2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.51 2006/03/24 18:30:33 dillon Exp $
77 #include "opt_polling.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/kinfo.h>
85 #include <sys/malloc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/timex.h>
89 #include <sys/timepps.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_extern.h>
95 #include <sys/sysctl.h>
96 #include <sys/thread2.h>
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
103 #include <sys/gmon.h>
106 #ifdef DEVICE_POLLING
107 extern void init_device_poll(void);
110 static void initclocks (void *dummy
);
111 SYSINIT(clocks
, SI_SUB_CLOCKS
, SI_ORDER_FIRST
, initclocks
, NULL
)
114 * Some of these don't belong here, but it's easiest to concentrate them.
115 * Note that cpu_time counts in microseconds, but most userland programs
116 * just compare relative times against the total by delta.
118 struct kinfo_cputime cputime_percpu
[MAXCPU
];
121 sysctl_cputime(SYSCTL_HANDLER_ARGS
)
124 size_t size
= sizeof(struct kinfo_cputime
);
126 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
127 if ((error
= SYSCTL_OUT(req
, &cputime_percpu
[cpu
], size
)))
133 SYSCTL_PROC(_kern
, OID_AUTO
, cputime
, (CTLTYPE_OPAQUE
|CTLFLAG_RD
), 0, 0,
134 sysctl_cputime
, "S,kinfo_cputime", "CPU time statistics");
136 SYSCTL_STRUCT(_kern
, OID_AUTO
, cputime
, CTLFLAG_RD
, &cpu_time
, kinfo_cputime
,
137 "CPU time statistics");
141 * boottime is used to calculate the 'real' uptime. Do not confuse this with
142 * microuptime(). microtime() is not drift compensated. The real uptime
143 * with compensation is nanotime() - bootime. boottime is recalculated
144 * whenever the real time is set based on the compensated elapsed time
145 * in seconds (gd->gd_time_seconds).
147 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
148 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
151 struct timespec boottime
; /* boot time (realtime) for reference only */
152 time_t time_second
; /* read-only 'passive' uptime in seconds */
155 * basetime is used to calculate the compensated real time of day. The
156 * basetime can be modified on a per-tick basis by the adjtime(),
157 * ntp_adjtime(), and sysctl-based time correction APIs.
159 * Note that frequency corrections can also be made by adjusting
162 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
163 * used on both SMP and UP systems to avoid MP races between cpu's and
164 * interrupt races on UP systems.
166 #define BASETIME_ARYSIZE 16
167 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
168 static struct timespec basetime
[BASETIME_ARYSIZE
];
169 static volatile int basetime_index
;
172 sysctl_get_basetime(SYSCTL_HANDLER_ARGS
)
179 * Because basetime data and index may be updated by another cpu,
180 * a load fence is required to ensure that the data we read has
181 * not been speculatively read relative to a possibly updated index.
183 index
= basetime_index
;
185 bt
= &basetime
[index
];
186 error
= SYSCTL_OUT(req
, bt
, sizeof(*bt
));
190 SYSCTL_STRUCT(_kern
, KERN_BOOTTIME
, boottime
, CTLFLAG_RD
,
191 &boottime
, timespec
, "System boottime");
192 SYSCTL_PROC(_kern
, OID_AUTO
, basetime
, CTLTYPE_STRUCT
|CTLFLAG_RD
, 0, 0,
193 sysctl_get_basetime
, "S,timespec", "System basetime");
195 static void hardclock(systimer_t info
, struct intrframe
*frame
);
196 static void statclock(systimer_t info
, struct intrframe
*frame
);
197 static void schedclock(systimer_t info
, struct intrframe
*frame
);
198 static void getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
);
200 int ticks
; /* system master ticks at hz */
201 int clocks_running
; /* tsleep/timeout clocks operational */
202 int64_t nsec_adj
; /* ntpd per-tick adjustment in nsec << 32 */
203 int64_t nsec_acc
; /* accumulator */
205 /* NTPD time correction fields */
206 int64_t ntp_tick_permanent
; /* per-tick adjustment in nsec << 32 */
207 int64_t ntp_tick_acc
; /* accumulator for per-tick adjustment */
208 int64_t ntp_delta
; /* one-time correction in nsec */
209 int64_t ntp_big_delta
= 1000000000;
210 int32_t ntp_tick_delta
; /* current adjustment rate */
211 int32_t ntp_default_tick_delta
; /* adjustment rate for ntp_delta */
212 time_t ntp_leap_second
; /* time of next leap second */
213 int ntp_leap_insert
; /* whether to insert or remove a second */
216 * Finish initializing clock frequencies and start all clocks running.
