Dump entries can have the same timestamp, so accept those as well.
[dragonfly.git] / sys / kern / kern_intr.c
blobc1f03b9177005cc838fdacf215d16353d20e37eb
1 /*
2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.49 2007/05/01 23:53:51 dillon Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/thread2.h>
39 #include <sys/random.h>
40 #include <sys/serialize.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 #include <sys/machintr.h>
45 #include <machine/frame.h>
47 #include <sys/interrupt.h>
49 struct info_info;
51 typedef struct intrec {
52 struct intrec *next;
53 struct intr_info *info;
54 inthand2_t *handler;
55 void *argument;
56 char *name;
57 int intr;
58 int intr_flags;
59 struct lwkt_serialize *serializer;
60 } *intrec_t;
62 struct intr_info {
63 intrec_t i_reclist;
64 struct thread i_thread;
65 struct random_softc i_random;
66 int i_running;
67 long i_count; /* interrupts dispatched */
68 int i_mplock_required;
69 int i_fast;
70 int i_slow;
71 int i_state;
72 int i_errorticks;
73 unsigned long i_straycount;
74 } intr_info_ary[MAX_INTS];
76 int max_installed_hard_intr;
77 int max_installed_soft_intr;
79 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
81 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
82 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
83 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
84 static void ithread_handler(void *arg);
85 static void ithread_emergency(void *arg);
86 static void report_stray_interrupt(int intr, struct intr_info *info);
88 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
90 static struct systimer emergency_intr_timer;
91 static struct thread emergency_intr_thread;
93 #define ISTATE_NOTHREAD 0
94 #define ISTATE_NORMAL 1
95 #define ISTATE_LIVELOCKED 2
97 #ifdef SMP
98 static int intr_mpsafe = 0;
99 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
100 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
101 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
102 #endif
103 static int livelock_limit = 40000;
104 static int livelock_lowater = 20000;
105 static int livelock_debug = -1;
106 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
107 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
108 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
109 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
110 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
111 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
113 static int emergency_intr_enable = 0; /* emergency interrupt polling */
114 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
115 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
116 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
118 static int emergency_intr_freq = 10; /* emergency polling frequency */
119 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
120 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
121 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
124 * Sysctl support routines
126 static int
127 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
129 int error, enabled;
131 enabled = emergency_intr_enable;
132 error = sysctl_handle_int(oidp, &enabled, 0, req);
133 if (error || req->newptr == NULL)
134 return error;
135 emergency_intr_enable = enabled;
136 if (emergency_intr_enable) {
137 systimer_adjust_periodic(&emergency_intr_timer,
138 emergency_intr_freq);
139 } else {
140 systimer_adjust_periodic(&emergency_intr_timer, 1);
142 return 0;
145 static int
146 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
148 int error, phz;
150 phz = emergency_intr_freq;
151 error = sysctl_handle_int(oidp, &phz, 0, req);
152 if (error || req->newptr == NULL)
153 return error;
154 if (phz <= 0)
155 return EINVAL;
156 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
157 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
159 emergency_intr_freq = phz;
160 if (emergency_intr_enable) {
161 systimer_adjust_periodic(&emergency_intr_timer,
162 emergency_intr_freq);
163 } else {
164 systimer_adjust_periodic(&emergency_intr_timer, 1);
166 return 0;
170 * Register an SWI or INTerrupt handler.
172 void *
173 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
174 struct lwkt_serialize *serializer)
176 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
177 panic("register_swi: bad intr %d", intr);
178 return(register_int(intr, handler, arg, name, serializer, 0));
181 void *
182 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
183 struct lwkt_serialize *serializer, int intr_flags)
185 struct intr_info *info;
186 struct intrec **list;
187 intrec_t rec;
189 if (intr < 0 || intr >= MAX_INTS)
190 panic("register_int: bad intr %d", intr);
191 if (name == NULL)
192 name = "???";
193 info = &intr_info_ary[intr];
196 * Construct an interrupt handler record
198 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
199 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
200 strcpy(rec->name, name);
202 rec->info = info;
203 rec->handler = handler;
204 rec->argument = arg;
205 rec->intr = intr;
206 rec->intr_flags = intr_flags;
207 rec->next = NULL;
208 rec->serializer = serializer;
211 * Create an emergency polling thread and set up a systimer to wake
212 * it up.
