kernel: Remove the FFS_ROOT option. It was a no-op since 4.9.
[dragonfly.git] / sys / netinet6 / nd6.c
blob71437933bcea5e0ff80a21ec54a9e5038035a5aa
1 /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $ */
2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/syslog.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/mutex.h>
52 #include <sys/thread2.h>
53 #include <sys/mutex2.h>
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/netisr2.h>
60 #include <net/netmsg2.h>
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
70 #include <net/net_osdep.h>
72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
75 #define SIN6(s) ((struct sockaddr_in6 *)s)
76 #define SDL(s) ((struct sockaddr_dl *)s)
79 * Note that the check for rt_llinfo is necessary because a cloned
80 * route from a parent route that has the L flag (e.g. the default
81 * route to a p2p interface) may have the flag, too, while the
82 * destination is not actually a neighbor.
83 * XXX: we can't use rt->rt_ifp to check for the interface, since
84 * it might be the loopback interface if the entry is for our
85 * own address on a non-loopback interface. Instead, we should
86 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
87 * interface.
89 #define ND6_RTENTRY_IS_NEIGHBOR(rt, ifp) \
90 !(((rt)->rt_flags & RTF_GATEWAY) || \
91 ((rt)->rt_flags & RTF_LLINFO) == 0 || \
92 (rt)->rt_gateway->sa_family != AF_LINK || \
93 (rt)->rt_llinfo == NULL || \
94 ((ifp) != NULL && (rt)->rt_ifa->ifa_ifp != (ifp)))
96 #define ND6_RTENTRY_IS_LLCLONING(rt) \
97 (((rt)->rt_flags & (RTF_PRCLONING | RTF_LLINFO)) == \
98 (RTF_PRCLONING | RTF_LLINFO) || \
99 ((rt)->rt_flags & RTF_CLONING))
101 /* timer values */
102 int nd6_prune = 1; /* walk list every 1 seconds */
103 int nd6_delay = 5; /* delay first probe time 5 second */
104 int nd6_umaxtries = 3; /* maximum unicast query */
105 int nd6_mmaxtries = 3; /* maximum multicast query */
106 int nd6_useloopback = 1; /* use loopback interface for local traffic */
107 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
109 /* preventing too many loops in ND option parsing */
110 int nd6_maxndopt = 10; /* max # of ND options allowed */
112 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
114 #ifdef ND6_DEBUG
115 int nd6_debug = 1;
116 #else
117 int nd6_debug = 0;
118 #endif
120 /* for debugging? */
121 static int nd6_inuse, nd6_allocated;
123 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
124 struct nd_drhead nd_defrouter;
125 struct nd_prhead nd_prefix = { 0 };
126 struct mtx nd6_mtx = MTX_INITIALIZER("nd6");
128 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
129 static struct sockaddr_in6 all1_sa;
131 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *);
132 static int regen_tmpaddr (struct in6_ifaddr *);
133 static void nd6_slowtimo(void *);
134 static void nd6_slowtimo_dispatch(netmsg_t);
135 static void nd6_timer(void *);
136 static void nd6_timer_dispatch(netmsg_t);
138 static struct callout nd6_slowtimo_ch;
139 static struct netmsg_base nd6_slowtimo_netmsg;
141 static struct callout nd6_timer_ch;
142 static struct netmsg_base nd6_timer_netmsg;
144 void
145 nd6_init(void)
147 static int nd6_init_done = 0;
148 int i;
150 if (nd6_init_done) {
151 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
152 return;
155 all1_sa.sin6_family = AF_INET6;
156 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
157 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
158 all1_sa.sin6_addr.s6_addr[i] = 0xff;
160 /* initialization of the default router list */
161 TAILQ_INIT(&nd_defrouter);
163 nd6_init_done = 1;
165 /* start timer */
166 callout_init_mp(&nd6_slowtimo_ch);
167 netmsg_init(&nd6_slowtimo_netmsg, NULL, &netisr_adone_rport,
168 MSGF_PRIORITY, nd6_slowtimo_dispatch);
169 callout_reset_bycpu(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
170 nd6_slowtimo, NULL, 0);
173 struct nd_ifinfo *
174 nd6_ifattach(struct ifnet *ifp)
176 struct nd_ifinfo *nd;
178 nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP,
179 M_WAITOK | M_ZERO);
181 nd->initialized = 1;
183 nd->chlim = IPV6_DEFHLIM;
184 nd->basereachable = REACHABLE_TIME;
185 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
186 nd->retrans = RETRANS_TIMER;
189 * Note that the default value of ip6_accept_rtadv is 0, which means
190 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
191 * here.