220 initclocks(void *dummy
)
223 #ifdef DEVICE_POLLING
226 /*psratio = profhz / stathz;*/
232 * Called on a per-cpu basis
235 initclocks_pcpu(void)
237 struct globaldata
*gd
= mycpu
;
240 if (gd
->gd_cpuid
== 0) {
241 gd
->gd_time_seconds
= 1;
242 gd
->gd_cpuclock_base
= sys_cputimer
->count();
245 gd
->gd_time_seconds
= globaldata_find(0)->gd_time_seconds
;
246 gd
->gd_cpuclock_base
= globaldata_find(0)->gd_cpuclock_base
;
250 * Use a non-queued periodic systimer to prevent multiple ticks from
251 * building up if the sysclock jumps forward (8254 gets reset). The
252 * sysclock will never jump backwards. Our time sync is based on
253 * the actual sysclock, not the ticks count.
255 systimer_init_periodic_nq(&gd
->gd_hardclock
, hardclock
, NULL
, hz
);
256 systimer_init_periodic_nq(&gd
->gd_statclock
, statclock
, NULL
, stathz
);
257 /* XXX correct the frequency for scheduler / estcpu tests */
258 systimer_init_periodic_nq(&gd
->gd_schedclock
, schedclock
,
264 * This sets the current real time of day. Timespecs are in seconds and
265 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
266 * instead we adjust basetime so basetime + gd_* results in the current
267 * time of day. This way the gd_* fields are guarenteed to represent
268 * a monotonically increasing 'uptime' value.
270 * When set_timeofday() is called from userland, the system call forces it
271 * onto cpu #0 since only cpu #0 can update basetime_index.
274 set_timeofday(struct timespec
*ts
)
276 struct timespec
*nbt
;
280 * XXX SMP / non-atomic basetime updates
283 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
286 nbt
->tv_sec
= ts
->tv_sec
- nbt
->tv_sec
;
287 nbt
->tv_nsec
= ts
->tv_nsec
- nbt
->tv_nsec
;
288 if (nbt
->tv_nsec
< 0) {
289 nbt
->tv_nsec
+= 1000000000;
294 * Note that basetime diverges from boottime as the clock drift is
295 * compensated for, so we cannot do away with boottime. When setting
296 * the absolute time of day the drift is 0 (for an instant) and we
297 * can simply assign boottime to basetime.
299 * Note that nanouptime() is based on gd_time_seconds which is drift
300 * compensated up to a point (it is guarenteed to remain monotonically
301 * increasing). gd_time_seconds is thus our best uptime guess and
302 * suitable for use in the boottime calculation. It is already taken
303 * into account in the basetime calculation above.
305 boottime
.tv_sec
= nbt
->tv_sec
;
309 * We now have a new basetime, make sure all other cpus have it,
310 * then update the index.
319 * Each cpu has its own hardclock, but we only increments ticks and softticks
322 * NOTE! systimer! the MP lock might not be held here. We can only safely
323 * manipulate objects owned by the current cpu.