214 if (emergency_intr_thread.td_kstack == NULL) {
215 lwkt_create(ithread_emergency, NULL, NULL,
216 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
217 "ithread emerg");
218 systimer_init_periodic_nq(&emergency_intr_timer,
219 emergency_intr_timer_callback, &emergency_intr_thread,
220 (emergency_intr_enable ? emergency_intr_freq : 1));
224 * Create an interrupt thread if necessary, leave it in an unscheduled
225 * state.
227 if (info->i_state == ISTATE_NOTHREAD) {
228 info->i_state = ISTATE_NORMAL;
229 lwkt_create((void *)ithread_handler, (void *)intr, NULL,
230 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
231 "ithread %d", intr);
232 if (intr >= FIRST_SOFTINT)
233 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
234 else
235 lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
236 info->i_thread.td_preemptable = lwkt_preempt;
239 list = &info->i_reclist;
242 * Keep track of how many fast and slow interrupts we have.
243 * Set i_mplock_required if any handler in the chain requires
244 * the MP lock to operate.
246 if ((intr_flags & INTR_MPSAFE) == 0)
247 info->i_mplock_required = 1;
248 if (intr_flags & INTR_FAST)
249 ++info->i_fast;
250 else
251 ++info->i_slow;
254 * Enable random number generation keying off of this interrupt.
256 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
257 info->i_random.sc_enabled = 1;
258 info->i_random.sc_intr = intr;
262 * Add the record to the interrupt list.
264 crit_enter();
265 while (*list != NULL)
266 list = &(*list)->next;
267 *list = rec;
268 crit_exit();
271 * Update max_installed_hard_intr to make the emergency intr poll
272 * a bit more efficient.
274 if (intr < FIRST_SOFTINT) {
275 if (max_installed_hard_intr <= intr)
276 max_installed_hard_intr = intr + 1;
277 } else {
278 if (max_installed_soft_intr <= intr)
279 max_installed_soft_intr = intr + 1;
283 * Setup the machine level interrupt vector
285 * XXX temporary workaround for some ACPI brokedness. ACPI installs
286 * its interrupt too early, before the IOAPICs have been configured,
287 * which means the IOAPIC is not enabled by the registration of the
288 * ACPI interrupt. Anything else sharing that IRQ will wind up not
289 * being enabled. Temporarily work around the problem by always
290 * installing and enabling on every new interrupt handler, even
291 * if one has already been setup on that irq.
293 if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
294 if (machintr_vector_setup(intr, intr_flags))
295 kprintf("machintr_vector_setup: failed on irq %d\n", intr);
298 return(rec);
301 void
302 unregister_swi(void *id)
304 unregister_int(id);
307 void
308 unregister_int(void *id)
310 struct intr_info *info;
311 struct intrec **list;
312 intrec_t rec;
313 int intr;
315 intr = ((intrec_t)id)->intr;
317 if (intr < 0 || intr >= MAX_INTS)
318 panic("register_int: bad intr %d", intr);
320 info = &intr_info_ary[intr];
323 * Remove the interrupt descriptor, adjust the descriptor count,
324 * and teardown the machine level vector if this was the last interrupt.
326 crit_enter();
327 list = &info->i_reclist;
328 while ((rec = *list) != NULL) {
329 if (rec == id)
330 break;
331 list = &rec->next;
333 if (rec) {
334 intrec_t rec0;
336 *list = rec->next;
337 if (rec->intr_flags & INTR_FAST)
338 --info->i_fast;
339 else
340 --info->i_slow;
341 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
342 machintr_vector_teardown(intr);
345 * Clear i_mplock_required if no handlers in the chain require the
346 * MP lock.
348 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
349 if ((rec0->intr_flags & INTR_MPSAFE) == 0)
350 break;
352 if (rec0 == NULL)
353 info->i_mplock_required = 0;
356 crit_exit();
359 * Free the record.
