Dump entries can have the same timestamp, so accept those as well.
[dragonfly.git] / sys / kern / usched_bsd4.c
blobac93db6d64d4386846ee72a648276a9487374639
1 /*
2 * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
26 * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.22 2007/04/30 07:18:54 dillon Exp $
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
47 * Priorities. Note that with 32 run queues per scheduler each queue
48 * represents four priority levels.
51 #define MAXPRI 128
52 #define PRIMASK (MAXPRI - 1)
53 #define PRIBASE_REALTIME 0
54 #define PRIBASE_NORMAL MAXPRI
55 #define PRIBASE_IDLE (MAXPRI * 2)
56 #define PRIBASE_THREAD (MAXPRI * 3)
57 #define PRIBASE_NULL (MAXPRI * 4)
59 #define NQS 32 /* 32 run queues. */
60 #define PPQ (MAXPRI / NQS) /* priorities per queue */
61 #define PPQMASK (PPQ - 1)
64 * NICEPPQ - number of nice units per priority queue
65 * ESTCPURAMP - number of scheduler ticks for estcpu to switch queues
67 * ESTCPUPPQ - number of estcpu units per priority queue
68 * ESTCPUMAX - number of estcpu units
69 * ESTCPUINCR - amount we have to increment p_estcpu per scheduling tick at
70 * 100% cpu.
72 #define NICEPPQ 2
73 #define ESTCPURAMP 4
74 #define ESTCPUPPQ 512
75 #define ESTCPUMAX (ESTCPUPPQ * NQS)
76 #define ESTCPUINCR (ESTCPUPPQ / ESTCPURAMP)
77 #define PRIO_RANGE (PRIO_MAX - PRIO_MIN + 1)
79 #define ESTCPULIM(v) min((v), ESTCPUMAX)
81 TAILQ_HEAD(rq, lwp);
83 #define lwp_priority lwp_usdata.bsd4.priority
84 #define lwp_rqindex lwp_usdata.bsd4.rqindex
85 #define lwp_origcpu lwp_usdata.bsd4.origcpu
86 #define lwp_estcpu lwp_usdata.bsd4.estcpu
87 #define lwp_rqtype lwp_usdata.bsd4.rqtype
89 static void bsd4_acquire_curproc(struct lwp *lp);
90 static void bsd4_release_curproc(struct lwp *lp);
91 static void bsd4_select_curproc(globaldata_t gd);
92 static void bsd4_setrunqueue(struct lwp *lp);
93 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
94 sysclock_t cpstamp);
95 static void bsd4_recalculate_estcpu(struct lwp *lp);
96 static void bsd4_resetpriority(struct lwp *lp);
97 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
98 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
100 #ifdef SMP
101 static void need_user_resched_remote(void *dummy);
102 #endif
103 static struct lwp *chooseproc_locked(struct lwp *chklp);
104 static void bsd4_remrunqueue_locked(struct lwp *lp);
105 static void bsd4_setrunqueue_locked(struct lwp *lp);
107 struct usched usched_bsd4 = {
108 { NULL },
109 "bsd4", "Original DragonFly Scheduler",
110 NULL, /* default registration */
111 NULL, /* default deregistration */
112 bsd4_acquire_curproc,
113 bsd4_release_curproc,
114 bsd4_setrunqueue,
115 bsd4_schedulerclock,
116 bsd4_recalculate_estcpu,
117 bsd4_resetpriority,
118 bsd4_forking,
119 bsd4_exiting,
120 NULL /* setcpumask not supported */
123 struct usched_bsd4_pcpu {
124 struct thread helper_thread;
125 short rrcount;
126 short upri;
127 struct lwp *uschedcp;
130 typedef struct usched_bsd4_pcpu *bsd4_pcpu_t;
133 * We have NQS (32) run queues per scheduling class. For the normal
134 * class, there are 128 priorities scaled onto these 32 queues. New
135 * processes are added to the last entry in each queue, and processes
136 * are selected for running by taking them from the head and maintaining
137 * a simple FIFO arrangement. Realtime and Idle priority processes have
138 * and explicit 0-31 priority which maps directly onto their class queue
139 * index. When a queue has something in it, the corresponding bit is
140 * set in the queuebits variable, allowing a single read to determine
141 * the state of all 32 queues and then a ffs() to find the first busy
142 * queue.
