NFE - Change default RX ring size from 128 -> 256, Adjust moderation timer.
[dragonfly.git] / sys / dev / netif / nfe / if_nfe.c
bloba4a8dda30cd65279302578974cca4ea8fcecac3d
1 /* $OpenBSD: if_nfe.c,v 1.63 2006/06/17 18:00:43 brad Exp $ */
2 /* $DragonFly: src/sys/dev/netif/nfe/if_nfe.c,v 1.46 2008/10/28 07:30:49 sephe Exp $ */
4 /*
5 * Copyright (c) 2006 The DragonFly Project. All rights reserved.
6 *
7 * This code is derived from software contributed to The DragonFly Project
8 * by Sepherosa Ziehau <sepherosa@gmail.com> and
9 * Matthew Dillon <dillon@apollo.backplane.com>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
40 * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
41 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
43 * Permission to use, copy, modify, and distribute this software for any
44 * purpose with or without fee is hereby granted, provided that the above
45 * copyright notice and this permission notice appear in all copies.
47 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
56 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
58 #include "opt_polling.h"
60 #include <sys/param.h>
61 #include <sys/endian.h>
62 #include <sys/kernel.h>
63 #include <sys/bus.h>
64 #include <sys/interrupt.h>
65 #include <sys/proc.h>
66 #include <sys/rman.h>
67 #include <sys/serialize.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/sysctl.h>
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/bpf.h>
75 #include <net/if_arp.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/ifq_var.h>
79 #include <net/if_types.h>
80 #include <net/if_var.h>
81 #include <net/vlan/if_vlan_var.h>
82 #include <net/vlan/if_vlan_ether.h>
84 #include <bus/pci/pcireg.h>
85 #include <bus/pci/pcivar.h>
86 #include <bus/pci/pcidevs.h>
88 #include <dev/netif/mii_layer/mii.h>
89 #include <dev/netif/mii_layer/miivar.h>
91 #include "miibus_if.h"
93 #include <dev/netif/nfe/if_nfereg.h>
94 #include <dev/netif/nfe/if_nfevar.h>
96 #define NFE_CSUM
97 #define NFE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
99 static int nfe_probe(device_t);
100 static int nfe_attach(device_t);
101 static int nfe_detach(device_t);
102 static void nfe_shutdown(device_t);
103 static int nfe_resume(device_t);
104 static int nfe_suspend(device_t);
106 static int nfe_miibus_readreg(device_t, int, int);
107 static void nfe_miibus_writereg(device_t, int, int, int);
108 static void nfe_miibus_statchg(device_t);
110 #ifdef DEVICE_POLLING
111 static void nfe_poll(struct ifnet *, enum poll_cmd, int);
112 #endif
113 static void nfe_intr(void *);
114 static int nfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
115 static int nfe_rxeof(struct nfe_softc *);
116 static int nfe_txeof(struct nfe_softc *, int);
117 static int nfe_encap(struct nfe_softc *, struct nfe_tx_ring *,
118 struct mbuf *);
119 static void nfe_start(struct ifnet *);
120 static void nfe_watchdog(struct ifnet *);
121 static void nfe_init(void *);
122 static void nfe_stop(struct nfe_softc *);
123 static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
124 static void nfe_jfree(void *);
125 static void nfe_jref(void *);
126 static int nfe_jpool_alloc(struct nfe_softc *, struct nfe_rx_ring *);
127 static void nfe_jpool_free(struct nfe_softc *, struct nfe_rx_ring *);
128 static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
129 static void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
130 static int nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
131 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
132 static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
133 static void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
134 static int nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
135 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
136 static int nfe_ifmedia_upd(struct ifnet *);
137 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 static void nfe_setmulti(struct nfe_softc *);
139 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
140 static void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
141 static void nfe_powerup(device_t);
142 static void nfe_mac_reset(struct nfe_softc *);
143 static void nfe_tick(void *);
144 static void nfe_set_paddr_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
145 int, bus_addr_t);
146 static void nfe_set_ready_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
147 int);
148 static int nfe_newbuf_std(struct nfe_softc *, struct nfe_rx_ring *, int,
149 int);
150 static int nfe_newbuf_jumbo(struct nfe_softc *, struct nfe_rx_ring *, int,
151 int);
152 static void nfe_enable_intrs(struct nfe_softc *);
153 static void nfe_disable_intrs(struct nfe_softc *);
155 static int nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS);
157 #define NFE_DEBUG
158 #ifdef NFE_DEBUG
160 static int nfe_debug = 0;
161 static int nfe_rx_ring_count = NFE_RX_RING_DEF_COUNT;
162 static int nfe_tx_ring_count = NFE_TX_RING_DEF_COUNT;
164 * hw timer simulated interrupt moderation @4000Hz. Negative values
165 * disable the timer when the discrete interrupt rate falls below
166 * the moderation rate.
168 * XXX 8000Hz might be better but if the interrupt is shared it can
169 * blow out the cpu.
171 static int nfe_imtime = -250; /* uS */
173 TUNABLE_INT("hw.nfe.rx_ring_count", &nfe_rx_ring_count);
174 TUNABLE_INT("hw.nfe.tx_ring_count", &nfe_tx_ring_count);
175 TUNABLE_INT("hw.nfe.imtimer", &nfe_imtime);
176 TUNABLE_INT("hw.nfe.debug", &nfe_debug);
178 #define DPRINTF(sc, fmt, ...) do { \
179 if ((sc)->sc_debug) { \
180 if_printf(&(sc)->arpcom.ac_if, \
181 fmt, __VA_ARGS__); \
183 } while (0)
185 #define DPRINTFN(sc, lv, fmt, ...) do { \
186 if ((sc)->sc_debug >= (lv)) { \
187 if_printf(&(sc)->arpcom.ac_if, \
188 fmt, __VA_ARGS__); \
190 } while (0)
192 #else /* !NFE_DEBUG */
194 #define DPRINTF(sc, fmt, ...)
195 #define DPRINTFN(sc, lv, fmt, ...)
197 #endif /* NFE_DEBUG */
199 static const struct nfe_dev {
200 uint16_t vid;
201 uint16_t did;
202 const char *desc;
203 } nfe_devices[] = {
204 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
205 "NVIDIA nForce Fast Ethernet" },
207 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
208 "NVIDIA nForce2 Fast Ethernet" },
210 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
211 "NVIDIA nForce3 Gigabit Ethernet" },
213 /* XXX TGEN the next chip can also be found in the nForce2 Ultra 400Gb
214 chipset, and possibly also the 400R; it might be both nForce2- and
215 nForce3-based boards can use the same MCPs (= southbridges) */
216 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2,
217 "NVIDIA nForce3 Gigabit Ethernet" },
219 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3,
220 "NVIDIA nForce3 Gigabit Ethernet" },
222 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
223 "NVIDIA nForce3 Gigabit Ethernet" },
225 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5,
226 "NVIDIA nForce3 Gigabit Ethernet" },
228 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1,
229 "NVIDIA CK804 Gigabit Ethernet" },
231 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2,
232 "NVIDIA CK804 Gigabit Ethernet" },
234 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
235 "NVIDIA MCP04 Gigabit Ethernet" },
237 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
238 "NVIDIA MCP04 Gigabit Ethernet" },
240 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1,
241 "NVIDIA MCP51 Gigabit Ethernet" },
243 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2,
244 "NVIDIA MCP51 Gigabit Ethernet" },
246 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
247 "NVIDIA MCP55 Gigabit Ethernet" },
249 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
250 "NVIDIA MCP55 Gigabit Ethernet" },
252 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
253 "NVIDIA MCP61 Gigabit Ethernet" },
255 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
256 "NVIDIA MCP61 Gigabit Ethernet" },
258 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
259 "NVIDIA MCP61 Gigabit Ethernet" },
261 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
262 "NVIDIA MCP61 Gigabit Ethernet" },
264 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
265 "NVIDIA MCP65 Gigabit Ethernet" },
267 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
268 "NVIDIA MCP65 Gigabit Ethernet" },
270 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
271 "NVIDIA MCP65 Gigabit Ethernet" },
273 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
274 "NVIDIA MCP65 Gigabit Ethernet" },
276 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
277 "NVIDIA MCP67 Gigabit Ethernet" },
