debug - Update kmapinfo, zallocinfo, slabinfo
[dragonfly.git] / contrib / mpc / src / log10.c
blob4e77aafe15ebbc92a446a000a8b2b4b0c922632c
1 /* mpc_log10 -- Take the base-10 logarithm of a complex number.
3 Copyright (C) 2012 INRIA
5 This file is part of GNU MPC.
7 GNU MPC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU Lesser General Public License as published by the
9 Free Software Foundation; either version 3 of the License, or (at your
10 option) any later version.
12 GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
17 You should have received a copy of the GNU Lesser General Public License
18 along with this program. If not, see http://www.gnu.org/licenses/ .
21 #include <limits.h> /* for CHAR_BIT */
22 #include "mpc-impl.h"
24 /* Auxiliary functions which implement Ziv's strategy for special cases.
25 if flag = 0: compute only real part
26 if flag = 1: compute only imaginary
27 Exact cases should be dealt with separately. */
28 static int
29 mpc_log10_aux (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd, int flag, int nb)
31 mp_prec_t prec = (MPFR_PREC_MIN > 4) ? MPFR_PREC_MIN : 4;
32 mpc_t tmp;
33 mpfr_t log10;
34 int ok = 0, ret;
36 prec = mpfr_get_prec ((flag == 0) ? mpc_realref (rop) : mpc_imagref (rop));
37 prec += 10;
38 mpc_init2 (tmp, prec);
39 mpfr_init2 (log10, prec);
40 while (ok == 0)
42 mpfr_set_ui (log10, 10, GMP_RNDN); /* exact since prec >= 4 */
43 mpfr_log (log10, log10, GMP_RNDN);
44 /* In each case we have two roundings, thus the final value is
45 x * (1+u)^2 where x is the exact value, and |u| <= 2^(-prec-1).
46 Thus the error is always less than 3 ulps. */
47 switch (nb)
49 case 0: /* imag <- atan2(y/x) */
50 mpfr_atan2 (mpc_imagref (tmp), mpc_imagref (op), mpc_realref (op),
51 MPC_RND_IM (rnd));
52 mpfr_div (mpc_imagref (tmp), mpc_imagref (tmp), log10, GMP_RNDN);
53 ok = mpfr_can_round (mpc_imagref (tmp), prec - 2, GMP_RNDN,
54 GMP_RNDZ, MPC_PREC_IM(rop) +
55 (MPC_RND_IM (rnd) == GMP_RNDN));
56 if (ok)
57 ret = mpfr_set (mpc_imagref (rop), mpc_imagref (tmp),
58 MPC_RND_IM (rnd));
59 break;
60 case 1: /* real <- log(x) */
61 mpfr_log (mpc_realref (tmp), mpc_realref (op), MPC_RND_RE (rnd));
62 mpfr_div (mpc_realref (tmp), mpc_realref (tmp), log10, GMP_RNDN);
63 ok = mpfr_can_round (mpc_realref (tmp), prec - 2, GMP_RNDN,
64 GMP_RNDZ, MPC_PREC_RE(rop) +
65 (MPC_RND_RE (rnd) == GMP_RNDN));
66 if (ok)
67 ret = mpfr_set (mpc_realref (rop), mpc_realref (tmp),
68 MPC_RND_RE (rnd));
69 break;
70 case 2: /* imag <- pi */
71 mpfr_const_pi (mpc_imagref (tmp), MPC_RND_IM (rnd));
72 mpfr_div (mpc_imagref (tmp), mpc_imagref (tmp), log10, GMP_RNDN);
73 ok = mpfr_can_round (mpc_imagref (tmp), prec - 2, GMP_RNDN,
74 GMP_RNDZ, MPC_PREC_IM(rop) +
75 (MPC_RND_IM (rnd) == GMP_RNDN));
76 if (ok)
77 ret = mpfr_set (mpc_imagref (rop), mpc_imagref (tmp),
78 MPC_RND_IM (rnd));
79 break;
81 prec += prec / 2;
82 mpc_set_prec (tmp, prec);
83 mpfr_set_prec (log10, prec);
85 mpc_clear (tmp);
86 mpfr_clear (log10);
87 return ret;
90 int
91 mpc_log10 (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
93 int ok = 0, loops = 0, re_cmp, im_cmp, inex_re, inex_im, negative_zero;
94 mpfr_t w;
95 mpfr_prec_t prec;
96 mpfr_rnd_t rnd_im;
