Remove duplicate line and add missing MLINK.
[dragonfly.git] / sys / kern / subr_alist.c
blob97fbe598c464058fa7f16da7bf630a28ecddf357
1 /*
2 * ALIST.C - Bitmap allocator/deallocator, using a radix tree with hinting.
3 * Unlimited-size allocations, power-of-2 only, power-of-2
4 * aligned results only.
5 *
6 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
7 *
8 * This code is derived from software contributed to The DragonFly Project
9 * by Matthew Dillon <dillon@backplane.com>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * $DragonFly: src/sys/kern/subr_alist.c,v 1.3 2007/09/27 18:20:20 dillon Exp $
41 * This module has been adapted from the BLIST module, which was written
42 * by Matthew Dillon many years ago.
44 * This module implements a general power-of-2 bitmap allocator/deallocator.
45 * All allocations must be in powers of 2 and will return similarly aligned
46 * results. The module does not try to interpret the meaning of a 'block'
47 * other then to return ALIST_BLOCK_NONE on an allocation failure.
49 * A maximum of 2 billion blocks is supported so, for example, if one block
50 * represented 64 bytes a maximally sized ALIST would represent
51 * 128 gigabytes.
53 * A radix tree is used to maintain the bitmap and layed out in a manner
54 * similar to the blist code. Meta nodes use a radix of 16 and 2 bits per
55 * block while leaf nodes use a radix of 32 and 1 bit per block (stored in
56 * a 32 bit bitmap field). Both meta and leaf nodes have a hint field.
57 * This field gives us a hint as to the largest free contiguous range of
58 * blocks under the node. It may contain a value that is too high, but
59 * will never contain a value that is too low. When the radix tree is
60 * searched, allocation failures in subtrees update the hint.
62 * The radix tree is layed out recursively using a linear array. Each meta
63 * node is immediately followed (layed out sequentially in memory) by
64 * ALIST_META_RADIX lower level nodes. This is a recursive structure but one
65 * that can be easily scanned through a very simple 'skip' calculation. In
66 * order to support large radixes, portions of the tree may reside outside our
67 * memory allocation. We handle this with an early-terminate optimization
68 * in the meta-node. The memory allocation is only large enough to cover
69 * the number of blocks requested at creation time even if it must be
70 * encompassed in larger root-node radix.
72 * This code can be compiled stand-alone for debugging.
75 #ifdef _KERNEL
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/lock.h>
80 #include <sys/kernel.h>
81 #include <sys/alist.h>
82 #include <sys/malloc.h>
83 #include <vm/vm.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_page.h>
89 #else
91 #ifndef ALIST_NO_DEBUG
92 #define ALIST_DEBUG
93 #endif
95 #include <sys/types.h>
96 #include <stdio.h>
97 #include <assert.h>
98 #include <string.h>
99 #include <stdlib.h>
100 #include <stdarg.h>
102 #define kmalloc(a,b,c) malloc(a)
103 #define kfree(a,b) free(a)
104 #define kprintf printf
105 #define KKASSERT(exp) assert(exp)
106 struct malloc_type;
108 typedef unsigned int u_daddr_t;
110 #include <sys/alist.h>
112 void panic(const char *ctl, ...);
114 #endif
117 * static support functions
120 static daddr_t alst_leaf_alloc(almeta_t *scan, daddr_t blk, int count);
121 static daddr_t alst_meta_alloc(almeta_t *scan, daddr_t blk,
122 daddr_t count, daddr_t radix, int skip);
123 static void alst_leaf_free(almeta_t *scan, daddr_t relblk, int count);
124 static void alst_meta_free(almeta_t *scan, daddr_t freeBlk, daddr_t count,
125 daddr_t radix, int skip, daddr_t blk);
126 static daddr_t alst_radix_init(almeta_t *scan, daddr_t radix,
127 int skip, daddr_t count);
128 #ifndef _KERNEL
129 static void alst_radix_print(almeta_t *scan, daddr_t blk,
130 daddr_t radix, int skip, int tab);
131 #endif
134 * alist_create() - create a alist capable of handling up to the specified
135 * number of blocks
137 * blocks must be greater then 0
139 * The smallest alist consists of a single leaf node capable of
140 * managing ALIST_BMAP_RADIX blocks.
143 alist_t
144 alist_create(daddr_t blocks, struct malloc_type *mtype)
146 alist_t bl;
147 int radix;
148 int skip = 0;
151 * Calculate radix and skip field used for scanning.