279 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
280 "NVIDIA MCP67 Gigabit Ethernet" },
282 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
283 "NVIDIA MCP67 Gigabit Ethernet" },
285 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
286 "NVIDIA MCP67 Gigabit Ethernet" },
288 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
289 "NVIDIA MCP73 Gigabit Ethernet" },
291 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
292 "NVIDIA MCP73 Gigabit Ethernet" },
294 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
295 "NVIDIA MCP73 Gigabit Ethernet" },
297 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
298 "NVIDIA MCP73 Gigabit Ethernet" },
300 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
301 "NVIDIA MCP77 Gigabit Ethernet" },
303 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
304 "NVIDIA MCP77 Gigabit Ethernet" },
306 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
307 "NVIDIA MCP77 Gigabit Ethernet" },
309 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
310 "NVIDIA MCP77 Gigabit Ethernet" },
312 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
313 "NVIDIA MCP79 Gigabit Ethernet" },
315 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
316 "NVIDIA MCP79 Gigabit Ethernet" },
318 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
319 "NVIDIA MCP79 Gigabit Ethernet" },
321 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
322 "NVIDIA MCP79 Gigabit Ethernet" },
324 { 0, 0, NULL }
327 static device_method_t nfe_methods[] = {
328 /* Device interface */
329 DEVMETHOD(device_probe, nfe_probe),
330 DEVMETHOD(device_attach, nfe_attach),
331 DEVMETHOD(device_detach, nfe_detach),
332 DEVMETHOD(device_suspend, nfe_suspend),
333 DEVMETHOD(device_resume, nfe_resume),
334 DEVMETHOD(device_shutdown, nfe_shutdown),
336 /* Bus interface */
337 DEVMETHOD(bus_print_child, bus_generic_print_child),
338 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
340 /* MII interface */
341 DEVMETHOD(miibus_readreg, nfe_miibus_readreg),
342 DEVMETHOD(miibus_writereg, nfe_miibus_writereg),
343 DEVMETHOD(miibus_statchg, nfe_miibus_statchg),
345 { 0, 0 }
348 static driver_t nfe_driver = {
349 "nfe",
350 nfe_methods,
351 sizeof(struct nfe_softc)
354 static devclass_t nfe_devclass;
356 DECLARE_DUMMY_MODULE(if_nfe);
357 MODULE_DEPEND(if_nfe, miibus, 1, 1, 1);
358 DRIVER_MODULE(if_nfe, pci, nfe_driver, nfe_devclass, 0, 0);
359 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
361 static int
362 nfe_probe(device_t dev)
364 const struct nfe_dev *n;
365 uint16_t vid, did;
367 vid = pci_get_vendor(dev);
368 did = pci_get_device(dev);
369 for (n = nfe_devices; n->desc != NULL; ++n) {
370 if (vid == n->vid && did == n->did) {
371 struct nfe_softc *sc = device_get_softc(dev);
373 switch (did) {
374 case PCI_PRODUCT_NVIDIA_NFORCE_LAN:
375 case PCI_PRODUCT_NVIDIA_NFORCE2_LAN:
376 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN1:
377 sc->sc_caps = NFE_NO_PWRCTL |
378 NFE_FIX_EADDR;
379 break;
380 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
381 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
382 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
383 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
384 sc->sc_caps = NFE_JUMBO_SUP |
385 NFE_HW_CSUM |
386 NFE_NO_PWRCTL |
387 NFE_FIX_EADDR;
388 break;
389 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
390 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
391 sc->sc_caps = NFE_FIX_EADDR;
392 /* FALL THROUGH */
393 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
394 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
395 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
396 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
397 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
398 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
399 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
400 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
401 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
402 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
403 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
404 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
405 sc->sc_caps |= NFE_40BIT_ADDR;
406 break;
407 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
408 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
409 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
410 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
411 sc->sc_caps = NFE_JUMBO_SUP |
412 NFE_40BIT_ADDR |
413 NFE_HW_CSUM |
414 NFE_NO_PWRCTL |
415 NFE_FIX_EADDR;
416 break;
417 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
418 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
419 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
420 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
421 sc->sc_caps = NFE_JUMBO_SUP |
422 NFE_40BIT_ADDR;
423 break;
424 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
425 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
426 sc->sc_caps = NFE_JUMBO_SUP |
427 NFE_40BIT_ADDR |
428 NFE_HW_CSUM |
429 NFE_HW_VLAN |
430 NFE_FIX_EADDR;
431 break;
432 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
433 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
434 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
435 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
436 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
437 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
438 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
439 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
440 sc->sc_caps = NFE_40BIT_ADDR |
441 NFE_HW_CSUM;
442 break;
445 device_set_desc(dev, n->desc);
446 device_set_async_attach(dev, TRUE);
447 return 0;
450 return ENXIO;
453 static int
454 nfe_attach(device_t dev)
456 struct nfe_softc *sc = device_get_softc(dev);
457 struct ifnet *ifp = &sc->arpcom.ac_if;
458 uint8_t eaddr[ETHER_ADDR_LEN];
459 bus_addr_t lowaddr;
460 int error;
462 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
463 lwkt_serialize_init(&sc->sc_jbuf_serializer);
466 * Initialize sysctl variables
468 sc->sc_rx_ring_count = nfe_rx_ring_count;
469 sc->sc_tx_ring_count = nfe_tx_ring_count;
470 sc->sc_debug = nfe_debug;
471 if (nfe_imtime < 0) {
472 sc->sc_flags |= NFE_F_DYN_IM;
473 sc->sc_imtime = -nfe_imtime;
474 } else {
475 sc->sc_imtime = nfe_imtime;
477 sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
479 sc->sc_mem_rid = PCIR_BAR(0);
481 if (sc->sc_caps & NFE_40BIT_ADDR)
482 sc->rxtxctl_desc = NFE_RXTX_DESC_V3;
483 else if (sc->sc_caps & NFE_JUMBO_SUP)
484 sc->rxtxctl_desc = NFE_RXTX_DESC_V2;
486 #ifndef BURN_BRIDGES
487 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
488 uint32_t mem, irq;
490 mem = pci_read_config(dev, sc->sc_mem_rid, 4);
491 irq = pci_read_config(dev, PCIR_INTLINE, 4);
493 device_printf(dev, "chip is in D%d power mode "
494 "-- setting to D0\n", pci_get_powerstate(dev));
496 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
498 pci_write_config(dev, sc->sc_mem_rid, mem, 4);
499 pci_write_config(dev, PCIR_INTLINE, irq, 4);
501 #endif /* !BURN_BRIDGE */
503 /* Enable bus mastering */
504 pci_enable_busmaster(dev);
506 /* Allocate IO memory */
507 sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
508 &sc->sc_mem_rid, RF_ACTIVE);
509 if (sc->sc_mem_res == NULL) {
510 device_printf(dev, "could not allocate io memory\n");
511 return ENXIO;
513 sc->sc_memh = rman_get_bushandle(sc->sc_mem_res);
514 sc->sc_memt = rman_get_bustag(sc->sc_mem_res);
516 /* Allocate IRQ */
517 sc->sc_irq_rid = 0;
518 sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
519 &sc->sc_irq_rid,
520 RF_SHAREABLE | RF_ACTIVE);
521 if (sc->sc_irq_res == NULL) {
522 device_printf(dev, "could not allocate irq\n");
523 error = ENXIO;
524 goto fail;
527 /* Disable WOL */
528 NFE_WRITE(sc, NFE_WOL_CTL, 0);
530 if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
531 nfe_powerup(dev);
533 nfe_get_macaddr(sc, eaddr);
536 * Allocate top level DMA tag
538 if (sc->sc_caps & NFE_40BIT_ADDR)
539 lowaddr = NFE_BUS_SPACE_MAXADDR;
540 else
541 lowaddr = BUS_SPACE_MAXADDR_32BIT;
542 error = bus_dma_tag_create(NULL, /* parent */
543 1, 0, /* alignment, boundary */
544 lowaddr, /* lowaddr */
545 BUS_SPACE_MAXADDR, /* highaddr */
546 NULL, NULL, /* filter, filterarg */
547 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
548 0, /* nsegments */
549 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
550 0, /* flags */
551 &sc->sc_dtag);
552 if (error) {
553 device_printf(dev, "could not allocate parent dma tag\n");
554 goto fail;
558 * Allocate Tx and Rx rings.