97 mpc_t ww;
98 mpc_rnd_t invrnd;
100 /* special values: NaN and infinities: same as mpc_log */
101 if (!mpc_fin_p (op)) /* real or imaginary parts are NaN or Inf */
103 if (mpfr_nan_p (mpc_realref (op)))
105 if (mpfr_inf_p (mpc_imagref (op)))
106 /* (NaN, Inf) -> (+Inf, NaN) */
107 mpfr_set_inf (mpc_realref (rop), +1);
108 else
109 /* (NaN, xxx) -> (NaN, NaN) */
110 mpfr_set_nan (mpc_realref (rop));
111 mpfr_set_nan (mpc_imagref (rop));
112 inex_im = 0; /* Inf/NaN is exact */
114 else if (mpfr_nan_p (mpc_imagref (op)))
116 if (mpfr_inf_p (mpc_realref (op)))
117 /* (Inf, NaN) -> (+Inf, NaN) */
118 mpfr_set_inf (mpc_realref (rop), +1);
119 else
120 /* (xxx, NaN) -> (NaN, NaN) */
121 mpfr_set_nan (mpc_realref (rop));
122 mpfr_set_nan (mpc_imagref (rop));
123 inex_im = 0; /* Inf/NaN is exact */
125 else /* We have an infinity in at least one part. */
127 /* (+Inf, y) -> (+Inf, 0) for finite positive-signed y */
128 if (mpfr_inf_p (mpc_realref (op)) && mpfr_signbit (mpc_realref (op))
129 == 0 && mpfr_number_p (mpc_imagref (op)))
130 inex_im = mpfr_atan2 (mpc_imagref (rop), mpc_imagref (op),
131 mpc_realref (op), MPC_RND_IM (rnd));
132 else
133 /* (xxx, Inf) -> (+Inf, atan2(Inf/xxx))
134 (Inf, yyy) -> (+Inf, atan2(yyy/Inf)) */
135 inex_im = mpc_log10_aux (rop, op, rnd, 1, 0);
136 mpfr_set_inf (mpc_realref (rop), +1);
138 return MPC_INEX(0, inex_im);
141 /* special cases: real and purely imaginary numbers */
142 re_cmp = mpfr_cmp_ui (mpc_realref (op), 0);
143 im_cmp = mpfr_cmp_ui (mpc_imagref (op), 0);
144 if (im_cmp == 0) /* Im(op) = 0 */
146 if (re_cmp == 0) /* Re(op) = 0 */
148 if (mpfr_signbit (mpc_realref (op)) == 0)
149 inex_im = mpfr_atan2 (mpc_imagref (rop), mpc_imagref (op),
150 mpc_realref (op), MPC_RND_IM (rnd));
151 else
152 inex_im = mpc_log10_aux (rop, op, rnd, 1, 0);
153 mpfr_set_inf (mpc_realref (rop), -1);
154 inex_re = 0; /* -Inf is exact */
156 else if (re_cmp > 0)
158 inex_re = mpfr_log10 (mpc_realref (rop), mpc_realref (op),
159 MPC_RND_RE (rnd));
160 inex_im = mpfr_set (mpc_imagref (rop), mpc_imagref (op),
161 MPC_RND_IM (rnd));
163 else /* log10(x + 0*i) for negative x */
164 { /* op = x + 0*i; let w = -x = |x| */
165 negative_zero = mpfr_signbit (mpc_imagref (op));
166 if (negative_zero)
167 rnd_im = INV_RND (MPC_RND_IM (rnd));
168 else
169 rnd_im = MPC_RND_IM (rnd);
170 ww->re[0] = *mpc_realref (op);
171 MPFR_CHANGE_SIGN (ww->re);
172 ww->im[0] = *mpc_imagref (op);
173 if (mpfr_cmp_ui (ww->re, 1) == 0)
174 inex_re = mpfr_set_ui (mpc_realref (rop), 0, MPC_RND_RE (rnd));
175 else
176 inex_re = mpc_log10_aux (rop, ww, rnd, 0, 1);
177 inex_im = mpc_log10_aux (rop, op, MPC_RND (0,rnd_im), 1, 2);
178 if (negative_zero)
180 mpc_conj (rop, rop, MPC_RNDNN);
181 inex_im = -inex_im;
184 return MPC_INEX(inex_re, inex_im);
186 else if (re_cmp == 0)
188 if (im_cmp > 0)
190 inex_re = mpfr_log10 (mpc_realref (rop), mpc_imagref (op), MPC_RND_RE (rnd));
191 inex_im = mpc_log10_aux (rop, op, rnd, 1, 2);
192 /* division by 2 does not change the ternary flag */
193 mpfr_div_2ui (mpc_imagref (rop), mpc_imagref (rop), 1, GMP_RNDN);
195 else
197 w [0] = *mpc_imagref (op);
198 MPFR_CHANGE_SIGN (w);
199 inex_re = mpfr_log10 (mpc_realref (rop), w, MPC_RND_RE (rnd));
