2549 * callbacks to update media and link information
2551 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2552 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2553 u_char fiber_type = IFM_1000_SX; /* default type */
2555 if (adapter->hw.mac.type == e1000_82545)
2556 fiber_type = IFM_1000_LX;
2557 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2558 0, NULL);
2559 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2560 } else {
2561 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2562 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2563 0, NULL);
2564 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2565 0, NULL);
2566 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2567 0, NULL);
2568 if (adapter->hw.phy.type != e1000_phy_ife) {
2569 ifmedia_add(&adapter->media,
2570 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2571 ifmedia_add(&adapter->media,
2572 IFM_ETHER | IFM_1000_T, 0, NULL);
2575 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2576 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2581 * Workaround for SmartSpeed on 82541 and 82547 controllers
2583 static void
2584 em_smartspeed(struct adapter *adapter)
2586 uint16_t phy_tmp;
2588 if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2589 adapter->hw.mac.autoneg == 0 ||
2590 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2591 return;
2593 if (adapter->smartspeed == 0) {
2595 * If Master/Slave config fault is asserted twice,
2596 * we assume back-to-back
2598 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2599 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2600 return;
2601 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2602 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2603 e1000_read_phy_reg(&adapter->hw,
2604 PHY_1000T_CTRL, &phy_tmp);
2605 if (phy_tmp & CR_1000T_MS_ENABLE) {
2606 phy_tmp &= ~CR_1000T_MS_ENABLE;
2607 e1000_write_phy_reg(&adapter->hw,
2608 PHY_1000T_CTRL, phy_tmp);
2609 adapter->smartspeed++;
2610 if (adapter->hw.mac.autoneg &&
2611 !e1000_phy_setup_autoneg(&adapter->hw) &&
2612 !e1000_read_phy_reg(&adapter->hw,
2613 PHY_CONTROL, &phy_tmp)) {
2614 phy_tmp |= MII_CR_AUTO_NEG_EN |
2615 MII_CR_RESTART_AUTO_NEG;
2616 e1000_write_phy_reg(&adapter->hw,
2617 PHY_CONTROL, phy_tmp);
2621 return;
2622 } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2623 /* If still no link, perhaps using 2/3 pair cable */
2624 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2625 phy_tmp |= CR_1000T_MS_ENABLE;
2626 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2627 if (adapter->hw.mac.autoneg &&
2628 !e1000_phy_setup_autoneg(&adapter->hw) &&
2629 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2630 phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2631 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2635 /* Restart process after EM_SMARTSPEED_MAX iterations */
2636 if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2637 adapter->smartspeed = 0;
2640 static int
2641 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2642 struct em_dma_alloc *dma)
2644 dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2645 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2646 &dma->dma_tag, &dma->dma_map,
2647 &dma->dma_paddr);
2648 if (dma->dma_vaddr == NULL)
2649 return ENOMEM;
2650 else
2651 return 0;
2654 static void
2655 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2657 if (dma->dma_tag == NULL)
2658 return;
2659 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2660 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2661 bus_dma_tag_destroy(dma->dma_tag);
2664 static int
2665 em_create_tx_ring(struct adapter *adapter)
2667 device_t dev = adapter->dev;
2668 struct em_buffer *tx_buffer;
2669 int error, i;
2671 adapter->tx_buffer_area =
2672 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2673 M_DEVBUF, M_WAITOK | M_ZERO);
2676 * Create DMA tags for tx buffers
2678 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2679 1, 0, /* alignment, bounds */
2680 BUS_SPACE_MAXADDR, /* lowaddr */
2681 BUS_SPACE_MAXADDR, /* highaddr */
2682 NULL, NULL, /* filter, filterarg */
2683 EM_TSO_SIZE, /* maxsize */
2684 EM_MAX_SCATTER, /* nsegments */
2685 PAGE_SIZE, /* maxsegsize */
2686 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2687 BUS_DMA_ONEBPAGE, /* flags */
2688 &adapter->txtag);
2689 if (error) {
2690 device_printf(dev, "Unable to allocate TX DMA tag\n");
2691 kfree(adapter->tx_buffer_area, M_DEVBUF);
2692 adapter->tx_buffer_area = NULL;
2693 return error;
2697 * Create DMA maps for tx buffers
2699 for (i = 0; i < adapter->num_tx_desc; i++) {
2700 tx_buffer = &adapter->tx_buffer_area[i];
2702 error = bus_dmamap_create(adapter->txtag,
2703 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2704 &tx_buffer->map);
2705 if (error) {
2706 device_printf(dev, "Unable to create TX DMA map\n");
2707 em_destroy_tx_ring(adapter, i);
2708 return error;
2711 return (0);
2714 static void
2715 em_init_tx_ring(struct adapter *adapter)
2717 /* Clear the old ring contents */
2718 bzero(adapter->tx_desc_base,
2719 (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2721 /* Reset state */
2722 adapter->next_avail_tx_desc = 0;
2723 adapter->next_tx_to_clean = 0;
2724 adapter->num_tx_desc_avail = adapter->num_tx_desc;
2727 static void
2728 em_init_tx_unit(struct adapter *adapter)
2730 uint32_t tctl, tarc, tipg = 0;
2731 uint64_t bus_addr;
2733 /* Setup the Base and Length of the Tx Descriptor Ring */
2734 bus_addr = adapter->txdma.dma_paddr;
2735 E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2736 adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2737 E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2738 (uint32_t)(bus_addr >> 32));
2739 E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2740 (uint32_t)bus_addr);
2741 /* Setup the HW Tx Head and Tail descriptor pointers */
2742 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2743 E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2745 /* Set the default values for the Tx Inter Packet Gap timer */
2746 switch (adapter->hw.mac.type) {
2747 case e1000_82542:
2748 tipg = DEFAULT_82542_TIPG_IPGT;
2749 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2750 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2751 break;
2753 case e1000_80003es2lan:
2754 tipg = DEFAULT_82543_TIPG_IPGR1;
2755 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2756 E1000_TIPG_IPGR2_SHIFT;
2757 break;
2759 default:
2760 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2761 adapter->hw.phy.media_type ==
2762 e1000_media_type_internal_serdes)
2763 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2764 else
2765 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2766 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2767 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2768 break;
2771 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2773 /* NOTE: 0 is not allowed for TIDV */
2774 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2775 if(adapter->hw.mac.type >= e1000_82540)
2776 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2778 if (adapter->hw.mac.type == e1000_82571 ||
2779 adapter->hw.mac.type == e1000_82572) {
2780 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2781 tarc |= SPEED_MODE_BIT;
2782 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2783 } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2784 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2785 tarc |= 1;
2786 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2787 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2788 tarc |= 1;
2789 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2792 /* Program the Transmit Control Register */
2793 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2794 tctl &= ~E1000_TCTL_CT;
2795 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2796 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2798 if (adapter->hw.mac.type >= e1000_82571)
2799 tctl |= E1000_TCTL_MULR;
2801 /* This write will effectively turn on the transmit unit. */
2802 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2804 if (adapter->hw.mac.type == e1000_82571 ||
2805 adapter->hw.mac.type == e1000_82572 ||
2806 adapter->hw.mac.type == e1000_80003es2lan) {
2807 /* Bit 28 of TARC1 must be cleared when MULR is enabled */
2808 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2809 tarc &= ~(1 << 28);
2810 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2814 static void
2815 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2817 struct em_buffer *tx_buffer;
2818 int i;
2820 if (adapter->tx_buffer_area == NULL)
2821 return;
2823 for (i = 0; i < ndesc; i++) {
2824 tx_buffer = &adapter->tx_buffer_area[i];
2826 KKASSERT(tx_buffer->m_head == NULL);
2827 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2829 bus_dma_tag_destroy(adapter->txtag);
2831 kfree(adapter->tx_buffer_area, M_DEVBUF);
2832 adapter->tx_buffer_area = NULL;
2836 * The offload context needs to be set when we transfer the first
2837 * packet of a particular protocol (TCP/UDP). This routine has been
2838 * enhanced to deal with inserted VLAN headers.