560 error = nfe_alloc_tx_ring(sc, &sc->txq);
561 if (error) {
562 device_printf(dev, "could not allocate Tx ring\n");
563 goto fail;
566 error = nfe_alloc_rx_ring(sc, &sc->rxq);
567 if (error) {
568 device_printf(dev, "could not allocate Rx ring\n");
569 goto fail;
573 * Create sysctl tree
575 sysctl_ctx_init(&sc->sc_sysctl_ctx);
576 sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
577 SYSCTL_STATIC_CHILDREN(_hw),
578 OID_AUTO,
579 device_get_nameunit(dev),
580 CTLFLAG_RD, 0, "");
581 if (sc->sc_sysctl_tree == NULL) {
582 device_printf(dev, "can't add sysctl node\n");
583 error = ENXIO;
584 goto fail;
586 SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
587 SYSCTL_CHILDREN(sc->sc_sysctl_tree),
588 OID_AUTO, "imtimer", CTLTYPE_INT | CTLFLAG_RW,
589 sc, 0, nfe_sysctl_imtime, "I",
590 "Interrupt moderation time (usec). "
591 "0 to disable interrupt moderation.");
592 SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
593 SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
594 "rx_ring_count", CTLFLAG_RD, &sc->sc_rx_ring_count,
595 0, "RX ring count");
596 SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
597 SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
598 "tx_ring_count", CTLFLAG_RD, &sc->sc_tx_ring_count,
599 0, "TX ring count");
600 SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
601 SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
602 "debug", CTLFLAG_RW, &sc->sc_debug,
603 0, "control debugging printfs");
605 error = mii_phy_probe(dev, &sc->sc_miibus, nfe_ifmedia_upd,
606 nfe_ifmedia_sts);
607 if (error) {
608 device_printf(dev, "MII without any phy\n");
609 goto fail;
612 ifp->if_softc = sc;
613 ifp->if_mtu = ETHERMTU;
614 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
615 ifp->if_ioctl = nfe_ioctl;
616 ifp->if_start = nfe_start;
617 #ifdef DEVICE_POLLING
618 ifp->if_poll = nfe_poll;
619 #endif
620 ifp->if_watchdog = nfe_watchdog;
621 ifp->if_init = nfe_init;
622 ifq_set_maxlen(&ifp->if_snd, sc->sc_tx_ring_count);
623 ifq_set_ready(&ifp->if_snd);
625 ifp->if_capabilities = IFCAP_VLAN_MTU;
627 if (sc->sc_caps & NFE_HW_VLAN)
628 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
630 #ifdef NFE_CSUM
631 if (sc->sc_caps & NFE_HW_CSUM) {
632 ifp->if_capabilities |= IFCAP_HWCSUM;
633 ifp->if_hwassist = NFE_CSUM_FEATURES;
635 #else
636 sc->sc_caps &= ~NFE_HW_CSUM;
637 #endif
638 ifp->if_capenable = ifp->if_capabilities;
640 callout_init(&sc->sc_tick_ch);
642 ether_ifattach(ifp, eaddr, NULL);
644 error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, nfe_intr, sc,
645 &sc->sc_ih, ifp->if_serializer);
646 if (error) {
647 device_printf(dev, "could not setup intr\n");
648 ether_ifdetach(ifp);
649 goto fail;
652 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sc_irq_res));
653 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
655 return 0;
656 fail:
657 nfe_detach(dev);
658 return error;
661 static int
662 nfe_detach(device_t dev)
664 struct nfe_softc *sc = device_get_softc(dev);
666 if (device_is_attached(dev)) {
667 struct ifnet *ifp = &sc->arpcom.ac_if;
669 lwkt_serialize_enter(ifp->if_serializer);
670 nfe_stop(sc);
671 bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_ih);
672 lwkt_serialize_exit(ifp->if_serializer);
674 ether_ifdetach(ifp);
677 if (sc->sc_miibus != NULL)
678 device_delete_child(dev, sc->sc_miibus);
679 bus_generic_detach(dev);
681 if (sc->sc_sysctl_tree != NULL)
682 sysctl_ctx_free(&sc->sc_sysctl_ctx);
684 if (sc->sc_irq_res != NULL) {
685 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
686 sc->sc_irq_res);
689 if (sc->sc_mem_res != NULL) {
690 bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
691 sc->sc_mem_res);
694 nfe_free_tx_ring(sc, &sc->txq);
695 nfe_free_rx_ring(sc, &sc->rxq);
696 if (sc->sc_dtag != NULL)
697 bus_dma_tag_destroy(sc->sc_dtag);
699 return 0;
702 static void
703 nfe_shutdown(device_t dev)
705 struct nfe_softc *sc = device_get_softc(dev);
706 struct ifnet *ifp = &sc->arpcom.ac_if;
708 lwkt_serialize_enter(ifp->if_serializer);
709 nfe_stop(sc);
710 lwkt_serialize_exit(ifp->if_serializer);
713 static int
714 nfe_suspend(device_t dev)
716 struct nfe_softc *sc = device_get_softc(dev);
717 struct ifnet *ifp = &sc->arpcom.ac_if;
719 lwkt_serialize_enter(ifp->if_serializer);
720 nfe_stop(sc);
721 lwkt_serialize_exit(ifp->if_serializer);
723 return 0;
726 static int
727 nfe_resume(device_t dev)
729 struct nfe_softc *sc = device_get_softc(dev);
730 struct ifnet *ifp = &sc->arpcom.ac_if;
732 lwkt_serialize_enter(ifp->if_serializer);
733 if (ifp->if_flags & IFF_UP)
734 nfe_init(sc);
735 lwkt_serialize_exit(ifp->if_serializer);
737 return 0;
740 static void
741 nfe_miibus_statchg(device_t dev)
743 struct nfe_softc *sc = device_get_softc(dev);
744 struct mii_data *mii = device_get_softc(sc->sc_miibus);
745 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
747 ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
749 phy = NFE_READ(sc, NFE_PHY_IFACE);
750 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
752 seed = NFE_READ(sc, NFE_RNDSEED);
753 seed &= ~NFE_SEED_MASK;
755 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
756 phy |= NFE_PHY_HDX; /* half-duplex */
757 misc |= NFE_MISC1_HDX;
760 switch (IFM_SUBTYPE(mii->mii_media_active)) {
761 case IFM_1000_T: /* full-duplex only */
762 link |= NFE_MEDIA_1000T;
763 seed |= NFE_SEED_1000T;
764 phy |= NFE_PHY_1000T;
765 break;
766 case IFM_100_TX:
767 link |= NFE_MEDIA_100TX;
768 seed |= NFE_SEED_100TX;
769 phy |= NFE_PHY_100TX;
770 break;
771 case IFM_10_T:
772 link |= NFE_MEDIA_10T;
773 seed |= NFE_SEED_10T;
774 break;
777 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
779 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
780 NFE_WRITE(sc, NFE_MISC1, misc);
781 NFE_WRITE(sc, NFE_LINKSPEED, link);
784 static int
785 nfe_miibus_readreg(device_t dev, int phy, int reg)
787 struct nfe_softc *sc = device_get_softc(dev);
788 uint32_t val;
789 int ntries;
791 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
793 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
794 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
795 DELAY(100);
798 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
800 for (ntries = 0; ntries < 1000; ntries++) {
801 DELAY(100);
802 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
803 break;
805 if (ntries == 1000) {
806 DPRINTFN(sc, 2, "timeout waiting for PHY %s\n", "");
807 return 0;
810 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
811 DPRINTFN(sc, 2, "could not read PHY %s\n", "");
812 return 0;
815 val = NFE_READ(sc, NFE_PHY_DATA);
816 if (val != 0xffffffff && val != 0)
817 sc->mii_phyaddr = phy;
819 DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
821 return val;
824 static void
825 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
827 struct nfe_softc *sc = device_get_softc(dev);
828 uint32_t ctl;
829 int ntries;
831 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
833 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
834 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
835 DELAY(100);
838 NFE_WRITE(sc, NFE_PHY_DATA, val);
839 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
840 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
842 for (ntries = 0; ntries < 1000; ntries++) {
843 DELAY(100);
844 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
845 break;
848 #ifdef NFE_DEBUG
849 if (ntries == 1000)
850 DPRINTFN(sc, 2, "could not write to PHY %s\n", "");
851 #endif
854 #ifdef DEVICE_POLLING
856 static void
857 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
859 struct nfe_softc *sc = ifp->if_softc;
861 ASSERT_SERIALIZED(ifp->if_serializer);
863 switch(cmd) {
864 case POLL_REGISTER:
865 nfe_disable_intrs(sc);
866 break;
868 case POLL_DEREGISTER:
869 nfe_enable_intrs(sc);
870 break;
872 case POLL_AND_CHECK_STATUS:
873 /* fall through */
874 case POLL_ONLY:
875 if (ifp->if_flags & IFF_RUNNING) {
876 nfe_rxeof(sc);
877 nfe_txeof(sc, 1);
879 break;
883 #endif
885 static void
886 nfe_intr(void *arg)
888 struct nfe_softc *sc = arg;
889 struct ifnet *ifp = &sc->arpcom.ac_if;
890 uint32_t r;
892 r = NFE_READ(sc, NFE_IRQ_STATUS);
893 if (r == 0)
894 return; /* not for us */
895 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
897 if (sc->sc_rate_second != time_second) {
899 * Calculate sc_rate_avg - interrupts per second.
901 sc->sc_rate_second = time_second;
902 if (sc->sc_rate_avg < sc->sc_rate_acc)
903 sc->sc_rate_avg = sc->sc_rate_acc;
904 else
905 sc->sc_rate_avg = (sc->sc_rate_avg * 3 +
906 sc->sc_rate_acc) / 4;
907 sc->sc_rate_acc = 0;
908 } else if (sc->sc_rate_avg < sc->sc_rate_acc) {
910 * Don't wait for a tick to roll over if we are taking
911 * a lot of interrupts.
913 sc->sc_rate_avg = sc->sc_rate_acc;
916 DPRINTFN(sc, 5, "%s: interrupt register %x\n", __func__, r);
918 if (r & NFE_IRQ_LINK) {
919 NFE_READ(sc, NFE_PHY_STATUS);
920 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
921 DPRINTF(sc, "link state changed %s\n", "");
924 if (ifp->if_flags & IFF_RUNNING) {
925 int ret;
926 int rate;
928 /* check Rx ring */
929 ret = nfe_rxeof(sc);
931 /* check Tx ring */
932 ret |= nfe_txeof(sc, 1);
934 /* update the rate accumulator */
935 if (ret)
936 ++sc->sc_rate_acc;
938 if (sc->sc_flags & NFE_F_DYN_IM) {
939 rate = 1000000 / sc->sc_imtime;
940 if ((sc->sc_flags & NFE_F_IRQ_TIMER) == 0 &&
941 sc->sc_rate_avg > rate) {
943 * Use the hardware timer to reduce the
944 * interrupt rate if the discrete interrupt
945 * rate has exceeded our threshold.
