vkernel - Fix FP corruption from preemptive thread switch
[dragonfly.git] / sys / vm / swap_pager.c
blobc05455deb5edceef9d776756edb3e02cc58c5115
1 /*
2 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1994 John S. Dyson
35 * Copyright (c) 1990 University of Utah.
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
39 * This code is derived from software contributed to Berkeley by
40 * the Systems Programming Group of the University of Utah Computer
41 * Science Department.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * New Swap System
72 * Matthew Dillon
74 * Radix Bitmap 'blists'.
76 * - The new swapper uses the new radix bitmap code. This should scale
77 * to arbitrarily small or arbitrarily large swap spaces and an almost
78 * arbitrary degree of fragmentation.
80 * Features:
82 * - on the fly reallocation of swap during putpages. The new system
83 * does not try to keep previously allocated swap blocks for dirty
84 * pages.
86 * - on the fly deallocation of swap
88 * - No more garbage collection required. Unnecessarily allocated swap
89 * blocks only exist for dirty vm_page_t's now and these are already
90 * cycled (in a high-load system) by the pager. We also do on-the-fly
91 * removal of invalidated swap blocks when a page is destroyed
92 * or renamed.
94 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
96 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
98 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99 * $DragonFly: src/sys/vm/swap_pager.c,v 1.32 2008/07/01 02:02:56 dillon Exp $
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/thread2.h>
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
120 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
135 #define SWM_FREE 0x02 /* free, period */
136 #define SWM_POP 0x04 /* pop out */
138 #define SWBIO_READ 0x01
139 #define SWBIO_WRITE 0x02
140 #define SWBIO_SYNC 0x04
143 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
144 * in the old system.
147 extern int vm_swap_size; /* number of free swap blocks, in pages */
149 int swap_pager_full; /* swap space exhaustion (task killing) */
150 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
151 static int nsw_rcount; /* free read buffers */
152 static int nsw_wcount_sync; /* limit write buffers / synchronous */
153 static int nsw_wcount_async; /* limit write buffers / asynchronous */
154 static int nsw_wcount_async_max;/* assigned maximum */
155 static int nsw_cluster_max; /* maximum VOP I/O allowed */
156 static int sw_alloc_interlock; /* swap pager allocation interlock */
158 struct blist *swapblist;
159 static struct swblock **swhash;
160 static int swhash_mask;
161 static int swap_async_max = 4; /* maximum in-progress async I/O's */
163 extern struct vnode *swapdev_vp; /* from vm_swap.c */
165 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
166 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
169 * "named" and "unnamed" anon region objects. Try to reduce the overhead
170 * of searching a named list by hashing it just a little.
173 #define NOBJLISTS 8
175 #define NOBJLIST(handle) \
176 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
178 static struct pagerlst swap_pager_object_list[NOBJLISTS];
179 struct pagerlst swap_pager_un_object_list;
180 vm_zone_t swap_zone;
183 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
184 * calls hooked from other parts of the VM system and do not appear here.
185 * (see vm/swap_pager.h).
188 static vm_object_t
189 swap_pager_alloc (void *handle, off_t size,
190 vm_prot_t prot, off_t offset);
191 static void swap_pager_dealloc (vm_object_t object);
192 static int swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
193 static void swap_pager_init (void);
194 static void swap_pager_unswapped (vm_page_t);
195 static void swap_pager_strategy (vm_object_t, struct bio *);
196 static void swap_chain_iodone(struct bio *biox);
198 struct pagerops swappagerops = {
199 swap_pager_init, /* early system initialization of pager */
200 swap_pager_alloc, /* allocate an OBJT_SWAP object */
201 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
202 swap_pager_getpages, /* pagein */
203 swap_pager_putpages, /* pageout */
204 swap_pager_haspage, /* get backing store status for page */
205 swap_pager_unswapped, /* remove swap related to page */
206 swap_pager_strategy /* pager strategy call */
210 * dmmax is in page-sized chunks with the new swap system. It was
211 * dev-bsized chunks in the old. dmmax is always a power of 2.
213 * swap_*() routines are externally accessible. swp_*() routines are
214 * internal.
217 int dmmax;
218 static int dmmax_mask;
219 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
220 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
222 static __inline void swp_sizecheck (void);
223 static void swp_pager_async_iodone (struct bio *bio);
226 * Swap bitmap functions
229 static __inline void swp_pager_freeswapspace (daddr_t blk, int npages);
230 static __inline daddr_t swp_pager_getswapspace (int npages);
233 * Metadata functions
236 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
237 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
238 static void swp_pager_meta_free_all (vm_object_t);
239 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
242 * SWP_SIZECHECK() - update swap_pager_full indication
244 * update the swap_pager_almost_full indication and warn when we are
245 * about to run out of swap space, using lowat/hiwat hysteresis.
247 * Clear swap_pager_full ( task killing ) indication when lowat is met.
249 * No restrictions on call
250 * This routine may not block.
251 * This routine must be called at splvm()
254 static __inline void
255 swp_sizecheck(void)
257 if (vm_swap_size < nswap_lowat) {
258 if (swap_pager_almost_full == 0) {
259 kprintf("swap_pager: out of swap space\n");
260 swap_pager_almost_full = 1;
262 } else {
263 swap_pager_full = 0;
264 if (vm_swap_size > nswap_hiwat)
265 swap_pager_almost_full = 0;
270 * SWAP_PAGER_INIT() - initialize the swap pager!
272 * Expected to be started from system init. NOTE: This code is run
273 * before much else so be careful what you depend on. Most of the VM
274 * system has yet to be initialized at this point.
277 static void
278 swap_pager_init(void)
281 * Initialize object lists
283 int i;
285 for (i = 0; i < NOBJLISTS; ++i)
286 TAILQ_INIT(&swap_pager_object_list[i]);
287 TAILQ_INIT(&swap_pager_un_object_list);
290 * Device Stripe, in PAGE_SIZE'd blocks
293 dmmax = SWB_NPAGES * 2;
294 dmmax_mask = ~(dmmax - 1);
298 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
300 * Expected to be started from pageout process once, prior to entering
301 * its main loop.
304 void
305 swap_pager_swap_init(void)
307 int n, n2;
310 * Number of in-transit swap bp operations. Don't
311 * exhaust the pbufs completely. Make sure we
312 * initialize workable values (0 will work for hysteresis
313 * but it isn't very efficient).
315 * The nsw_cluster_max is constrained by the number of pages an XIO
316 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
317 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
318 * constrained by the swap device interleave stripe size.