2840 * If the new packet's ether header length, ip header length and
2841 * csum offloading type are same as the previous packet, we should
2842 * avoid allocating a new csum context descriptor; mainly to take
2843 * advantage of the pipeline effect of the TX data read request.
2845 * This function returns number of TX descrptors allocated for
2846 * csum context.
2848 static int
2849 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2850 uint32_t *txd_upper, uint32_t *txd_lower)
2852 struct e1000_context_desc *TXD;
2853 int curr_txd, ehdrlen, csum_flags;
2854 uint32_t cmd, hdr_len, ip_hlen;
2856 csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2857 ip_hlen = mp->m_pkthdr.csum_iphlen;
2858 ehdrlen = mp->m_pkthdr.csum_lhlen;
2860 if (adapter->csum_lhlen == ehdrlen &&
2861 adapter->csum_iphlen == ip_hlen &&
2862 adapter->csum_flags == csum_flags) {
2864 * Same csum offload context as the previous packets;
2865 * just return.
2867 *txd_upper = adapter->csum_txd_upper;
2868 *txd_lower = adapter->csum_txd_lower;
2869 return 0;
2873 * Setup a new csum offload context.
2876 curr_txd = adapter->next_avail_tx_desc;
2877 TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2879 cmd = 0;
2881 /* Setup of IP header checksum. */
2882 if (csum_flags & CSUM_IP) {
2884 * Start offset for header checksum calculation.
2885 * End offset for header checksum calculation.
2886 * Offset of place to put the checksum.
2888 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2889 TXD->lower_setup.ip_fields.ipcse =
2890 htole16(ehdrlen + ip_hlen - 1);
2891 TXD->lower_setup.ip_fields.ipcso =
2892 ehdrlen + offsetof(struct ip, ip_sum);
2893 cmd |= E1000_TXD_CMD_IP;
2894 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2896 hdr_len = ehdrlen + ip_hlen;
2898 if (csum_flags & CSUM_TCP) {
2900 * Start offset for payload checksum calculation.
2901 * End offset for payload checksum calculation.
2902 * Offset of place to put the checksum.
2904 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2905 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2906 TXD->upper_setup.tcp_fields.tucso =
2907 hdr_len + offsetof(struct tcphdr, th_sum);
2908 cmd |= E1000_TXD_CMD_TCP;
2909 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2910 } else if (csum_flags & CSUM_UDP) {
2912 * Start offset for header checksum calculation.
2913 * End offset for header checksum calculation.
2914 * Offset of place to put the checksum.
2916 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2917 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2918 TXD->upper_setup.tcp_fields.tucso =
2919 hdr_len + offsetof(struct udphdr, uh_sum);
2920 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2923 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
2924 E1000_TXD_DTYP_D; /* Data descr */
2926 /* Save the information for this csum offloading context */
2927 adapter->csum_lhlen = ehdrlen;
2928 adapter->csum_iphlen = ip_hlen;
2929 adapter->csum_flags = csum_flags;
2930 adapter->csum_txd_upper = *txd_upper;
2931 adapter->csum_txd_lower = *txd_lower;
2933 TXD->tcp_seg_setup.data = htole32(0);
2934 TXD->cmd_and_length =
2935 htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2937 if (++curr_txd == adapter->num_tx_desc)
2938 curr_txd = 0;
2940 KKASSERT(adapter->num_tx_desc_avail > 0);
2941 adapter->num_tx_desc_avail--;
2943 adapter->next_avail_tx_desc = curr_txd;
2944 return 1;
2947 static void
2948 em_txeof(struct adapter *adapter)
2950 struct ifnet *ifp = &adapter->arpcom.ac_if;
2951 struct em_buffer *tx_buffer;
2952 int first, num_avail;
2954 if (adapter->tx_dd_head == adapter->tx_dd_tail)
2955 return;
2957 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2958 return;
2960 num_avail = adapter->num_tx_desc_avail;
2961 first = adapter->next_tx_to_clean;
2963 while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2964 struct e1000_tx_desc *tx_desc;
2965 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2967 tx_desc = &adapter->tx_desc_base[dd_idx];
2968 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2969 EM_INC_TXDD_IDX(adapter->tx_dd_head);
2971 if (++dd_idx == adapter->num_tx_desc)
2972 dd_idx = 0;
2974 while (first != dd_idx) {
2975 logif(pkt_txclean);
2977 num_avail++;
2979 tx_buffer = &adapter->tx_buffer_area[first];
2980 if (tx_buffer->m_head) {
2981 bus_dmamap_unload(adapter->txtag,
2982 tx_buffer->map);
2983 m_freem(tx_buffer->m_head);
2984 tx_buffer->m_head = NULL;
2987 if (++first == adapter->num_tx_desc)
2988 first = 0;
2990 } else {
2991 break;
2994 adapter->next_tx_to_clean = first;
2995 adapter->num_tx_desc_avail = num_avail;
2997 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2998 adapter->tx_dd_head = 0;
2999 adapter->tx_dd_tail = 0;
3002 if (!EM_IS_OACTIVE(adapter)) {
3003 ifq_clr_oactive(&ifp->if_snd);
3005 /* All clean, turn off the timer */
3006 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3007 ifp->if_timer = 0;
3011 static void
3012 em_tx_collect(struct adapter *adapter)
3014 struct ifnet *ifp = &adapter->arpcom.ac_if;
3015 struct em_buffer *tx_buffer;
3016 int tdh, first, num_avail, dd_idx = -1;
3018 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3019 return;
3021 tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3022 if (tdh == adapter->next_tx_to_clean)
3023 return;
3025 if (adapter->tx_dd_head != adapter->tx_dd_tail)
3026 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3028 num_avail = adapter->num_tx_desc_avail;
3029 first = adapter->next_tx_to_clean;
3031 while (first != tdh) {
3032 logif(pkt_txclean);
3034 num_avail++;
3036 tx_buffer = &adapter->tx_buffer_area[first];
3037 if (tx_buffer->m_head) {
3038 bus_dmamap_unload(adapter->txtag,
3039 tx_buffer->map);
3040 m_freem(tx_buffer->m_head);
3041 tx_buffer->m_head = NULL;
3044 if (first == dd_idx) {
3045 EM_INC_TXDD_IDX(adapter->tx_dd_head);
3046 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3047 adapter->tx_dd_head = 0;
3048 adapter->tx_dd_tail = 0;
3049 dd_idx = -1;
3050 } else {
3051 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3055 if (++first == adapter->num_tx_desc)
3056 first = 0;
3058 adapter->next_tx_to_clean = first;
3059 adapter->num_tx_desc_avail = num_avail;
3061 if (!EM_IS_OACTIVE(adapter)) {
3062 ifq_clr_oactive(&ifp->if_snd);
3064 /* All clean, turn off the timer */
3065 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3066 ifp->if_timer = 0;
3071 * When Link is lost sometimes there is work still in the TX ring
3072 * which will result in a watchdog, rather than allow that do an
3073 * attempted cleanup and then reinit here. Note that this has been
3074 * seens mostly with fiber adapters.