326 hardclock(systimer_t info
, struct intrframe
*frame
)
330 struct pstats
*pstats
;
331 struct globaldata
*gd
= mycpu
;
334 * Realtime updates are per-cpu. Note that timer corrections as
335 * returned by microtime() and friends make an additional adjustment
336 * using a system-wise 'basetime', but the running time is always
337 * taken from the per-cpu globaldata area. Since the same clock
338 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
341 * Note that we never allow info->time (aka gd->gd_hardclock.time)
342 * to reverse index gd_cpuclock_base, but that it is possible for
343 * it to temporarily get behind in the seconds if something in the
344 * system locks interrupts for a long period of time. Since periodic
345 * timers count events, though everything should resynch again
348 cputicks
= info
->time
- gd
->gd_cpuclock_base
;
349 if (cputicks
>= sys_cputimer
->freq
) {
350 ++gd
->gd_time_seconds
;
351 gd
->gd_cpuclock_base
+= sys_cputimer
->freq
;
355 * The system-wide ticks counter and NTP related timedelta/tickdelta
356 * adjustments only occur on cpu #0. NTP adjustments are accomplished
357 * by updating basetime.
359 if (gd
->gd_cpuid
== 0) {
360 struct timespec
*nbt
;
368 if (tco
->tc_poll_pps
)
369 tco
->tc_poll_pps(tco
);
373 * Calculate the new basetime index. We are in a critical section
374 * on cpu #0 and can safely play with basetime_index. Start
375 * with the current basetime and then make adjustments.
377 ni
= (basetime_index
+ 1) & BASETIME_ARYMASK
;
379 *nbt
= basetime
[basetime_index
];
382 * Apply adjtime corrections. (adjtime() API)
384 * adjtime() only runs on cpu #0 so our critical section is
385 * sufficient to access these variables.
387 if (ntp_delta
!= 0) {
388 nbt
->tv_nsec
+= ntp_tick_delta
;
389 ntp_delta
-= ntp_tick_delta
;
390 if ((ntp_delta
> 0 && ntp_delta
< ntp_tick_delta
) ||
391 (ntp_delta
< 0 && ntp_delta
> ntp_tick_delta
)) {
392 ntp_tick_delta
= ntp_delta
;
397 * Apply permanent frequency corrections. (sysctl API)
399 if (ntp_tick_permanent
!= 0) {
400 ntp_tick_acc
+= ntp_tick_permanent
;
401 if (ntp_tick_acc
>= (1LL << 32)) {
402 nbt
->tv_nsec
+= ntp_tick_acc
>> 32;
403 ntp_tick_acc
-= (ntp_tick_acc
>> 32) << 32;
404 } else if (ntp_tick_acc
<= -(1LL << 32)) {
405 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
406 nbt
->tv_nsec
-= (-ntp_tick_acc
) >> 32;
407 ntp_tick_acc
+= ((-ntp_tick_acc
) >> 32) << 32;
411 if (nbt
->tv_nsec
>= 1000000000) {
413 nbt
->tv_nsec
-= 1000000000;
414 } else if (nbt
->tv_nsec
< 0) {
416 nbt
->tv_nsec
+= 1000000000;
420 * Another per-tick compensation. (for ntp_adjtime() API)
423 nsec_acc
+= nsec_adj
;
424 if (nsec_acc
>= 0x100000000LL
) {
425 nbt
->tv_nsec
+= nsec_acc
>> 32;
426 nsec_acc
= (nsec_acc
& 0xFFFFFFFFLL
);
427 } else if (nsec_acc
<= -0x100000000LL
) {
428 nbt
->tv_nsec
-= -nsec_acc
>> 32;
429 nsec_acc
= -(-nsec_acc
& 0xFFFFFFFFLL
);
431 if (nbt
->tv_nsec
>= 1000000000) {
432 nbt
->tv_nsec
-= 1000000000;
434 } else if (nbt
->tv_nsec
< 0) {
435 nbt
->tv_nsec
+= 1000000000;
440 /************************************************************
441 * LEAP SECOND CORRECTION *
442 ************************************************************
444 * Taking into account all the corrections made above, figure
445 * out the new real time. If the seconds field has changed
446 * then apply any pending leap-second corrections.
448 getnanotime_nbt(nbt
, &nts
);
450 if (time_second
!= nts
.tv_sec
) {
452 * Apply leap second (sysctl API). Adjust nts for changes
453 * so we do not have to call getnanotime_nbt again.