320 * Currently we hardwire nsw_wcount_async to 4. This limit is
321 * designed to prevent other I/O from having high latencies due to
322 * our pageout I/O. The value 4 works well for one or two active swap
323 * devices but is probably a little low if you have more. Even so,
324 * a higher value would probably generate only a limited improvement
325 * with three or four active swap devices since the system does not
326 * typically have to pageout at extreme bandwidths. We will want
327 * at least 2 per swap devices, and 4 is a pretty good value if you
328 * have one NFS swap device due to the command/ack latency over NFS.
329 * So it all works out pretty well.
332 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
334 nsw_rcount = (nswbuf + 1) / 2;
335 nsw_wcount_sync = (nswbuf + 3) / 4;
336 nsw_wcount_async = 4;
337 nsw_wcount_async_max = nsw_wcount_async;
340 * The zone is dynamically allocated so generally size it to
341 * maxswzone (32MB to 512MB of KVM). Set a minimum size based
342 * on physical memory of around 8x (each swblock can hold 16 pages).
344 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
345 * has increased dramatically.
347 n = vmstats.v_page_count / 2;
348 if (maxswzone && n < maxswzone / sizeof(struct swblock))
349 n = maxswzone / sizeof(struct swblock);
350 n2 = n;
352 do {
353 swap_zone = zinit(
354 "SWAPMETA",
355 sizeof(struct swblock),
357 ZONE_INTERRUPT,
359 if (swap_zone != NULL)
360 break;
362 * if the allocation failed, try a zone two thirds the
363 * size of the previous attempt.
365 n -= ((n + 2) / 3);
366 } while (n > 0);
368 if (swap_zone == NULL)
369 panic("swap_pager_swap_init: swap_zone == NULL");
370 if (n2 != n)
371 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
372 n2 = n;
375 * Initialize our meta-data hash table. The swapper does not need to
376 * be quite as efficient as the VM system, so we do not use an
377 * oversized hash table.
379 * n: size of hash table, must be power of 2
380 * swhash_mask: hash table index mask
383 for (n = 1; n < n2 / 8; n *= 2)
386 swhash = kmalloc(sizeof(struct swblock *) * n, M_VMPGDATA,
387 M_WAITOK | M_ZERO);
389 swhash_mask = n - 1;
393 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
394 * its metadata structures.
396 * This routine is called from the mmap and fork code to create a new
397 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
398 * and then converting it with swp_pager_meta_build().
400 * This routine may block in vm_object_allocate() and create a named
401 * object lookup race, so we must interlock. We must also run at
402 * splvm() for the object lookup to handle races with interrupts, but
403 * we do not have to maintain splvm() in between the lookup and the
404 * add because (I believe) it is not possible to attempt to create
405 * a new swap object w/handle when a default object with that handle
406 * already exists.
409 static vm_object_t
410 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
412 vm_object_t object;
414 if (handle) {
416 * Reference existing named region or allocate new one. There
417 * should not be a race here against swp_pager_meta_build()
418 * as called from vm_page_remove() in regards to the lookup
419 * of the handle.
422 while (sw_alloc_interlock) {
423 sw_alloc_interlock = -1;
424 tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
426 sw_alloc_interlock = 1;
428 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
430 if (object != NULL) {
431 vm_object_reference(object);
432 } else {
433 object = vm_object_allocate(OBJT_DEFAULT,
434 OFF_TO_IDX(offset + PAGE_MASK + size));
435 object->handle = handle;
437 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
440 if (sw_alloc_interlock < 0)
441 wakeup(&sw_alloc_interlock);
443 sw_alloc_interlock = 0;
444 } else {
445 object = vm_object_allocate(OBJT_DEFAULT,
446 OFF_TO_IDX(offset + PAGE_MASK + size));
448 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
451 return (object);
455 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
457 * The swap backing for the object is destroyed. The code is
458 * designed such that we can reinstantiate it later, but this
459 * routine is typically called only when the entire object is
460 * about to be destroyed.
462 * This routine may block, but no longer does.
464 * The object must be locked or unreferenceable.
467 static void
468 swap_pager_dealloc(vm_object_t object)
471 * Remove from list right away so lookups will fail if we block for
472 * pageout completion.
475 if (object->handle == NULL) {
476 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
477 } else {
478 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
481 vm_object_pip_wait(object, "swpdea");
484 * Free all remaining metadata. We only bother to free it from
485 * the swap meta data. We do not attempt to free swapblk's still
486 * associated with vm_page_t's for this object. We do not care
487 * if paging is still in progress on some objects.
489 crit_enter();
490 swp_pager_meta_free_all(object);
491 crit_exit();
494 /************************************************************************
495 * SWAP PAGER BITMAP ROUTINES *
496 ************************************************************************/
499 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
501 * Allocate swap for the requested number of pages. The starting
502 * swap block number (a page index) is returned or SWAPBLK_NONE
503 * if the allocation failed.
505 * Also has the side effect of advising that somebody made a mistake
506 * when they configured swap and didn't configure enough.
508 * Must be called at splvm() to avoid races with bitmap frees from
509 * vm_page_remove() aka swap_pager_page_removed().
511 * This routine may not block
512 * This routine must be called at splvm().
515 static __inline daddr_t
516 swp_pager_getswapspace(int npages)
518 daddr_t blk;
520 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
521 if (swap_pager_full != 2) {
522 kprintf("swap_pager_getswapspace: failed\n");
523 swap_pager_full = 2;
524 swap_pager_almost_full = 1;
526 } else {
527 vm_swap_size -= npages;
528 swp_sizecheck();
530 return(blk);
534 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
536 * This routine returns the specified swap blocks back to the bitmap.
538 * Note: This routine may not block (it could in the old swap code),
539 * and through the use of the new blist routines it does not block.
541 * We must be called at splvm() to avoid races with bitmap frees from
542 * vm_page_remove() aka swap_pager_page_removed().
544 * This routine may not block
545 * This routine must be called at splvm().
548 static __inline void
549 swp_pager_freeswapspace(daddr_t blk, int npages)
551 blist_free(swapblist, blk, npages);
552 vm_swap_size += npages;
553 swp_sizecheck();
557 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
558 * range within an object.
560 * This is a globally accessible routine.
562 * This routine removes swapblk assignments from swap metadata.
564 * The external callers of this routine typically have already destroyed
565 * or renamed vm_page_t's associated with this range in the object so
566 * we should be ok.
568 * This routine may be called at any spl. We up our spl to splvm temporarily
569 * in order to perform the metadata removal.
572 void
573 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
575 crit_enter();
576 swp_pager_meta_free(object, start, size);
577 crit_exit();
581 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
583 * Assigns swap blocks to the specified range within the object. The
584 * swap blocks are not zerod. Any previous swap assignment is destroyed.