193 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
195 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
196 nd6_setmtu0(ifp, nd);
197 return nd;
200 void
201 nd6_ifdetach(struct nd_ifinfo *nd)
203 kfree(nd, M_IP6NDP);
207 * Reset ND level link MTU. This function is called when the physical MTU
208 * changes, which means we might have to adjust the ND level MTU.
210 void
211 nd6_setmtu(struct ifnet *ifp)
213 nd6_setmtu0(ifp, ND_IFINFO(ifp));
216 struct netmsg_nd6setmtu {
217 struct netmsg_base nmsg;
218 struct ifnet *ifp;
219 struct nd_ifinfo *ndi;
222 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
223 static void
224 nd6_setmtu0_dispatch(netmsg_t msg)
226 struct netmsg_nd6setmtu *nmsg = (struct netmsg_nd6setmtu *)msg;
227 struct ifnet *ifp = nmsg->ifp;
228 struct nd_ifinfo *ndi = nmsg->ndi;
229 uint32_t omaxmtu;
231 omaxmtu = ndi->maxmtu;
233 switch (ifp->if_type) {
234 case IFT_ETHER:
235 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
236 break;
237 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */
238 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
239 break;
240 #ifdef IFT_IEEE80211
241 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */
242 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
243 break;
244 #endif
245 default:
246 ndi->maxmtu = ifp->if_mtu;
247 break;
251 * Decreasing the interface MTU under IPV6 minimum MTU may cause
252 * undesirable situation. We thus notify the operator of the change
253 * explicitly. The check for omaxmtu is necessary to restrict the
254 * log to the case of changing the MTU, not initializing it.
256 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
257 log(LOG_NOTICE, "nd6_setmtu0: "
258 "new link MTU on %s (%lu) is too small for IPv6\n",
259 if_name(ifp), (unsigned long)ndi->maxmtu);
262 if (ndi->maxmtu > in6_maxmtu)
263 in6_setmaxmtu(); /* check all interfaces just in case */
265 lwkt_replymsg(&nmsg->nmsg.lmsg, 0);
268 void
269 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
271 struct netmsg_nd6setmtu nmsg;
273 netmsg_init(&nmsg.nmsg, NULL, &curthread->td_msgport, 0,
274 nd6_setmtu0_dispatch);
275 nmsg.ifp = ifp;
276 nmsg.ndi = ndi;
277 lwkt_domsg(netisr_cpuport(0), &nmsg.nmsg.lmsg, 0);
280 void
281 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
283 bzero(ndopts, sizeof(*ndopts));
284 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
285 ndopts->nd_opts_last
286 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
288 if (icmp6len == 0) {
289 ndopts->nd_opts_done = 1;
290 ndopts->nd_opts_search = NULL;
295 * Take one ND option.
297 struct nd_opt_hdr *
298 nd6_option(union nd_opts *ndopts)
300 struct nd_opt_hdr *nd_opt;
301 int olen;
303 if (!ndopts)
304 panic("ndopts == NULL in nd6_option");
305 if (!ndopts->nd_opts_last)
306 panic("uninitialized ndopts in nd6_option");
307 if (!ndopts->nd_opts_search)
308 return NULL;
309 if (ndopts->nd_opts_done)
310 return NULL;
312 nd_opt = ndopts->nd_opts_search;
314 /* make sure nd_opt_len is inside the buffer */
315 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
316 bzero(ndopts, sizeof(*ndopts));
317 return NULL;
320 olen = nd_opt->nd_opt_len << 3;
321 if (olen == 0) {
323 * Message validation requires that all included
324 * options have a length that is greater than zero.