455 if (ntp_leap_second
) {
456 if (ntp_leap_second
== nts
.tv_sec
) {
457 if (ntp_leap_insert
) {
469 * Apply leap second (ntp_adjtime() API), calculate a new
470 * nsec_adj field. ntp_update_second() returns nsec_adj
471 * as a per-second value but we need it as a per-tick value.
473 leap
= ntp_update_second(time_second
, &nsec_adj
);
479 * Update the time_second 'approximate time' global.
481 time_second
= nts
.tv_sec
;
485 * Finally, our new basetime is ready to go live!
491 * Figure out how badly the system is starved for memory
493 vm_fault_ratecheck();
497 * softticks are handled for all cpus
499 hardclock_softtick(gd
);
502 * ITimer handling is per-tick, per-cpu. I don't think psignal()
503 * is mpsafe on curproc, so XXX get the mplock.
505 if ((p
= curproc
) != NULL
&& try_mplock()) {
507 if (frame
&& CLKF_USERMODE(frame
) &&
508 timevalisset(&p
->p_timer
[ITIMER_VIRTUAL
].it_value
) &&
509 itimerdecr(&p
->p_timer
[ITIMER_VIRTUAL
], tick
) == 0)
510 psignal(p
, SIGVTALRM
);
511 if (timevalisset(&p
->p_timer
[ITIMER_PROF
].it_value
) &&
512 itimerdecr(&p
->p_timer
[ITIMER_PROF
], tick
) == 0)
520 * The statistics clock typically runs at a 125Hz rate, and is intended
521 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
523 * NOTE! systimer! the MP lock might not be held here. We can only safely
524 * manipulate objects owned by the current cpu.
526 * The stats clock is responsible for grabbing a profiling sample.
527 * Most of the statistics are only used by user-level statistics programs.
528 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
531 * Like the other clocks, the stat clock is called from what is effectively
532 * a fast interrupt, so the context should be the thread/process that got
536 statclock(systimer_t info
, struct intrframe
*frame
)
549 * How big was our timeslice relative to the last time?
551 microuptime(&tv
); /* mpsafe */
552 stv
= &mycpu
->gd_stattv
;
553 if (stv
->tv_sec
== 0) {
556 bump
= tv
.tv_usec
- stv
->tv_usec
+
557 (tv
.tv_sec
- stv
->tv_sec
) * 1000000;
568 if (frame
&& CLKF_USERMODE(frame
)) {
570 * Came from userland, handle user time and deal with
573 if (p
&& (p
->p_flag
& P_PROFIL
))
574 addupc_intr(p
, CLKF_PC(frame
), 1);
575 td
->td_uticks
+= bump
;
578 * Charge the time as appropriate
580 if (p
&& p
->p_nice
> NZERO
)
581 cpu_time
.cp_nice
+= bump
;
583 cpu_time
.cp_user
+= bump
;
587 * Kernel statistics are just like addupc_intr, only easier.
590 if (g
->state
== GMON_PROF_ON
&& frame
) {
591 i
= CLKF_PC(frame
) - g
->lowpc
;
592 if (i
< g
->textsize
) {
593 i
/= HISTFRACTION
* sizeof(*g
->kcount
);
599 * Came from kernel mode, so we were:
600 * - handling an interrupt,
601 * - doing syscall or trap work on behalf of the current
603 * - spinning in the idle loop.
604 * Whichever it is, charge the time as appropriate.
605 * Note that we charge interrupts to the current process,
606 * regardless of whether they are ``for'' that process,
607 * so that we know how much of its real time was spent
608 * in ``non-process'' (i.e., interrupt) work.
610 * XXX assume system if frame is NULL. A NULL frame
611 * can occur if ipi processing is done from a crit_exit().
613 if (frame
&& CLKF_INTR(frame
))
614 td
->td_iticks
+= bump
;
616 td
->td_sticks
+= bump
;
618 if (frame
&& CLKF_INTR(frame
)) {
619 cpu_time
.cp_intr
+= bump
;
621 if (td
== &mycpu
->gd_idlethread
)
622 cpu_time
.cp_idle
+= bump
;
624 cpu_time
.cp_sys
+= bump
;
630 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
631 * the MP lock might not be held. We can safely manipulate parts of curproc
632 * but that's about it.