586 * Returns 0 on success, -1 on failure.
590 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
592 int n = 0;
593 daddr_t blk = SWAPBLK_NONE;
594 vm_pindex_t beg = start; /* save start index */
596 crit_enter();
597 while (size) {
598 if (n == 0) {
599 n = BLIST_MAX_ALLOC;
600 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
601 n >>= 1;
602 if (n == 0) {
603 swp_pager_meta_free(object, beg, start - beg);
604 crit_exit();
605 return(-1);
609 swp_pager_meta_build(object, start, blk);
610 --size;
611 ++start;
612 ++blk;
613 --n;
615 swp_pager_meta_free(object, start, n);
616 crit_exit();
617 return(0);
621 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
622 * and destroy the source.
624 * Copy any valid swapblks from the source to the destination. In
625 * cases where both the source and destination have a valid swapblk,
626 * we keep the destination's.
628 * This routine is allowed to block. It may block allocating metadata
629 * indirectly through swp_pager_meta_build() or if paging is still in
630 * progress on the source.
632 * This routine can be called at any spl
634 * XXX vm_page_collapse() kinda expects us not to block because we
635 * supposedly do not need to allocate memory, but for the moment we
636 * *may* have to get a little memory from the zone allocator, but
637 * it is taken from the interrupt memory. We should be ok.
639 * The source object contains no vm_page_t's (which is just as well)
641 * The source object is of type OBJT_SWAP.
643 * The source and destination objects must be locked or
644 * inaccessible (XXX are they ?)
647 void
648 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
649 vm_pindex_t offset, int destroysource)
651 vm_pindex_t i;
653 crit_enter();
656 * If destroysource is set, we remove the source object from the
657 * swap_pager internal queue now.
660 if (destroysource) {
661 if (srcobject->handle == NULL) {
662 TAILQ_REMOVE(
663 &swap_pager_un_object_list,
664 srcobject,
665 pager_object_list
667 } else {
668 TAILQ_REMOVE(
669 NOBJLIST(srcobject->handle),
670 srcobject,
671 pager_object_list
677 * transfer source to destination.
680 for (i = 0; i < dstobject->size; ++i) {
681 daddr_t dstaddr;
684 * Locate (without changing) the swapblk on the destination,
685 * unless it is invalid in which case free it silently, or
686 * if the destination is a resident page, in which case the
687 * source is thrown away.
690 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
692 if (dstaddr == SWAPBLK_NONE) {
694 * Destination has no swapblk and is not resident,
695 * copy source.
697 daddr_t srcaddr;
699 srcaddr = swp_pager_meta_ctl(
700 srcobject,
701 i + offset,
702 SWM_POP
705 if (srcaddr != SWAPBLK_NONE)
706 swp_pager_meta_build(dstobject, i, srcaddr);
707 } else {
709 * Destination has valid swapblk or it is represented
710 * by a resident page. We destroy the sourceblock.
713 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
718 * Free left over swap blocks in source.
720 * We have to revert the type to OBJT_DEFAULT so we do not accidently
721 * double-remove the object from the swap queues.
724 if (destroysource) {
725 swp_pager_meta_free_all(srcobject);
727 * Reverting the type is not necessary, the caller is going
728 * to destroy srcobject directly, but I'm doing it here
729 * for consistency since we've removed the object from its
730 * queues.
732 srcobject->type = OBJT_DEFAULT;
734 crit_exit();
738 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
739 * the requested page.
741 * We determine whether good backing store exists for the requested
742 * page and return TRUE if it does, FALSE if it doesn't.
744 * If TRUE, we also try to determine how much valid, contiguous backing
745 * store exists before and after the requested page within a reasonable
746 * distance. We do not try to restrict it to the swap device stripe
747 * (that is handled in getpages/putpages). It probably isn't worth
748 * doing here.
751 boolean_t
752 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
753 int *after)
755 daddr_t blk0;
758 * do we have good backing store at the requested index ?
761 crit_enter();
762 blk0 = swp_pager_meta_ctl(object, pindex, 0);
764 if (blk0 == SWAPBLK_NONE) {
765 crit_exit();
766 if (before)
767 *before = 0;
768 if (after)
769 *after = 0;
770 return (FALSE);
774 * find backwards-looking contiguous good backing store
777 if (before != NULL) {
778 int i;
780 for (i = 1; i < (SWB_NPAGES/2); ++i) {
781 daddr_t blk;
783 if (i > pindex)
784 break;
785 blk = swp_pager_meta_ctl(object, pindex - i, 0);
786 if (blk != blk0 - i)
787 break;
789 *before = (i - 1);
793 * find forward-looking contiguous good backing store
796 if (after != NULL) {
797 int i;
799 for (i = 1; i < (SWB_NPAGES/2); ++i) {
800 daddr_t blk;
802 blk = swp_pager_meta_ctl(object, pindex + i, 0);
803 if (blk != blk0 + i)
804 break;
806 *after = (i - 1);
808 crit_exit();
809 return (TRUE);
813 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
815 * This removes any associated swap backing store, whether valid or
816 * not, from the page.
818 * This routine is typically called when a page is made dirty, at
819 * which point any associated swap can be freed. MADV_FREE also
820 * calls us in a special-case situation
822 * NOTE!!! If the page is clean and the swap was valid, the caller
823 * should make the page dirty before calling this routine. This routine
824 * does NOT change the m->dirty status of the page. Also: MADV_FREE
825 * depends on it.
827 * This routine may not block
828 * This routine must be called at splvm()
831 static void
832 swap_pager_unswapped(vm_page_t m)
834 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
838 * SWAP_PAGER_STRATEGY() - read, write, free blocks
840 * This implements the vm_pager_strategy() interface to swap and allows
841 * other parts of the system to directly access swap as backing store
842 * through vm_objects of type OBJT_SWAP. This is intended to be a
843 * cacheless interface ( i.e. caching occurs at higher levels ).
844 * Therefore we do not maintain any resident pages. All I/O goes
845 * directly to and from the swap device.
847 * We currently attempt to run I/O synchronously or asynchronously as
848 * the caller requests. This isn't perfect because we loose error
849 * sequencing when we run multiple ops in parallel to satisfy a request.
850 * But this is swap, so we let it all hang out.