947 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_IMTIMER);
948 sc->sc_flags |= NFE_F_IRQ_TIMER;
949 } else if ((sc->sc_flags & NFE_F_IRQ_TIMER) &&
950 sc->sc_rate_avg <= rate) {
952 * Use discrete TX/RX interrupts if the rate
953 * has fallen below our threshold.
955 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_NOIMTIMER);
956 sc->sc_flags &= ~NFE_F_IRQ_TIMER;
959 * Recollect, mainly to avoid the possible race
960 * introduced by changing interrupt masks.
962 nfe_rxeof(sc);
963 nfe_txeof(sc, 1);
969 static int
970 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
972 struct nfe_softc *sc = ifp->if_softc;
973 struct ifreq *ifr = (struct ifreq *)data;
974 struct mii_data *mii;
975 int error = 0, mask, jumbo_cap;
977 ASSERT_SERIALIZED(ifp->if_serializer);
979 switch (cmd) {
980 case SIOCSIFMTU:
981 if ((sc->sc_caps & NFE_JUMBO_SUP) && sc->rxq.jbuf != NULL)
982 jumbo_cap = 1;
983 else
984 jumbo_cap = 0;
986 if ((jumbo_cap && ifr->ifr_mtu > NFE_JUMBO_MTU) ||
987 (!jumbo_cap && ifr->ifr_mtu > ETHERMTU)) {
988 return EINVAL;
989 } else if (ifp->if_mtu != ifr->ifr_mtu) {
990 ifp->if_mtu = ifr->ifr_mtu;
991 if (ifp->if_flags & IFF_RUNNING)
992 nfe_init(sc);
994 break;
995 case SIOCSIFFLAGS:
996 if (ifp->if_flags & IFF_UP) {
998 * If only the PROMISC or ALLMULTI flag changes, then
999 * don't do a full re-init of the chip, just update
1000 * the Rx filter.
1002 if ((ifp->if_flags & IFF_RUNNING) &&
1003 ((ifp->if_flags ^ sc->sc_if_flags) &
1004 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1005 nfe_setmulti(sc);
1006 } else {
1007 if (!(ifp->if_flags & IFF_RUNNING))
1008 nfe_init(sc);
1010 } else {
1011 if (ifp->if_flags & IFF_RUNNING)
1012 nfe_stop(sc);
1014 sc->sc_if_flags = ifp->if_flags;
1015 break;
1016 case SIOCADDMULTI:
1017 case SIOCDELMULTI:
1018 if (ifp->if_flags & IFF_RUNNING)
1019 nfe_setmulti(sc);
1020 break;
1021 case SIOCSIFMEDIA:
1022 case SIOCGIFMEDIA:
1023 mii = device_get_softc(sc->sc_miibus);
1024 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1025 break;
1026 case SIOCSIFCAP:
1027 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) & IFCAP_HWCSUM;
1028 if (mask && (ifp->if_capabilities & IFCAP_HWCSUM)) {
1029 ifp->if_capenable ^= mask;
1030 if (IFCAP_TXCSUM & ifp->if_capenable)
1031 ifp->if_hwassist = NFE_CSUM_FEATURES;
1032 else
1033 ifp->if_hwassist = 0;
1035 if (ifp->if_flags & IFF_RUNNING)
1036 nfe_init(sc);
1038 break;
1039 default:
1040 error = ether_ioctl(ifp, cmd, data);
1041 break;
1043 return error;
1046 static int
1047 nfe_rxeof(struct nfe_softc *sc)
1049 struct ifnet *ifp = &sc->arpcom.ac_if;
1050 struct nfe_rx_ring *ring = &sc->rxq;
1051 int reap;
1052 struct mbuf_chain chain[MAXCPU];
1054 reap = 0;
1055 ether_input_chain_init(chain);
1057 for (;;) {
1058 struct nfe_rx_data *data = &ring->data[ring->cur];
1059 struct mbuf *m;
1060 uint16_t flags;
1061 int len, error;
1063 if (sc->sc_caps & NFE_40BIT_ADDR) {
1064 struct nfe_desc64 *desc64 = &ring->desc64[ring->cur];
1066 flags = le16toh(desc64->flags);
1067 len = le16toh(desc64->length) & 0x3fff;
1068 } else {
1069 struct nfe_desc32 *desc32 = &ring->desc32[ring->cur];
1071 flags = le16toh(desc32->flags);
1072 len = le16toh(desc32->length) & 0x3fff;
1075 if (flags & NFE_RX_READY)
1076 break;
1078 reap = 1;
1080 if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1081 if (!(flags & NFE_RX_VALID_V1))
1082 goto skip;
1084 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
1085 flags &= ~NFE_RX_ERROR;
1086 len--; /* fix buffer length */
1088 } else {
1089 if (!(flags & NFE_RX_VALID_V2))
1090 goto skip;
1092 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
1093 flags &= ~NFE_RX_ERROR;
1094 len--; /* fix buffer length */
1098 if (flags & NFE_RX_ERROR) {
1099 ifp->if_ierrors++;
1100 goto skip;
1103 m = data->m;
1105 if (sc->sc_flags & NFE_F_USE_JUMBO)
1106 error = nfe_newbuf_jumbo(sc, ring, ring->cur, 0);
1107 else
1108 error = nfe_newbuf_std(sc, ring, ring->cur, 0);
1109 if (error) {
1110 ifp->if_ierrors++;
1111 goto skip;
1114 /* finalize mbuf */
1115 m->m_pkthdr.len = m->m_len = len;
1116 m->m_pkthdr.rcvif = ifp;
1118 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
1119 (flags & NFE_RX_CSUMOK)) {
1120 if (flags & NFE_RX_IP_CSUMOK_V2) {
1121 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1122 CSUM_IP_VALID;
1125 if (flags &
1126 (NFE_RX_UDP_CSUMOK_V2 | NFE_RX_TCP_CSUMOK_V2)) {
1127 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1128 CSUM_PSEUDO_HDR |
1129 CSUM_FRAG_NOT_CHECKED;
1130 m->m_pkthdr.csum_data = 0xffff;
1134 ifp->if_ipackets++;
1135 ether_input_chain(ifp, m, NULL, chain);
1136 skip:
1137 nfe_set_ready_rxdesc(sc, ring, ring->cur);
1138 sc->rxq.cur = (sc->rxq.cur + 1) % sc->sc_rx_ring_count;
1141 if (reap)
1142 ether_input_dispatch(chain);
1143 return reap;
1146 static int
1147 nfe_txeof(struct nfe_softc *sc, int start)
1149 struct ifnet *ifp = &sc->arpcom.ac_if;
1150 struct nfe_tx_ring *ring = &sc->txq;
1151 struct nfe_tx_data *data = NULL;
1153 while (ring->next != ring->cur) {
1154 uint16_t flags;
1156 if (sc->sc_caps & NFE_40BIT_ADDR)
1157 flags = le16toh(ring->desc64[ring->next].flags);
1158 else
1159 flags = le16toh(ring->desc32[ring->next].flags);
1161 if (flags & NFE_TX_VALID)
1162 break;
1164 data = &ring->data[ring->next];
1166 if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1167 if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
1168 goto skip;
1170 if ((flags & NFE_TX_ERROR_V1) != 0) {
1171 if_printf(ifp, "tx v1 error 0x%4b\n", flags,
1172 NFE_V1_TXERR);
1173 ifp->if_oerrors++;
1174 } else {
1175 ifp->if_opackets++;
1177 } else {
1178 if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
1179 goto skip;
1181 if ((flags & NFE_TX_ERROR_V2) != 0) {
1182 if_printf(ifp, "tx v2 error 0x%4b\n", flags,
1183 NFE_V2_TXERR);
1184 ifp->if_oerrors++;
1185 } else {
1186 ifp->if_opackets++;
1190 if (data->m == NULL) { /* should not get there */
1191 if_printf(ifp,
1192 "last fragment bit w/o associated mbuf!\n");
1193 goto skip;
1196 /* last fragment of the mbuf chain transmitted */
1197 bus_dmamap_unload(ring->data_tag, data->map);
1198 m_freem(data->m);
1199 data->m = NULL;
1200 skip:
1201 ring->queued--;
1202 KKASSERT(ring->queued >= 0);
1203 ring->next = (ring->next + 1) % sc->sc_tx_ring_count;
1206 if (sc->sc_tx_ring_count - ring->queued >=
1207 sc->sc_tx_spare + NFE_NSEG_RSVD)
1208 ifp->if_flags &= ~IFF_OACTIVE;
1210 if (ring->queued == 0)
1211 ifp->if_timer = 0;
1213 if (start && !ifq_is_empty(&ifp->if_snd))
1214 if_devstart(ifp);
1216 if (data != NULL)
1217 return 1;
1218 else
1219 return 0;
1222 static int
1223 nfe_encap(struct nfe_softc *sc, struct nfe_tx_ring *ring, struct mbuf *m0)
1225 bus_dma_segment_t segs[NFE_MAX_SCATTER];
1226 struct nfe_tx_data *data, *data_map;
1227 bus_dmamap_t map;
1228 struct nfe_desc64 *desc64 = NULL;
1229 struct nfe_desc32 *desc32 = NULL;
1230 uint16_t flags = 0;
1231 uint32_t vtag = 0;
1232 int error, i, j, maxsegs, nsegs;
1234 data = &ring->data[ring->cur];
1235 map = data->map;
1236 data_map = data; /* Remember who owns the DMA map */
1238 maxsegs = (sc->sc_tx_ring_count - ring->queued) - NFE_NSEG_RSVD;
1239 if (maxsegs > NFE_MAX_SCATTER)
1240 maxsegs = NFE_MAX_SCATTER;
1241 KASSERT(maxsegs >= sc->sc_tx_spare,
1242 ("no enough segments %d,%d\n", maxsegs, sc->sc_tx_spare));
1244 error = bus_dmamap_load_mbuf_defrag(ring->data_tag, map, &m0,
1245 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1246 if (error)
1247 goto back;
1248 bus_dmamap_sync(ring->data_tag, map, BUS_DMASYNC_PREWRITE);
1250 error = 0;
1252 /* setup h/w VLAN tagging */
1253 if (m0->m_flags & M_VLANTAG)
1254 vtag = m0->m_pkthdr.ether_vlantag;
1256 if (sc->arpcom.ac_if.if_capenable & IFCAP_TXCSUM) {
1257 if (m0->m_pkthdr.csum_flags & CSUM_IP)
1258 flags |= NFE_TX_IP_CSUM;
1259 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1260 flags |= NFE_TX_TCP_CSUM;
1264 * XXX urm. somebody is unaware of how hardware works. You
1265 * absolutely CANNOT set NFE_TX_VALID on the next descriptor in
1266 * the ring until the entire chain is actually *VALID*. Otherwise
1267 * the hardware may encounter a partially initialized chain that
1268 * is marked as being ready to go when it in fact is not ready to
1269 * go.