153 radix = ALIST_BMAP_RADIX;
155 while (radix < blocks) {
156 radix *= ALIST_META_RADIX;
157 skip = (skip + 1) * ALIST_META_RADIX;
160 bl = kmalloc(sizeof(struct alist), mtype, M_WAITOK);
162 bzero(bl, sizeof(*bl));
164 bl->bl_blocks = blocks;
165 bl->bl_radix = radix;
166 bl->bl_skip = skip;
167 bl->bl_rootblks = 1 +
168 alst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
169 bl->bl_root = kmalloc(sizeof(almeta_t) * bl->bl_rootblks, mtype, M_WAITOK);
171 #if defined(ALIST_DEBUG)
172 kprintf(
173 "ALIST representing %d blocks (%d MB of swap)"
174 ", requiring %dK (%d bytes) of ram\n",
175 bl->bl_blocks,
176 bl->bl_blocks * 4 / 1024,
177 (bl->bl_rootblks * sizeof(almeta_t) + 1023) / 1024,
178 (bl->bl_rootblks * sizeof(almeta_t))
180 kprintf("ALIST raw radix tree contains %d records\n", bl->bl_rootblks);
181 #endif
182 alst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
184 return(bl);
187 void
188 alist_destroy(alist_t bl, struct malloc_type *mtype)
190 kfree(bl->bl_root, mtype);
191 kfree(bl, mtype);
195 * alist_alloc() - reserve space in the block bitmap. Return the base
196 * of a contiguous region or ALIST_BLOCK_NONE if space
197 * could not be allocated.
200 daddr_t
201 alist_alloc(alist_t bl, daddr_t count)
203 daddr_t blk = ALIST_BLOCK_NONE;
205 KKASSERT((count | (count - 1)) == (count << 1) - 1);
207 if (bl && count < bl->bl_radix) {
208 if (bl->bl_radix == ALIST_BMAP_RADIX)
209 blk = alst_leaf_alloc(bl->bl_root, 0, count);
210 else
211 blk = alst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
212 if (blk != ALIST_BLOCK_NONE)
213 bl->bl_free -= count;
215 return(blk);
219 * alist_free() - free up space in the block bitmap. Return the base
220 * of a contiguous region. Panic if an inconsistancy is
221 * found.
224 void
225 alist_free(alist_t bl, daddr_t blkno, daddr_t count)
227 if (bl) {
228 KKASSERT(blkno + count <= bl->bl_blocks);
229 if (bl->bl_radix == ALIST_BMAP_RADIX)
230 alst_leaf_free(bl->bl_root, blkno, count);
231 else
232 alst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
233 bl->bl_free += count;
237 #ifdef ALIST_DEBUG
240 * alist_print() - dump radix tree
243 void
244 alist_print(alist_t bl)
246 kprintf("ALIST {\n");
247 alst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
248 kprintf("}\n");
251 #endif
253 /************************************************************************
254 * ALLOCATION SUPPORT FUNCTIONS *
255 ************************************************************************
257 * These support functions do all the actual work. They may seem
258 * rather longish, but that's because I've commented them up. The
259 * actual code is straight forward.
264 * alist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
266 * This is the core of the allocator and is optimized for the 1 block
267 * and the ALIST_BMAP_RADIX block allocation cases. Other cases are
268 * somewhat slower. The 1 block allocation case is log2 and extremely
269 * quick.
272 static daddr_t
273 alst_leaf_alloc(
274 almeta_t *scan,
275 daddr_t blk,
276 int count
278 u_daddr_t orig = scan->bm_bitmap;
281 * Optimize bitmap all-allocated case. Also, count = 1
282 * case assumes at least 1 bit is free in the bitmap, so
283 * we have to take care of this case here.
285 if (orig == 0) {
286 scan->bm_bighint = 0;
287 return(ALIST_BLOCK_NONE);
291 * Optimized code to allocate one bit out of the bitmap
293 if (count == 1) {
294 u_daddr_t mask;
295 int j = ALIST_BMAP_RADIX/2;
296 int r = 0;
298 mask = (u_daddr_t)-1 >> (ALIST_BMAP_RADIX/2);
300 while (j) {
301 if ((orig & mask) == 0) {
302 r += j;
303 orig >>= j;
305 j >>= 1;
306 mask >>= j;
308 scan->bm_bitmap &= ~(1 << r);
309 return(blk + r);
313 * non-optimized code to allocate N bits out of the bitmap.
314 * The more bits, the faster the code runs. It will run
315 * the slowest allocating 2 bits, but since there aren't any
316 * memory ops in the core loop (or shouldn't be, anyway),
317 * you probably won't notice the difference.