853 static void
854 swap_pager_strategy(vm_object_t object, struct bio *bio)
856 struct buf *bp = bio->bio_buf;
857 struct bio *nbio;
858 vm_pindex_t start;
859 vm_pindex_t biox_blkno = 0;
860 int count;
861 char *data;
862 struct bio *biox;
863 struct buf *bufx;
864 struct bio_track *track;
867 * tracking for swapdev vnode I/Os
869 if (bp->b_cmd == BUF_CMD_READ)
870 track = &swapdev_vp->v_track_read;
871 else
872 track = &swapdev_vp->v_track_write;
874 if (bp->b_bcount & PAGE_MASK) {
875 bp->b_error = EINVAL;
876 bp->b_flags |= B_ERROR | B_INVAL;
877 biodone(bio);
878 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
879 "not page bounded\n",
880 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
881 return;
885 * Clear error indication, initialize page index, count, data pointer.
887 bp->b_error = 0;
888 bp->b_flags &= ~B_ERROR;
889 bp->b_resid = bp->b_bcount;
891 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
892 count = howmany(bp->b_bcount, PAGE_SIZE);
893 data = bp->b_data;
896 * Deal with BUF_CMD_FREEBLKS
898 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
900 * FREE PAGE(s) - destroy underlying swap that is no longer
901 * needed.
903 swp_pager_meta_free(object, start, count);
904 bp->b_resid = 0;
905 biodone(bio);
906 return;
910 * We need to be able to create a new cluster of I/O's. We cannot
911 * use the caller fields of the passed bio so push a new one.
913 * Because nbio is just a placeholder for the cluster links,
914 * we can biodone() the original bio instead of nbio to make
915 * things a bit more efficient.
917 nbio = push_bio(bio);
918 nbio->bio_offset = bio->bio_offset;
919 nbio->bio_caller_info1.cluster_head = NULL;
920 nbio->bio_caller_info2.cluster_tail = NULL;
922 biox = NULL;
923 bufx = NULL;
926 * Execute read or write
928 while (count > 0) {
929 daddr_t blk;
932 * Obtain block. If block not found and writing, allocate a
933 * new block and build it into the object.
935 blk = swp_pager_meta_ctl(object, start, 0);
936 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
937 blk = swp_pager_getswapspace(1);
938 if (blk == SWAPBLK_NONE) {
939 bp->b_error = ENOMEM;
940 bp->b_flags |= B_ERROR;
941 break;
943 swp_pager_meta_build(object, start, blk);
947 * Do we have to flush our current collection? Yes if:
949 * - no swap block at this index
950 * - swap block is not contiguous
951 * - we cross a physical disk boundry in the
952 * stripe.
954 if (
955 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
956 ((biox_blkno ^ blk) & dmmax_mask)
959 if (bp->b_cmd == BUF_CMD_READ) {
960 ++mycpu->gd_cnt.v_swapin;
961 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
962 } else {
963 ++mycpu->gd_cnt.v_swapout;
964 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
965 bufx->b_dirtyend = bufx->b_bcount;
969 * Finished with this buf.
971 KKASSERT(bufx->b_bcount != 0);
972 if (bufx->b_cmd != BUF_CMD_READ)
973 bufx->b_dirtyend = bufx->b_bcount;
974 biox = NULL;
975 bufx = NULL;
979 * Add new swapblk to biox, instantiating biox if necessary.
980 * Zero-fill reads are able to take a shortcut.
982 if (blk == SWAPBLK_NONE) {
984 * We can only get here if we are reading. Since
985 * we are at splvm() we can safely modify b_resid,
986 * even if chain ops are in progress.
988 bzero(data, PAGE_SIZE);
989 bp->b_resid -= PAGE_SIZE;
990 } else {
991 if (biox == NULL) {
992 /* XXX chain count > 4, wait to <= 4 */
994 bufx = getpbuf(NULL);
995 biox = &bufx->b_bio1;
996 cluster_append(nbio, bufx);
997 bufx->b_flags |= (bufx->b_flags & B_ORDERED);
998 bufx->b_cmd = bp->b_cmd;
999 biox->bio_done = swap_chain_iodone;
1000 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1001 biox->bio_caller_info1.cluster_parent = nbio;
1002 biox_blkno = blk;
1003 bufx->b_bcount = 0;
1004 bufx->b_data = data;
1006 bufx->b_bcount += PAGE_SIZE;
1008 --count;
1009 ++start;
1010 data += PAGE_SIZE;
1014 * Flush out last buffer
1016 if (biox) {
1017 if (bufx->b_cmd == BUF_CMD_READ) {
1018 ++mycpu->gd_cnt.v_swapin;
1019 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1020 } else {
1021 ++mycpu->gd_cnt.v_swapout;
1022 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1023 bufx->b_dirtyend = bufx->b_bcount;
1025 KKASSERT(bufx->b_bcount);
1026 if (bufx->b_cmd != BUF_CMD_READ)
1027 bufx->b_dirtyend = bufx->b_bcount;
1028 /* biox, bufx = NULL */
1032 * Now initiate all the I/O. Be careful looping on our chain as
1033 * I/O's may complete while we are still initiating them.
1035 nbio->bio_caller_info2.cluster_tail = NULL;
1036 bufx = nbio->bio_caller_info1.cluster_head;
1038 while (bufx) {
1039 biox = &bufx->b_bio1;
1040 BUF_KERNPROC(bufx);
1041 bufx = bufx->b_cluster_next;
1042 vn_strategy(swapdev_vp, biox);
1046 * Completion of the cluster will also call biodone_chain(nbio).
1047 * We never call biodone(nbio) so we don't have to worry about
1048 * setting up a bio_done callback. It's handled in the sub-IO.
1050 /**/
1053 static void
1054 swap_chain_iodone(struct bio *biox)
1056 struct buf **nextp;
1057 struct buf *bufx; /* chained sub-buffer */
1058 struct bio *nbio; /* parent nbio with chain glue */
1059 struct buf *bp; /* original bp associated with nbio */
1060 int chain_empty;
1062 bufx = biox->bio_buf;
1063 nbio = biox->bio_caller_info1.cluster_parent;
1064 bp = nbio->bio_buf;
1067 * Update the original buffer
1069 KKASSERT(bp != NULL);
1070 if (bufx->b_flags & B_ERROR) {
1071 atomic_set_int(&bufx->b_flags, B_ERROR);
1072 bp->b_error = bufx->b_error;
1073 } else if (bufx->b_resid != 0) {
1074 atomic_set_int(&bufx->b_flags, B_ERROR);
1075 bp->b_error = EINVAL;
1076 } else {
1077 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1081 * Remove us from the chain.