1272 for (i = 0; i < nsegs; i++) {
1273 j = (ring->cur + i) % sc->sc_tx_ring_count;
1274 data = &ring->data[j];
1276 if (sc->sc_caps & NFE_40BIT_ADDR) {
1277 desc64 = &ring->desc64[j];
1278 desc64->physaddr[0] =
1279 htole32(NFE_ADDR_HI(segs[i].ds_addr));
1280 desc64->physaddr[1] =
1281 htole32(NFE_ADDR_LO(segs[i].ds_addr));
1282 desc64->length = htole16(segs[i].ds_len - 1);
1283 desc64->vtag = htole32(vtag);
1284 desc64->flags = htole16(flags);
1285 } else {
1286 desc32 = &ring->desc32[j];
1287 desc32->physaddr = htole32(segs[i].ds_addr);
1288 desc32->length = htole16(segs[i].ds_len - 1);
1289 desc32->flags = htole16(flags);
1292 /* csum flags and vtag belong to the first fragment only */
1293 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
1294 vtag = 0;
1296 ring->queued++;
1297 KKASSERT(ring->queued <= sc->sc_tx_ring_count);
1300 /* the whole mbuf chain has been DMA mapped, fix last descriptor */
1301 if (sc->sc_caps & NFE_40BIT_ADDR) {
1302 desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
1303 } else {
1304 if (sc->sc_caps & NFE_JUMBO_SUP)
1305 flags = NFE_TX_LASTFRAG_V2;
1306 else
1307 flags = NFE_TX_LASTFRAG_V1;
1308 desc32->flags |= htole16(flags);
1312 * Set NFE_TX_VALID backwards so the hardware doesn't see the
1313 * whole mess until the first descriptor in the map is flagged.
1315 for (i = nsegs - 1; i >= 0; --i) {
1316 j = (ring->cur + i) % sc->sc_tx_ring_count;
1317 if (sc->sc_caps & NFE_40BIT_ADDR) {
1318 desc64 = &ring->desc64[j];
1319 desc64->flags |= htole16(NFE_TX_VALID);
1320 } else {
1321 desc32 = &ring->desc32[j];
1322 desc32->flags |= htole16(NFE_TX_VALID);
1325 ring->cur = (ring->cur + nsegs) % sc->sc_tx_ring_count;
1327 /* Exchange DMA map */
1328 data_map->map = data->map;
1329 data->map = map;
1330 data->m = m0;
1331 back:
1332 if (error)
1333 m_freem(m0);
1334 return error;
1337 static void
1338 nfe_start(struct ifnet *ifp)
1340 struct nfe_softc *sc = ifp->if_softc;
1341 struct nfe_tx_ring *ring = &sc->txq;
1342 int count = 0, oactive = 0;
1343 struct mbuf *m0;
1345 ASSERT_SERIALIZED(ifp->if_serializer);
1347 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1348 return;
1350 for (;;) {
1351 int error;
1353 if (sc->sc_tx_ring_count - ring->queued <
1354 sc->sc_tx_spare + NFE_NSEG_RSVD) {
1355 if (oactive) {
1356 ifp->if_flags |= IFF_OACTIVE;
1357 break;
1360 nfe_txeof(sc, 0);
1361 oactive = 1;
1362 continue;
1365 m0 = ifq_dequeue(&ifp->if_snd, NULL);
1366 if (m0 == NULL)
1367 break;
1369 ETHER_BPF_MTAP(ifp, m0);
1371 error = nfe_encap(sc, ring, m0);
1372 if (error) {
1373 ifp->if_oerrors++;
1374 if (error == EFBIG) {
1375 if (oactive) {
1376 ifp->if_flags |= IFF_OACTIVE;
1377 break;
1379 nfe_txeof(sc, 0);
1380 oactive = 1;
1382 continue;
1383 } else {
1384 oactive = 0;
1386 ++count;
1389 * NOTE:
1390 * `m0' may be freed in nfe_encap(), so
1391 * it should not be touched any more.
1395 if (count == 0) /* nothing sent */
1396 return;
1398 /* Kick Tx */
1399 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1402 * Set a timeout in case the chip goes out to lunch.
1404 ifp->if_timer = 5;
1407 static void
1408 nfe_watchdog(struct ifnet *ifp)
1410 struct nfe_softc *sc = ifp->if_softc;
1412 ASSERT_SERIALIZED(ifp->if_serializer);
1414 if (ifp->if_flags & IFF_RUNNING) {
1415 if_printf(ifp, "watchdog timeout - lost interrupt recovered\n");
1416 nfe_txeof(sc, 1);
1417 return;
1420 if_printf(ifp, "watchdog timeout\n");
1422 nfe_init(ifp->if_softc);
1424 ifp->if_oerrors++;
1427 static void
1428 nfe_init(void *xsc)
1430 struct nfe_softc *sc = xsc;
1431 struct ifnet *ifp = &sc->arpcom.ac_if;
1432 uint32_t tmp;
1433 int error;
1435 ASSERT_SERIALIZED(ifp->if_serializer);
1437 nfe_stop(sc);
1439 if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
1440 nfe_mac_reset(sc);
1443 * NOTE:
1444 * Switching between jumbo frames and normal frames should
1445 * be done _after_ nfe_stop() but _before_ nfe_init_rx_ring().
1447 if (ifp->if_mtu > ETHERMTU) {
1448 sc->sc_flags |= NFE_F_USE_JUMBO;
1449 sc->rxq.bufsz = NFE_JBYTES;
1450 sc->sc_tx_spare = NFE_NSEG_SPARE_JUMBO;
1451 if (bootverbose)
1452 if_printf(ifp, "use jumbo frames\n");
1453 } else {
1454 sc->sc_flags &= ~NFE_F_USE_JUMBO;
1455 sc->rxq.bufsz = MCLBYTES;
1456 sc->sc_tx_spare = NFE_NSEG_SPARE;
1457 if (bootverbose)
1458 if_printf(ifp, "use non-jumbo frames\n");
1461 error = nfe_init_tx_ring(sc, &sc->txq);
1462 if (error) {
1463 nfe_stop(sc);
1464 return;
1467 error = nfe_init_rx_ring(sc, &sc->rxq);
1468 if (error) {
1469 nfe_stop(sc);
1470 return;
1473 NFE_WRITE(sc, NFE_TX_POLL, 0);
1474 NFE_WRITE(sc, NFE_STATUS, 0);
1476 sc->rxtxctl = NFE_RXTX_BIT2 | sc->rxtxctl_desc;
1478 if (ifp->if_capenable & IFCAP_RXCSUM)
1479 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1482 * Although the adapter is capable of stripping VLAN tags from received
1483 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1484 * purpose. This will be done in software by our network stack.