326 bzero(ndopts, sizeof(*ndopts));
327 return NULL;
330 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
331 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
332 /* option overruns the end of buffer, invalid */
333 bzero(ndopts, sizeof(*ndopts));
334 return NULL;
335 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
336 /* reached the end of options chain */
337 ndopts->nd_opts_done = 1;
338 ndopts->nd_opts_search = NULL;
340 return nd_opt;
344 * Parse multiple ND options.
345 * This function is much easier to use, for ND routines that do not need
346 * multiple options of the same type.
349 nd6_options(union nd_opts *ndopts)
351 struct nd_opt_hdr *nd_opt;
352 int i = 0;
354 if (!ndopts)
355 panic("ndopts == NULL in nd6_options");
356 if (!ndopts->nd_opts_last)
357 panic("uninitialized ndopts in nd6_options");
358 if (!ndopts->nd_opts_search)
359 return 0;
361 while (1) {
362 nd_opt = nd6_option(ndopts);
363 if (!nd_opt && !ndopts->nd_opts_last) {
365 * Message validation requires that all included
366 * options have a length that is greater than zero.
368 icmp6stat.icp6s_nd_badopt++;
369 bzero(ndopts, sizeof(*ndopts));
370 return -1;
373 if (!nd_opt)
374 goto skip1;
376 switch (nd_opt->nd_opt_type) {
377 case ND_OPT_SOURCE_LINKADDR:
378 case ND_OPT_TARGET_LINKADDR:
379 case ND_OPT_MTU:
380 case ND_OPT_REDIRECTED_HEADER:
381 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
382 nd6log((LOG_INFO,
383 "duplicated ND6 option found (type=%d)\n",
384 nd_opt->nd_opt_type));
385 /* XXX bark? */
386 } else {
387 ndopts->nd_opt_array[nd_opt->nd_opt_type]
388 = nd_opt;
390 break;
391 case ND_OPT_PREFIX_INFORMATION:
392 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
393 ndopts->nd_opt_array[nd_opt->nd_opt_type]
394 = nd_opt;
396 ndopts->nd_opts_pi_end =
397 (struct nd_opt_prefix_info *)nd_opt;
398 break;
399 default:
401 * Unknown options must be silently ignored,
402 * to accomodate future extension to the protocol.
404 nd6log((LOG_DEBUG,
405 "nd6_options: unsupported option %d - "
406 "option ignored\n", nd_opt->nd_opt_type));
409 skip1:
410 i++;
411 if (i > nd6_maxndopt) {
412 icmp6stat.icp6s_nd_toomanyopt++;
413 nd6log((LOG_INFO, "too many loop in nd opt\n"));
414 break;
417 if (ndopts->nd_opts_done)
418 break;
421 return 0;
425 * ND6 timer routine to expire default route list and prefix list
427 static void
428 nd6_timer_dispatch(netmsg_t nmsg)
430 struct llinfo_nd6 *ln;
431 struct nd_defrouter *dr;
432 struct nd_prefix *pr;
433 struct ifnet *ifp;
434 struct in6_ifaddr *ia6, *nia6;
436 ASSERT_NETISR0;
438 crit_enter();
439 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
440 crit_exit();
442 mtx_lock(&nd6_mtx);
444 ln = llinfo_nd6.ln_next;
445 while (ln && ln != &llinfo_nd6) {
446 struct rtentry *rt;
447 struct sockaddr_in6 *dst;
448 struct llinfo_nd6 *next = ln->ln_next;
449 /* XXX: used for the DELAY case only: */
450 struct nd_ifinfo *ndi = NULL;
452 if ((rt = ln->ln_rt) == NULL) {
453 ln = next;
454 continue;
456 if ((ifp = rt->rt_ifp) == NULL) {
457 ln = next;
458 continue;
460 ndi = ND_IFINFO(ifp);