634 * Each cpu has its own scheduler clock.
637 schedclock(systimer_t info
, struct intrframe
*frame
)
640 struct pstats
*pstats
;
645 if ((lp
= lwkt_preempted_proc()) != NULL
) {
647 * Account for cpu time used and hit the scheduler. Note
648 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
653 * XXX I think accessing lwp_proc's p_usched is
654 * reasonably MP safe. This needs to be revisited
655 * when we have pluggable schedulers.
657 lp
->lwp_proc
->p_usched
->schedulerclock(lp
, info
->periodic
, info
->time
);
659 if ((lp
= curthread
->td_lwp
) != NULL
) {
661 * Update resource usage integrals and maximums.
663 if ((pstats
= lp
->lwp_stats
) != NULL
&&
664 (ru
= &pstats
->p_ru
) != NULL
&&
665 (vm
= lp
->lwp_proc
->p_vmspace
) != NULL
) {
666 ru
->ru_ixrss
+= pgtok(vm
->vm_tsize
);
667 ru
->ru_idrss
+= pgtok(vm
->vm_dsize
);
668 ru
->ru_isrss
+= pgtok(vm
->vm_ssize
);
669 rss
= pgtok(vmspace_resident_count(vm
));
670 if (ru
->ru_maxrss
< rss
)
677 * Compute number of ticks for the specified amount of time. The
678 * return value is intended to be used in a clock interrupt timed
679 * operation and guarenteed to meet or exceed the requested time.
680 * If the representation overflows, return INT_MAX. The minimum return
681 * value is 1 ticks and the function will average the calculation up.
682 * If any value greater then 0 microseconds is supplied, a value
683 * of at least 2 will be returned to ensure that a near-term clock
684 * interrupt does not cause the timeout to occur (degenerately) early.
686 * Note that limit checks must take into account microseconds, which is
687 * done simply by using the smaller signed long maximum instead of
688 * the unsigned long maximum.
690 * If ints have 32 bits, then the maximum value for any timeout in
691 * 10ms ticks is 248 days.
694 tvtohz_high(struct timeval
*tv
)
711 printf("tvotohz: negative time difference %ld sec %ld usec\n",
715 } else if (sec
<= INT_MAX
/ hz
) {
716 ticks
= (int)(sec
* hz
+
717 ((u_long
)usec
+ (tick
- 1)) / tick
) + 1;
725 * Compute number of ticks for the specified amount of time, erroring on
726 * the side of it being too low to ensure that sleeping the returned number
727 * of ticks will not result in a late return.
729 * The supplied timeval may not be negative and should be normalized. A
730 * return value of 0 is possible if the timeval converts to less then
733 * If ints have 32 bits, then the maximum value for any timeout in
734 * 10ms ticks is 248 days.
737 tvtohz_low(struct timeval
*tv
)
743 if (sec
<= INT_MAX
/ hz
)
744 ticks
= (int)(sec
* hz
+ (u_long
)tv
->tv_usec
/ tick
);
752 * Start profiling on a process.
754 * Kernel profiling passes proc0 which never exits and hence
755 * keeps the profile clock running constantly.
758 startprofclock(struct proc
*p
)
760 if ((p
->p_flag
& P_PROFIL
) == 0) {
761 p
->p_flag
|= P_PROFIL
;
763 if (++profprocs
== 1 && stathz
!= 0) {
766 setstatclockrate(profhz
);
774 * Stop profiling on a process.
777 stopprofclock(struct proc
*p
)
779 if (p
->p_flag
& P_PROFIL
) {
780 p
->p_flag
&= ~P_PROFIL
;
782 if (--profprocs
== 0 && stathz
!= 0) {
785 setstatclockrate(stathz
);
793 * Return information about system clocks.
796 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS
)
798 struct kinfo_clockinfo clkinfo
;
800 * Construct clockinfo structure.