319 * Similar to the blist case, the alist code also requires
320 * allocations to be power-of-2 sized and aligned to the
321 * size of the allocation, which simplifies the algorithm.
324 int j;
325 int n = ALIST_BMAP_RADIX - count;
326 u_daddr_t mask;
328 mask = (u_daddr_t)-1 >> n;
330 for (j = 0; j <= n; j += count) {
331 if ((orig & mask) == mask) {
332 scan->bm_bitmap &= ~mask;
333 return(blk + j);
335 mask = mask << count;
340 * We couldn't allocate count in this subtree, update bighint.
342 scan->bm_bighint = count - 1;
343 return(ALIST_BLOCK_NONE);
347 * alist_meta_alloc() - allocate at a meta in the radix tree.
349 * Attempt to allocate at a meta node. If we can't, we update
350 * bighint and return a failure. Updating bighint optimize future
351 * calls that hit this node. We have to check for our collapse cases
352 * and we have a few optimizations strewn in as well.
355 static daddr_t
356 alst_meta_alloc(
357 almeta_t *scan,
358 daddr_t blk,
359 daddr_t count,
360 daddr_t radix,
361 int skip
363 int i;
364 u_daddr_t mask;
365 u_daddr_t pmask;
366 int next_skip = ((u_int)skip / ALIST_META_RADIX);
369 * ALL-ALLOCATED special case
371 if (scan->bm_bitmap == 0) {
372 scan->bm_bighint = 0;
373 return(ALIST_BLOCK_NONE);
376 radix /= ALIST_META_RADIX;
379 * Radix now represents each bitmap entry for this meta node. If
380 * the number of blocks being allocated can be fully represented,
381 * we allocate directly out of this meta node.
383 * Meta node bitmaps use 2 bits per block.
385 * 00 ALL-ALLOCATED
386 * 01 PARTIALLY-FREE/PARTIALLY-ALLOCATED
387 * 10 (RESERVED)
388 * 11 ALL-FREE
390 if (count >= radix) {
391 int n = count / radix * 2; /* number of bits */
392 int j;
394 mask = (u_daddr_t)-1 >> (ALIST_BMAP_RADIX - n);
395 for (j = 0; j < ALIST_META_RADIX; j += n / 2) {
396 if ((scan->bm_bitmap & mask) == mask) {
397 scan->bm_bitmap &= ~mask;
398 return(blk + j * radix);
400 mask <<= n;
402 if (scan->bm_bighint >= count)
403 scan->bm_bighint = count >> 1;
404 return(ALIST_BLOCK_NONE);
408 * If not we have to recurse.
410 mask = 0x00000003;
411 pmask = 0x00000001;
412 for (i = 1; i <= skip; i += next_skip) {
413 if (scan[i].bm_bighint == (daddr_t)-1) {
415 * Terminator
417 break;
419 if ((scan->bm_bitmap & mask) == mask) {
420 scan[i].bm_bitmap = (u_daddr_t)-1;
421 scan[i].bm_bighint = radix;
424 if (count <= scan[i].bm_bighint) {
426 * count fits in object
428 daddr_t r;
429 if (next_skip == 1) {
430 r = alst_leaf_alloc(&scan[i], blk, count);
431 } else {
432 r = alst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
434 if (r != ALIST_BLOCK_NONE) {
435 if (scan[i].bm_bitmap == 0) {
436 scan->bm_bitmap &= ~mask;
437 } else {
438 scan->bm_bitmap &= ~mask;
439 scan->bm_bitmap |= pmask;
441 return(r);
443 } else if (count > radix) {
445 * count does not fit in object even if it were
446 * completely free.
448 break;
450 blk += radix;
451 mask <<= 2;
452 pmask <<= 2;
456 * We couldn't allocate count in this subtree, update bighint.
458 if (scan->bm_bighint >= count)
459 scan->bm_bighint = count >> 1;
460 return(ALIST_BLOCK_NONE);
464 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
467 static void
468 alst_leaf_free(
469 almeta_t *scan,
470 daddr_t blk,
471 int count
474 * free some data in this bitmap
476 * e.g.
477 * 0000111111111110000
478 * \_________/\__/
479 * v n
481 int n = blk & (ALIST_BMAP_RADIX - 1);
482 u_daddr_t mask;
484 mask = ((u_daddr_t)-1 << n) &
485 ((u_daddr_t)-1 >> (ALIST_BMAP_RADIX - count - n));
487 if (scan->bm_bitmap & mask)
488 panic("alst_radix_free: freeing free block");
489 scan->bm_bitmap |= mask;
492 * We could probably do a better job here. We are required to make
493 * bighint at least as large as the biggest contiguous block of
494 * data. If we just shoehorn it, a little extra overhead will
495 * be incured on the next allocation (but only that one typically).