3076 static void
3077 em_tx_purge(struct adapter *adapter)
3079 struct ifnet *ifp = &adapter->arpcom.ac_if;
3081 if (!adapter->link_active && ifp->if_timer) {
3082 em_tx_collect(adapter);
3083 if (ifp->if_timer) {
3084 if_printf(ifp, "Link lost, TX pending, reinit\n");
3085 ifp->if_timer = 0;
3086 em_init(adapter);
3091 static int
3092 em_newbuf(struct adapter *adapter, int i, int init)
3094 struct mbuf *m;
3095 bus_dma_segment_t seg;
3096 bus_dmamap_t map;
3097 struct em_buffer *rx_buffer;
3098 int error, nseg;
3100 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3101 if (m == NULL) {
3102 adapter->mbuf_cluster_failed++;
3103 if (init) {
3104 if_printf(&adapter->arpcom.ac_if,
3105 "Unable to allocate RX mbuf\n");
3107 return (ENOBUFS);
3109 m->m_len = m->m_pkthdr.len = MCLBYTES;
3111 if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3112 m_adj(m, ETHER_ALIGN);
3114 error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3115 adapter->rx_sparemap, m,
3116 &seg, 1, &nseg, BUS_DMA_NOWAIT);
3117 if (error) {
3118 m_freem(m);
3119 if (init) {
3120 if_printf(&adapter->arpcom.ac_if,
3121 "Unable to load RX mbuf\n");
3123 return (error);
3126 rx_buffer = &adapter->rx_buffer_area[i];
3127 if (rx_buffer->m_head != NULL)
3128 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3130 map = rx_buffer->map;
3131 rx_buffer->map = adapter->rx_sparemap;
3132 adapter->rx_sparemap = map;
3134 rx_buffer->m_head = m;
3136 adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3137 return (0);
3140 static int
3141 em_create_rx_ring(struct adapter *adapter)
3143 device_t dev = adapter->dev;
3144 struct em_buffer *rx_buffer;
3145 int i, error;
3147 adapter->rx_buffer_area =
3148 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3149 M_DEVBUF, M_WAITOK | M_ZERO);
3152 * Create DMA tag for rx buffers
3154 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3155 1, 0, /* alignment, bounds */
3156 BUS_SPACE_MAXADDR, /* lowaddr */
3157 BUS_SPACE_MAXADDR, /* highaddr */
3158 NULL, NULL, /* filter, filterarg */
3159 MCLBYTES, /* maxsize */
3160 1, /* nsegments */
3161 MCLBYTES, /* maxsegsize */
3162 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3163 &adapter->rxtag);
3164 if (error) {
3165 device_printf(dev, "Unable to allocate RX DMA tag\n");
3166 kfree(adapter->rx_buffer_area, M_DEVBUF);
3167 adapter->rx_buffer_area = NULL;
3168 return error;
3172 * Create spare DMA map for rx buffers
3174 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3175 &adapter->rx_sparemap);
3176 if (error) {
3177 device_printf(dev, "Unable to create spare RX DMA map\n");
3178 bus_dma_tag_destroy(adapter->rxtag);
3179 kfree(adapter->rx_buffer_area, M_DEVBUF);
3180 adapter->rx_buffer_area = NULL;
3181 return error;
3185 * Create DMA maps for rx buffers
3187 for (i = 0; i < adapter->num_rx_desc; i++) {
3188 rx_buffer = &adapter->rx_buffer_area[i];
3190 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3191 &rx_buffer->map);
3192 if (error) {
3193 device_printf(dev, "Unable to create RX DMA map\n");
3194 em_destroy_rx_ring(adapter, i);
3195 return error;
3198 return (0);
3201 static int
3202 em_init_rx_ring(struct adapter *adapter)
3204 int i, error;
3206 /* Reset descriptor ring */
3207 bzero(adapter->rx_desc_base,
3208 (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3210 /* Allocate new ones. */
3211 for (i = 0; i < adapter->num_rx_desc; i++) {
3212 error = em_newbuf(adapter, i, 1);
3213 if (error)
3214 return (error);
3217 /* Setup our descriptor pointers */
3218 adapter->next_rx_desc_to_check = 0;
3220 return (0);
3223 static void
3224 em_init_rx_unit(struct adapter *adapter)
3226 struct ifnet *ifp = &adapter->arpcom.ac_if;
3227 uint64_t bus_addr;
3228 uint32_t rctl;
3231 * Make sure receives are disabled while setting
3232 * up the descriptor ring
3234 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3235 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3237 if (adapter->hw.mac.type >= e1000_82540) {
3238 uint32_t itr;
3241 * Set the interrupt throttling rate. Value is calculated
3242 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3244 if (adapter->int_throttle_ceil)
3245 itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3246 else
3247 itr = 0;
3248 em_set_itr(adapter, itr);
3251 /* Disable accelerated ackknowledge */
3252 if (adapter->hw.mac.type == e1000_82574) {
3253 E1000_WRITE_REG(&adapter->hw,
3254 E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3257 /* Receive Checksum Offload for TCP and UDP */
3258 if (ifp->if_capenable & IFCAP_RXCSUM) {
3259 uint32_t rxcsum;
3261 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3262 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3263 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3267 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3268 * long latencies are observed, like Lenovo X60. This
3269 * change eliminates the problem, but since having positive
3270 * values in RDTR is a known source of problems on other
3271 * platforms another solution is being sought.