1083 spin_lock_wr(&bp->b_lock.lk_spinlock);
1084 nextp = &nbio->bio_caller_info1.cluster_head;
1085 while (*nextp != bufx) {
1086 KKASSERT(*nextp != NULL);
1087 nextp = &(*nextp)->b_cluster_next;
1089 *nextp = bufx->b_cluster_next;
1090 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1091 spin_unlock_wr(&bp->b_lock.lk_spinlock);
1094 * Clean up bufx. If the chain is now empty we finish out
1095 * the parent. Note that we may be racing other completions
1096 * so we must use the chain_empty status from above.
1098 if (chain_empty) {
1099 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1100 atomic_set_int(&bp->b_flags, B_ERROR);
1101 bp->b_error = EINVAL;
1103 biodone_chain(nbio);
1105 relpbuf(bufx, NULL);
1109 * SWAP_PAGER_GETPAGES() - bring pages in from swap
1111 * Attempt to retrieve (m, count) pages from backing store, but make
1112 * sure we retrieve at least m[reqpage]. We try to load in as large
1113 * a chunk surrounding m[reqpage] as is contiguous in swap and which
1114 * belongs to the same object.
1116 * The code is designed for asynchronous operation and
1117 * immediate-notification of 'reqpage' but tends not to be
1118 * used that way. Please do not optimize-out this algorithmic
1119 * feature, I intend to improve on it in the future.
1121 * The parent has a single vm_object_pip_add() reference prior to
1122 * calling us and we should return with the same.
1124 * The parent has BUSY'd the pages. We should return with 'm'
1125 * left busy, but the others adjusted.
1128 static int
1129 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1131 struct buf *bp;
1132 struct bio *bio;
1133 vm_page_t mreq;
1134 int i;
1135 int j;
1136 daddr_t blk;
1137 vm_offset_t kva;
1138 vm_pindex_t lastpindex;
1140 mreq = m[reqpage];
1142 if (mreq->object != object) {
1143 panic("swap_pager_getpages: object mismatch %p/%p",
1144 object,
1145 mreq->object
1150 * Calculate range to retrieve. The pages have already been assigned
1151 * their swapblks. We require a *contiguous* range that falls entirely
1152 * within a single device stripe. If we do not supply it, bad things
1153 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1154 * loops are set up such that the case(s) are handled implicitly.
1156 * The swp_*() calls must be made at splvm(). vm_page_free() does
1157 * not need to be, but it will go a little faster if it is.
1159 crit_enter();
1160 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1162 for (i = reqpage - 1; i >= 0; --i) {
1163 daddr_t iblk;
1165 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1166 if (blk != iblk + (reqpage - i))
1167 break;
1168 if ((blk ^ iblk) & dmmax_mask)
1169 break;
1171 ++i;
1173 for (j = reqpage + 1; j < count; ++j) {
1174 daddr_t jblk;
1176 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1177 if (blk != jblk - (j - reqpage))
1178 break;
1179 if ((blk ^ jblk) & dmmax_mask)
1180 break;
1184 * free pages outside our collection range. Note: we never free
1185 * mreq, it must remain busy throughout.
1189 int k;
1191 for (k = 0; k < i; ++k)
1192 vm_page_free(m[k]);
1193 for (k = j; k < count; ++k)
1194 vm_page_free(m[k]);
1196 crit_exit();
1200 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq
1201 * still busy, but the others unbusied.
1204 if (blk == SWAPBLK_NONE)
1205 return(VM_PAGER_FAIL);
1208 * Get a swap buffer header to perform the IO
1211 bp = getpbuf(&nsw_rcount);
1212 bio = &bp->b_bio1;
1213 kva = (vm_offset_t) bp->b_data;
1216 * map our page(s) into kva for input
1219 pmap_qenter(kva, m + i, j - i);
1221 bp->b_data = (caddr_t) kva;
1222 bp->b_bcount = PAGE_SIZE * (j - i);
1223 bio->bio_done = swp_pager_async_iodone;
1224 bio->bio_offset = (off_t)(blk - (reqpage - i)) << PAGE_SHIFT;
1225 bio->bio_driver_info = (void *)(intptr_t)(reqpage - i);
1226 bio->bio_caller_info1.index = SWBIO_READ;
1229 int k;
1231 for (k = i; k < j; ++k) {
1232 bp->b_xio.xio_pages[k - i] = m[k];
1233 vm_page_flag_set(m[k], PG_SWAPINPROG);
1236 bp->b_xio.xio_npages = j - i;
1238 mycpu->gd_cnt.v_swapin++;
1239 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1242 * We still hold the lock on mreq, and our automatic completion routine
1243 * does not remove it.
1246 vm_object_pip_add(mreq->object, bp->b_xio.xio_npages);
1247 lastpindex = m[j-1]->pindex;
1250 * perform the I/O. NOTE!!! bp cannot be considered valid after
1251 * this point because we automatically release it on completion.
1252 * Instead, we look at the one page we are interested in which we
1253 * still hold a lock on even through the I/O completion.
1255 * The other pages in our m[] array are also released on completion,
1256 * so we cannot assume they are valid anymore either.
1259 bp->b_cmd = BUF_CMD_READ;
1260 BUF_KERNPROC(bp);
1261 vn_strategy(swapdev_vp, bio);
1264 * wait for the page we want to complete. PG_SWAPINPROG is always
1265 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1266 * is set in the meta-data.
1269 crit_enter();
1271 while ((mreq->flags & PG_SWAPINPROG) != 0) {
1272 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1273 mycpu->gd_cnt.v_intrans++;
1274 if (tsleep(mreq, 0, "swread", hz*20)) {
1275 kprintf(
1276 "swap_pager: indefinite wait buffer: "
1277 " offset: %lld, size: %ld\n",
1278 (long long)bio->bio_offset,
1279 (long)bp->b_bcount
1284 crit_exit();
1287 * mreq is left bussied after completion, but all the other pages
1288 * are freed. If we had an unrecoverable read error the page will
1289 * not be valid.
1292 if (mreq->valid != VM_PAGE_BITS_ALL) {
1293 return(VM_PAGER_ERROR);
1294 } else {
1295 return(VM_PAGER_OK);
1299 * A final note: in a low swap situation, we cannot deallocate swap
1300 * and mark a page dirty here because the caller is likely to mark
1301 * the page clean when we return, causing the page to possibly revert
1302 * to all-zero's later.
1307 * swap_pager_putpages:
1309 * Assign swap (if necessary) and initiate I/O on the specified pages.
1311 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1312 * are automatically converted to SWAP objects.
1314 * In a low memory situation we may block in vn_strategy(), but the new
1315 * vm_page reservation system coupled with properly written VFS devices
1316 * should ensure that no low-memory deadlock occurs. This is an area
1317 * which needs work.