497 scan->bm_bighint = ALIST_BMAP_RADIX;
501 * BLST_META_FREE() - free allocated blocks from radix tree meta info
503 * This support routine frees a range of blocks from the bitmap.
504 * The range must be entirely enclosed by this radix node. If a
505 * meta node, we break the range down recursively to free blocks
506 * in subnodes (which means that this code can free an arbitrary
507 * range whereas the allocation code cannot allocate an arbitrary
508 * range).
511 static void
512 alst_meta_free(
513 almeta_t *scan,
514 daddr_t freeBlk,
515 daddr_t count,
516 daddr_t radix,
517 int skip,
518 daddr_t blk
520 int next_skip = ((u_int)skip / ALIST_META_RADIX);
521 u_daddr_t mask;
522 u_daddr_t pmask;
523 int i;
526 * Break the free down into its components. Because it is so easy
527 * to implement, frees are not limited to power-of-2 sizes.
529 * Each block in a meta-node bitmap takes two bits.
531 radix /= ALIST_META_RADIX;
533 i = (freeBlk - blk) / radix;
534 blk += i * radix;
535 mask = 0x00000003 << (i * 2);
536 pmask = 0x00000001 << (i * 2);
538 i = i * next_skip + 1;
540 while (i <= skip && blk < freeBlk + count) {
541 daddr_t v;
543 v = blk + radix - freeBlk;
544 if (v > count)
545 v = count;
547 if (scan->bm_bighint == (daddr_t)-1)
548 panic("alst_meta_free: freeing unexpected range");
550 if (freeBlk == blk && count >= radix) {
552 * All-free case, no need to update sub-tree
554 scan->bm_bitmap |= mask;
555 scan->bm_bighint = radix * ALIST_META_RADIX;/*XXX*/
556 } else {
558 * Recursion case
560 if (next_skip == 1)
561 alst_leaf_free(&scan[i], freeBlk, v);
562 else
563 alst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
564 if (scan[i].bm_bitmap == (u_daddr_t)-1)
565 scan->bm_bitmap |= mask;
566 else
567 scan->bm_bitmap |= pmask;
568 if (scan->bm_bighint < scan[i].bm_bighint)
569 scan->bm_bighint = scan[i].bm_bighint;
571 mask <<= 2;
572 pmask <<= 2;
573 count -= v;
574 freeBlk += v;
575 blk += radix;
576 i += next_skip;
581 * BLST_RADIX_INIT() - initialize radix tree
583 * Initialize our meta structures and bitmaps and calculate the exact
584 * amount of space required to manage 'count' blocks - this space may
585 * be considerably less then the calculated radix due to the large
586 * RADIX values we use.
589 static daddr_t
590 alst_radix_init(almeta_t *scan, daddr_t radix, int skip, daddr_t count)
592 int i;
593 int next_skip;
594 daddr_t memindex = 0;
595 u_daddr_t mask;
596 u_daddr_t pmask;
599 * Leaf node
601 if (radix == ALIST_BMAP_RADIX) {
602 if (scan) {
603 scan->bm_bighint = 0;
604 scan->bm_bitmap = 0;
606 return(memindex);
610 * Meta node. If allocating the entire object we can special
611 * case it. However, we need to figure out how much memory
612 * is required to manage 'count' blocks, so we continue on anyway.