361 if (rec != NULL) {
362 kfree(rec->name, M_DEVBUF);
363 kfree(rec, M_DEVBUF);
364 } else {
365 kprintf("warning: unregister_int: int %d handler for %s not found\n",
366 intr, ((intrec_t)id)->name);
370 const char *
371 get_registered_name(int intr)
373 intrec_t rec;
375 if (intr < 0 || intr >= MAX_INTS)
376 panic("register_int: bad intr %d", intr);
378 if ((rec = intr_info_ary[intr].i_reclist) == NULL)
379 return(NULL);
380 else if (rec->next)
381 return("mux");
382 else
383 return(rec->name);
387 count_registered_ints(int intr)
389 struct intr_info *info;
391 if (intr < 0 || intr >= MAX_INTS)
392 panic("register_int: bad intr %d", intr);
393 info = &intr_info_ary[intr];
394 return(info->i_fast + info->i_slow);
397 long
398 get_interrupt_counter(int intr)
400 struct intr_info *info;
402 if (intr < 0 || intr >= MAX_INTS)
403 panic("register_int: bad intr %d", intr);
404 info = &intr_info_ary[intr];
405 return(info->i_count);
409 void
410 swi_setpriority(int intr, int pri)
412 struct intr_info *info;
414 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
415 panic("register_swi: bad intr %d", intr);
416 info = &intr_info_ary[intr];
417 if (info->i_state != ISTATE_NOTHREAD)
418 lwkt_setpri(&info->i_thread, pri);
421 void
422 register_randintr(int intr)
424 struct intr_info *info;
426 if (intr < 0 || intr >= MAX_INTS)
427 panic("register_randintr: bad intr %d", intr);
428 info = &intr_info_ary[intr];
429 info->i_random.sc_intr = intr;
430 info->i_random.sc_enabled = 1;
433 void
434 unregister_randintr(int intr)
436 struct intr_info *info;
438 if (intr < 0 || intr >= MAX_INTS)
439 panic("register_swi: bad intr %d", intr);
440 info = &intr_info_ary[intr];
441 info->i_random.sc_enabled = -1;
445 next_registered_randintr(int intr)
447 struct intr_info *info;
449 if (intr < 0 || intr >= MAX_INTS)
450 panic("register_swi: bad intr %d", intr);
451 while (intr < MAX_INTS) {
452 info = &intr_info_ary[intr];
453 if (info->i_random.sc_enabled > 0)
454 break;
455 ++intr;
457 return(intr);
461 * Dispatch an interrupt. If there's nothing to do we have a stray
462 * interrupt and can just return, leaving the interrupt masked.
464 * We need to schedule the interrupt and set its i_running bit. If
465 * we are not on the interrupt thread's cpu we have to send a message
466 * to the correct cpu that will issue the desired action (interlocking
467 * with the interrupt thread's critical section). We do NOT attempt to
468 * reschedule interrupts whos i_running bit is already set because
469 * this would prematurely wakeup a livelock-limited interrupt thread.
471 * i_running is only tested/set on the same cpu as the interrupt thread.
473 * We are NOT in a critical section, which will allow the scheduled
474 * interrupt to preempt us. The MP lock might *NOT* be held here.
476 #ifdef SMP
478 static void
479 sched_ithd_remote(void *arg)
481 sched_ithd((int)arg);
484 #endif
486 void
487 sched_ithd(int intr)
489 struct intr_info *info;
491 info = &intr_info_ary[intr];
493 ++info->i_count;
494 if (info->i_state != ISTATE_NOTHREAD) {
495 if (info->i_reclist == NULL) {
496 report_stray_interrupt(intr, info);
497 } else {
498 #ifdef SMP
499 if (info->i_thread.td_gd == mycpu) {
500 if (info->i_running == 0) {
501 info->i_running = 1;
502 if (info->i_state != ISTATE_LIVELOCKED)
503 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
505 } else {
506 lwkt_send_ipiq(info->i_thread.td_gd,
507 sched_ithd_remote, (void *)intr);
509 #else
510 if (info->i_running == 0) {
511 info->i_running = 1;
512 if (info->i_state != ISTATE_LIVELOCKED)
513 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
515 #endif
517 } else {
518 report_stray_interrupt(intr, info);
522 static void
523 report_stray_interrupt(int intr, struct intr_info *info)
525 ++info->i_straycount;
526 if (info->i_straycount < 10) {
527 if (info->i_errorticks == ticks)
528 return;
529 info->i_errorticks = ticks;
530 kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
531 intr, mycpuid);
532 } else if (info->i_straycount < 100) {
533 if (info->i_errorticks == ticks)
534 return;
535 info->i_errorticks = ticks;
536 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d\n",
537 info->i_straycount, intr, mycpuid);
538 } else if (info->i_straycount == 100) {
539 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
540 "there will be no further reports\n",
541 info->i_straycount, intr, mycpuid);
546 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
547 * might not be held).