1486 if (sc->sc_caps & NFE_HW_VLAN)
1487 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1489 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1490 DELAY(10);
1491 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1493 if (sc->sc_caps & NFE_HW_VLAN)
1494 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1496 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1498 /* set MAC address */
1499 nfe_set_macaddr(sc, sc->arpcom.ac_enaddr);
1501 /* tell MAC where rings are in memory */
1502 if (sc->sc_caps & NFE_40BIT_ADDR) {
1503 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
1504 NFE_ADDR_HI(sc->rxq.physaddr));
1506 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, NFE_ADDR_LO(sc->rxq.physaddr));
1508 if (sc->sc_caps & NFE_40BIT_ADDR) {
1509 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI,
1510 NFE_ADDR_HI(sc->txq.physaddr));
1512 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
1514 NFE_WRITE(sc, NFE_RING_SIZE,
1515 (sc->sc_rx_ring_count - 1) << 16 |
1516 (sc->sc_tx_ring_count - 1));
1518 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1520 /* force MAC to wakeup */
1521 tmp = NFE_READ(sc, NFE_PWR_STATE);
1522 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1523 DELAY(10);
1524 tmp = NFE_READ(sc, NFE_PWR_STATE);
1525 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1527 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1528 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1529 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1531 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1532 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1534 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1536 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1537 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1538 DELAY(10);
1539 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1541 /* set Rx filter */
1542 nfe_setmulti(sc);
1544 nfe_ifmedia_upd(ifp);
1546 /* enable Rx */
1547 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1549 /* enable Tx */
1550 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1552 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1554 #ifdef DEVICE_POLLING
1555 if ((ifp->if_flags & IFF_POLLING))
1556 nfe_disable_intrs(sc);
1557 else
1558 #endif
1559 nfe_enable_intrs(sc);
1561 callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1563 ifp->if_flags |= IFF_RUNNING;
1564 ifp->if_flags &= ~IFF_OACTIVE;
1567 * If we had stuff in the tx ring before its all cleaned out now
1568 * so we are not going to get an interrupt, jump-start any pending
1569 * output.
1571 if (!ifq_is_empty(&ifp->if_snd))
1572 if_devstart(ifp);
1575 static void
1576 nfe_stop(struct nfe_softc *sc)
1578 struct ifnet *ifp = &sc->arpcom.ac_if;
1579 uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
1580 int i;
1582 ASSERT_SERIALIZED(ifp->if_serializer);
1584 callout_stop(&sc->sc_tick_ch);
1586 ifp->if_timer = 0;
1587 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1588 sc->sc_flags &= ~NFE_F_IRQ_TIMER;
1590 #define WAITMAX 50000
1593 * Abort Tx
1595 NFE_WRITE(sc, NFE_TX_CTL, 0);
1596 for (i = 0; i < WAITMAX; ++i) {
1597 DELAY(100);
1598 if ((NFE_READ(sc, NFE_TX_STATUS) & NFE_TX_STATUS_BUSY) == 0)
1599 break;
1601 if (i == WAITMAX)
1602 if_printf(ifp, "can't stop TX\n");
1603 DELAY(100);
1606 * Disable Rx
1608 NFE_WRITE(sc, NFE_RX_CTL, 0);
1609 for (i = 0; i < WAITMAX; ++i) {
1610 DELAY(100);
1611 if ((NFE_READ(sc, NFE_RX_STATUS) & NFE_RX_STATUS_BUSY) == 0)
1612 break;
1614 if (i == WAITMAX)
1615 if_printf(ifp, "can't stop RX\n");
1616 DELAY(100);
1618 #undef WAITMAX
1620 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
1621 DELAY(10);
1622 NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
1624 /* Disable interrupts */
1625 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1627 /* Reset Tx and Rx rings */
1628 nfe_reset_tx_ring(sc, &sc->txq);
1629 nfe_reset_rx_ring(sc, &sc->rxq);
1632 static int
1633 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1635 int i, j, error, descsize;
1636 bus_dmamem_t dmem;
1637 void **desc;
1639 if (sc->sc_caps & NFE_40BIT_ADDR) {
1640 desc = (void **)&ring->desc64;
1641 descsize = sizeof(struct nfe_desc64);
1642 } else {
1643 desc = (void **)&ring->desc32;
1644 descsize = sizeof(struct nfe_desc32);
1647 ring->bufsz = MCLBYTES;
1648 ring->cur = ring->next = 0;
1650 error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1651 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1652 sc->sc_rx_ring_count * descsize,
1653 BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1654 if (error) {
1655 if_printf(&sc->arpcom.ac_if,
1656 "could not create RX desc ring\n");
1657 return error;
1659 ring->tag = dmem.dmem_tag;
1660 ring->map = dmem.dmem_map;
1661 *desc = dmem.dmem_addr;
1662 ring->physaddr = dmem.dmem_busaddr;
1664 if (sc->sc_caps & NFE_JUMBO_SUP) {
1665 ring->jbuf =
1666 kmalloc(sizeof(struct nfe_jbuf) * NFE_JPOOL_COUNT(sc),
1667 M_DEVBUF, M_WAITOK | M_ZERO);
1669 error = nfe_jpool_alloc(sc, ring);
1670 if (error) {
1671 if_printf(&sc->arpcom.ac_if,
1672 "could not allocate jumbo frames\n");
1673 kfree(ring->jbuf, M_DEVBUF);
1674 ring->jbuf = NULL;
1675 /* Allow jumbo frame allocation to fail */
1679 ring->data = kmalloc(sizeof(struct nfe_rx_data) * sc->sc_rx_ring_count,
1680 M_DEVBUF, M_WAITOK | M_ZERO);
1682 error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
1683 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1684 NULL, NULL,
1685 MCLBYTES, 1, MCLBYTES,
1686 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
1687 &ring->data_tag);
1688 if (error) {
1689 if_printf(&sc->arpcom.ac_if,
1690 "could not create RX mbuf DMA tag\n");
1691 return error;
1694 /* Create a spare RX mbuf DMA map */
1695 error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
1696 &ring->data_tmpmap);
1697 if (error) {
1698 if_printf(&sc->arpcom.ac_if,
1699 "could not create spare RX mbuf DMA map\n");
1700 bus_dma_tag_destroy(ring->data_tag);
1701 ring->data_tag = NULL;
1702 return error;
1705 for (i = 0; i < sc->sc_rx_ring_count; i++) {
1706 error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
1707 &ring->data[i].map);
1708 if (error) {
1709 if_printf(&sc->arpcom.ac_if,
1710 "could not create %dth RX mbuf DMA mapn", i);
1711 goto fail;
1714 return 0;
1715 fail:
1716 for (j = 0; j < i; ++j)
1717 bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1718 bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1719 bus_dma_tag_destroy(ring->data_tag);
1720 ring->data_tag = NULL;
1721 return error;
1724 static void
1725 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1727 int i;
1729 for (i = 0; i < sc->sc_rx_ring_count; i++) {
1730 struct nfe_rx_data *data = &ring->data[i];
1732 if (data->m != NULL) {
1733 if ((sc->sc_flags & NFE_F_USE_JUMBO) == 0)
1734 bus_dmamap_unload(ring->data_tag, data->map);
1735 m_freem(data->m);
1736 data->m = NULL;
1740 ring->cur = ring->next = 0;
1743 static int
1744 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1746 int i;
1748 for (i = 0; i < sc->sc_rx_ring_count; ++i) {
1749 int error;
1751 /* XXX should use a function pointer */
1752 if (sc->sc_flags & NFE_F_USE_JUMBO)
1753 error = nfe_newbuf_jumbo(sc, ring, i, 1);
1754 else
1755 error = nfe_newbuf_std(sc, ring, i, 1);
1756 if (error) {
1757 if_printf(&sc->arpcom.ac_if,
1758 "could not allocate RX buffer\n");
1759 return error;
1761 nfe_set_ready_rxdesc(sc, ring, i);
1763 return 0;
1766 static void
1767 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1769 if (ring->data_tag != NULL) {
1770 struct nfe_rx_data *data;
1771 int i;
1773 for (i = 0; i < sc->sc_rx_ring_count; i++) {
1774 data = &ring->data[i];
1776 if (data->m != NULL) {
1777 bus_dmamap_unload(ring->data_tag, data->map);
1778 m_freem(data->m);
1780 bus_dmamap_destroy(ring->data_tag, data->map);
1782 bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1783 bus_dma_tag_destroy(ring->data_tag);
1786 nfe_jpool_free(sc, ring);
1788 if (ring->jbuf != NULL)
1789 kfree(ring->jbuf, M_DEVBUF);
1790 if (ring->data != NULL)
1791 kfree(ring->data, M_DEVBUF);
1793 if (ring->tag != NULL) {
1794 void *desc;
1796 if (sc->sc_caps & NFE_40BIT_ADDR)
1797 desc = ring->desc64;
1798 else
1799 desc = ring->desc32;
1801 bus_dmamap_unload(ring->tag, ring->map);
1802 bus_dmamem_free(ring->tag, desc, ring->map);
1803 bus_dma_tag_destroy(ring->tag);
1807 static struct nfe_jbuf *
1808 nfe_jalloc(struct nfe_softc *sc)
1810 struct ifnet *ifp = &sc->arpcom.ac_if;
1811 struct nfe_jbuf *jbuf;
1813 lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1815 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1816 if (jbuf != NULL) {
1817 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1818 jbuf->inuse = 1;
1819 } else {
1820 if_printf(ifp, "no free jumbo buffer\n");
1823 lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1825 return jbuf;
1828 static void
1829 nfe_jfree(void *arg)
1831 struct nfe_jbuf *jbuf = arg;
1832 struct nfe_softc *sc = jbuf->sc;
1833 struct nfe_rx_ring *ring = jbuf->ring;
1835 if (&ring->jbuf[jbuf->slot] != jbuf)
1836 panic("%s: free wrong jumbo buffer\n", __func__);
1837 else if (jbuf->inuse == 0)
1838 panic("%s: jumbo buffer already freed\n", __func__);
1840 lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1841 atomic_subtract_int(&jbuf->inuse, 1);
1842 if (jbuf->inuse == 0)
1843 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1844 lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1847 static void
1848 nfe_jref(void *arg)
1850 struct nfe_jbuf *jbuf = arg;
1851 struct nfe_rx_ring *ring = jbuf->ring;
1853 if (&ring->jbuf[jbuf->slot] != jbuf)
1854 panic("%s: ref wrong jumbo buffer\n", __func__);
1855 else if (jbuf->inuse == 0)
1856 panic("%s: jumbo buffer already freed\n", __func__);
1858 atomic_add_int(&jbuf->inuse, 1);
1861 static int
1862 nfe_jpool_alloc(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1864 struct nfe_jbuf *jbuf;
1865 bus_dmamem_t dmem;
1866 bus_addr_t physaddr;
1867 caddr_t buf;
1868 int i, error;
1871 * Allocate a big chunk of DMA'able memory.