144 static struct rq bsd4_queues[NQS];
145 static struct rq bsd4_rtqueues[NQS];
146 static struct rq bsd4_idqueues[NQS];
147 static u_int32_t bsd4_queuebits;
148 static u_int32_t bsd4_rtqueuebits;
149 static u_int32_t bsd4_idqueuebits;
150 static cpumask_t bsd4_curprocmask = -1; /* currently running a user process */
151 static cpumask_t bsd4_rdyprocmask; /* ready to accept a user process */
152 static int bsd4_runqcount;
153 #ifdef SMP
154 static volatile int bsd4_scancpu;
155 #endif
156 static struct spinlock bsd4_spin;
157 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
159 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, "");
160 #ifdef INVARIANTS
161 static int usched_nonoptimal;
162 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
163 &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
164 static int usched_optimal;
165 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
166 &usched_optimal, 0, "acquire_curproc() was optimal");
167 #endif
168 static int usched_debug = -1;
169 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, "");
170 #ifdef SMP
171 static int remote_resched_nonaffinity;
172 static int remote_resched_affinity;
173 static int choose_affinity;
174 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
175 &remote_resched_nonaffinity, 0, "Number of remote rescheds");
176 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
177 &remote_resched_affinity, 0, "Number of remote rescheds");
178 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
179 &choose_affinity, 0, "chooseproc() was smart");
180 #endif
182 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
183 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
184 &usched_bsd4_rrinterval, 0, "");
185 static int usched_bsd4_decay = ESTCPUINCR / 2;
186 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
187 &usched_bsd4_decay, 0, "");
190 * Initialize the run queues at boot time.
192 static void
193 rqinit(void *dummy)
195 int i;
197 spin_init(&bsd4_spin);
198 for (i = 0; i < NQS; i++) {
199 TAILQ_INIT(&bsd4_queues[i]);
200 TAILQ_INIT(&bsd4_rtqueues[i]);
201 TAILQ_INIT(&bsd4_idqueues[i]);
203 atomic_clear_int(&bsd4_curprocmask, 1);
205 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
208 * BSD4_ACQUIRE_CURPROC
210 * This function is called when the kernel intends to return to userland.
211 * It is responsible for making the thread the current designated userland
212 * thread for this cpu, blocking if necessary.
214 * We are expected to handle userland reschedule requests here too.
216 * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
217 * TO ANOTHER CPU! Because most of the kernel assumes that no migration will
218 * occur, this function is called only under very controlled circumstances.
220 * Basically we recalculate our estcpu to hopefully give us a more
221 * favorable disposition, setrunqueue, then wait for the curlwp
222 * designation to be handed to us (if the setrunqueue didn't do it).
224 * MPSAFE
226 static void
227 bsd4_acquire_curproc(struct lwp *lp)
229 globaldata_t gd = mycpu;
230 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
233 * Possibly select another thread, or keep the current thread.
235 if (user_resched_wanted())
236 bsd4_select_curproc(gd);
239 * If uschedcp is still pointing to us, we're done
241 if (dd->uschedcp == lp)
242 return;
245 * If this cpu has no current thread, and the run queue is
246 * empty, we can safely select ourself.
248 if (dd->uschedcp == NULL && bsd4_runqcount == 0) {
249 atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
250 dd->uschedcp = lp;
251 dd->upri = lp->lwp_priority;
252 return;
256 * Adjust estcpu and recalculate our priority, then put us back on
257 * the user process scheduler's runq. Only increment the involuntary
258 * context switch count if the setrunqueue call did not immediately
259 * schedule us.
261 * Loop until we become the currently scheduled process. Note that
262 * calling setrunqueue can cause us to be migrated to another cpu
263 * after we switch away.
265 do {
266 crit_enter();
267 bsd4_recalculate_estcpu(lp);
268 lwkt_deschedule_self(gd->gd_curthread);
269 bsd4_setrunqueue(lp);
270 if ((gd->gd_curthread->td_flags & TDF_RUNQ) == 0)
271 ++lp->lwp_ru.ru_nivcsw;
272 lwkt_switch();
273 crit_exit();
274 gd = mycpu;
275 dd = &bsd4_pcpu[gd->gd_cpuid];
276 } while (dd->uschedcp != lp);
277 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
281 * BSD4_RELEASE_CURPROC
283 * This routine detaches the current thread from the userland scheduler,
284 * usually because the thread needs to run in the kernel (at kernel priority)
285 * for a while.
287 * This routine is also responsible for selecting a new thread to
288 * make the current thread.
290 * NOTE: This implementation differs from the dummy example in that
291 * bsd4_select_curproc() is able to select the current process, whereas
292 * dummy_select_curproc() is not able to select the current process.
293 * This means we have to NULL out uschedcp.
295 * Additionally, note that we may already be on a run queue if releasing
296 * via the lwkt_switch() in bsd4_setrunqueue().
298 * WARNING! The MP lock may be in an unsynchronized state due to the
299 * way get_mplock() works and the fact that this function may be called
300 * from a passive release during a lwkt_switch(). try_mplock() will deal
301 * with this for us but you should be aware that td_mpcount may not be
302 * useable.