461 dst = (struct sockaddr_in6 *)rt_key(rt);
463 if (ln->ln_expire > time_uptime) {
464 ln = next;
465 continue;
468 /* sanity check */
469 if (!rt)
470 panic("rt=0 in nd6_timer(ln=%p)", ln);
471 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
472 panic("rt_llinfo(%p) is not equal to ln(%p)",
473 rt->rt_llinfo, ln);
474 if (!dst)
475 panic("dst=0 in nd6_timer(ln=%p)", ln);
477 switch (ln->ln_state) {
478 case ND6_LLINFO_INCOMPLETE:
479 if (ln->ln_asked < nd6_mmaxtries) {
480 ln->ln_asked++;
481 ln->ln_expire = time_uptime +
482 ND_IFINFO(ifp)->retrans / 1000;
483 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
484 ln, 0);
485 } else {
486 struct mbuf *m = ln->ln_hold;
487 if (m) {
488 if (rt->rt_ifp) {
490 * Fake rcvif to make ICMP error
491 * more helpful in diagnosing
492 * for the receiver.
493 * XXX: should we consider
494 * older rcvif?
496 m->m_pkthdr.rcvif = rt->rt_ifp;
498 icmp6_error(m, ICMP6_DST_UNREACH,
499 ICMP6_DST_UNREACH_ADDR, 0);
500 ln->ln_hold = NULL;
502 next = nd6_free(rt);
504 break;
505 case ND6_LLINFO_REACHABLE:
506 if (ln->ln_expire) {
507 ln->ln_state = ND6_LLINFO_STALE;
508 ln->ln_expire = time_uptime + nd6_gctimer;
510 break;
512 case ND6_LLINFO_STALE:
513 /* Garbage Collection(RFC 2461 5.3) */
514 if (ln->ln_expire)
515 next = nd6_free(rt);
516 break;
518 case ND6_LLINFO_DELAY:
519 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) {
520 /* We need NUD */
521 ln->ln_asked = 1;
522 ln->ln_state = ND6_LLINFO_PROBE;
523 ln->ln_expire = time_uptime +
524 ndi->retrans / 1000;
525 nd6_ns_output(ifp, &dst->sin6_addr,
526 &dst->sin6_addr,
527 ln, 0);
528 } else {
529 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
530 ln->ln_expire = time_uptime + nd6_gctimer;
532 break;
533 case ND6_LLINFO_PROBE:
534 if (ln->ln_asked < nd6_umaxtries) {
535 ln->ln_asked++;
536 ln->ln_expire = time_uptime +
537 ND_IFINFO(ifp)->retrans / 1000;
538 nd6_ns_output(ifp, &dst->sin6_addr,
539 &dst->sin6_addr, ln, 0);
540 } else {
541 next = nd6_free(rt);
543 break;
545 ln = next;
548 /* expire default router list */
549 dr = TAILQ_FIRST(&nd_defrouter);
550 while (dr) {
551 if (dr->expire && dr->expire < time_uptime) {
552 struct nd_defrouter *t;
553 t = TAILQ_NEXT(dr, dr_entry);
554 defrtrlist_del(dr);
555 dr = t;
556 } else {
557 dr = TAILQ_NEXT(dr, dr_entry);
562 * expire interface addresses.
563 * in the past the loop was inside prefix expiry processing.
564 * However, from a stricter speci-confrmance standpoint, we should
565 * rather separate address lifetimes and prefix lifetimes.
567 addrloop:
568 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
569 nia6 = ia6->ia_next;
570 /* check address lifetime */
571 if (IFA6_IS_INVALID(ia6)) {
572 int regen = 0;
575 * If the expiring address is temporary, try
576 * regenerating a new one. This would be useful when
577 * we suspended a laptop PC, then turned it on after a
578 * period that could invalidate all temporary
579 * addresses. Although we may have to restart the
580 * loop (see below), it must be after purging the
581 * address. Otherwise, we'd see an infinite loop of
582 * regeneration.