3273 if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3274 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3275 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3279 * Setup the Base and Length of the Rx Descriptor Ring
3281 bus_addr = adapter->rxdma.dma_paddr;
3282 E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3283 adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3284 E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3285 (uint32_t)(bus_addr >> 32));
3286 E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3287 (uint32_t)bus_addr);
3290 * Setup the HW Rx Head and Tail Descriptor Pointers
3292 E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3293 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3295 /* Set PTHRESH for improved jumbo performance */
3296 if (((adapter->hw.mac.type == e1000_ich9lan) ||
3297 (adapter->hw.mac.type == e1000_pch2lan) ||
3298 (adapter->hw.mac.type == e1000_ich10lan)) &&
3299 (ifp->if_mtu > ETHERMTU)) {
3300 uint32_t rxdctl;
3302 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3303 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3306 if (adapter->hw.mac.type >= e1000_pch2lan) {
3307 if (ifp->if_mtu > ETHERMTU)
3308 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3309 else
3310 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3313 /* Setup the Receive Control Register */
3314 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3315 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3316 E1000_RCTL_RDMTS_HALF |
3317 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3319 /* Make sure VLAN Filters are off */
3320 rctl &= ~E1000_RCTL_VFE;
3322 if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3323 rctl |= E1000_RCTL_SBP;
3324 else
3325 rctl &= ~E1000_RCTL_SBP;
3327 switch (adapter->rx_buffer_len) {
3328 default:
3329 case 2048:
3330 rctl |= E1000_RCTL_SZ_2048;
3331 break;
3333 case 4096:
3334 rctl |= E1000_RCTL_SZ_4096 |
3335 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3336 break;
3338 case 8192:
3339 rctl |= E1000_RCTL_SZ_8192 |
3340 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3341 break;
3343 case 16384:
3344 rctl |= E1000_RCTL_SZ_16384 |
3345 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3346 break;
3349 if (ifp->if_mtu > ETHERMTU)
3350 rctl |= E1000_RCTL_LPE;
3351 else
3352 rctl &= ~E1000_RCTL_LPE;
3354 /* Enable Receives */
3355 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3358 static void
3359 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3361 struct em_buffer *rx_buffer;
3362 int i;
3364 if (adapter->rx_buffer_area == NULL)
3365 return;
3367 for (i = 0; i < ndesc; i++) {
3368 rx_buffer = &adapter->rx_buffer_area[i];
3370 KKASSERT(rx_buffer->m_head == NULL);
3371 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3373 bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3374 bus_dma_tag_destroy(adapter->rxtag);
3376 kfree(adapter->rx_buffer_area, M_DEVBUF);
3377 adapter->rx_buffer_area = NULL;
3380 static void
3381 em_rxeof(struct adapter *adapter, int count)
3383 struct ifnet *ifp = &adapter->arpcom.ac_if;
3384 uint8_t status, accept_frame = 0, eop = 0;
3385 uint16_t len, desc_len, prev_len_adj;
3386 struct e1000_rx_desc *current_desc;
3387 struct mbuf *mp;
3388 int i;
3390 i = adapter->next_rx_desc_to_check;
3391 current_desc = &adapter->rx_desc_base[i];
3393 if (!(current_desc->status & E1000_RXD_STAT_DD))
3394 return;
3396 while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3397 struct mbuf *m = NULL;
3399 logif(pkt_receive);
3401 mp = adapter->rx_buffer_area[i].m_head;
3404 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3405 * needs to access the last received byte in the mbuf.
3407 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3408 BUS_DMASYNC_POSTREAD);
3410 accept_frame = 1;
3411 prev_len_adj = 0;
3412 desc_len = le16toh(current_desc->length);
3413 status = current_desc->status;
3414 if (status & E1000_RXD_STAT_EOP) {
3415 count--;
3416 eop = 1;
3417 if (desc_len < ETHER_CRC_LEN) {
3418 len = 0;
3419 prev_len_adj = ETHER_CRC_LEN - desc_len;
3420 } else {
3421 len = desc_len - ETHER_CRC_LEN;
3423 } else {
3424 eop = 0;
3425 len = desc_len;
3428 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3429 uint8_t last_byte;
3430 uint32_t pkt_len = desc_len;
3432 if (adapter->fmp != NULL)
3433 pkt_len += adapter->fmp->m_pkthdr.len;
3435 last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3436 if (TBI_ACCEPT(&adapter->hw, status,
3437 current_desc->errors, pkt_len, last_byte,
3438 adapter->min_frame_size,
3439 adapter->hw.mac.max_frame_size)) {
3440 e1000_tbi_adjust_stats_82543(&adapter->hw,
3441 &adapter->stats, pkt_len,
3442 adapter->hw.mac.addr,
3443 adapter->hw.mac.max_frame_size);
3444 if (len > 0)
3445 len--;
3446 } else {
3447 accept_frame = 0;
3451 if (accept_frame) {
3452 if (em_newbuf(adapter, i, 0) != 0) {
3453 IFNET_STAT_INC(ifp, iqdrops, 1);
3454 goto discard;
3457 /* Assign correct length to the current fragment */
3458 mp->m_len = len;
3460 if (adapter->fmp == NULL) {
3461 mp->m_pkthdr.len = len;
3462 adapter->fmp = mp; /* Store the first mbuf */
3463 adapter->lmp = mp;
3464 } else {
3466 * Chain mbuf's together
3470 * Adjust length of previous mbuf in chain if
3471 * we received less than 4 bytes in the last
3472 * descriptor.
