Add missing commit for the VM load heuristic and page allocation rate
[dragonfly.git] / sys / kern / kern_clock.c
blob8836bb01b2b6a3a231762dace42f339c1045bd4e
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.51 2006/03/24 18:30:33 dillon Exp $
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/kinfo.h>
84 #include <sys/proc.h>
85 #include <sys/malloc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/timex.h>
89 #include <sys/timepps.h>
90 #include <vm/vm.h>
91 #include <sys/lock.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_extern.h>
95 #include <sys/sysctl.h>
96 #include <sys/thread2.h>
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
102 #ifdef GPROF
103 #include <sys/gmon.h>
104 #endif
106 #ifdef DEVICE_POLLING
107 extern void init_device_poll(void);
108 #endif
110 static void initclocks (void *dummy);
111 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
114 * Some of these don't belong here, but it's easiest to concentrate them.
115 * Note that cpu_time counts in microseconds, but most userland programs
116 * just compare relative times against the total by delta.
118 struct kinfo_cputime cputime_percpu[MAXCPU];
119 #ifdef SMP
120 static int
121 sysctl_cputime(SYSCTL_HANDLER_ARGS)
123 int cpu, error = 0;
124 size_t size = sizeof(struct kinfo_cputime);
126 for (cpu = 0; cpu < ncpus; ++cpu) {
127 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
128 break;
131 return (error);
133 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
134 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
135 #else
136 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
137 "CPU time statistics");
138 #endif
141 * boottime is used to calculate the 'real' uptime. Do not confuse this with
142 * microuptime(). microtime() is not drift compensated. The real uptime
143 * with compensation is nanotime() - bootime. boottime is recalculated
144 * whenever the real time is set based on the compensated elapsed time
145 * in seconds (gd->gd_time_seconds).
147 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
148 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
149 * the real time.
151 struct timespec boottime; /* boot time (realtime) for reference only */
152 time_t time_second; /* read-only 'passive' uptime in seconds */
155 * basetime is used to calculate the compensated real time of day. The
156 * basetime can be modified on a per-tick basis by the adjtime(),
157 * ntp_adjtime(), and sysctl-based time correction APIs.
159 * Note that frequency corrections can also be made by adjusting
160 * gd_cpuclock_base.
162 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
163 * used on both SMP and UP systems to avoid MP races between cpu's and
164 * interrupt races on UP systems.
166 #define BASETIME_ARYSIZE 16
167 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
168 static struct timespec basetime[BASETIME_ARYSIZE];
169 static volatile int basetime_index;
171 static int
172 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
174 struct timespec *bt;
175 int error;
176 int index;
179 * Because basetime data and index may be updated by another cpu,
180 * a load fence is required to ensure that the data we read has
181 * not been speculatively read relative to a possibly updated index.
183 index = basetime_index;
184 cpu_lfence();
185 bt = &basetime[index];
186 error = SYSCTL_OUT(req, bt, sizeof(*bt));
187 return (error);
190 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
191 &boottime, timespec, "System boottime");
192 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
193 sysctl_get_basetime, "S,timespec", "System basetime");
195 static void hardclock(systimer_t info, struct intrframe *frame);
196 static void statclock(systimer_t info, struct intrframe *frame);
197 static void schedclock(systimer_t info, struct intrframe *frame);
198 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
200 int ticks; /* system master ticks at hz */
201 int clocks_running; /* tsleep/timeout clocks operational */
202 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
203 int64_t nsec_acc; /* accumulator */
205 /* NTPD time correction fields */
206 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
207 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
208 int64_t ntp_delta; /* one-time correction in nsec */
209 int64_t ntp_big_delta = 1000000000;
210 int32_t ntp_tick_delta; /* current adjustment rate */
211 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
212 time_t ntp_leap_second; /* time of next leap second */
213 int ntp_leap_insert; /* whether to insert or remove a second */
216 * Finish initializing clock frequencies and start all clocks running.