1319 * The parent has N vm_object_pip_add() references prior to
1320 * calling us and will remove references for rtvals[] that are
1321 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1322 * completion.
1324 * The parent has soft-busy'd the pages it passes us and will unbusy
1325 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1326 * We need to unbusy the rest on I/O completion.
1328 void
1329 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1330 boolean_t sync, int *rtvals)
1332 int i;
1333 int n = 0;
1335 if (count && m[0]->object != object) {
1336 panic("swap_pager_getpages: object mismatch %p/%p",
1337 object,
1338 m[0]->object
1343 * Step 1
1345 * Turn object into OBJT_SWAP
1346 * check for bogus sysops
1347 * force sync if not pageout process
1350 if (object->type != OBJT_SWAP)
1351 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1353 if (curthread != pagethread)
1354 sync = TRUE;
1357 * Step 2
1359 * Update nsw parameters from swap_async_max sysctl values.
1360 * Do not let the sysop crash the machine with bogus numbers.
1363 if (swap_async_max != nsw_wcount_async_max) {
1364 int n;
1367 * limit range
1369 if ((n = swap_async_max) > nswbuf / 2)
1370 n = nswbuf / 2;
1371 if (n < 1)
1372 n = 1;
1373 swap_async_max = n;
1376 * Adjust difference ( if possible ). If the current async
1377 * count is too low, we may not be able to make the adjustment
1378 * at this time.
1380 crit_enter();
1381 n -= nsw_wcount_async_max;
1382 if (nsw_wcount_async + n >= 0) {
1383 nsw_wcount_async += n;
1384 nsw_wcount_async_max += n;
1385 wakeup(&nsw_wcount_async);
1387 crit_exit();
1391 * Step 3
1393 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1394 * The page is left dirty until the pageout operation completes
1395 * successfully.
1398 for (i = 0; i < count; i += n) {
1399 struct buf *bp;
1400 struct bio *bio;
1401 daddr_t blk;
1402 int j;
1405 * Maximum I/O size is limited by a number of factors.
1408 n = min(BLIST_MAX_ALLOC, count - i);
1409 n = min(n, nsw_cluster_max);
1411 crit_enter();
1414 * Get biggest block of swap we can. If we fail, fall
1415 * back and try to allocate a smaller block. Don't go
1416 * overboard trying to allocate space if it would overly
1417 * fragment swap.
1419 while (
1420 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1421 n > 4
1423 n >>= 1;
1425 if (blk == SWAPBLK_NONE) {
1426 for (j = 0; j < n; ++j)
1427 rtvals[i+j] = VM_PAGER_FAIL;
1428 crit_exit();
1429 continue;
1433 * The I/O we are constructing cannot cross a physical
1434 * disk boundry in the swap stripe. Note: we are still
1435 * at splvm().
1437 if ((blk ^ (blk + n)) & dmmax_mask) {
1438 j = ((blk + dmmax) & dmmax_mask) - blk;
1439 swp_pager_freeswapspace(blk + j, n - j);
1440 n = j;
1444 * All I/O parameters have been satisfied, build the I/O
1445 * request and assign the swap space.
1448 if (sync == TRUE)
1449 bp = getpbuf(&nsw_wcount_sync);
1450 else
1451 bp = getpbuf(&nsw_wcount_async);
1452 bio = &bp->b_bio1;
1454 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1456 bp->b_bcount = PAGE_SIZE * n;
1457 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1459 for (j = 0; j < n; ++j) {
1460 vm_page_t mreq = m[i+j];
1462 swp_pager_meta_build(
1463 mreq->object,
1464 mreq->pindex,
1465 blk + j
1467 vm_page_dirty(mreq);
1468 rtvals[i+j] = VM_PAGER_OK;
1470 vm_page_flag_set(mreq, PG_SWAPINPROG);
1471 bp->b_xio.xio_pages[j] = mreq;
1473 bp->b_xio.xio_npages = n;
1475 mycpu->gd_cnt.v_swapout++;
1476 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1478 crit_exit();
1480 bp->b_dirtyoff = 0; /* req'd for NFS */
1481 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1482 bp->b_cmd = BUF_CMD_WRITE;
1483 bio->bio_caller_info1.index = SWBIO_WRITE;
1486 * asynchronous
1488 if (sync == FALSE) {
1489 bio->bio_done = swp_pager_async_iodone;
1490 BUF_KERNPROC(bp);
1491 vn_strategy(swapdev_vp, bio);
1493 for (j = 0; j < n; ++j)
1494 rtvals[i+j] = VM_PAGER_PEND;
1495 continue;
1499 * Issue synchrnously.
1501 * Wait for the sync I/O to complete, then update rtvals.
1502 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1503 * our async completion routine at the end, thus avoiding a
1504 * double-free.
1506 bio->bio_caller_info1.index |= SWBIO_SYNC;
1507 bio->bio_done = biodone_sync;
1508 bio->bio_flags |= BIO_SYNC;
1509 vn_strategy(swapdev_vp, bio);
1510 biowait(bio, "swwrt");
1512 for (j = 0; j < n; ++j)
1513 rtvals[i+j] = VM_PAGER_PEND;
1516 * Now that we are through with the bp, we can call the
1517 * normal async completion, which frees everything up.
1519 swp_pager_async_iodone(bio);
1523 void
1524 swap_pager_newswap(void)
1526 swp_sizecheck();
1530 * swp_pager_async_iodone:
1532 * Completion routine for asynchronous reads and writes from/to swap.
1533 * Also called manually by synchronous code to finish up a bp.
1535 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1536 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1537 * unbusy all pages except the 'main' request page. For WRITE
1538 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1539 * because we marked them all VM_PAGER_PEND on return from putpages ).
1541 * This routine may not block.
1543 static void
1544 swp_pager_async_iodone(struct bio *bio)
1546 struct buf *bp = bio->bio_buf;
1547 vm_object_t object = NULL;
1548 int i;
1549 int *nswptr;
1552 * report error
1554 if (bp->b_flags & B_ERROR) {
1555 kprintf(
1556 "swap_pager: I/O error - %s failed; offset %lld,"
1557 "size %ld, error %d\n",
1558 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1559 "pagein" : "pageout"),
1560 (long long)bio->bio_offset,
1561 (long)bp->b_bcount,
1562 bp->b_error
1567 * set object, raise to splvm().