304 * MPSAFE
306 static void
307 bsd4_release_curproc(struct lwp *lp)
309 globaldata_t gd = mycpu;
310 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
312 if (dd->uschedcp == lp) {
314 * Note: we leave ou curprocmask bit set to prevent
315 * unnecessary scheduler helper wakeups.
316 * bsd4_select_curproc() will clean it up.
318 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
319 dd->uschedcp = NULL; /* don't let lp be selected */
320 bsd4_select_curproc(gd);
325 * BSD4_SELECT_CURPROC
327 * Select a new current process for this cpu. This satisfies a user
328 * scheduler reschedule request so clear that too.
330 * This routine is also responsible for equal-priority round-robining,
331 * typically triggered from bsd4_schedulerclock(). In our dummy example
332 * all the 'user' threads are LWKT scheduled all at once and we just
333 * call lwkt_switch().
335 * MPSAFE
337 static
338 void
339 bsd4_select_curproc(globaldata_t gd)
341 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
342 struct lwp *nlp;
343 int cpuid = gd->gd_cpuid;
345 crit_enter_gd(gd);
346 clear_user_resched(); /* This satisfied the reschedule request */
347 dd->rrcount = 0; /* Reset the round-robin counter */
349 spin_lock_wr(&bsd4_spin);
350 if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
351 atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
352 dd->upri = nlp->lwp_priority;
353 dd->uschedcp = nlp;
354 spin_unlock_wr(&bsd4_spin);
355 #ifdef SMP
356 lwkt_acquire(nlp->lwp_thread);
357 #endif
358 lwkt_schedule(nlp->lwp_thread);
359 } else if (dd->uschedcp) {
360 dd->upri = dd->uschedcp->lwp_priority;
361 spin_unlock_wr(&bsd4_spin);
362 KKASSERT(bsd4_curprocmask & (1 << cpuid));
363 } else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) {
364 atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
365 atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
366 dd->uschedcp = NULL;
367 dd->upri = PRIBASE_NULL;
368 spin_unlock_wr(&bsd4_spin);
369 lwkt_schedule(&dd->helper_thread);
370 } else {
371 dd->uschedcp = NULL;
372 dd->upri = PRIBASE_NULL;
373 atomic_clear_int(&bsd4_curprocmask, 1 << cpuid);
374 spin_unlock_wr(&bsd4_spin);
376 crit_exit_gd(gd);
380 * BSD4_SETRUNQUEUE
382 * This routine is called to schedule a new user process after a fork.
384 * The caller may set P_PASSIVE_ACQ in p_flag to indicate that we should
385 * attempt to leave the thread on the current cpu.
387 * If P_PASSIVE_ACQ is set setrunqueue() will not wakeup potential target
388 * cpus in an attempt to keep the process on the current cpu at least for
389 * a little while to take advantage of locality of reference (e.g. fork/exec
390 * or short fork/exit, and uio_yield()).
392 * CPU AFFINITY: cpu affinity is handled by attempting to either schedule
393 * or (user level) preempt on the same cpu that a process was previously
394 * scheduled to. If we cannot do this but we are at enough of a higher
395 * priority then the processes running on other cpus, we will allow the
396 * process to be stolen by another cpu.
398 * WARNING! This routine cannot block. bsd4_acquire_curproc() does
399 * a deschedule/switch interlock and we can be moved to another cpu
400 * the moment we are switched out. Our LWKT run state is the only
401 * thing preventing the transfer.
403 * The associated thread must NOT currently be scheduled (but can be the
404 * current process after it has been LWKT descheduled). It must NOT be on
405 * a bsd4 scheduler queue either. The purpose of this routine is to put
406 * it on a scheduler queue or make it the current user process and LWKT
407 * schedule it. It is possible that the thread is in the middle of a LWKT
408 * switchout on another cpu, lwkt_acquire() deals with that case.
410 * The process must be runnable.
412 * MPSAFE
414 static void
415 bsd4_setrunqueue(struct lwp *lp)
417 globaldata_t gd;
418 bsd4_pcpu_t dd;
419 int cpuid;
420 #ifdef SMP
421 cpumask_t mask;
422 cpumask_t tmpmask;
423 #endif
426 * First validate the process state relative to the current cpu.
427 * We don't need the spinlock for this, just a critical section.
428 * We are in control of the process.
430 crit_enter();
431 KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
432 KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
433 ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
434 lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
435 KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
438 * Note: gd and dd are relative to the target thread's last cpu,
439 * NOT our current cpu.