218 /* ARGSUSED*/
219 static void
220 initclocks(void *dummy)
222 cpu_initclocks();
223 #ifdef DEVICE_POLLING
224 init_device_poll();
225 #endif
226 /*psratio = profhz / stathz;*/
227 initclocks_pcpu();
228 clocks_running = 1;
232 * Called on a per-cpu basis
234 void
235 initclocks_pcpu(void)
237 struct globaldata *gd = mycpu;
239 crit_enter();
240 if (gd->gd_cpuid == 0) {
241 gd->gd_time_seconds = 1;
242 gd->gd_cpuclock_base = sys_cputimer->count();
243 } else {
244 /* XXX */
245 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
246 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
250 * Use a non-queued periodic systimer to prevent multiple ticks from
251 * building up if the sysclock jumps forward (8254 gets reset). The
252 * sysclock will never jump backwards. Our time sync is based on
253 * the actual sysclock, not the ticks count.
255 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
256 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
257 /* XXX correct the frequency for scheduler / estcpu tests */
258 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
259 NULL, ESTCPUFREQ);
260 crit_exit();
264 * This sets the current real time of day. Timespecs are in seconds and
265 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
266 * instead we adjust basetime so basetime + gd_* results in the current
267 * time of day. This way the gd_* fields are guarenteed to represent
268 * a monotonically increasing 'uptime' value.
270 * When set_timeofday() is called from userland, the system call forces it
271 * onto cpu #0 since only cpu #0 can update basetime_index.
273 void
274 set_timeofday(struct timespec *ts)
276 struct timespec *nbt;
277 int ni;
280 * XXX SMP / non-atomic basetime updates
282 crit_enter();
283 ni = (basetime_index + 1) & BASETIME_ARYMASK;
284 nbt = &basetime[ni];
285 nanouptime(nbt);
286 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
287 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
288 if (nbt->tv_nsec < 0) {
289 nbt->tv_nsec += 1000000000;
290 --nbt->tv_sec;
294 * Note that basetime diverges from boottime as the clock drift is
295 * compensated for, so we cannot do away with boottime. When setting
296 * the absolute time of day the drift is 0 (for an instant) and we
297 * can simply assign boottime to basetime.
299 * Note that nanouptime() is based on gd_time_seconds which is drift
300 * compensated up to a point (it is guarenteed to remain monotonically
301 * increasing). gd_time_seconds is thus our best uptime guess and
302 * suitable for use in the boottime calculation. It is already taken
303 * into account in the basetime calculation above.
305 boottime.tv_sec = nbt->tv_sec;
306 ntp_delta = 0;
309 * We now have a new basetime, make sure all other cpus have it,
310 * then update the index.
312 cpu_sfence();
313 basetime_index = ni;
315 crit_exit();
319 * Each cpu has its own hardclock, but we only increments ticks and softticks
320 * on cpu #0.
322 * NOTE! systimer! the MP lock might not be held here. We can only safely
323 * manipulate objects owned by the current cpu.
325 static void
326 hardclock(systimer_t info, struct intrframe *frame)
328 sysclock_t cputicks;
329 struct proc *p;
330 struct pstats *pstats;
331 struct globaldata *gd = mycpu;
334 * Realtime updates are per-cpu. Note that timer corrections as
335 * returned by microtime() and friends make an additional adjustment
336 * using a system-wise 'basetime', but the running time is always
337 * taken from the per-cpu globaldata area. Since the same clock
338 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
339 * stay in synch.
341 * Note that we never allow info->time (aka gd->gd_hardclock.time)
342 * to reverse index gd_cpuclock_base, but that it is possible for
343 * it to temporarily get behind in the seconds if something in the
344 * system locks interrupts for a long period of time. Since periodic
345 * timers count events, though everything should resynch again
346 * immediately.
348 cputicks = info->time - gd->gd_cpuclock_base;
349 if (cputicks >= sys_cputimer->freq) {
350 ++gd->gd_time_seconds;
351 gd->gd_cpuclock_base += sys_cputimer->freq;
355 * The system-wide ticks counter and NTP related timedelta/tickdelta
356 * adjustments only occur on cpu #0. NTP adjustments are accomplished
357 * by updating basetime.