615 if (scan) {
616 scan->bm_bighint = 0;
617 scan->bm_bitmap = 0;
620 radix /= ALIST_META_RADIX;
621 next_skip = ((u_int)skip / ALIST_META_RADIX);
622 mask = 0x00000003;
623 pmask = 0x00000001;
625 for (i = 1; i <= skip; i += next_skip) {
626 if (count >= radix) {
628 * Allocate the entire object
630 memindex = i + alst_radix_init(
631 ((scan) ? &scan[i] : NULL),
632 radix,
633 next_skip - 1,
634 radix
636 count -= radix;
637 /* already marked as wholely allocated */
638 } else if (count > 0) {
640 * Allocate a partial object
642 memindex = i + alst_radix_init(
643 ((scan) ? &scan[i] : NULL),
644 radix,
645 next_skip - 1,
646 count
648 count = 0;
651 * Mark as partially allocated
653 if (scan)
654 scan->bm_bitmap |= pmask;
655 } else {
657 * Add terminator and break out
659 if (scan)
660 scan[i].bm_bighint = (daddr_t)-1;
661 /* already marked as wholely allocated */
662 break;
664 mask <<= 2;
665 pmask <<= 2;
667 if (memindex < i)
668 memindex = i;
669 return(memindex);
672 #ifdef ALIST_DEBUG
674 static void
675 alst_radix_print(almeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
677 int i;
678 int next_skip;
679 int lastState = 0;
680 u_daddr_t mask;
682 if (radix == ALIST_BMAP_RADIX) {
683 kprintf(
684 "%*.*s(%04x,%d): bitmap %08x big=%d\n",
685 tab, tab, "",
686 blk, radix,
687 scan->bm_bitmap,
688 scan->bm_bighint
690 return;
693 if (scan->bm_bitmap == 0) {
694 kprintf(
695 "%*.*s(%04x,%d) ALL ALLOCATED\n",
696 tab, tab, "",
697 blk,
698 radix
700 return;
702 if (scan->bm_bitmap == (u_daddr_t)-1) {
703 kprintf(
704 "%*.*s(%04x,%d) ALL FREE\n",
705 tab, tab, "",
706 blk,
707 radix
709 return;
712 kprintf(
713 "%*.*s(%04x,%d): subtree (%d) bitmap=%08x big=%d {\n",
714 tab, tab, "",
715 blk, radix,
716 radix,
717 scan->bm_bitmap,
718 scan->bm_bighint
721 radix /= ALIST_META_RADIX;
722 next_skip = ((u_int)skip / ALIST_META_RADIX);
723 tab += 4;
724 mask = 0x00000003;
726 for (i = 1; i <= skip; i += next_skip) {
727 if (scan[i].bm_bighint == (daddr_t)-1) {
728 kprintf(
729 "%*.*s(%04x,%d): Terminator\n",
730 tab, tab, "",
731 blk, radix
733 lastState = 0;
734 break;
736 if ((scan->bm_bitmap & mask) == mask) {
737 kprintf(
738 "%*.*s(%04x,%d): ALL FREE\n",
739 tab, tab, "",
740 blk, radix
742 } else if ((scan->bm_bitmap & mask) == 0) {
743 kprintf(
744 "%*.*s(%04x,%d): ALL ALLOCATED\n",
745 tab, tab, "",
746 blk, radix
748 } else {
749 alst_radix_print(
750 &scan[i],
751 blk,
752 radix,
753 next_skip - 1,
757 blk += radix;
758 mask <<= 2;
760 tab -= 4;
762 kprintf(
763 "%*.*s}\n",
764 tab, tab, ""
768 #endif
770 #ifdef ALIST_DEBUG
773 main(int ac, char **av)
775 int size = 1024;
776 int i;
777 alist_t bl;
779 for (i = 1; i < ac; ++i) {
780 const char *ptr = av[i];
781 if (*ptr != '-') {
782 size = strtol(ptr, NULL, 0);
783 continue;
785 ptr += 2;
786 fprintf(stderr, "Bad option: %s\n", ptr - 2);
787 exit(1);
789 bl = alist_create(size, NULL);
790 alist_free(bl, 0, size);
792 for (;;) {
793 char buf[1024];
794 daddr_t da = 0;
795 daddr_t count = 0;
798 kprintf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
799 fflush(stdout);
800 if (fgets(buf, sizeof(buf), stdin) == NULL)
801 break;
802 switch(buf[0]) {
803 case 'p':
804 alist_print(bl);
805 break;
806 case 'a':
807 if (sscanf(buf + 1, "%d", &count) == 1) {
808 daddr_t blk = alist_alloc(bl, count);
809 kprintf(" R=%04x\n", blk);
810 } else {
811 kprintf("?\n");
813 break;
814 case 'f':
815 if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
816 alist_free(bl, da, count);
817 } else {
818 kprintf("?\n");
820 break;
821 case '?':
822 case 'h':
823 puts(
824 "p -print\n"
825 "a %d -allocate\n"
826 "f %x %d -free\n"
827 "h/? -help"
829 break;
830 default:
831 kprintf("?\n");
832 break;
835 return(0);
838 void
839 panic(const char *ctl, ...)
841 __va_list va;
843 __va_start(va, ctl);
844 vfprintf(stderr, ctl, va);
845 fprintf(stderr, "\n");
846 __va_end(va);
847 exit(1);
850 #endif