549 static void
550 ithread_livelock_wakeup(systimer_t st)
552 struct intr_info *info;
554 info = &intr_info_ary[(int)st->data];
555 if (info->i_state != ISTATE_NOTHREAD)
556 lwkt_schedule(&info->i_thread);
560 * This function is called drectly from the ICU or APIC vector code assembly
561 * to process an interrupt. The critical section and interrupt deferral
562 * checks have already been done but the function is entered WITHOUT
563 * a critical section held. The BGL may or may not be held.
565 * Must return non-zero if we do not want the vector code to re-enable
566 * the interrupt (which we don't if we have to schedule the interrupt)
568 int ithread_fast_handler(struct intrframe *frame);
571 ithread_fast_handler(struct intrframe *frame)
573 int intr;
574 struct intr_info *info;
575 struct intrec **list;
576 int must_schedule;
577 #ifdef SMP
578 int got_mplock;
579 #endif
580 intrec_t rec, next_rec;
581 globaldata_t gd;
583 intr = frame->if_vec;
584 gd = mycpu;
586 info = &intr_info_ary[intr];
589 * If we are not processing any FAST interrupts, just schedule the thing.
590 * (since we aren't in a critical section, this can result in a
591 * preemption)
593 if (info->i_fast == 0) {
594 sched_ithd(intr);
595 return(1);
599 * This should not normally occur since interrupts ought to be
600 * masked if the ithread has been scheduled or is running.
602 if (info->i_running)
603 return(1);
606 * Bump the interrupt nesting level to process any FAST interrupts.
607 * Obtain the MP lock as necessary. If the MP lock cannot be obtained,
608 * schedule the interrupt thread to deal with the issue instead.
610 * To reduce overhead, just leave the MP lock held once it has been
611 * obtained.
613 crit_enter_gd(gd);
614 ++gd->gd_intr_nesting_level;
615 ++gd->gd_cnt.v_intr;
616 must_schedule = info->i_slow;
617 #ifdef SMP
618 got_mplock = 0;
619 #endif
621 list = &info->i_reclist;
622 for (rec = *list; rec; rec = next_rec) {
623 next_rec = rec->next; /* rec may be invalid after call */
625 if (rec->intr_flags & INTR_FAST) {
626 #ifdef SMP
627 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
628 if (try_mplock() == 0) {
629 int owner;
632 * If we couldn't get the MP lock try to forward it
633 * to the cpu holding the MP lock, setting must_schedule
634 * to -1 so we do not schedule and also do not unmask
635 * the interrupt. Otherwise just schedule it.
637 owner = owner_mplock();
638 if (owner >= 0 && owner != gd->gd_cpuid) {
639 lwkt_send_ipiq_bycpu(owner, forward_fastint_remote,
640 (void *)intr);
641 must_schedule = -1;
642 ++gd->gd_cnt.v_forwarded_ints;
643 } else {
644 must_schedule = 1;
646 break;
648 got_mplock = 1;
650 #endif
651 if (rec->serializer) {
652 must_schedule += lwkt_serialize_handler_try(
653 rec->serializer, rec->handler,
654 rec->argument, frame);
655 } else {
656 rec->handler(rec->argument, frame);
662 * Cleanup
664 --gd->gd_intr_nesting_level;
665 #ifdef SMP
666 if (got_mplock)
667 rel_mplock();
668 #endif
669 crit_exit_gd(gd);
672 * If we had a problem, schedule the thread to catch the missed
673 * records (it will just re-run all of them). A return value of 0
674 * indicates that all handlers have been run and the interrupt can
675 * be re-enabled, and a non-zero return indicates that the interrupt
676 * thread controls re-enablement.
678 if (must_schedule > 0)
679 sched_ithd(intr);
680 else if (must_schedule == 0)
681 ++info->i_count;
682 return(must_schedule);
685 #if 0
687 6: ; \
688 /* could not get the MP lock, forward the interrupt */ \
689 movl mp_lock, %eax ; /* check race */ \
690 cmpl $MP_FREE_LOCK,%eax ; \
691 je 2b ; \
692 incl PCPU(cnt)+V_FORWARDED_INTS ; \
693 subl $12,%esp ; \
694 movl $irq_num,8(%esp) ; \
695 movl $forward_fastint_remote,4(%esp) ; \
696 movl %eax,(%esp) ; \
697 call lwkt_send_ipiq_bycpu ; \
698 addl $12,%esp ; \
699 jmp 5f ;
701 #endif
705 * Interrupt threads run this as their main loop.