359 if (gd->gd_cpuid == 0) {
360 struct timespec *nbt;
361 struct timespec nts;
362 int leap;
363 int ni;
365 ++ticks;
367 #if 0
368 if (tco->tc_poll_pps)
369 tco->tc_poll_pps(tco);
370 #endif
373 * Calculate the new basetime index. We are in a critical section
374 * on cpu #0 and can safely play with basetime_index. Start
375 * with the current basetime and then make adjustments.
377 ni = (basetime_index + 1) & BASETIME_ARYMASK;
378 nbt = &basetime[ni];
379 *nbt = basetime[basetime_index];
382 * Apply adjtime corrections. (adjtime() API)
384 * adjtime() only runs on cpu #0 so our critical section is
385 * sufficient to access these variables.
387 if (ntp_delta != 0) {
388 nbt->tv_nsec += ntp_tick_delta;
389 ntp_delta -= ntp_tick_delta;
390 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
391 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
392 ntp_tick_delta = ntp_delta;
397 * Apply permanent frequency corrections. (sysctl API)
399 if (ntp_tick_permanent != 0) {
400 ntp_tick_acc += ntp_tick_permanent;
401 if (ntp_tick_acc >= (1LL << 32)) {
402 nbt->tv_nsec += ntp_tick_acc >> 32;
403 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
404 } else if (ntp_tick_acc <= -(1LL << 32)) {
405 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
406 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
407 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
411 if (nbt->tv_nsec >= 1000000000) {
412 nbt->tv_sec++;
413 nbt->tv_nsec -= 1000000000;
414 } else if (nbt->tv_nsec < 0) {
415 nbt->tv_sec--;
416 nbt->tv_nsec += 1000000000;
420 * Another per-tick compensation. (for ntp_adjtime() API)
422 if (nsec_adj != 0) {
423 nsec_acc += nsec_adj;
424 if (nsec_acc >= 0x100000000LL) {
425 nbt->tv_nsec += nsec_acc >> 32;
426 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
427 } else if (nsec_acc <= -0x100000000LL) {
428 nbt->tv_nsec -= -nsec_acc >> 32;
429 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
431 if (nbt->tv_nsec >= 1000000000) {
432 nbt->tv_nsec -= 1000000000;
433 ++nbt->tv_sec;
434 } else if (nbt->tv_nsec < 0) {
435 nbt->tv_nsec += 1000000000;
436 --nbt->tv_sec;
440 /************************************************************
441 * LEAP SECOND CORRECTION *
442 ************************************************************
444 * Taking into account all the corrections made above, figure
445 * out the new real time. If the seconds field has changed
446 * then apply any pending leap-second corrections.
448 getnanotime_nbt(nbt, &nts);
450 if (time_second != nts.tv_sec) {
452 * Apply leap second (sysctl API). Adjust nts for changes
453 * so we do not have to call getnanotime_nbt again.
455 if (ntp_leap_second) {
456 if (ntp_leap_second == nts.tv_sec) {
457 if (ntp_leap_insert) {
458 nbt->tv_sec++;
459 nts.tv_sec++;
460 } else {
461 nbt->tv_sec--;
462 nts.tv_sec--;
464 ntp_leap_second--;
469 * Apply leap second (ntp_adjtime() API), calculate a new
470 * nsec_adj field. ntp_update_second() returns nsec_adj
471 * as a per-second value but we need it as a per-tick value.
473 leap = ntp_update_second(time_second, &nsec_adj);
474 nsec_adj /= hz;
475 nbt->tv_sec += leap;
476 nts.tv_sec += leap;
479 * Update the time_second 'approximate time' global.
481 time_second = nts.tv_sec;
485 * Finally, our new basetime is ready to go live!
487 cpu_sfence();
488 basetime_index = ni;
491 * Figure out how badly the system is starved for memory
493 vm_fault_ratecheck();
497 * softticks are handled for all cpus
499 hardclock_softtick(gd);
502 * ITimer handling is per-tick, per-cpu. I don't think psignal()
503 * is mpsafe on curproc, so XXX get the mplock.