441 gd = lp->lwp_thread->td_gd;
442 dd = &bsd4_pcpu[gd->gd_cpuid];
445 * This process is not supposed to be scheduled anywhere or assigned
446 * as the current process anywhere. Assert the condition.
448 KKASSERT(dd->uschedcp != lp);
451 * Check local cpu affinity. The associated thread is stable at
452 * the moment. Note that we may be checking another cpu here so we
453 * have to be careful. We can only assign uschedcp on OUR cpu.
455 * This allows us to avoid actually queueing the process.
456 * acquire_curproc() will handle any threads we mistakenly schedule.
458 cpuid = gd->gd_cpuid;
459 if (gd == mycpu && (bsd4_curprocmask & (1 << cpuid)) == 0) {
460 atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
461 dd->uschedcp = lp;
462 dd->upri = lp->lwp_priority;
463 lwkt_schedule(lp->lwp_thread);
464 crit_exit();
465 return;
469 * gd and cpuid may still 'hint' at another cpu. Even so we have
470 * to place this process on the userland scheduler's run queue for
471 * action by the target cpu.
473 #ifdef SMP
475 * XXX fixme. Could be part of a remrunqueue/setrunqueue
476 * operation when the priority is recalculated, so TDF_MIGRATING
477 * may already be set.
479 if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
480 lwkt_giveaway(lp->lwp_thread);
481 #endif
484 * We lose control of lp the moment we release the spinlock after
485 * having placed lp on the queue. i.e. another cpu could pick it
486 * up and it could exit, or its priority could be further adjusted,
487 * or something like that.
489 spin_lock_wr(&bsd4_spin);
490 bsd4_setrunqueue_locked(lp);
493 * gd, dd, and cpuid are still our target cpu 'hint', not our current
494 * cpu info.
496 * We always try to schedule a LWP to its original cpu first. It
497 * is possible for the scheduler helper or setrunqueue to assign
498 * the LWP to a different cpu before the one we asked for wakes
499 * up.
501 * If the LWP has higher priority (lower lwp_priority value) on
502 * its target cpu, reschedule on that cpu.
504 if ((lp->lwp_thread->td_flags & TDF_NORESCHED) == 0) {
505 if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
506 dd->upri = lp->lwp_priority;
507 spin_unlock_wr(&bsd4_spin);
508 #ifdef SMP
509 if (gd == mycpu) {
510 need_user_resched();
511 } else {
512 lwkt_send_ipiq(gd, need_user_resched_remote,
513 NULL);
515 #else
516 need_user_resched();
517 #endif
518 crit_exit();
519 return;
522 spin_unlock_wr(&bsd4_spin);
524 #ifdef SMP
526 * Otherwise the LWP has a lower priority or we were asked not
527 * to reschedule. Look for an idle cpu whos scheduler helper
528 * is ready to accept more work.
530 * Look for an idle cpu starting at our rotator (bsd4_scancpu).
532 * If no cpus are ready to accept work, just return.
534 * XXX P_PASSIVE_ACQ
536 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & mycpu->gd_other_cpus &
537 lp->lwp_cpumask;
538 if (mask) {
539 cpuid = bsd4_scancpu;
540 if (++cpuid == ncpus)
541 cpuid = 0;
542 tmpmask = ~((1 << cpuid) - 1);
543 if (mask & tmpmask)
544 cpuid = bsfl(mask & tmpmask);
545 else
546 cpuid = bsfl(mask);
547 atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
548 bsd4_scancpu = cpuid;
549 lwkt_schedule(&bsd4_pcpu[cpuid].helper_thread);
551 #endif
552 crit_exit();
556 * This routine is called from a systimer IPI. It MUST be MP-safe and
557 * the BGL IS NOT HELD ON ENTRY. This routine is called at ESTCPUFREQ on
558 * each cpu.
560 * Because this is effectively a 'fast' interrupt, we cannot safely
561 * use spinlocks unless gd_spinlock_rd is NULL and gd_spinlocks_wr is 0,
562 * even if the spinlocks are 'non conflicting'. This is due to the way
563 * spinlock conflicts against cached read locks are handled.
565 * MPSAFE
567 static
568 void
569 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
571 globaldata_t gd = mycpu;
572 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
575 * Do we need to round-robin? We round-robin 10 times a second.
576 * This should only occur for cpu-bound batch processes.
578 if (++dd->rrcount >= usched_bsd4_rrinterval) {
579 dd->rrcount = 0;
580 need_user_resched();
584 * As the process accumulates cpu time p_estcpu is bumped and may
585 * push the process into another scheduling queue. It typically
586 * takes 4 ticks to bump the queue.
588 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
591 * Reducing p_origcpu over time causes more of our estcpu to be
592 * returned to the parent when we exit. This is a small tweak
593 * for the batch detection heuristic.