1873 error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1874 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1875 NFE_JPOOL_SIZE(sc),
1876 BUS_DMA_WAITOK, &dmem);
1877 if (error) {
1878 if_printf(&sc->arpcom.ac_if,
1879 "could not create jumbo buffer\n");
1880 return error;
1882 ring->jtag = dmem.dmem_tag;
1883 ring->jmap = dmem.dmem_map;
1884 ring->jpool = dmem.dmem_addr;
1885 physaddr = dmem.dmem_busaddr;
1887 /* ..and split it into 9KB chunks */
1888 SLIST_INIT(&ring->jfreelist);
1890 buf = ring->jpool;
1891 for (i = 0; i < NFE_JPOOL_COUNT(sc); i++) {
1892 jbuf = &ring->jbuf[i];
1894 jbuf->sc = sc;
1895 jbuf->ring = ring;
1896 jbuf->inuse = 0;
1897 jbuf->slot = i;
1898 jbuf->buf = buf;
1899 jbuf->physaddr = physaddr;
1901 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1903 buf += NFE_JBYTES;
1904 physaddr += NFE_JBYTES;
1907 return 0;
1910 static void
1911 nfe_jpool_free(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1913 if (ring->jtag != NULL) {
1914 bus_dmamap_unload(ring->jtag, ring->jmap);
1915 bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1916 bus_dma_tag_destroy(ring->jtag);
1920 static int
1921 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1923 int i, j, error, descsize;
1924 bus_dmamem_t dmem;
1925 void **desc;
1927 if (sc->sc_caps & NFE_40BIT_ADDR) {
1928 desc = (void **)&ring->desc64;
1929 descsize = sizeof(struct nfe_desc64);
1930 } else {
1931 desc = (void **)&ring->desc32;
1932 descsize = sizeof(struct nfe_desc32);
1935 ring->queued = 0;
1936 ring->cur = ring->next = 0;
1938 error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1939 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1940 sc->sc_tx_ring_count * descsize,
1941 BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1942 if (error) {
1943 if_printf(&sc->arpcom.ac_if,
1944 "could not create TX desc ring\n");
1945 return error;
1947 ring->tag = dmem.dmem_tag;
1948 ring->map = dmem.dmem_map;
1949 *desc = dmem.dmem_addr;
1950 ring->physaddr = dmem.dmem_busaddr;
1952 ring->data = kmalloc(sizeof(struct nfe_tx_data) * sc->sc_tx_ring_count,
1953 M_DEVBUF, M_WAITOK | M_ZERO);
1955 error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
1956 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1957 NULL, NULL,
1958 NFE_JBYTES, NFE_MAX_SCATTER, MCLBYTES,
1959 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1960 &ring->data_tag);
1961 if (error) {
1962 if_printf(&sc->arpcom.ac_if,
1963 "could not create TX buf DMA tag\n");
1964 return error;
1967 for (i = 0; i < sc->sc_tx_ring_count; i++) {
1968 error = bus_dmamap_create(ring->data_tag,
1969 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1970 &ring->data[i].map);
1971 if (error) {
1972 if_printf(&sc->arpcom.ac_if,
1973 "could not create %dth TX buf DMA map\n", i);
1974 goto fail;
1978 return 0;
1979 fail:
1980 for (j = 0; j < i; ++j)
1981 bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1982 bus_dma_tag_destroy(ring->data_tag);
1983 ring->data_tag = NULL;
1984 return error;
1987 static void
1988 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1990 int i;
1992 for (i = 0; i < sc->sc_tx_ring_count; i++) {
1993 struct nfe_tx_data *data = &ring->data[i];
1995 if (sc->sc_caps & NFE_40BIT_ADDR)
1996 ring->desc64[i].flags = 0;
1997 else
1998 ring->desc32[i].flags = 0;
2000 if (data->m != NULL) {
2001 bus_dmamap_unload(ring->data_tag, data->map);
2002 m_freem(data->m);
2003 data->m = NULL;
2007 ring->queued = 0;
2008 ring->cur = ring->next = 0;
2011 static int
2012 nfe_init_tx_ring(struct nfe_softc *sc __unused,
2013 struct nfe_tx_ring *ring __unused)
2015 return 0;
2018 static void
2019 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
2021 if (ring->data_tag != NULL) {
2022 struct nfe_tx_data *data;
2023 int i;
2025 for (i = 0; i < sc->sc_tx_ring_count; ++i) {
2026 data = &ring->data[i];
2028 if (data->m != NULL) {
2029 bus_dmamap_unload(ring->data_tag, data->map);
2030 m_freem(data->m);
2032 bus_dmamap_destroy(ring->data_tag, data->map);
2035 bus_dma_tag_destroy(ring->data_tag);
2038 if (ring->data != NULL)
2039 kfree(ring->data, M_DEVBUF);
2041 if (ring->tag != NULL) {
2042 void *desc;
2044 if (sc->sc_caps & NFE_40BIT_ADDR)
2045 desc = ring->desc64;
2046 else
2047 desc = ring->desc32;
2049 bus_dmamap_unload(ring->tag, ring->map);
2050 bus_dmamem_free(ring->tag, desc, ring->map);
2051 bus_dma_tag_destroy(ring->tag);
2055 static int
2056 nfe_ifmedia_upd(struct ifnet *ifp)
2058 struct nfe_softc *sc = ifp->if_softc;
2059 struct mii_data *mii = device_get_softc(sc->sc_miibus);
2061 ASSERT_SERIALIZED(ifp->if_serializer);
2063 if (mii->mii_instance != 0) {
2064 struct mii_softc *miisc;
2066 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2067 mii_phy_reset(miisc);
2069 mii_mediachg(mii);
2071 return 0;
2074 static void
2075 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2077 struct nfe_softc *sc = ifp->if_softc;
2078 struct mii_data *mii = device_get_softc(sc->sc_miibus);
2080 ASSERT_SERIALIZED(ifp->if_serializer);
2082 mii_pollstat(mii);
2083 ifmr->ifm_status = mii->mii_media_status;
2084 ifmr->ifm_active = mii->mii_media_active;
2087 static void
2088 nfe_setmulti(struct nfe_softc *sc)
2090 struct ifnet *ifp = &sc->arpcom.ac_if;
2091 struct ifmultiaddr *ifma;
2092 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2093 uint32_t filter = NFE_RXFILTER_MAGIC;
2094 int i;
2096 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2097 bzero(addr, ETHER_ADDR_LEN);
2098 bzero(mask, ETHER_ADDR_LEN);
2099 goto done;
2102 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2103 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2105 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2106 caddr_t maddr;
2108 if (ifma->ifma_addr->sa_family != AF_LINK)
2109 continue;
2111 maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
2112 for (i = 0; i < ETHER_ADDR_LEN; i++) {
2113 addr[i] &= maddr[i];
2114 mask[i] &= ~maddr[i];
2118 for (i = 0; i < ETHER_ADDR_LEN; i++)
2119 mask[i] |= addr[i];
2121 done:
2122 addr[0] |= 0x01; /* make sure multicast bit is set */
2124 NFE_WRITE(sc, NFE_MULTIADDR_HI,
2125 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2126 NFE_WRITE(sc, NFE_MULTIADDR_LO,
2127 addr[5] << 8 | addr[4]);
2128 NFE_WRITE(sc, NFE_MULTIMASK_HI,
2129 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2130 NFE_WRITE(sc, NFE_MULTIMASK_LO,
2131 mask[5] << 8 | mask[4]);
2133 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
2134 NFE_WRITE(sc, NFE_RXFILTER, filter);
2137 static void
2138 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2140 uint32_t lo, hi;
2142 lo = NFE_READ(sc, NFE_MACADDR_LO);
2143 hi = NFE_READ(sc, NFE_MACADDR_HI);
2144 if (sc->sc_caps & NFE_FIX_EADDR) {
2145 addr[0] = (lo >> 8) & 0xff;
2146 addr[1] = (lo & 0xff);
2148 addr[2] = (hi >> 24) & 0xff;
2149 addr[3] = (hi >> 16) & 0xff;
2150 addr[4] = (hi >> 8) & 0xff;
2151 addr[5] = (hi & 0xff);
2152 } else {
2153 addr[0] = (hi & 0xff);
2154 addr[1] = (hi >> 8) & 0xff;
2155 addr[2] = (hi >> 16) & 0xff;
2156 addr[3] = (hi >> 24) & 0xff;