505 if ((p = curproc) != NULL && try_mplock()) {
506 pstats = p->p_stats;
507 if (frame && CLKF_USERMODE(frame) &&
508 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
509 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
510 psignal(p, SIGVTALRM);
511 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
512 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
513 psignal(p, SIGPROF);
514 rel_mplock();
516 setdelayed();
520 * The statistics clock typically runs at a 125Hz rate, and is intended
521 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
523 * NOTE! systimer! the MP lock might not be held here. We can only safely
524 * manipulate objects owned by the current cpu.
526 * The stats clock is responsible for grabbing a profiling sample.
527 * Most of the statistics are only used by user-level statistics programs.
528 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
529 * p->p_estcpu.
531 * Like the other clocks, the stat clock is called from what is effectively
532 * a fast interrupt, so the context should be the thread/process that got
533 * interrupted.
535 static void
536 statclock(systimer_t info, struct intrframe *frame)
538 #ifdef GPROF
539 struct gmonparam *g;
540 int i;
541 #endif
542 thread_t td;
543 struct proc *p;
544 int bump;
545 struct timeval tv;
546 struct timeval *stv;
549 * How big was our timeslice relative to the last time?
551 microuptime(&tv); /* mpsafe */
552 stv = &mycpu->gd_stattv;
553 if (stv->tv_sec == 0) {
554 bump = 1;
555 } else {
556 bump = tv.tv_usec - stv->tv_usec +
557 (tv.tv_sec - stv->tv_sec) * 1000000;
558 if (bump < 0)
559 bump = 0;
560 if (bump > 1000000)
561 bump = 1000000;
563 *stv = tv;
565 td = curthread;
566 p = td->td_proc;
568 if (frame && CLKF_USERMODE(frame)) {
570 * Came from userland, handle user time and deal with
571 * possible process.
573 if (p && (p->p_flag & P_PROFIL))
574 addupc_intr(p, CLKF_PC(frame), 1);
575 td->td_uticks += bump;
578 * Charge the time as appropriate
580 if (p && p->p_nice > NZERO)
581 cpu_time.cp_nice += bump;
582 else
583 cpu_time.cp_user += bump;
584 } else {
585 #ifdef GPROF
587 * Kernel statistics are just like addupc_intr, only easier.
589 g = &_gmonparam;
590 if (g->state == GMON_PROF_ON && frame) {
591 i = CLKF_PC(frame) - g->lowpc;
592 if (i < g->textsize) {
593 i /= HISTFRACTION * sizeof(*g->kcount);
594 g->kcount[i]++;
597 #endif
599 * Came from kernel mode, so we were:
600 * - handling an interrupt,
601 * - doing syscall or trap work on behalf of the current
602 * user process, or
603 * - spinning in the idle loop.
604 * Whichever it is, charge the time as appropriate.
605 * Note that we charge interrupts to the current process,
606 * regardless of whether they are ``for'' that process,
607 * so that we know how much of its real time was spent
608 * in ``non-process'' (i.e., interrupt) work.
610 * XXX assume system if frame is NULL. A NULL frame
611 * can occur if ipi processing is done from a crit_exit().
613 if (frame && CLKF_INTR(frame))
614 td->td_iticks += bump;
615 else
616 td->td_sticks += bump;
618 if (frame && CLKF_INTR(frame)) {
619 cpu_time.cp_intr += bump;
620 } else {
621 if (td == &mycpu->gd_idlethread)
622 cpu_time.cp_idle += bump;
623 else
624 cpu_time.cp_sys += bump;
630 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
631 * the MP lock might not be held. We can safely manipulate parts of curproc
632 * but that's about it.
634 * Each cpu has its own scheduler clock.
636 static void
637 schedclock(systimer_t info, struct intrframe *frame)
639 struct lwp *lp;
640 struct pstats *pstats;
641 struct rusage *ru;
642 struct vmspace *vm;
643 long rss;
645 if ((lp = lwkt_preempted_proc()) != NULL) {
647 * Account for cpu time used and hit the scheduler. Note
648 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
649 * HERE.
651 ++lp->lwp_cpticks;
653 * XXX I think accessing lwp_proc's p_usched is
654 * reasonably MP safe. This needs to be revisited
655 * when we have pluggable schedulers.