595 if (lp->lwp_origcpu)
596 --lp->lwp_origcpu;
599 * We can only safely call bsd4_resetpriority(), which uses spinlocks,
600 * if we aren't interrupting a thread that is using spinlocks.
601 * Otherwise we can deadlock with another cpu waiting for our read
602 * spinlocks to clear.
604 if (gd->gd_spinlock_rd == NULL && gd->gd_spinlocks_wr == 0)
605 bsd4_resetpriority(lp);
606 else
607 need_user_resched();
611 * Called from acquire and from kern_synch's one-second timer (one of the
612 * callout helper threads) with a critical section held.
614 * Decay p_estcpu based on the number of ticks we haven't been running
615 * and our p_nice. As the load increases each process observes a larger
616 * number of idle ticks (because other processes are running in them).
617 * This observation leads to a larger correction which tends to make the
618 * system more 'batchy'.
620 * Note that no recalculation occurs for a process which sleeps and wakes
621 * up in the same tick. That is, a system doing thousands of context
622 * switches per second will still only do serious estcpu calculations
623 * ESTCPUFREQ times per second.
625 * MPSAFE
627 static
628 void
629 bsd4_recalculate_estcpu(struct lwp *lp)
631 globaldata_t gd = mycpu;
632 sysclock_t cpbase;
633 int loadfac;
634 int ndecay;
635 int nticks;
636 int nleft;
639 * We have to subtract periodic to get the last schedclock
640 * timeout time, otherwise we would get the upcoming timeout.
641 * Keep in mind that a process can migrate between cpus and
642 * while the scheduler clock should be very close, boundary
643 * conditions could lead to a small negative delta.
645 cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
647 if (lp->lwp_slptime > 1) {
649 * Too much time has passed, do a coarse correction.
651 lp->lwp_estcpu = lp->lwp_estcpu >> 1;
652 bsd4_resetpriority(lp);
653 lp->lwp_cpbase = cpbase;
654 lp->lwp_cpticks = 0;
655 } else if (lp->lwp_cpbase != cpbase) {
657 * Adjust estcpu if we are in a different tick. Don't waste
658 * time if we are in the same tick.
660 * First calculate the number of ticks in the measurement
661 * interval. The nticks calculation can wind up 0 due to
662 * a bug in the handling of lwp_slptime (as yet not found),
663 * so make sure we do not get a divide by 0 panic.
665 nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
666 if (nticks <= 0)
667 nticks = 1;
668 updatepcpu(lp, lp->lwp_cpticks, nticks);
670 if ((nleft = nticks - lp->lwp_cpticks) < 0)
671 nleft = 0;
672 if (usched_debug == lp->lwp_proc->p_pid) {
673 kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
674 lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
675 lp->lwp_cpticks, nticks, nleft);
679 * Calculate a decay value based on ticks remaining scaled
680 * down by the instantanious load and p_nice.
682 if ((loadfac = bsd4_runqcount) < 2)
683 loadfac = 2;
684 ndecay = nleft * usched_bsd4_decay * 2 *
685 (PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
688 * Adjust p_estcpu. Handle a border case where batch jobs
689 * can get stalled long enough to decay to zero when they
690 * shouldn't.
692 if (lp->lwp_estcpu > ndecay * 2)
693 lp->lwp_estcpu -= ndecay;
694 else
695 lp->lwp_estcpu >>= 1;
697 if (usched_debug == lp->lwp_proc->p_pid)
698 kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
699 bsd4_resetpriority(lp);
700 lp->lwp_cpbase = cpbase;
701 lp->lwp_cpticks = 0;
706 * Compute the priority of a process when running in user mode.
707 * Arrange to reschedule if the resulting priority is better
708 * than that of the current process.
710 * This routine may be called with any process.
712 * This routine is called by fork1() for initial setup with the process
713 * of the run queue, and also may be called normally with the process on or
714 * off the run queue.
716 * MPSAFE
718 static void
719 bsd4_resetpriority(struct lwp *lp)
721 bsd4_pcpu_t dd;
722 int newpriority;
723 u_short newrqtype;
724 int reschedcpu;
727 * Calculate the new priority and queue type
729 crit_enter();
730 spin_lock_wr(&bsd4_spin);
732 newrqtype = lp->lwp_rtprio.type;
734 switch(newrqtype) {
735 case RTP_PRIO_REALTIME:
736 case RTP_PRIO_FIFO:
737 newpriority = PRIBASE_REALTIME +
738 (lp->lwp_rtprio.prio & PRIMASK);
739 break;
740 case RTP_PRIO_NORMAL:
741 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
742 newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
743 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
744 NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
745 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
746 break;
747 case RTP_PRIO_IDLE:
748 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
749 break;
750 case RTP_PRIO_THREAD:
751 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
752 break;
753 default:
754 panic("Bad RTP_PRIO %d", newrqtype);
755 /* NOT REACHED */
759 * The newpriority incorporates the queue type so do a simple masked
760 * check to determine if the process has moved to another queue. If
761 * it has, and it is currently on a run queue, then move it.