584 if (ip6_use_tempaddr &&
585 (ia6->ia6_flags & IN6_IFF_TEMPORARY)) {
586 if (regen_tmpaddr(ia6) == 0)
587 regen = 1;
590 in6_purgeaddr(&ia6->ia_ifa);
592 if (regen)
593 goto addrloop; /* XXX: see below */
595 if (IFA6_IS_DEPRECATED(ia6)) {
596 int oldflags = ia6->ia6_flags;
598 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
601 * If a temporary address has just become deprecated,
602 * regenerate a new one if possible.
604 if (ip6_use_tempaddr &&
605 (ia6->ia6_flags & IN6_IFF_TEMPORARY) &&
606 !(oldflags & IN6_IFF_DEPRECATED)) {
608 if (regen_tmpaddr(ia6) == 0) {
610 * A new temporary address is
611 * generated.
612 * XXX: this means the address chain
613 * has changed while we are still in
614 * the loop. Although the change
615 * would not cause disaster (because
616 * it's not a deletion, but an
617 * addition,) we'd rather restart the
618 * loop just for safety. Or does this
619 * significantly reduce performance??
621 goto addrloop;
624 } else {
626 * A new RA might have made a deprecated address
627 * preferred.
629 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
633 /* expire prefix list */
634 pr = nd_prefix.lh_first;
635 while (pr) {
637 * check prefix lifetime.
638 * since pltime is just for autoconf, pltime processing for
639 * prefix is not necessary.
641 if (pr->ndpr_expire && pr->ndpr_expire < time_uptime) {
642 struct nd_prefix *t;
643 t = pr->ndpr_next;
646 * address expiration and prefix expiration are
647 * separate. NEVER perform in6_purgeaddr here.
650 prelist_remove(pr);
651 pr = t;
652 } else
653 pr = pr->ndpr_next;
656 mtx_unlock(&nd6_mtx);
658 callout_reset(&nd6_timer_ch, nd6_prune * hz, nd6_timer, NULL);
661 static void
662 nd6_timer(void *arg __unused)
664 struct lwkt_msg *lmsg = &nd6_timer_netmsg.lmsg;
666 KASSERT(mycpuid == 0, ("not on cpu0"));
667 crit_enter();
668 if (lmsg->ms_flags & MSGF_DONE)
669 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
670 crit_exit();
673 void
674 nd6_timer_init(void)
676 callout_init_mp(&nd6_timer_ch);
677 netmsg_init(&nd6_timer_netmsg, NULL, &netisr_adone_rport,
678 MSGF_PRIORITY, nd6_timer_dispatch);
679 callout_reset_bycpu(&nd6_timer_ch, hz, nd6_timer, NULL, 0);
682 static int
683 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary
684 address */
686 struct ifaddr_container *ifac;
687 struct ifnet *ifp;
688 struct in6_ifaddr *public_ifa6 = NULL;
690 ifp = ia6->ia_ifa.ifa_ifp;
691 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
692 struct ifaddr *ifa = ifac->ifa;
693 struct in6_ifaddr *it6;
695 if (ifa->ifa_addr->sa_family != AF_INET6)
696 continue;
698 it6 = (struct in6_ifaddr *)ifa;
700 /* ignore no autoconf addresses. */
701 if (!(it6->ia6_flags & IN6_IFF_AUTOCONF))
702 continue;
704 /* ignore autoconf addresses with different prefixes. */
705 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
706 continue;
709 * Now we are looking at an autoconf address with the same
710 * prefix as ours. If the address is temporary and is still
711 * preferred, do not create another one. It would be rare, but
712 * could happen, for example, when we resume a laptop PC after
713 * a long period.