657 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, info->time);
659 if ((lp = curthread->td_lwp) != NULL) {
661 * Update resource usage integrals and maximums.
663 if ((pstats = lp->lwp_stats) != NULL &&
664 (ru = &pstats->p_ru) != NULL &&
665 (vm = lp->lwp_proc->p_vmspace) != NULL) {
666 ru->ru_ixrss += pgtok(vm->vm_tsize);
667 ru->ru_idrss += pgtok(vm->vm_dsize);
668 ru->ru_isrss += pgtok(vm->vm_ssize);
669 rss = pgtok(vmspace_resident_count(vm));
670 if (ru->ru_maxrss < rss)
671 ru->ru_maxrss = rss;
677 * Compute number of ticks for the specified amount of time. The
678 * return value is intended to be used in a clock interrupt timed
679 * operation and guarenteed to meet or exceed the requested time.
680 * If the representation overflows, return INT_MAX. The minimum return
681 * value is 1 ticks and the function will average the calculation up.
682 * If any value greater then 0 microseconds is supplied, a value
683 * of at least 2 will be returned to ensure that a near-term clock
684 * interrupt does not cause the timeout to occur (degenerately) early.
686 * Note that limit checks must take into account microseconds, which is
687 * done simply by using the smaller signed long maximum instead of
688 * the unsigned long maximum.
690 * If ints have 32 bits, then the maximum value for any timeout in
691 * 10ms ticks is 248 days.
694 tvtohz_high(struct timeval *tv)
696 int ticks;
697 long sec, usec;
699 sec = tv->tv_sec;
700 usec = tv->tv_usec;
701 if (usec < 0) {
702 sec--;
703 usec += 1000000;
705 if (sec < 0) {
706 #ifdef DIAGNOSTIC
707 if (usec > 0) {
708 sec++;
709 usec -= 1000000;
711 printf("tvotohz: negative time difference %ld sec %ld usec\n",
712 sec, usec);
713 #endif
714 ticks = 1;
715 } else if (sec <= INT_MAX / hz) {
716 ticks = (int)(sec * hz +
717 ((u_long)usec + (tick - 1)) / tick) + 1;
718 } else {
719 ticks = INT_MAX;
721 return (ticks);
725 * Compute number of ticks for the specified amount of time, erroring on
726 * the side of it being too low to ensure that sleeping the returned number
727 * of ticks will not result in a late return.
729 * The supplied timeval may not be negative and should be normalized. A
730 * return value of 0 is possible if the timeval converts to less then
731 * 1 tick.
733 * If ints have 32 bits, then the maximum value for any timeout in
734 * 10ms ticks is 248 days.
737 tvtohz_low(struct timeval *tv)
739 int ticks;
740 long sec;
742 sec = tv->tv_sec;
743 if (sec <= INT_MAX / hz)
744 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
745 else
746 ticks = INT_MAX;
747 return (ticks);
752 * Start profiling on a process.
754 * Kernel profiling passes proc0 which never exits and hence
755 * keeps the profile clock running constantly.
757 void
758 startprofclock(struct proc *p)
760 if ((p->p_flag & P_PROFIL) == 0) {
761 p->p_flag |= P_PROFIL;
762 #if 0 /* XXX */
763 if (++profprocs == 1 && stathz != 0) {
764 crit_enter();
765 psdiv = psratio;
766 setstatclockrate(profhz);
767 crit_exit();
769 #endif
774 * Stop profiling on a process.
776 void
777 stopprofclock(struct proc *p)
779 if (p->p_flag & P_PROFIL) {
780 p->p_flag &= ~P_PROFIL;
781 #if 0 /* XXX */
782 if (--profprocs == 0 && stathz != 0) {
783 crit_enter();
784 psdiv = 1;
785 setstatclockrate(stathz);
786 crit_exit();
788 #endif
793 * Return information about system clocks.
795 static int
796 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
798 struct kinfo_clockinfo clkinfo;
800 * Construct clockinfo structure.