2158 addr[4] = (lo & 0xff);
2159 addr[5] = (lo >> 8) & 0xff;
2163 static void
2164 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
2166 NFE_WRITE(sc, NFE_MACADDR_LO,
2167 addr[5] << 8 | addr[4]);
2168 NFE_WRITE(sc, NFE_MACADDR_HI,
2169 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2172 static void
2173 nfe_tick(void *arg)
2175 struct nfe_softc *sc = arg;
2176 struct ifnet *ifp = &sc->arpcom.ac_if;
2177 struct mii_data *mii = device_get_softc(sc->sc_miibus);
2179 lwkt_serialize_enter(ifp->if_serializer);
2181 mii_tick(mii);
2182 callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
2184 lwkt_serialize_exit(ifp->if_serializer);
2187 static int
2188 nfe_newbuf_std(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2189 int wait)
2191 struct nfe_rx_data *data = &ring->data[idx];
2192 bus_dma_segment_t seg;
2193 bus_dmamap_t map;
2194 struct mbuf *m;
2195 int nsegs, error;
2197 m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2198 if (m == NULL)
2199 return ENOBUFS;
2200 m->m_len = m->m_pkthdr.len = MCLBYTES;
2202 error = bus_dmamap_load_mbuf_segment(ring->data_tag, ring->data_tmpmap,
2203 m, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
2204 if (error) {
2205 m_freem(m);
2206 if (wait) {
2207 if_printf(&sc->arpcom.ac_if,
2208 "could map RX mbuf %d\n", error);
2210 return error;
2213 if (data->m != NULL) {
2214 /* Sync and unload originally mapped mbuf */
2215 bus_dmamap_sync(ring->data_tag, data->map,
2216 BUS_DMASYNC_POSTREAD);
2217 bus_dmamap_unload(ring->data_tag, data->map);
2220 /* Swap this DMA map with tmp DMA map */
2221 map = data->map;
2222 data->map = ring->data_tmpmap;
2223 ring->data_tmpmap = map;
2225 /* Caller is assumed to have collected the old mbuf */
2226 data->m = m;
2228 nfe_set_paddr_rxdesc(sc, ring, idx, seg.ds_addr);
2229 return 0;
2232 static int
2233 nfe_newbuf_jumbo(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2234 int wait)
2236 struct nfe_rx_data *data = &ring->data[idx];
2237 struct nfe_jbuf *jbuf;
2238 struct mbuf *m;
2240 MGETHDR(m, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2241 if (m == NULL)
2242 return ENOBUFS;
2244 jbuf = nfe_jalloc(sc);
2245 if (jbuf == NULL) {
2246 m_freem(m);
2247 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
2248 "-- packet dropped!\n");
2249 return ENOBUFS;
2252 m->m_ext.ext_arg = jbuf;
2253 m->m_ext.ext_buf = jbuf->buf;
2254 m->m_ext.ext_free = nfe_jfree;
2255 m->m_ext.ext_ref = nfe_jref;
2256 m->m_ext.ext_size = NFE_JBYTES;
2258 m->m_data = m->m_ext.ext_buf;
2259 m->m_flags |= M_EXT;
2260 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2262 /* Caller is assumed to have collected the old mbuf */
2263 data->m = m;
2265 nfe_set_paddr_rxdesc(sc, ring, idx, jbuf->physaddr);
2266 return 0;
2269 static void
2270 nfe_set_paddr_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2271 bus_addr_t physaddr)
2273 if (sc->sc_caps & NFE_40BIT_ADDR) {
2274 struct nfe_desc64 *desc64 = &ring->desc64[idx];
2276 desc64->physaddr[0] = htole32(NFE_ADDR_HI(physaddr));
2277 desc64->physaddr[1] = htole32(NFE_ADDR_LO(physaddr));
2278 } else {
2279 struct nfe_desc32 *desc32 = &ring->desc32[idx];
2281 desc32->physaddr = htole32(physaddr);
2285 static void
2286 nfe_set_ready_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx)
2288 if (sc->sc_caps & NFE_40BIT_ADDR) {
2289 struct nfe_desc64 *desc64 = &ring->desc64[idx];
2291 desc64->length = htole16(ring->bufsz);
2292 desc64->flags = htole16(NFE_RX_READY);
2293 } else {
2294 struct nfe_desc32 *desc32 = &ring->desc32[idx];
2296 desc32->length = htole16(ring->bufsz);
2297 desc32->flags = htole16(NFE_RX_READY);
2301 static int
2302 nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS)
2304 struct nfe_softc *sc = arg1;
2305 struct ifnet *ifp = &sc->arpcom.ac_if;
2306 uint32_t flags;
2307 int error, v;
2309 lwkt_serialize_enter(ifp->if_serializer);
2311 flags = sc->sc_flags & ~NFE_F_DYN_IM;
2312 v = sc->sc_imtime;
2313 if (sc->sc_flags & NFE_F_DYN_IM)
2314 v = -v;
2316 error = sysctl_handle_int(oidp, &v, 0, req);
2317 if (error || req->newptr == NULL)
2318 goto back;
2320 if (v < 0) {
2321 flags |= NFE_F_DYN_IM;
2322 v = -v;
2325 if (v != sc->sc_imtime || (flags ^ sc->sc_flags)) {
2326 if (NFE_IMTIME(v) == 0)
2327 v = 0;
2328 sc->sc_imtime = v;
2329 sc->sc_flags = flags;
2330 sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
2332 if ((ifp->if_flags & (IFF_POLLING | IFF_RUNNING))
2333 == IFF_RUNNING) {
2334 nfe_enable_intrs(sc);
2337 back:
2338 lwkt_serialize_exit(ifp->if_serializer);
2339 return error;
2342 static void
2343 nfe_powerup(device_t dev)
2345 struct nfe_softc *sc = device_get_softc(dev);
2346 uint32_t pwr_state;
2347 uint16_t did;
2350 * Bring MAC and PHY out of low power state
2353 pwr_state = NFE_READ(sc, NFE_PWR_STATE2) & ~NFE_PWRUP_MASK;
2355 did = pci_get_device(dev);
2356 if ((did == PCI_PRODUCT_NVIDIA_MCP51_LAN1 ||
2357 did == PCI_PRODUCT_NVIDIA_MCP51_LAN2) &&
2358 pci_get_revid(dev) >= 0xa3)
2359 pwr_state |= NFE_PWRUP_REV_A3;
2361 NFE_WRITE(sc, NFE_PWR_STATE2, pwr_state);
2364 static void
2365 nfe_mac_reset(struct nfe_softc *sc)
2367 uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
2368 uint32_t macaddr_hi, macaddr_lo, tx_poll;
2370 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
2372 /* Save several registers for later restoration */
2373 macaddr_hi = NFE_READ(sc, NFE_MACADDR_HI);
2374 macaddr_lo = NFE_READ(sc, NFE_MACADDR_LO);
2375 tx_poll = NFE_READ(sc, NFE_TX_POLL);
2377 NFE_WRITE(sc, NFE_MAC_RESET, NFE_RESET_ASSERT);
2378 DELAY(100);
2380 NFE_WRITE(sc, NFE_MAC_RESET, 0);
2381 DELAY(100);
2383 /* Restore saved registers */
2384 NFE_WRITE(sc, NFE_MACADDR_HI, macaddr_hi);
2385 NFE_WRITE(sc, NFE_MACADDR_LO, macaddr_lo);
2386 NFE_WRITE(sc, NFE_TX_POLL, tx_poll);
2388 NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
2391 static void
2392 nfe_enable_intrs(struct nfe_softc *sc)
2395 * NFE_IMTIMER generates a periodic interrupt via NFE_IRQ_TIMER.
2396 * It is unclear how wide the timer is. Base programming does
2397 * not seem to effect NFE_IRQ_TX_DONE or NFE_IRQ_RX_DONE so
2398 * we don't get any interrupt moderation. TX moderation is
2399 * possible by using the timer interrupt instead of TX_DONE.
2401 * It is unclear whether there are other bits that can be
2402 * set to make the NFE device actually do interrupt moderation
2403 * on the RX side.
2405 * For now set a 128uS interval as a placemark, but don't use
2406 * the timer.
2408 if (sc->sc_imtime == 0)
2409 NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME_DEFAULT);
2410 else
2411 NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME(sc->sc_imtime));
2413 /* Enable interrupts */
2414 NFE_WRITE(sc, NFE_IRQ_MASK, sc->sc_irq_enable);
2416 if (sc->sc_irq_enable & NFE_IRQ_TIMER)
2417 sc->sc_flags |= NFE_F_IRQ_TIMER;
2418 else
2419 sc->sc_flags &= ~NFE_F_IRQ_TIMER;
2422 static void
2423 nfe_disable_intrs(struct nfe_softc *sc)
2425 /* Disable interrupts */
2426 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
2427 sc->sc_flags &= ~NFE_F_IRQ_TIMER;