707 * The handler begins execution outside a critical section and with the BGL
708 * held.
710 * The i_running state starts at 0. When an interrupt occurs, the hardware
711 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
712 * until all routines have run. We then call ithread_done() to reenable
713 * the HW interrupt and deschedule us until the next interrupt.
715 * We are responsible for atomically checking i_running and ithread_done()
716 * is responsible for atomically checking for platform-specific delayed
717 * interrupts. i_running for our irq is only set in the context of our cpu,
718 * so a critical section is a sufficient interlock.
720 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */
722 static void
723 ithread_handler(void *arg)
725 struct intr_info *info;
726 int use_limit;
727 __uint32_t lseconds;
728 int intr;
729 int mpheld;
730 struct intrec **list;
731 intrec_t rec, nrec;
732 globaldata_t gd;
733 struct systimer ill_timer; /* enforced freq. timer */
734 u_int ill_count; /* interrupt livelock counter */
736 ill_count = 0;
737 intr = (int)arg;
738 info = &intr_info_ary[intr];
739 list = &info->i_reclist;
740 gd = mycpu;
741 lseconds = gd->gd_time_seconds;
744 * The loop must be entered with one critical section held. The thread
745 * is created with TDF_MPSAFE so the MP lock is not held on start.
747 crit_enter_gd(gd);
748 mpheld = 0;
750 for (;;) {
752 * The chain is only considered MPSAFE if all its interrupt handlers
753 * are MPSAFE. However, if intr_mpsafe has been turned off we
754 * always operate with the BGL.
756 #ifdef SMP
757 if (intr_mpsafe == 0) {
758 if (mpheld == 0) {
759 get_mplock();
760 mpheld = 1;
762 } else if (info->i_mplock_required != mpheld) {
763 if (info->i_mplock_required) {
764 KKASSERT(mpheld == 0);
765 get_mplock();
766 mpheld = 1;
767 } else {
768 KKASSERT(mpheld != 0);
769 rel_mplock();
770 mpheld = 0;
773 #endif
776 * If an interrupt is pending, clear i_running and execute the
777 * handlers. Note that certain types of interrupts can re-trigger
778 * and set i_running again.
780 * Each handler is run in a critical section. Note that we run both
781 * FAST and SLOW designated service routines.
783 if (info->i_running) {
784 ++ill_count;
785 info->i_running = 0;
787 if (*list == NULL)
788 report_stray_interrupt(intr, info);
790 for (rec = *list; rec; rec = nrec) {
791 nrec = rec->next;
792 if (rec->serializer) {
793 lwkt_serialize_handler_call(rec->serializer, rec->handler,
794 rec->argument, NULL);
795 } else {
796 rec->handler(rec->argument, NULL);
802 * This is our interrupt hook to add rate randomness to the random
803 * number generator.
805 if (info->i_random.sc_enabled > 0)
806 add_interrupt_randomness(intr);
809 * Unmask the interrupt to allow it to trigger again. This only
810 * applies to certain types of interrupts (typ level interrupts).
811 * This can result in the interrupt retriggering, but the retrigger
812 * will not be processed until we cycle our critical section.
814 * Only unmask interrupts while handlers are installed. It is
815 * possible to hit a situation where no handlers are installed
816 * due to a device driver livelocking and then tearing down its
817 * interrupt on close (the parallel bus being a good example).
819 if (*list)
820 machintr_intren(intr);
823 * Do a quick exit/enter to catch any higher-priority interrupt
824 * sources, such as the statclock, so thread time accounting
825 * will still work. This may also cause an interrupt to re-trigger.
827 crit_exit_gd(gd);
828 crit_enter_gd(gd);
831 * LIVELOCK STATE MACHINE
833 switch(info->i_state) {
834 case ISTATE_NORMAL:
836 * Reset the count each second.
838 if (lseconds != gd->gd_time_seconds) {
839 lseconds = gd->gd_time_seconds;
840 ill_count = 0;
844 * If we did not exceed the frequency limit, we are done.
845 * If the interrupt has not retriggered we deschedule ourselves.
847 if (ill_count <= livelock_limit) {
848 if (info->i_running == 0) {
849 lwkt_deschedule_self(gd->gd_curthread);
850 lwkt_switch();
852 break;
856 * Otherwise we are livelocked. Set up a periodic systimer
857 * to wake the thread up at the limit frequency.