1569 if (bp->b_xio.xio_npages)
1570 object = bp->b_xio.xio_pages[0]->object;
1571 crit_enter();
1574 * remove the mapping for kernel virtual
1576 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1579 * cleanup pages. If an error occurs writing to swap, we are in
1580 * very serious trouble. If it happens to be a disk error, though,
1581 * we may be able to recover by reassigning the swap later on. So
1582 * in this case we remove the m->swapblk assignment for the page
1583 * but do not free it in the rlist. The errornous block(s) are thus
1584 * never reallocated as swap. Redirty the page and continue.
1586 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1587 vm_page_t m = bp->b_xio.xio_pages[i];
1589 vm_page_flag_clear(m, PG_SWAPINPROG);
1591 if (bp->b_flags & B_ERROR) {
1593 * If an error occurs I'd love to throw the swapblk
1594 * away without freeing it back to swapspace, so it
1595 * can never be used again. But I can't from an
1596 * interrupt.
1599 if (bio->bio_caller_info1.index & SWBIO_READ) {
1601 * When reading, reqpage needs to stay
1602 * locked for the parent, but all other
1603 * pages can be freed. We still want to
1604 * wakeup the parent waiting on the page,
1605 * though. ( also: pg_reqpage can be -1 and
1606 * not match anything ).
1608 * We have to wake specifically requested pages
1609 * up too because we cleared PG_SWAPINPROG and
1610 * someone may be waiting for that.
1612 * NOTE: for reads, m->dirty will probably
1613 * be overridden by the original caller of
1614 * getpages so don't play cute tricks here.
1616 * NOTE: We can't actually free the page from
1617 * here, because this is an interrupt. It
1618 * is not legal to mess with object->memq
1619 * from an interrupt. Deactivate the page
1620 * instead.
1623 m->valid = 0;
1624 vm_page_flag_clear(m, PG_ZERO);
1627 * bio_driver_info holds the requested page
1628 * index.
1630 if (i != (int)(intptr_t)bio->bio_driver_info) {
1631 vm_page_deactivate(m);
1632 vm_page_wakeup(m);
1633 } else {
1634 vm_page_flash(m);
1637 * If i == bp->b_pager.pg_reqpage, do not wake
1638 * the page up. The caller needs to.
1640 } else {
1642 * If a write error occurs, reactivate page
1643 * so it doesn't clog the inactive list,
1644 * then finish the I/O.
1646 vm_page_dirty(m);
1647 vm_page_activate(m);
1648 vm_page_io_finish(m);
1650 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1652 * NOTE: for reads, m->dirty will probably be
1653 * overridden by the original caller of getpages so
1654 * we cannot set them in order to free the underlying
1655 * swap in a low-swap situation. I don't think we'd
1656 * want to do that anyway, but it was an optimization
1657 * that existed in the old swapper for a time before
1658 * it got ripped out due to precisely this problem.
1660 * clear PG_ZERO in page.
1662 * If not the requested page then deactivate it.
1664 * Note that the requested page, reqpage, is left
1665 * busied, but we still have to wake it up. The
1666 * other pages are released (unbusied) by
1667 * vm_page_wakeup(). We do not set reqpage's
1668 * valid bits here, it is up to the caller.
1672 * NOTE: can't call pmap_clear_modify(m) from an
1673 * interrupt thread, the pmap code may have to map
1674 * non-kernel pmaps and currently asserts the case.
1676 /*pmap_clear_modify(m);*/
1677 m->valid = VM_PAGE_BITS_ALL;
1678 vm_page_undirty(m);
1679 vm_page_flag_clear(m, PG_ZERO);
1682 * We have to wake specifically requested pages
1683 * up too because we cleared PG_SWAPINPROG and
1684 * could be waiting for it in getpages. However,
1685 * be sure to not unbusy getpages specifically
1686 * requested page - getpages expects it to be
1687 * left busy.
1689 * bio_driver_info holds the requested page
1691 if (i != (int)(intptr_t)bio->bio_driver_info) {
1692 vm_page_deactivate(m);
1693 vm_page_wakeup(m);
1694 } else {
1695 vm_page_flash(m);
1697 } else {
1699 * Mark the page clean but do not mess with the
1700 * pmap-layer's modified state. That state should
1701 * also be clear since the caller protected the
1702 * page VM_PROT_READ, but allow the case.
1704 * We are in an interrupt, avoid pmap operations.
1706 * If we have a severe page deficit, deactivate the
1707 * page. Do not try to cache it (which would also
1708 * involve a pmap op), because the page might still
1709 * be read-heavy.
1711 vm_page_undirty(m);
1712 vm_page_io_finish(m);
1713 if (vm_page_count_severe())
1714 vm_page_deactivate(m);
1715 #if 0
1716 if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1717 vm_page_protect(m, VM_PROT_READ);
1718 #endif
1723 * adjust pip. NOTE: the original parent may still have its own
1724 * pip refs on the object.
1727 if (object)
1728 vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1731 * Release the physical I/O buffer.
1733 * NOTE: Due to synchronous operations in the write case b_cmd may
1734 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
1735 * been cleared.
1737 if (bio->bio_caller_info1.index & SWBIO_READ)
1738 nswptr = &nsw_rcount;
1739 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1740 nswptr = &nsw_wcount_sync;
1741 else
1742 nswptr = &nsw_wcount_async;
1743 bp->b_cmd = BUF_CMD_DONE;
1744 relpbuf(bp, nswptr);
1745 crit_exit();
1748 /************************************************************************
1749 * SWAP META DATA *
1750 ************************************************************************
1752 * These routines manipulate the swap metadata stored in the
1753 * OBJT_SWAP object. All swp_*() routines must be called at
1754 * splvm() because swap can be freed up by the low level vm_page
1755 * code which might be called from interrupts beyond what splbio() covers.
1757 * Swap metadata is implemented with a global hash and not directly
1758 * linked into the object. Instead the object simply contains
1759 * appropriate tracking counters.
1763 * SWP_PAGER_HASH() - hash swap meta data
1765 * This is an inline helper function which hashes the swapblk given
1766 * the object and page index. It returns a pointer to a pointer
1767 * to the object, or a pointer to a NULL pointer if it could not
1768 * find a swapblk.
1770 * This routine must be called at splvm().
1773 static __inline struct swblock **
1774 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1776 struct swblock **pswap;
1777 struct swblock *swap;
1779 index &= ~SWAP_META_MASK;
1780 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1782 while ((swap = *pswap) != NULL) {
1783 if (swap->swb_object == object &&
1784 swap->swb_index == index
1786 break;
1788 pswap = &swap->swb_hnext;
1790 return(pswap);
1794 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1796 * We first convert the object to a swap object if it is a default
1797 * object.