3474 if (prev_len_adj > 0) {
3475 adapter->lmp->m_len -= prev_len_adj;
3476 adapter->fmp->m_pkthdr.len -=
3477 prev_len_adj;
3479 adapter->lmp->m_next = mp;
3480 adapter->lmp = adapter->lmp->m_next;
3481 adapter->fmp->m_pkthdr.len += len;
3484 if (eop) {
3485 adapter->fmp->m_pkthdr.rcvif = ifp;
3486 IFNET_STAT_INC(ifp, ipackets, 1);
3488 if (ifp->if_capenable & IFCAP_RXCSUM) {
3489 em_rxcsum(adapter, current_desc,
3490 adapter->fmp);
3493 if (status & E1000_RXD_STAT_VP) {
3494 adapter->fmp->m_pkthdr.ether_vlantag =
3495 (le16toh(current_desc->special) &
3496 E1000_RXD_SPC_VLAN_MASK);
3497 adapter->fmp->m_flags |= M_VLANTAG;
3499 m = adapter->fmp;
3500 adapter->fmp = NULL;
3501 adapter->lmp = NULL;
3503 } else {
3504 IFNET_STAT_INC(ifp, ierrors, 1);
3505 discard:
3506 #ifdef foo
3507 /* Reuse loaded DMA map and just update mbuf chain */
3508 mp = adapter->rx_buffer_area[i].m_head;
3509 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3510 mp->m_data = mp->m_ext.ext_buf;
3511 mp->m_next = NULL;
3512 if (adapter->hw.mac.max_frame_size <=
3513 (MCLBYTES - ETHER_ALIGN))
3514 m_adj(mp, ETHER_ALIGN);
3515 #endif
3516 if (adapter->fmp != NULL) {
3517 m_freem(adapter->fmp);
3518 adapter->fmp = NULL;
3519 adapter->lmp = NULL;
3521 m = NULL;
3524 /* Zero out the receive descriptors status. */
3525 current_desc->status = 0;
3527 if (m != NULL)
3528 ifp->if_input(ifp, m, NULL, -1);
3530 /* Advance our pointers to the next descriptor. */
3531 if (++i == adapter->num_rx_desc)
3532 i = 0;
3533 current_desc = &adapter->rx_desc_base[i];
3535 adapter->next_rx_desc_to_check = i;
3537 /* Advance the E1000's Receive Queue #0 "Tail Pointer". */
3538 if (--i < 0)
3539 i = adapter->num_rx_desc - 1;
3540 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3543 static void
3544 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3545 struct mbuf *mp)
3547 /* 82543 or newer only */
3548 if (adapter->hw.mac.type < e1000_82543 ||
3549 /* Ignore Checksum bit is set */
3550 (rx_desc->status & E1000_RXD_STAT_IXSM))
3551 return;
3553 if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3554 !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3555 /* IP Checksum Good */
3556 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3559 if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3560 !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3561 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3562 CSUM_PSEUDO_HDR |
3563 CSUM_FRAG_NOT_CHECKED;
3564 mp->m_pkthdr.csum_data = htons(0xffff);
3568 static void
3569 em_enable_intr(struct adapter *adapter)
3571 uint32_t ims_mask = IMS_ENABLE_MASK;
3573 lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3575 #if 0
3576 /* XXX MSIX */
3577 if (adapter->hw.mac.type == e1000_82574) {
3578 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3579 ims_mask |= EM_MSIX_MASK;
3581 #endif
3582 E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3585 static void
3586 em_disable_intr(struct adapter *adapter)
3588 uint32_t clear = 0xffffffff;
3591 * The first version of 82542 had an errata where when link was forced
3592 * it would stay up even up even if the cable was disconnected.
3593 * Sequence errors were used to detect the disconnect and then the
3594 * driver would unforce the link. This code in the in the ISR. For
3595 * this to work correctly the Sequence error interrupt had to be
3596 * enabled all the time.
3598 if (adapter->hw.mac.type == e1000_82542 &&
3599 adapter->hw.revision_id == E1000_REVISION_2)
3600 clear &= ~E1000_ICR_RXSEQ;
3601 else if (adapter->hw.mac.type == e1000_82574)
3602 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3604 E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3606 adapter->npoll.ifpc_stcount = 0;
3608 lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3612 * Bit of a misnomer, what this really means is
3613 * to enable OS management of the system... aka
3614 * to disable special hardware management features
3616 static void
3617 em_get_mgmt(struct adapter *adapter)
3619 /* A shared code workaround */
3620 #define E1000_82542_MANC2H E1000_MANC2H
3621 if (adapter->flags & EM_FLAG_HAS_MGMT) {
3622 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3623 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3625 /* disable hardware interception of ARP */
3626 manc &= ~(E1000_MANC_ARP_EN);
3628 /* enable receiving management packets to the host */
3629 if (adapter->hw.mac.type >= e1000_82571) {
3630 manc |= E1000_MANC_EN_MNG2HOST;
3631 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3632 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3633 manc2h |= E1000_MNG2HOST_PORT_623;
3634 manc2h |= E1000_MNG2HOST_PORT_664;
3635 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3638 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3643 * Give control back to hardware management
3644 * controller if there is one.
3646 static void
3647 em_rel_mgmt(struct adapter *adapter)
3649 if (adapter->flags & EM_FLAG_HAS_MGMT) {
3650 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3652 /* re-enable hardware interception of ARP */
3653 manc |= E1000_MANC_ARP_EN;
3655 if (adapter->hw.mac.type >= e1000_82571)
3656 manc &= ~E1000_MANC_EN_MNG2HOST;
3658 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3663 * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3664 * For ASF and Pass Through versions of f/w this means that
3665 * the driver is loaded. For AMT version (only with 82573)
3666 * of the f/w this means that the network i/f is open.
3668 static void
3669 em_get_hw_control(struct adapter *adapter)
3671 /* Let firmware know the driver has taken over */
3672 if (adapter->hw.mac.type == e1000_82573) {
3673 uint32_t swsm;
3675 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3676 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3677 swsm | E1000_SWSM_DRV_LOAD);
3678 } else {
3679 uint32_t ctrl_ext;
3681 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3682 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3683 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3685 adapter->flags |= EM_FLAG_HW_CTRL;
3689 * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3690 * For ASF and Pass Through versions of f/w this means that the
3691 * driver is no longer loaded. For AMT version (only with 82573)
3692 * of the f/w this means that the network i/f is closed.