803 clkinfo
.ci_tick
= tick
;
804 clkinfo
.ci_tickadj
= ntp_default_tick_delta
/ 1000;
805 clkinfo
.ci_profhz
= profhz
;
806 clkinfo
.ci_stathz
= stathz
? stathz
: hz
;
807 return (sysctl_handle_opaque(oidp
, &clkinfo
, sizeof clkinfo
, req
));
810 SYSCTL_PROC(_kern
, KERN_CLOCKRATE
, clockrate
, CTLTYPE_STRUCT
|CTLFLAG_RD
,
811 0, 0, sysctl_kern_clockrate
, "S,clockinfo","");
814 * We have eight functions for looking at the clock, four for
815 * microseconds and four for nanoseconds. For each there is fast
816 * but less precise version "get{nano|micro}[up]time" which will
817 * return a time which is up to 1/HZ previous to the call, whereas
818 * the raw version "{nano|micro}[up]time" will return a timestamp
819 * which is as precise as possible. The "up" variants return the
820 * time relative to system boot, these are well suited for time
821 * interval measurements.
823 * Each cpu independantly maintains the current time of day, so all
824 * we need to do to protect ourselves from changes is to do a loop
825 * check on the seconds field changing out from under us.
827 * The system timer maintains a 32 bit count and due to various issues
828 * it is possible for the calculated delta to occassionally exceed
829 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
830 * multiplication can easily overflow, so we deal with the case. For
831 * uniformity we deal with the case in the usec case too.
834 getmicrouptime(struct timeval
*tvp
)
836 struct globaldata
*gd
= mycpu
;
840 tvp
->tv_sec
= gd
->gd_time_seconds
;
841 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
842 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
844 if (delta
>= sys_cputimer
->freq
) {
845 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
846 delta
%= sys_cputimer
->freq
;
848 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
849 if (tvp
->tv_usec
>= 1000000) {
850 tvp
->tv_usec
-= 1000000;
856 getnanouptime(struct timespec
*tsp
)
858 struct globaldata
*gd
= mycpu
;
862 tsp
->tv_sec
= gd
->gd_time_seconds
;
863 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
864 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
866 if (delta
>= sys_cputimer
->freq
) {
867 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
868 delta
%= sys_cputimer
->freq
;
870 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
874 microuptime(struct timeval
*tvp
)
876 struct globaldata
*gd
= mycpu
;
880 tvp
->tv_sec
= gd
->gd_time_seconds
;
881 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
882 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
884 if (delta
>= sys_cputimer
->freq
) {
885 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
886 delta
%= sys_cputimer
->freq
;
888 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
892 nanouptime(struct timespec
*tsp
)
894 struct globaldata
*gd
= mycpu
;
898 tsp
->tv_sec
= gd
->gd_time_seconds
;
899 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
900 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
902 if (delta
>= sys_cputimer
->freq
) {
903 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
904 delta
%= sys_cputimer
->freq
;
906 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
914 getmicrotime(struct timeval
*tvp
)
916 struct globaldata
*gd
= mycpu
;
921 tvp
->tv_sec
= gd
->gd_time_seconds