763 if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
764 lp->lwp_priority = newpriority;
765 if (lp->lwp_flag & LWP_ONRUNQ) {
766 bsd4_remrunqueue_locked(lp);
767 lp->lwp_rqtype = newrqtype;
768 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
769 bsd4_setrunqueue_locked(lp);
770 reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
771 } else {
772 lp->lwp_rqtype = newrqtype;
773 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
774 reschedcpu = -1;
776 } else {
777 lp->lwp_priority = newpriority;
778 reschedcpu = -1;
780 spin_unlock_wr(&bsd4_spin);
783 * Determine if we need to reschedule the target cpu. This only
784 * occurs if the LWP is already on a scheduler queue, which means
785 * that idle cpu notification has already occured. At most we
786 * need only issue a need_user_resched() on the appropriate cpu.
788 if (reschedcpu >= 0) {
789 dd = &bsd4_pcpu[reschedcpu];
790 KKASSERT(dd->uschedcp != lp);
791 if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
792 dd->upri = lp->lwp_priority;
793 #ifdef SMP
794 if (reschedcpu == mycpu->gd_cpuid) {
795 need_user_resched();
796 } else {
797 lwkt_send_ipiq(lp->lwp_thread->td_gd,
798 need_user_resched_remote, NULL);
800 #else
801 need_user_resched();
802 #endif
805 crit_exit();
809 * Called from fork1() when a new child process is being created.
811 * Give the child process an initial estcpu that is more batch then
812 * its parent and dock the parent for the fork (but do not
813 * reschedule the parent). This comprises the main part of our batch
814 * detection heuristic for both parallel forking and sequential execs.
816 * Interactive processes will decay the boosted estcpu quickly while batch
817 * processes will tend to compound it.
818 * XXX lwp should be "spawning" instead of "forking"
820 * MPSAFE
822 static void
823 bsd4_forking(struct lwp *plp, struct lwp *lp)
825 lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
826 lp->lwp_origcpu = lp->lwp_estcpu;
827 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
831 * Called when the parent reaps a child. Propogate cpu use by the child
832 * back to the parent.
834 * MPSAFE
836 static void
837 bsd4_exiting(struct lwp *plp, struct lwp *lp)
839 int delta;
841 if (plp->lwp_proc->p_pid != 1) {
842 delta = lp->lwp_estcpu - lp->lwp_origcpu;
843 if (delta > 0)
844 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
850 * chooseproc() is called when a cpu needs a user process to LWKT schedule,
851 * it selects a user process and returns it. If chklp is non-NULL and chklp
852 * has a better or equal priority then the process that would otherwise be
853 * chosen, NULL is returned.
855 * Until we fix the RUNQ code the chklp test has to be strict or we may
856 * bounce between processes trying to acquire the current process designation.
858 * MPSAFE - must be called with bsd4_spin exclusive held. The spinlock is
859 * left intact through the entire routine.
861 static
862 struct lwp *
863 chooseproc_locked(struct lwp *chklp)
865 struct lwp *lp;
866 struct rq *q;
867 u_int32_t *which, *which2;
868 u_int32_t pri;
869 u_int32_t rtqbits;
870 u_int32_t tsqbits;
871 u_int32_t idqbits;
872 cpumask_t cpumask;
874 rtqbits = bsd4_rtqueuebits;
875 tsqbits = bsd4_queuebits;
876 idqbits = bsd4_idqueuebits;
877 cpumask = mycpu->gd_cpumask;
879 #ifdef SMP
880 again:
881 #endif
882 if (rtqbits) {
883 pri = bsfl(rtqbits);
884 q = &bsd4_rtqueues[pri];
885 which = &bsd4_rtqueuebits;
886 which2 = &rtqbits;
887 } else if (tsqbits) {
888 pri = bsfl(tsqbits);
889 q = &bsd4_queues[pri];
890 which = &bsd4_queuebits;
891 which2 = &tsqbits;
892 } else if (idqbits) {
893 pri = bsfl(idqbits);
894 q = &bsd4_idqueues[pri];
895 which = &bsd4_idqueuebits;
896 which2 = &idqbits;
897 } else {
898 return NULL;
900 lp = TAILQ_FIRST(q);
901 KASSERT(lp, ("chooseproc: no lwp on busy queue"));
903 #ifdef SMP
904 while ((lp->lwp_cpumask & cpumask) == 0) {
905 lp = TAILQ_NEXT(lp, lwp_procq);
906 if (lp == NULL) {
907 *which2 &= ~(1 << pri);
908 goto again;
911 #endif
914 * If the passed lwp <chklp> is reasonably close to the selected
915 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
917 * Note that we must error on the side of <chklp> to avoid bouncing
918 * between threads in the acquire code.