1799 * The specified swapblk is added to the object's swap metadata. If
1800 * the swapblk is not valid, it is freed instead. Any previously
1801 * assigned swapblk is freed.
1803 * This routine must be called at splvm(), except when used to convert
1804 * an OBJT_DEFAULT object into an OBJT_SWAP object.
1808 static void
1809 swp_pager_meta_build(
1810 vm_object_t object,
1811 vm_pindex_t index,
1812 daddr_t swapblk
1814 struct swblock *swap;
1815 struct swblock **pswap;
1818 * Convert default object to swap object if necessary
1821 if (object->type != OBJT_SWAP) {
1822 object->type = OBJT_SWAP;
1823 object->un_pager.swp.swp_bcount = 0;
1825 if (object->handle != NULL) {
1826 TAILQ_INSERT_TAIL(
1827 NOBJLIST(object->handle),
1828 object,
1829 pager_object_list
1831 } else {
1832 TAILQ_INSERT_TAIL(
1833 &swap_pager_un_object_list,
1834 object,
1835 pager_object_list
1841 * Locate hash entry. If not found create, but if we aren't adding
1842 * anything just return. If we run out of space in the map we wait
1843 * and, since the hash table may have changed, retry.
1846 retry:
1847 pswap = swp_pager_hash(object, index);
1849 if ((swap = *pswap) == NULL) {
1850 int i;
1852 if (swapblk == SWAPBLK_NONE)
1853 return;
1855 swap = *pswap = zalloc(swap_zone);
1856 if (swap == NULL) {
1857 vm_wait(0);
1858 goto retry;
1860 swap->swb_hnext = NULL;
1861 swap->swb_object = object;
1862 swap->swb_index = index & ~SWAP_META_MASK;
1863 swap->swb_count = 0;
1865 ++object->un_pager.swp.swp_bcount;
1867 for (i = 0; i < SWAP_META_PAGES; ++i)
1868 swap->swb_pages[i] = SWAPBLK_NONE;
1872 * Delete prior contents of metadata
1875 index &= SWAP_META_MASK;
1877 if (swap->swb_pages[index] != SWAPBLK_NONE) {
1878 swp_pager_freeswapspace(swap->swb_pages[index], 1);
1879 --swap->swb_count;
1883 * Enter block into metadata
1886 swap->swb_pages[index] = swapblk;
1887 if (swapblk != SWAPBLK_NONE)
1888 ++swap->swb_count;
1892 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1894 * The requested range of blocks is freed, with any associated swap
1895 * returned to the swap bitmap.
1897 * This routine will free swap metadata structures as they are cleaned
1898 * out. This routine does *NOT* operate on swap metadata associated
1899 * with resident pages.
1901 * This routine must be called at splvm()
1904 static void
1905 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1907 if (object->type != OBJT_SWAP)
1908 return;
1910 while (count > 0) {
1911 struct swblock **pswap;
1912 struct swblock *swap;
1914 pswap = swp_pager_hash(object, index);
1916 if ((swap = *pswap) != NULL) {
1917 daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1919 if (v != SWAPBLK_NONE) {
1920 swp_pager_freeswapspace(v, 1);
1921 swap->swb_pages[index & SWAP_META_MASK] =
1922 SWAPBLK_NONE;
1923 if (--swap->swb_count == 0) {
1924 *pswap = swap->swb_hnext;
1925 zfree(swap_zone, swap);
1926 --object->un_pager.swp.swp_bcount;
1929 --count;
1930 ++index;
1931 } else {
1932 int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1933 count -= n;
1934 index += n;
1940 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1942 * This routine locates and destroys all swap metadata associated with
1943 * an object.
1945 * This routine must be called at splvm()
1948 static void
1949 swp_pager_meta_free_all(vm_object_t object)
1951 daddr_t index = 0;
1953 if (object->type != OBJT_SWAP)
1954 return;
1956 while (object->un_pager.swp.swp_bcount) {
1957 struct swblock **pswap;
1958 struct swblock *swap;
1960 pswap = swp_pager_hash(object, index);
1961 if ((swap = *pswap) != NULL) {
1962 int i;
1964 for (i = 0; i < SWAP_META_PAGES; ++i) {
1965 daddr_t v = swap->swb_pages[i];
1966 if (v != SWAPBLK_NONE) {
1967 --swap->swb_count;
1968 swp_pager_freeswapspace(v, 1);
1971 if (swap->swb_count != 0)
1972 panic("swap_pager_meta_free_all: swb_count != 0");
1973 *pswap = swap->swb_hnext;
1974 zfree(swap_zone, swap);
1975 --object->un_pager.swp.swp_bcount;
1977 index += SWAP_META_PAGES;
1978 if (index > 0x20000000)
1979 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1984 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
1986 * This routine is capable of looking up, popping, or freeing
1987 * swapblk assignments in the swap meta data or in the vm_page_t.
1988 * The routine typically returns the swapblk being looked-up, or popped,
1989 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1990 * was invalid. This routine will automatically free any invalid
1991 * meta-data swapblks.
1993 * It is not possible to store invalid swapblks in the swap meta data
1994 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1996 * When acting on a busy resident page and paging is in progress, we
1997 * have to wait until paging is complete but otherwise can act on the
1998 * busy page.
2000 * This routine must be called at splvm().
2002 * SWM_FREE remove and free swap block from metadata
2003 * SWM_POP remove from meta data but do not free.. pop it out
2006 static daddr_t
2007 swp_pager_meta_ctl(
2008 vm_object_t object,
2009 vm_pindex_t index,
2010 int flags
2012 struct swblock **pswap;
2013 struct swblock *swap;
2014 daddr_t r1;
2017 * The meta data only exists of the object is OBJT_SWAP
2018 * and even then might not be allocated yet.
2021 if (object->type != OBJT_SWAP)
2022 return(SWAPBLK_NONE);
2024 r1 = SWAPBLK_NONE;
2025 pswap = swp_pager_hash(object, index);
2027 if ((swap = *pswap) != NULL) {
2028 index &= SWAP_META_MASK;
2029 r1 = swap->swb_pages[index];
2031 if (r1 != SWAPBLK_NONE) {
2032 if (flags & SWM_FREE) {
2033 swp_pager_freeswapspace(r1, 1);
2034 r1 = SWAPBLK_NONE;
2036 if (flags & (SWM_FREE|SWM_POP)) {
2037 swap->swb_pages[index] = SWAPBLK_NONE;
2038 if (--swap->swb_count == 0) {
2039 *pswap = swap->swb_hnext;
2040 zfree(swap_zone, swap);
2041 --object->un_pager.swp.swp_bcount;
2046 return(r1);