3694 static void
3695 em_rel_hw_control(struct adapter *adapter)
3697 if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3698 return;
3699 adapter->flags &= ~EM_FLAG_HW_CTRL;
3701 /* Let firmware taken over control of h/w */
3702 if (adapter->hw.mac.type == e1000_82573) {
3703 uint32_t swsm;
3705 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3706 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3707 swsm & ~E1000_SWSM_DRV_LOAD);
3708 } else {
3709 uint32_t ctrl_ext;
3711 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3712 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3713 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3717 static int
3718 em_is_valid_eaddr(const uint8_t *addr)
3720 char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3722 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3723 return (FALSE);
3725 return (TRUE);
3729 * Enable PCI Wake On Lan capability
3731 void
3732 em_enable_wol(device_t dev)
3734 uint16_t cap, status;
3735 uint8_t id;
3737 /* First find the capabilities pointer*/
3738 cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3740 /* Read the PM Capabilities */
3741 id = pci_read_config(dev, cap, 1);
3742 if (id != PCIY_PMG) /* Something wrong */
3743 return;
3746 * OK, we have the power capabilities,
3747 * so now get the status register
3749 cap += PCIR_POWER_STATUS;
3750 status = pci_read_config(dev, cap, 2);
3751 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3752 pci_write_config(dev, cap, status, 2);
3757 * 82544 Coexistence issue workaround.
3758 * There are 2 issues.
3759 * 1. Transmit Hang issue.
3760 * To detect this issue, following equation can be used...
3761 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3762 * If SUM[3:0] is in between 1 to 4, we will have this issue.
3764 * 2. DAC issue.
3765 * To detect this issue, following equation can be used...
3766 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3767 * If SUM[3:0] is in between 9 to c, we will have this issue.
3769 * WORKAROUND:
3770 * Make sure we do not have ending address
3771 * as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3773 static uint32_t
3774 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3776 uint32_t safe_terminator;
3779 * Since issue is sensitive to length and address.
3780 * Let us first check the address...
3782 if (length <= 4) {
3783 desc_array->descriptor[0].address = address;
3784 desc_array->descriptor[0].length = length;
3785 desc_array->elements = 1;
3786 return (desc_array->elements);
3789 safe_terminator =
3790 (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3792 /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3793 if (safe_terminator == 0 ||
3794 (safe_terminator > 4 && safe_terminator < 9) ||
3795 (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3796 desc_array->descriptor[0].address = address;
3797 desc_array->descriptor[0].length = length;
3798 desc_array->elements = 1;
3799 return (desc_array->elements);
3802 desc_array->descriptor[0].address = address;
3803 desc_array->descriptor[0].length = length - 4;
3804 desc_array->descriptor[1].address = address + (length - 4);
3805 desc_array->descriptor[1].length = 4;
3806 desc_array->elements = 2;
3807 return (desc_array->elements);
3810 static void
3811 em_update_stats(struct adapter *adapter)
3813 struct ifnet *ifp = &adapter->arpcom.ac_if;
3815 if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3816 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3817 adapter->stats.symerrs +=
3818 E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3819 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3821 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3822 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3823 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3824 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3826 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3827 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3828 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3829 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3830 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3831 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3832 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3833 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3834 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3835 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3836 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3837 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3838 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3839 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3840 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3841 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3842 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3843 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3844 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3845 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3847 /* For the 64-bit byte counters the low dword must be read first. */
3848 /* Both registers clear on the read of the high dword */
3850 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3851 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3853 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3854 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3855 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3856 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3857 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3859 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3860 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3862 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3863 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3864 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3865 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3866 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3867 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3868 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3869 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3870 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3871 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3873 if (adapter->hw.mac.type >= e1000_82543) {
3874 adapter->stats.algnerrc +=
3875 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3876 adapter->stats.rxerrc +=
3877 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3878 adapter->stats.tncrs +=
3879 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3880 adapter->stats.cexterr +=
3881 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3882 adapter->stats.tsctc +=
3883 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3884 adapter->stats.tsctfc +=
3885 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3888 IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3890 /* Rx Errors */
3891 IFNET_STAT_SET(ifp, ierrors,
3892 adapter->dropped_pkts + adapter->stats.rxerrc +
3893 adapter->stats.crcerrs + adapter->stats.algnerrc +
3894 adapter->stats.ruc + adapter->stats.roc +
3895 adapter->stats.mpc + adapter->stats.cexterr);
3897 /* Tx Errors */
3898 IFNET_STAT_SET(ifp, oerrors,
3899 adapter->stats.ecol + adapter->stats.latecol +
3900 adapter->watchdog_events);
3903 static void
3904 em_print_debug_info(struct adapter *adapter)
3906 device_t dev = adapter->dev;
3907 uint8_t *hw_addr = adapter->hw.hw_addr;
3909 device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3910 device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3911 E1000_READ_REG(&adapter->hw, E1000_CTRL),