920 if (chklp) {
921 if (chklp->lwp_priority < lp->lwp_priority + PPQ)
922 return(NULL);
925 #ifdef SMP
927 * If the chosen lwp does not reside on this cpu spend a few
928 * cycles looking for a better candidate at the same priority level.
929 * This is a fallback check, setrunqueue() tries to wakeup the
930 * correct cpu and is our front-line affinity.
932 if (lp->lwp_thread->td_gd != mycpu &&
933 (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
935 if (chklp->lwp_thread->td_gd == mycpu) {
936 ++choose_affinity;
937 lp = chklp;
940 #endif
942 TAILQ_REMOVE(q, lp, lwp_procq);
943 --bsd4_runqcount;
944 if (TAILQ_EMPTY(q))
945 *which &= ~(1 << pri);
946 KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
947 lp->lwp_flag &= ~LWP_ONRUNQ;
948 return lp;
951 #ifdef SMP
953 * Called via an ipi message to reschedule on another cpu.
955 * MPSAFE
957 static
958 void
959 need_user_resched_remote(void *dummy)
961 need_user_resched();
964 #endif
968 * bsd4_remrunqueue_locked() removes a given process from the run queue
969 * that it is on, clearing the queue busy bit if it becomes empty.
971 * Note that user process scheduler is different from the LWKT schedule.
972 * The user process scheduler only manages user processes but it uses LWKT
973 * underneath, and a user process operating in the kernel will often be
974 * 'released' from our management.
976 * MPSAFE - bsd4_spin must be held exclusively on call
978 static void
979 bsd4_remrunqueue_locked(struct lwp *lp)
981 struct rq *q;
982 u_int32_t *which;
983 u_int8_t pri;
985 KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
986 lp->lwp_flag &= ~LWP_ONRUNQ;
987 --bsd4_runqcount;
988 KKASSERT(bsd4_runqcount >= 0);
990 pri = lp->lwp_rqindex;
991 switch(lp->lwp_rqtype) {
992 case RTP_PRIO_NORMAL:
993 q = &bsd4_queues[pri];
994 which = &bsd4_queuebits;
995 break;
996 case RTP_PRIO_REALTIME:
997 case RTP_PRIO_FIFO:
998 q = &bsd4_rtqueues[pri];
999 which = &bsd4_rtqueuebits;
1000 break;
1001 case RTP_PRIO_IDLE:
1002 q = &bsd4_idqueues[pri];
1003 which = &bsd4_idqueuebits;
1004 break;
1005 default:
1006 panic("remrunqueue: invalid rtprio type");
1007 /* NOT REACHED */
1009 TAILQ_REMOVE(q, lp, lwp_procq);
1010 if (TAILQ_EMPTY(q)) {
1011 KASSERT((*which & (1 << pri)) != 0,
1012 ("remrunqueue: remove from empty queue"));
1013 *which &= ~(1 << pri);
1018 * bsd4_setrunqueue_locked()
1020 * Add a process whos rqtype and rqindex had previously been calculated
1021 * onto the appropriate run queue. Determine if the addition requires
1022 * a reschedule on a cpu and return the cpuid or -1.
1024 * NOTE: Lower priorities are better priorities.
1026 * MPSAFE - bsd4_spin must be held exclusively on call
1028 static void
1029 bsd4_setrunqueue_locked(struct lwp *lp)
1031 struct rq *q;
1032 u_int32_t *which;
1033 int pri;
1035 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1036 lp->lwp_flag |= LWP_ONRUNQ;
1037 ++bsd4_runqcount;
1039 pri = lp->lwp_rqindex;
1041 switch(lp->lwp_rqtype) {
1042 case RTP_PRIO_NORMAL:
1043 q = &bsd4_queues[pri];
1044 which = &bsd4_queuebits;
1045 break;
1046 case RTP_PRIO_REALTIME:
1047 case RTP_PRIO_FIFO:
1048 q = &bsd4_rtqueues[pri];
1049 which = &bsd4_rtqueuebits;
1050 break;
1051 case RTP_PRIO_IDLE:
1052 q = &bsd4_idqueues[pri];
1053 which = &bsd4_idqueuebits;
1054 break;
1055 default:
1056 panic("remrunqueue: invalid rtprio type");
1057 /* NOT REACHED */
1061 * Add to the correct queue and set the appropriate bit. If no
1062 * lower priority (i.e. better) processes are in the queue then
1063 * we want a reschedule, calculate the best cpu for the job.