802 clkinfo.ci_hz = hz;
803 clkinfo.ci_tick = tick;
804 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
805 clkinfo.ci_profhz = profhz;
806 clkinfo.ci_stathz = stathz ? stathz : hz;
807 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
810 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
811 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
814 * We have eight functions for looking at the clock, four for
815 * microseconds and four for nanoseconds. For each there is fast
816 * but less precise version "get{nano|micro}[up]time" which will
817 * return a time which is up to 1/HZ previous to the call, whereas
818 * the raw version "{nano|micro}[up]time" will return a timestamp
819 * which is as precise as possible. The "up" variants return the
820 * time relative to system boot, these are well suited for time
821 * interval measurements.
823 * Each cpu independantly maintains the current time of day, so all
824 * we need to do to protect ourselves from changes is to do a loop
825 * check on the seconds field changing out from under us.
827 * The system timer maintains a 32 bit count and due to various issues
828 * it is possible for the calculated delta to occassionally exceed
829 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
830 * multiplication can easily overflow, so we deal with the case. For
831 * uniformity we deal with the case in the usec case too.
833 void
834 getmicrouptime(struct timeval *tvp)
836 struct globaldata *gd = mycpu;
837 sysclock_t delta;
839 do {
840 tvp->tv_sec = gd->gd_time_seconds;
841 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
842 } while (tvp->tv_sec != gd->gd_time_seconds);
844 if (delta >= sys_cputimer->freq) {
845 tvp->tv_sec += delta / sys_cputimer->freq;
846 delta %= sys_cputimer->freq;
848 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
849 if (tvp->tv_usec >= 1000000) {
850 tvp->tv_usec -= 1000000;
851 ++tvp->tv_sec;
855 void
856 getnanouptime(struct timespec *tsp)
858 struct globaldata *gd = mycpu;
859 sysclock_t delta;
861 do {
862 tsp->tv_sec = gd->gd_time_seconds;
863 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
864 } while (tsp->tv_sec != gd->gd_time_seconds);
866 if (delta >= sys_cputimer->freq) {
867 tsp->tv_sec += delta / sys_cputimer->freq;
868 delta %= sys_cputimer->freq;
870 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
873 void
874 microuptime(struct timeval *tvp)
876 struct globaldata *gd = mycpu;
877 sysclock_t delta;
879 do {
880 tvp->tv_sec = gd->gd_time_seconds;
881 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
882 } while (tvp->tv_sec != gd->gd_time_seconds);
884 if (delta >= sys_cputimer->freq) {
885 tvp->tv_sec += delta / sys_cputimer->freq;
886 delta %= sys_cputimer->freq;
888 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
891 void
892 nanouptime(struct timespec *tsp)
894 struct globaldata *gd = mycpu;
895 sysclock_t delta;
897 do {
898 tsp->tv_sec = gd->gd_time_seconds;
899 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
900 } while (tsp->tv_sec != gd->gd_time_seconds);
902 if (delta >= sys_cputimer->freq) {
903 tsp->tv_sec += delta / sys_cputimer->freq;
904 delta %= sys_cputimer->freq;
906 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
910 * realtime routines
913 void
914 getmicrotime(struct timeval *tvp)
916 struct globaldata *gd = mycpu;