3912 E1000_READ_REG(&adapter->hw, E1000_RCTL));
3913 device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3914 ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3915 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3916 device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3917 adapter->hw.fc.high_water,
3918 adapter->hw.fc.low_water);
3919 device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3920 E1000_READ_REG(&adapter->hw, E1000_TIDV),
3921 E1000_READ_REG(&adapter->hw, E1000_TADV));
3922 device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3923 E1000_READ_REG(&adapter->hw, E1000_RDTR),
3924 E1000_READ_REG(&adapter->hw, E1000_RADV));
3925 device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3926 (long long)adapter->tx_fifo_wrk_cnt,
3927 (long long)adapter->tx_fifo_reset_cnt);
3928 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3929 E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3930 E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3931 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3932 E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3933 E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3934 device_printf(dev, "Num Tx descriptors avail = %d\n",
3935 adapter->num_tx_desc_avail);
3936 device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3937 adapter->no_tx_desc_avail1);
3938 device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3939 adapter->no_tx_desc_avail2);
3940 device_printf(dev, "Std mbuf failed = %ld\n",
3941 adapter->mbuf_alloc_failed);
3942 device_printf(dev, "Std mbuf cluster failed = %ld\n",
3943 adapter->mbuf_cluster_failed);
3944 device_printf(dev, "Driver dropped packets = %ld\n",
3945 adapter->dropped_pkts);
3946 device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3947 adapter->no_tx_dma_setup);
3950 static void
3951 em_print_hw_stats(struct adapter *adapter)
3953 device_t dev = adapter->dev;
3955 device_printf(dev, "Excessive collisions = %lld\n",
3956 (long long)adapter->stats.ecol);
3957 #if (DEBUG_HW > 0) /* Dont output these errors normally */
3958 device_printf(dev, "Symbol errors = %lld\n",
3959 (long long)adapter->stats.symerrs);
3960 #endif
3961 device_printf(dev, "Sequence errors = %lld\n",
3962 (long long)adapter->stats.sec);
3963 device_printf(dev, "Defer count = %lld\n",
3964 (long long)adapter->stats.dc);
3965 device_printf(dev, "Missed Packets = %lld\n",
3966 (long long)adapter->stats.mpc);
3967 device_printf(dev, "Receive No Buffers = %lld\n",
3968 (long long)adapter->stats.rnbc);
3969 /* RLEC is inaccurate on some hardware, calculate our own. */
3970 device_printf(dev, "Receive Length Errors = %lld\n",
3971 ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3972 device_printf(dev, "Receive errors = %lld\n",
3973 (long long)adapter->stats.rxerrc);
3974 device_printf(dev, "Crc errors = %lld\n",
3975 (long long)adapter->stats.crcerrs);
3976 device_printf(dev, "Alignment errors = %lld\n",
3977 (long long)adapter->stats.algnerrc);
3978 device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3979 (long long)adapter->stats.cexterr);
3980 device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3981 device_printf(dev, "watchdog timeouts = %ld\n",
3982 adapter->watchdog_events);
3983 device_printf(dev, "XON Rcvd = %lld\n",
3984 (long long)adapter->stats.xonrxc);
3985 device_printf(dev, "XON Xmtd = %lld\n",
3986 (long long)adapter->stats.xontxc);
3987 device_printf(dev, "XOFF Rcvd = %lld\n",
3988 (long long)adapter->stats.xoffrxc);
3989 device_printf(dev, "XOFF Xmtd = %lld\n",
3990 (long long)adapter->stats.xofftxc);
3991 device_printf(dev, "Good Packets Rcvd = %lld\n",
3992 (long long)adapter->stats.gprc);
3993 device_printf(dev, "Good Packets Xmtd = %lld\n",
3994 (long long)adapter->stats.gptc);
3997 static void
3998 em_print_nvm_info(struct adapter *adapter)
4000 uint16_t eeprom_data;
4001 int i, j, row = 0;
4003 /* Its a bit crude, but it gets the job done */
4004 kprintf("\nInterface EEPROM Dump:\n");
4005 kprintf("Offset\n0x0000 ");
4006 for (i = 0, j = 0; i < 32; i++, j++) {
4007 if (j == 8) { /* Make the offset block */
4008 j = 0; ++row;
4009 kprintf("\n0x00%x0 ",row);
4011 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4012 kprintf("%04x ", eeprom_data);
4014 kprintf("\n");
4017 static int
4018 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4020 struct adapter *adapter;
4021 struct ifnet *ifp;
4022 int error, result;
4024 result = -1;
4025 error = sysctl_handle_int(oidp, &result, 0, req);
4026 if (error || !req->newptr)
4027 return (error);
4029 adapter = (struct adapter *)arg1;
4030 ifp = &adapter->arpcom.ac_if;
4032 lwkt_serialize_enter(ifp->if_serializer);
4034 if (result == 1)
4035 em_print_debug_info(adapter);
4038 * This value will cause a hex dump of the
4039 * first 32 16-bit words of the EEPROM to
4040 * the screen.
4042 if (result == 2)
4043 em_print_nvm_info(adapter);
4045 lwkt_serialize_exit(ifp->if_serializer);
4047 return (error);
4050 static int
4051 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4053 int error, result;
4055 result = -1;
4056 error = sysctl_handle_int(oidp, &result, 0, req);
4057 if (error || !req->newptr)
4058 return (error);
4060 if (result == 1) {
4061 struct adapter *adapter = (struct adapter *)arg1;
4062 struct ifnet *ifp = &adapter->arpcom.ac_if;
4064 lwkt_serialize_enter(ifp->if_serializer);
4065 em_print_hw_stats(adapter);
4066 lwkt_serialize_exit(ifp->if_serializer);
4068 return (error);
4071 static void
4072 em_add_sysctl(struct adapter *adapter)
4074 struct sysctl_ctx_list *ctx;
4075 struct sysctl_oid *tree;
4077 ctx = device_get_sysctl_ctx(adapter->dev);
4078 tree = device_get_sysctl_tree(adapter->dev);
4079 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4080 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4081 em_sysctl_debug_info, "I", "Debug Information");
4083 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4084 OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4085 em_sysctl_stats, "I", "Statistics");
4087 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4088 OID_AUTO, "rxd", CTLFLAG_RD,
4089 &adapter->num_rx_desc, 0, NULL);
4090 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4091 OID_AUTO, "txd", CTLFLAG_RD,
4092 &adapter->num_tx_desc, 0, NULL);
4094 if (adapter->hw.mac.type >= e1000_82540) {
4095 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4096 OID_AUTO, "int_throttle_ceil",
4097 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4098 em_sysctl_int_throttle, "I",
4099 "interrupt throttling rate");
4101 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4102 OID_AUTO, "int_tx_nsegs",
4103 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4104 em_sysctl_int_tx_nsegs, "I",
4105 "# segments per TX interrupt");
4106 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4107 OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4108 &adapter->tx_wreg_nsegs, 0,
4109 "# segments before write to hardware register");
4112 static int
4113 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4115 struct adapter *adapter = (void *)arg1;
4116 struct ifnet *ifp = &adapter->arpcom.ac_if;
4117 int error, throttle;
4119 throttle = adapter->int_throttle_ceil;
4120 error = sysctl_handle_int(oidp, &throttle, 0, req);
4121 if (error || req->newptr == NULL)
4122 return error;
4123 if (throttle < 0 || throttle > 1000000000 / 256)
4124 return EINVAL;
4126 if (throttle) {
4128 * Set the interrupt throttling rate in 256ns increments,
4129 * recalculate sysctl value assignment to get exact frequency.