1065 * Always run reschedules on the LWPs original cpu.
1067 TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1068 *which |= 1 << pri;
1071 #ifdef SMP
1074 * For SMP systems a user scheduler helper thread is created for each
1075 * cpu and is used to allow one cpu to wakeup another for the purposes of
1076 * scheduling userland threads from setrunqueue(). UP systems do not
1077 * need the helper since there is only one cpu. We can't use the idle
1078 * thread for this because we need to hold the MP lock. Additionally,
1079 * doing things this way allows us to HLT idle cpus on MP systems.
1081 * MPSAFE
1083 static void
1084 sched_thread(void *dummy)
1086 globaldata_t gd;
1087 bsd4_pcpu_t dd;
1088 struct lwp *nlp;
1089 cpumask_t cpumask;
1090 cpumask_t tmpmask;
1091 int cpuid;
1092 int tmpid;
1094 gd = mycpu;
1095 cpuid = gd->gd_cpuid; /* doesn't change */
1096 cpumask = 1 << cpuid; /* doesn't change */
1097 dd = &bsd4_pcpu[cpuid];
1100 * The scheduler thread does not need to hold the MP lock. Since we
1101 * are woken up only when no user processes are scheduled on a cpu, we
1102 * can run at an ultra low priority.
1104 rel_mplock();
1105 lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1107 for (;;) {
1109 * We use the LWKT deschedule-interlock trick to avoid racing
1110 * bsd4_rdyprocmask. This means we cannot block through to the
1111 * manual lwkt_switch() call we make below.
1113 crit_enter_gd(gd);
1114 lwkt_deschedule_self(gd->gd_curthread);
1115 spin_lock_wr(&bsd4_spin);
1116 atomic_set_int(&bsd4_rdyprocmask, cpumask);
1117 if ((bsd4_curprocmask & cpumask) == 0) {
1118 if ((nlp = chooseproc_locked(NULL)) != NULL) {
1119 atomic_set_int(&bsd4_curprocmask, cpumask);
1120 dd->upri = nlp->lwp_priority;
1121 dd->uschedcp = nlp;
1122 spin_unlock_wr(&bsd4_spin);
1123 lwkt_acquire(nlp->lwp_thread);
1124 lwkt_schedule(nlp->lwp_thread);
1125 } else {
1126 spin_unlock_wr(&bsd4_spin);
1128 } else {
1130 * Someone scheduled us but raced. In order to not lose
1131 * track of the fact that there may be a LWP ready to go,
1132 * forward the request to another cpu if available.
1134 * Rotate through cpus starting with cpuid + 1. Since cpuid
1135 * is already masked out by gd_other_cpus, just use ~cpumask.
1137 tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask &
1138 mycpu->gd_other_cpus;
1139 if (tmpmask) {
1140 if (tmpmask & ~(cpumask - 1))
1141 tmpid = bsfl(tmpmask & ~(cpumask - 1));
1142 else
1143 tmpid = bsfl(tmpmask);
1144 bsd4_scancpu = tmpid;
1145 atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid);
1146 spin_unlock_wr(&bsd4_spin);
1147 lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread);
1148 } else {
1149 spin_unlock_wr(&bsd4_spin);
1152 crit_exit_gd(gd);
1153 lwkt_switch();
1158 * Setup our scheduler helpers. Note that curprocmask bit 0 has already
1159 * been cleared by rqinit() and we should not mess with it further.
1161 static void
1162 sched_thread_cpu_init(void)
1164 int i;
1166 if (bootverbose)
1167 kprintf("start scheduler helpers on cpus:");
1169 for (i = 0; i < ncpus; ++i) {
1170 bsd4_pcpu_t dd = &bsd4_pcpu[i];
1171 cpumask_t mask = 1 << i;
1173 if ((mask & smp_active_mask) == 0)
1174 continue;
1176 if (bootverbose)
1177 kprintf(" %d", i);
1179 lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1180 TDF_STOPREQ, i, "usched %d", i);
1183 * Allow user scheduling on the target cpu. cpu #0 has already
1184 * been enabled in rqinit().
1186 if (i)
1187 atomic_clear_int(&bsd4_curprocmask, mask);
1188 atomic_set_int(&bsd4_rdyprocmask, mask);
1190 if (bootverbose)
1191 kprintf("\n");
1193 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1194 sched_thread_cpu_init, NULL)
1196 #endif