;
922 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
923 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
925 if (delta
>= sys_cputimer
->freq
) {
926 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
927 delta
%= sys_cputimer
->freq
;
929 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
931 bt
= &basetime
[basetime_index
];
932 tvp
->tv_sec
+= bt
->tv_sec
;
933 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
934 while (tvp
->tv_usec
>= 1000000) {
935 tvp
->tv_usec
-= 1000000;
941 getnanotime(struct timespec
*tsp
)
943 struct globaldata
*gd
= mycpu
;
948 tsp
->tv_sec
= gd
->gd_time_seconds
;
949 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
950 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
952 if (delta
>= sys_cputimer
->freq
) {
953 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
954 delta
%= sys_cputimer
->freq
;
956 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
958 bt
= &basetime
[basetime_index
];
959 tsp
->tv_sec
+= bt
->tv_sec
;
960 tsp
->tv_nsec
+= bt
->tv_nsec
;
961 while (tsp
->tv_nsec
>= 1000000000) {
962 tsp
->tv_nsec
-= 1000000000;
968 getnanotime_nbt(struct timespec
*nbt
, struct timespec
*tsp
)
970 struct globaldata
*gd
= mycpu
;
974 tsp
->tv_sec
= gd
->gd_time_seconds
;
975 delta
= gd
->gd_hardclock
.time
- gd
->gd_cpuclock_base
;
976 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
978 if (delta
>= sys_cputimer
->freq
) {
979 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
980 delta
%= sys_cputimer
->freq
;
982 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
984 tsp
->tv_sec
+= nbt
->tv_sec
;
985 tsp
->tv_nsec
+= nbt
->tv_nsec
;
986 while (tsp
->tv_nsec
>= 1000000000) {
987 tsp
->tv_nsec
-= 1000000000;
994 microtime(struct timeval
*tvp
)
996 struct globaldata
*gd
= mycpu
;
1001 tvp
->tv_sec
= gd
->gd_time_seconds
;
1002 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1003 } while (tvp
->tv_sec
!= gd
->gd_time_seconds
);
1005 if (delta
>= sys_cputimer
->freq
) {
1006 tvp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1007 delta
%= sys_cputimer
->freq
;
1009 tvp
->tv_usec
= (sys_cputimer
->freq64_usec
* delta
) >> 32;
1011 bt
= &basetime
[basetime_index
];
1012 tvp
->tv_sec
+= bt
->tv_sec
;
1013 tvp
->tv_usec
+= bt
->tv_nsec
/ 1000;
1014 while (tvp
->tv_usec
>= 1000000) {
1015 tvp
->tv_usec
-= 1000000;
1021 nanotime(struct timespec
*tsp
)
1023 struct globaldata
*gd
= mycpu
;
1024 struct timespec
*bt
;
1028 tsp
->tv_sec
= gd
->gd_time_seconds
;
1029 delta
= sys_cputimer
->count() - gd
->gd_cpuclock_base
;
1030 } while (tsp
->tv_sec
!= gd
->gd_time_seconds
);
1032 if (delta
>= sys_cputimer
->freq
) {
1033 tsp
->tv_sec
+= delta
/ sys_cputimer
->freq
;
1034 delta
%= sys_cputimer
->freq
;
1036 tsp
->tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1038 bt
= &basetime
[basetime_index
];
1039 tsp
->tv_sec
+= bt
->tv_sec
;
1040 tsp
->tv_nsec
+= bt
->tv_nsec
;
1041 while (tsp
->tv_nsec
>= 1000000000) {
1042 tsp
->tv_nsec
-= 1000000000;
1048 * note: this is not exactly synchronized with real time. To do that we
1049 * would have to do what microtime does and check for a nanoseconds overflow.
1052 get_approximate_time_t(void)
1054 struct globaldata
*gd
= mycpu
;
1055 struct timespec
*bt
;
1057 bt
= &basetime
[basetime_index
];
1058 return(gd