859 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
860 intr, ill_count, livelock_limit);
861 info->i_state = ISTATE_LIVELOCKED;
862 if ((use_limit = livelock_limit) < 100)
863 use_limit = 100;
864 else if (use_limit > 500000)
865 use_limit = 500000;
866 systimer_init_periodic(&ill_timer, ithread_livelock_wakeup,
867 (void *)intr, use_limit);
868 /* fall through */
869 case ISTATE_LIVELOCKED:
871 * Wait for our periodic timer to go off. Since the interrupt
872 * has re-armed it can still set i_running, but it will not
873 * reschedule us while we are in a livelocked state.
875 lwkt_deschedule_self(gd->gd_curthread);
876 lwkt_switch();
879 * Check once a second to see if the livelock condition no
880 * longer applies.
882 if (lseconds != gd->gd_time_seconds) {
883 lseconds = gd->gd_time_seconds;
884 if (ill_count < livelock_lowater) {
885 info->i_state = ISTATE_NORMAL;
886 systimer_del(&ill_timer);
887 kprintf("intr %d at %d/%d hz, livelock removed\n",
888 intr, ill_count, livelock_lowater);
889 } else if (livelock_debug == intr ||
890 (bootverbose && cold)) {
891 kprintf("intr %d at %d/%d hz, in livelock\n",
892 intr, ill_count, livelock_lowater);
894 ill_count = 0;
896 break;
899 /* not reached */
903 * Emergency interrupt polling thread. The thread begins execution
904 * outside a critical section with the BGL held.
906 * If emergency interrupt polling is enabled, this thread will
907 * execute all system interrupts not marked INTR_NOPOLL at the
908 * specified polling frequency.
910 * WARNING! This thread runs *ALL* interrupt service routines that
911 * are not marked INTR_NOPOLL, which basically means everything except
912 * the 8254 clock interrupt and the ATA interrupt. It has very high
913 * overhead and should only be used in situations where the machine
914 * cannot otherwise be made to work. Due to the severe performance
915 * degredation, it should not be enabled on production machines.
917 static void
918 ithread_emergency(void *arg __unused)
920 struct intr_info *info;
921 intrec_t rec, nrec;
922 int intr;
924 for (;;) {
925 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
926 info = &intr_info_ary[intr];
927 for (rec = info->i_reclist; rec; rec = nrec) {
928 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
929 if (rec->serializer) {
930 lwkt_serialize_handler_call(rec->serializer,
931 rec->handler, rec->argument, NULL);
932 } else {
933 rec->handler(rec->argument, NULL);
936 nrec = rec->next;
939 lwkt_deschedule_self(curthread);
940 lwkt_switch();
945 * Systimer callback - schedule the emergency interrupt poll thread
946 * if emergency polling is enabled.
948 static
949 void
950 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
952 if (emergency_intr_enable)
953 lwkt_schedule(info->data);
957 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
958 * The data for this machine dependent, and the declarations are in machine
959 * dependent code. The layout of intrnames and intrcnt however is machine
960 * independent.
962 * We do not know the length of intrcnt and intrnames at compile time, so
963 * calculate things at run time.
966 static int
967 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
969 struct intr_info *info;
970 intrec_t rec;
971 int error = 0;
972 int len;
973 int intr;
974 char buf[64];
976 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
977 info = &intr_info_ary[intr];
979 len = 0;
980 buf[0] = 0;
981 for (rec = info->i_reclist; rec; rec = rec->next) {
982 ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
983 (len ? "/" : ""), rec->name);
984 len += strlen(buf + len);
986 if (len == 0) {
987 ksnprintf(buf, sizeof(buf), "irq%d", intr);
988 len = strlen(buf);
990 error = SYSCTL_OUT(req, buf, len + 1);
992 return (error);
996 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
997 NULL, 0, sysctl_intrnames, "", "Interrupt Names");
999 static int
1000 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1002 struct intr_info *info;
1003 int error = 0;
1004 int intr;
1006 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1007 info = &intr_info_ary[intr];
1009 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1010 if (error)
1011 goto failed;
1013 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1014 info = &intr_info_ary[intr];
1016 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1017 if (error)
1018 goto failed;
1020 failed:
1021 return(error);
1024 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1025 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");