917 struct timespec *bt;
918 sysclock_t delta;
920 do {
921 tvp->tv_sec = gd->gd_time_seconds;
922 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
923 } while (tvp->tv_sec != gd->gd_time_seconds);
925 if (delta >= sys_cputimer->freq) {
926 tvp->tv_sec += delta / sys_cputimer->freq;
927 delta %= sys_cputimer->freq;
929 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
931 bt = &basetime[basetime_index];
932 tvp->tv_sec += bt->tv_sec;
933 tvp->tv_usec += bt->tv_nsec / 1000;
934 while (tvp->tv_usec >= 1000000) {
935 tvp->tv_usec -= 1000000;
936 ++tvp->tv_sec;
940 void
941 getnanotime(struct timespec *tsp)
943 struct globaldata *gd = mycpu;
944 struct timespec *bt;
945 sysclock_t delta;
947 do {
948 tsp->tv_sec = gd->gd_time_seconds;
949 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
950 } while (tsp->tv_sec != gd->gd_time_seconds);
952 if (delta >= sys_cputimer->freq) {
953 tsp->tv_sec += delta / sys_cputimer->freq;
954 delta %= sys_cputimer->freq;
956 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
958 bt = &basetime[basetime_index];
959 tsp->tv_sec += bt->tv_sec;
960 tsp->tv_nsec += bt->tv_nsec;
961 while (tsp->tv_nsec >= 1000000000) {
962 tsp->tv_nsec -= 1000000000;
963 ++tsp->tv_sec;
967 static void
968 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
970 struct globaldata *gd = mycpu;
971 sysclock_t delta;
973 do {
974 tsp->tv_sec = gd->gd_time_seconds;
975 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
976 } while (tsp->tv_sec != gd->gd_time_seconds);
978 if (delta >= sys_cputimer->freq) {
979 tsp->tv_sec += delta / sys_cputimer->freq;
980 delta %= sys_cputimer->freq;
982 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984 tsp->tv_sec += nbt->tv_sec;
985 tsp->tv_nsec += nbt->tv_nsec;
986 while (tsp->tv_nsec >= 1000000000) {
987 tsp->tv_nsec -= 1000000000;
988 ++tsp->tv_sec;
993 void
994 microtime(struct timeval *tvp)
996 struct globaldata *gd = mycpu;
997 struct timespec *bt;
998 sysclock_t delta;
1000 do {
1001 tvp->tv_sec = gd->gd_time_seconds;
1002 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1003 } while (tvp->tv_sec != gd->gd_time_seconds);
1005 if (delta >= sys_cputimer->freq) {
1006 tvp->tv_sec += delta / sys_cputimer->freq;
1007 delta %= sys_cputimer->freq;
1009 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1011 bt = &basetime[basetime_index];
1012 tvp->tv_sec += bt->tv_sec;
1013 tvp->tv_usec += bt->tv_nsec / 1000;
1014 while (tvp->tv_usec >= 1000000) {
1015 tvp->tv_usec -= 1000000;
1016 ++tvp->tv_sec;
1020 void
1021 nanotime(struct timespec *tsp)
1023 struct globaldata *gd = mycpu;
1024 struct timespec *bt;
1025 sysclock_t delta;
1027 do {
1028 tsp->tv_sec = gd->gd_time_seconds;
1029 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1030 } while (tsp->tv_sec != gd->gd_time_seconds);
1032 if (delta >= sys_cputimer->freq) {
1033 tsp->tv_sec += delta / sys_cputimer->freq;
1034 delta %= sys_cputimer->freq;
1036 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1038 bt = &basetime[basetime_index];
1039 tsp->tv_sec += bt->tv_sec;
1040 tsp->tv_nsec += bt->tv_nsec;
1041 while (tsp->tv_nsec >= 1000000000) {
1042 tsp->tv_nsec -= 1000000000;
1043 ++tsp->tv_sec;
1048 * note: this is not exactly synchronized with real time. To do that we
1049 * would have to do what microtime does and check for a nanoseconds overflow.