->gd_time_seconds
+ bt
->tv_sec
);
1062 pps_ioctl(u_long cmd
, caddr_t data
, struct pps_state
*pps
)
1065 struct pps_fetch_args
*fapi
;
1067 struct pps_kcbind_args
*kapi
;
1071 case PPS_IOC_CREATE
:
1073 case PPS_IOC_DESTROY
:
1075 case PPS_IOC_SETPARAMS
:
1076 app
= (pps_params_t
*)data
;
1077 if (app
->mode
& ~pps
->ppscap
)
1079 pps
->ppsparam
= *app
;
1081 case PPS_IOC_GETPARAMS
:
1082 app
= (pps_params_t
*)data
;
1083 *app
= pps
->ppsparam
;
1084 app
->api_version
= PPS_API_VERS_1
;
1086 case PPS_IOC_GETCAP
:
1087 *(int*)data
= pps
->ppscap
;
1090 fapi
= (struct pps_fetch_args
*)data
;
1091 if (fapi
->tsformat
&& fapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1093 if (fapi
->timeout
.tv_sec
|| fapi
->timeout
.tv_nsec
)
1094 return (EOPNOTSUPP
);
1095 pps
->ppsinfo
.current_mode
= pps
->ppsparam
.mode
;
1096 fapi
->pps_info_buf
= pps
->ppsinfo
;
1098 case PPS_IOC_KCBIND
:
1100 kapi
= (struct pps_kcbind_args
*)data
;
1101 /* XXX Only root should be able to do this */
1102 if (kapi
->tsformat
&& kapi
->tsformat
!= PPS_TSFMT_TSPEC
)
1104 if (kapi
->kernel_consumer
!= PPS_KC_HARDPPS
)
1106 if (kapi
->edge
& ~pps
->ppscap
)
1108 pps
->kcmode
= kapi
->edge
;
1111 return (EOPNOTSUPP
);
1119 pps_init(struct pps_state
*pps
)
1121 pps
->ppscap
|= PPS_TSFMT_TSPEC
;
1122 if (pps
->ppscap
& PPS_CAPTUREASSERT
)
1123 pps
->ppscap
|= PPS_OFFSETASSERT
;
1124 if (pps
->ppscap
& PPS_CAPTURECLEAR
)
1125 pps
->ppscap
|= PPS_OFFSETCLEAR
;
1129 pps_event(struct pps_state
*pps
, sysclock_t count
, int event
)
1131 struct globaldata
*gd
;
1132 struct timespec
*tsp
;
1133 struct timespec
*osp
;
1134 struct timespec
*bt
;
1147 /* Things would be easier with arrays... */
1148 if (event
== PPS_CAPTUREASSERT
) {
1149 tsp
= &pps
->ppsinfo
.assert_timestamp
;
1150 osp
= &pps
->ppsparam
.assert_offset
;
1151 foff
= pps
->ppsparam
.mode
& PPS_OFFSETASSERT
;
1152 fhard
= pps
->kcmode
& PPS_CAPTUREASSERT
;
1153 pcount
= &pps
->ppscount
[0];
1154 pseq
= &pps
->ppsinfo
.assert_sequence
;
1156 tsp
= &pps
->ppsinfo
.clear_timestamp
;
1157 osp
= &pps
->ppsparam
.clear_offset
;
1158 foff
= pps
->ppsparam
.mode
& PPS_OFFSETCLEAR
;
1159 fhard
= pps
->kcmode
& PPS_CAPTURECLEAR
;
1160 pcount
= &pps
->ppscount
[1];
1161 pseq
= &pps
->ppsinfo
.clear_sequence
;
1164 /* Nothing really happened */
1165 if (*pcount
== count
)
1171 ts
.tv_sec
= gd
->gd_time_seconds
;
1172 delta
= count
- gd
->gd_cpuclock_base
;
1173 } while (ts
.tv_sec
!= gd
->gd_time_seconds
);
1175 if (delta
>= sys_cputimer
->freq
) {
1176 ts
.tv_sec
+= delta
/ sys_cputimer
->freq
;
1177 delta
%= sys_cputimer
->freq
;
1179 ts
.tv_nsec
= (sys_cputimer
->freq64_nsec
* delta
) >> 32;
1180 bt
= &basetime
[basetime_index
];
1181 ts
.tv_sec
+= bt
->tv_sec
;
1182 ts
.tv_nsec
+= bt
->tv_nsec
;
1183 while (ts
.tv_nsec
>= 1000000000) {
1184 ts
.tv_nsec
-= 1000000000;
1192 timespecadd(tsp
, osp
);
1193 if (tsp
->tv_nsec
< 0) {
1194 tsp
->tv_nsec
+= 1000000000;
1200 /* magic, at its best... */
1201 tcount
= count
- pps
->ppscount
[2];
1202 pps
->ppscount
[2] = count
;
1203 if (tcount
>= sys_cputimer
->freq
) {
1204 delta
= (1000000000 * (tcount
/ sys_cputimer
->freq
) +
1205 sys_cputimer
->freq64_nsec
*
1206 (tcount
% sys_cputimer
->freq
)) >> 32;
1208 delta
= (sys_cputimer
->freq64_nsec
* tcount
) >> 32;
1210 hardpps(tsp
, delta
);