200 invrnd = MPC_RND (0, INV_RND (MPC_RND_IM (rnd)));
201 inex_im = mpc_log10_aux (rop, op, invrnd, 1, 2);
202 /* division by 2 does not change the ternary flag */
203 mpfr_div_2ui (mpc_imagref (rop), mpc_imagref (rop), 1, GMP_RNDN);
204 mpfr_neg (mpc_imagref (rop), mpc_imagref (rop), GMP_RNDN);
205 inex_im = -inex_im; /* negate the ternary flag */
207 return MPC_INEX(inex_re, inex_im);
210 /* generic case: neither Re(op) nor Im(op) is NaN, Inf or zero */
211 prec = MPC_PREC_RE(rop);
212 mpfr_init2 (w, prec);
213 mpc_init2 (ww, prec);
214 /* let op = x + iy; compute log(op)/log(10) */
215 while (ok == 0)
217 loops ++;
218 prec += (loops <= 2) ? mpc_ceil_log2 (prec) + 4 : prec / 2;
219 mpfr_set_prec (w, prec);
220 mpc_set_prec (ww, prec);
222 mpc_log (ww, op, MPC_RNDNN);
223 mpfr_set_ui (w, 10, GMP_RNDN); /* exact since prec >= 4 */
224 mpfr_log (w, w, GMP_RNDN);
225 mpc_div_fr (ww, ww, w, MPC_RNDNN);
227 ok = mpfr_can_round (mpc_realref (ww), prec - 2, GMP_RNDN, GMP_RNDZ,
228 MPC_PREC_RE(rop) + (MPC_RND_RE (rnd) == GMP_RNDN));
230 /* Special code to deal with cases where the real part of log10(x+i*y)
231 is exact, like x=3 and y=1. Since Re(log10(x+i*y)) = log10(x^2+y^2)/2
232 this happens whenever x^2+y^2 is a nonnegative power of 10.
233 Indeed x^2+y^2 cannot equal 10^(a/2^b) for a, b integers, a odd, b>0,
234 since x^2+y^2 is rational, and 10^(a/2^b) is irrational.
235 Similarly, for b=0, x^2+y^2 cannot equal 10^a for a < 0 since x^2+y^2
236 is a rational with denominator a power of 2.
237 Now let x^2+y^2 = 10^s. Without loss of generality we can assume
238 x = u/2^e and y = v/2^e with u, v, e integers: u^2+v^2 = 10^s*2^(2e)
239 thus u^2+v^2 = 0 mod 2^(2e). By recurrence on e, necessarily
240 u = v = 0 mod 2^e, thus x and y are necessarily integers.
242 if ((ok == 0) && (loops == 1) && mpfr_integer_p (mpc_realref (op)) &&
243 mpfr_integer_p (mpc_imagref (op)))
245 mpz_t x, y;
246 unsigned long s, v;
248 mpz_init (x);
249 mpz_init (y);
250 mpfr_get_z (x, mpc_realref (op), GMP_RNDN); /* exact */
251 mpfr_get_z (y, mpc_imagref (op), GMP_RNDN); /* exact */
252 mpz_mul (x, x, x);
253 mpz_mul (y, y, y);
254 mpz_add (x, x, y); /* x^2+y^2 */
255 v = mpz_scan1 (x, 0);
256 /* if x = 10^s then necessarily s = v */
257 s = mpz_sizeinbase (x, 10);
258 /* since s is either the number of digits of x or one more,
259 then x = 10^(s-1) or 10^(s-2) */
260 if (s == v + 1 || s == v + 2)
262 mpz_div_2exp (x, x, v);
263 mpz_ui_pow_ui (y, 5, v);
264 if (mpz_cmp (y, x) == 0) /* Re(log10(x+i*y)) is exactly v/2 */
266 /* we reset the precision of Re(ww) so that v can be
267 represented exactly */
268 mpfr_set_prec (mpc_realref (ww), sizeof(unsigned long)*CHAR_BIT);
269 mpfr_set_ui_2exp (mpc_realref (ww), v, -1, GMP_RNDN); /* exact */
270 ok = 1;
273 mpz_clear (x);
274 mpz_clear (y);
277 ok = ok && mpfr_can_round (mpc_imagref (ww), prec-2, GMP_RNDN, GMP_RNDZ,
278 MPC_PREC_IM(rop) + (MPC_RND_IM (rnd) == GMP_RNDN));
281 inex_re = mpfr_set (mpc_realref(rop), mpc_realref (ww), MPC_RND_RE (rnd));
282 inex_im = mpfr_set (mpc_imagref(rop), mpc_imagref (ww), MPC_RND_IM (rnd));
283 mpfr_clear (w);
284 mpc_clear (ww);
285 return MPC_INEX(inex_re, inex_im);