4131 throttle = 1000000000 / 256 / throttle;
4133 /* Upper 16bits of ITR is reserved and should be zero */
4134 if (throttle & 0xffff0000)
4135 return EINVAL;
4138 lwkt_serialize_enter(ifp->if_serializer);
4140 if (throttle)
4141 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4142 else
4143 adapter->int_throttle_ceil = 0;
4145 if (ifp->if_flags & IFF_RUNNING)
4146 em_set_itr(adapter, throttle);
4148 lwkt_serialize_exit(ifp->if_serializer);
4150 if (bootverbose) {
4151 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4152 adapter->int_throttle_ceil);
4154 return 0;
4157 static int
4158 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4160 struct adapter *adapter = (void *)arg1;
4161 struct ifnet *ifp = &adapter->arpcom.ac_if;
4162 int error, segs;
4164 segs = adapter->tx_int_nsegs;
4165 error = sysctl_handle_int(oidp, &segs, 0, req);
4166 if (error || req->newptr == NULL)
4167 return error;
4168 if (segs <= 0)
4169 return EINVAL;
4171 lwkt_serialize_enter(ifp->if_serializer);
4174 * Don't allow int_tx_nsegs to become:
4175 * o Less the oact_tx_desc
4176 * o Too large that no TX desc will cause TX interrupt to
4177 * be generated (OACTIVE will never recover)
4178 * o Too small that will cause tx_dd[] overflow
4180 if (segs < adapter->oact_tx_desc ||
4181 segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4182 segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4183 error = EINVAL;
4184 } else {
4185 error = 0;
4186 adapter->tx_int_nsegs = segs;
4189 lwkt_serialize_exit(ifp->if_serializer);
4191 return error;
4194 static void
4195 em_set_itr(struct adapter *adapter, uint32_t itr)
4197 E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4198 if (adapter->hw.mac.type == e1000_82574) {
4199 int i;
4202 * When using MSIX interrupts we need to
4203 * throttle using the EITR register
4205 for (i = 0; i < 4; ++i) {
4206 E1000_WRITE_REG(&adapter->hw,
4207 E1000_EITR_82574(i), itr);
4212 static void
4213 em_disable_aspm(struct adapter *adapter)
4215 uint16_t link_cap, link_ctrl, disable;
4216 uint8_t pcie_ptr, reg;
4217 device_t dev = adapter->dev;
4219 switch (adapter->hw.mac.type) {
4220 case e1000_82571:
4221 case e1000_82572:
4222 case e1000_82573:
4224 * 82573 specification update
4225 * errata #8 disable L0s
4226 * errata #41 disable L1
4228 * 82571/82572 specification update
4229 # errata #13 disable L1
4230 * errata #68 disable L0s
4232 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4233 break;
4235 case e1000_82574:
4236 case e1000_82583:
4238 * 82574 specification update errata #20
4239 * 82583 specification update errata #9
4241 * There is no need to disable L1
4243 disable = PCIEM_LNKCTL_ASPM_L0S;
4244 break;
4246 default:
4247 return;
4250 pcie_ptr = pci_get_pciecap_ptr(dev);
4251 if (pcie_ptr == 0)
4252 return;
4254 link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4255 if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4256 return;
4258 if (bootverbose) {
4259 if_printf(&adapter->arpcom.ac_if,
4260 "disable ASPM %#02x\n", disable);
4263 reg = pcie_ptr + PCIER_LINKCTRL;
4264 link_ctrl = pci_read_config(dev, reg, 2);
4265 link_ctrl &= ~disable;
4266 pci_write_config(dev, reg, link_ctrl, 2);
4269 static int
4270 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4272 int iphlen, hoff, thoff, ex = 0;
4273 struct mbuf *m;
4274 struct ip *ip;
4276 m = *mp;
4277 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4279 iphlen = m->m_pkthdr.csum_iphlen;
4280 thoff = m->m_pkthdr.csum_thlen;
4281 hoff = m->m_pkthdr.csum_lhlen;
4283 KASSERT(iphlen > 0, ("invalid ip hlen"));
4284 KASSERT(thoff > 0, ("invalid tcp hlen"));
4285 KASSERT(hoff > 0, ("invalid ether hlen"));
4287 if (adapter->flags & EM_FLAG_TSO_PULLEX)
4288 ex = 4;
4290 if (m->m_len < hoff + iphlen + thoff + ex) {
4291 m = m_pullup(m, hoff + iphlen + thoff + ex);
4292 if (m == NULL) {
4293 *mp = NULL;
4294 return ENOBUFS;
4296 *mp = m;
4298 ip = mtodoff(m, struct ip *, hoff);
4299 ip->ip_len = 0;
4301 return 0;
4304 static int
4305 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4306 uint32_t *txd_upper, uint32_t *txd_lower)
4308 struct e1000_context_desc *TXD;
4309 int hoff, iphlen, thoff, hlen;
4310 int mss, pktlen, curr_txd;
4312 iphlen = mp->m_pkthdr.csum_iphlen;
4313 thoff = mp->m_pkthdr.csum_thlen;
4314 hoff = mp->m_pkthdr.csum_lhlen;
4315 mss = mp->m_pkthdr.tso_segsz;
4316 pktlen = mp->m_pkthdr.len;
4318 if (adapter->csum_flags == CSUM_TSO &&
4319 adapter->csum_iphlen == iphlen &&
4320 adapter->csum_lhlen == hoff &&
4321 adapter->csum_thlen == thoff &&
4322 adapter->csum_mss == mss &&
4323 adapter->csum_pktlen == pktlen) {
4324 *txd_upper = adapter->csum_txd_upper;
4325 *txd_lower = adapter->csum_txd_lower;
4326 return 0;
4328 hlen = hoff + iphlen + thoff;
4331 * Setup a new TSO context.
4334 curr_txd = adapter->next_avail_tx_desc;
4335 TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4337 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
4338 E1000_TXD_DTYP_D | /* Data descr type */
4339 E1000_TXD_CMD_TSE; /* Do TSE on this packet */
4341 /* IP and/or TCP header checksum calculation and insertion. */
4342 *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4345 * Start offset for header checksum calculation.
4346 * End offset for header checksum calculation.
4347 * Offset of place put the checksum.
4349 TXD->lower_setup.ip_fields.ipcss = hoff;
4350 TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4351 TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4354 * Start offset for payload checksum calculation.
4355 * End offset for payload checksum calculation.
4356 * Offset of place to put the checksum.
4358 TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4359 TXD->upper_setup.tcp_fields.tucse = 0;
4360 TXD->upper_setup.tcp_fields.tucso =
4361 hoff + iphlen + offsetof(struct tcphdr, th_sum);
4364 * Payload size per packet w/o any headers.
4365 * Length of all headers up to payload.
4367 TXD->tcp_seg_setup.fields.mss = htole16(mss);
4368 TXD->tcp_seg_setup.fields.hdr_len = hlen;
4369 TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4370 E1000_TXD_CMD_DEXT | /* Extended descr */
4371 E1000_TXD_CMD_TSE | /* TSE context */
4372 E1000_TXD_CMD_IP | /* Do IP csum */
4373 E1000_TXD_CMD_TCP | /* Do TCP checksum */
4374 (pktlen - hlen)); /* Total len */
4376 /* Save the information for this TSO context */
4377 adapter->csum_flags = CSUM_TSO;
4378 adapter->csum_lhlen = hoff;
4379 adapter->csum_iphlen = iphlen;
4380 adapter->csum_thlen = thoff;
4381 adapter->csum_mss = mss;
4382 adapter->csum_pktlen = pktlen;
4383 adapter->csum_txd_upper = *txd_upper;
4384 adapter->csum_txd_lower = *txd_lower;
4386 if (++curr_txd == adapter->num_tx_desc)
4387 curr_txd = 0;
4389 KKASSERT(adapter->num_tx_desc_avail > 0);
4390 adapter->num_tx_desc_avail--;
4392 adapter->next_avail_tx_desc = curr_txd;
4393 return 1;