1051 time_t
1052 get_approximate_time_t(void)
1054 struct globaldata *gd = mycpu;
1055 struct timespec *bt;
1057 bt = &basetime[basetime_index];
1058 return(gd->gd_time_seconds + bt->tv_sec);
1062 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1064 pps_params_t *app;
1065 struct pps_fetch_args *fapi;
1066 #ifdef PPS_SYNC
1067 struct pps_kcbind_args *kapi;
1068 #endif
1070 switch (cmd) {
1071 case PPS_IOC_CREATE:
1072 return (0);
1073 case PPS_IOC_DESTROY:
1074 return (0);
1075 case PPS_IOC_SETPARAMS:
1076 app = (pps_params_t *)data;
1077 if (app->mode & ~pps->ppscap)
1078 return (EINVAL);
1079 pps->ppsparam = *app;
1080 return (0);
1081 case PPS_IOC_GETPARAMS:
1082 app = (pps_params_t *)data;
1083 *app = pps->ppsparam;
1084 app->api_version = PPS_API_VERS_1;
1085 return (0);
1086 case PPS_IOC_GETCAP:
1087 *(int*)data = pps->ppscap;
1088 return (0);
1089 case PPS_IOC_FETCH:
1090 fapi = (struct pps_fetch_args *)data;
1091 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1092 return (EINVAL);
1093 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1094 return (EOPNOTSUPP);
1095 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1096 fapi->pps_info_buf = pps->ppsinfo;
1097 return (0);
1098 case PPS_IOC_KCBIND:
1099 #ifdef PPS_SYNC
1100 kapi = (struct pps_kcbind_args *)data;
1101 /* XXX Only root should be able to do this */
1102 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1103 return (EINVAL);
1104 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1105 return (EINVAL);
1106 if (kapi->edge & ~pps->ppscap)
1107 return (EINVAL);
1108 pps->kcmode = kapi->edge;
1109 return (0);
1110 #else
1111 return (EOPNOTSUPP);
1112 #endif
1113 default:
1114 return (ENOTTY);
1118 void
1119 pps_init(struct pps_state *pps)
1121 pps->ppscap |= PPS_TSFMT_TSPEC;
1122 if (pps->ppscap & PPS_CAPTUREASSERT)
1123 pps->ppscap |= PPS_OFFSETASSERT;
1124 if (pps->ppscap & PPS_CAPTURECLEAR)
1125 pps->ppscap |= PPS_OFFSETCLEAR;
1128 void
1129 pps_event(struct pps_state *pps, sysclock_t count, int event)
1131 struct globaldata *gd;
1132 struct timespec *tsp;
1133 struct timespec *osp;
1134 struct timespec *bt;
1135 struct timespec ts;
1136 sysclock_t *pcount;
1137 #ifdef PPS_SYNC
1138 sysclock_t tcount;
1139 #endif
1140 sysclock_t delta;
1141 pps_seq_t *pseq;
1142 int foff;
1143 int fhard;
1145 gd = mycpu;
1147 /* Things would be easier with arrays... */
1148 if (event == PPS_CAPTUREASSERT) {
1149 tsp = &pps->ppsinfo.assert_timestamp;
1150 osp = &pps->ppsparam.assert_offset;
1151 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1152 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1153 pcount = &pps->ppscount[0];
1154 pseq = &pps->ppsinfo.assert_sequence;
1155 } else {
1156 tsp = &pps->ppsinfo.clear_timestamp;
1157 osp = &pps->ppsparam.clear_offset;
1158 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1159 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1160 pcount = &pps->ppscount[1];
1161 pseq = &pps->ppsinfo.clear_sequence;
1164 /* Nothing really happened */
1165 if (*pcount == count)
1166 return;
1168 *pcount = count;
1170 do {
1171 ts.tv_sec = gd->gd_time_seconds;
1172 delta = count - gd->gd_cpuclock_base;
1173 } while (ts.tv_sec != gd->gd_time_seconds);
1175 if (delta >= sys_cputimer->freq) {
1176 ts.tv_sec += delta / sys_cputimer->freq;
1177 delta %= sys_cputimer->freq;
1179 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1180 bt = &basetime[basetime_index];
1181 ts.tv_sec += bt->tv_sec;
1182 ts.tv_nsec += bt->tv_nsec;
1183 while (ts.tv_nsec >= 1000000000) {
1184 ts.tv_nsec -= 1000000000;
1185 ++ts.tv_sec;
1188 (*pseq)++;
1189 *tsp = ts;
1191 if (foff) {
1192 timespecadd(tsp, osp);
1193 if (tsp->tv_nsec < 0) {
1194 tsp->tv_nsec += 1000000000;
1195 tsp->tv_sec -= 1;
1198 #ifdef PPS_SYNC
1199 if (fhard) {
1200 /* magic, at its best... */
1201 tcount = count - pps->ppscount[2];
1202 pps->ppscount[2] = count;
1203 if (tcount >= sys_cputimer->freq) {
1204 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1205 sys_cputimer->freq64_nsec *
1206 (tcount % sys_cputimer->freq)) >> 32;
1207 } else {
1208 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1210 hardpps(tsp, delta);
1212 #endif