715 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) &&
716 !IFA6_IS_DEPRECATED(it6)) {
717 public_ifa6 = NULL;
718 break;
722 * This is a public autoconf address that has the same prefix
723 * as ours. If it is preferred, keep it. We can't break the
724 * loop here, because there may be a still-preferred temporary
725 * address with the prefix.
727 if (!IFA6_IS_DEPRECATED(it6))
728 public_ifa6 = it6;
731 if (public_ifa6 != NULL) {
732 int e;
734 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
735 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
736 " tmp addr,errno=%d\n", e);
737 return (-1);
739 return (0);
742 return (-1);
746 * Nuke neighbor cache/prefix/default router management table, right before
747 * ifp goes away.
749 void
750 nd6_purge(struct ifnet *ifp)
752 struct llinfo_nd6 *ln, *nln;
753 struct nd_defrouter *dr, *ndr, drany;
754 struct nd_prefix *pr, *npr;
756 /* Nuke default router list entries toward ifp */
757 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
759 * The first entry of the list may be stored in
760 * the routing table, so we'll delete it later.
762 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
763 ndr = TAILQ_NEXT(dr, dr_entry);
764 if (dr->ifp == ifp)
765 defrtrlist_del(dr);
767 dr = TAILQ_FIRST(&nd_defrouter);
768 if (dr->ifp == ifp)
769 defrtrlist_del(dr);
772 /* Nuke prefix list entries toward ifp */
773 for (pr = nd_prefix.lh_first; pr; pr = npr) {
774 npr = pr->ndpr_next;
775 if (pr->ndpr_ifp == ifp) {
777 * Previously, pr->ndpr_addr is removed as well,
778 * but I strongly believe we don't have to do it.
779 * nd6_purge() is only called from in6_ifdetach(),
780 * which removes all the associated interface addresses
781 * by itself.
782 * (jinmei@kame.net 20010129)
784 prelist_remove(pr);
788 /* cancel default outgoing interface setting */
789 if (nd6_defifindex == ifp->if_index)
790 nd6_setdefaultiface(0);
792 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
793 /* refresh default router list */
794 bzero(&drany, sizeof(drany));
795 defrouter_delreq(&drany, 0);
796 defrouter_select();
800 * Nuke neighbor cache entries for the ifp.
801 * Note that rt->rt_ifp may not be the same as ifp,
802 * due to KAME goto ours hack. See RTM_RESOLVE case in
803 * nd6_rtrequest(), and ip6_input().
805 ln = llinfo_nd6.ln_next;
806 while (ln && ln != &llinfo_nd6) {
807 struct rtentry *rt;
808 struct sockaddr_dl *sdl;
810 nln = ln->ln_next;
811 rt = ln->ln_rt;
812 if (rt && rt->rt_gateway &&
813 rt->rt_gateway->sa_family == AF_LINK) {
814 sdl = (struct sockaddr_dl *)rt->rt_gateway;
815 if (sdl->sdl_index == ifp->if_index)
816 nln = nd6_free(rt);
818 ln = nln;
822 struct rtentry *
823 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
825 struct rtentry *rt;
826 struct sockaddr_in6 sin6;
828 bzero(&sin6, sizeof(sin6));
829 sin6.sin6_len = sizeof(struct sockaddr_in6);
830 sin6.sin6_family = AF_INET6;
831 sin6.sin6_addr = *addr6;
833 if (create)
834 rt = rtlookup((struct sockaddr *)&sin6);
835 else
836 rt = rtpurelookup((struct sockaddr *)&sin6);
837 if (rt && !(rt->rt_flags & RTF_LLINFO)) {
839 * This is the case for the default route.
840 * If we want to create a neighbor cache for the address, we
841 * should free the route for the destination and allocate an
842 * interface route.
844 if (create) {
845 --rt->rt_refcnt;
846 rt = NULL;
849 if (!rt) {
850 if (create && ifp) {
851 int e;
854 * If no route is available and create is set,
855 * we allocate a host route for the destination
856 * and treat it like an interface route.
857 * This hack is necessary for a neighbor which can't
858 * be covered by our own prefix.
860 struct ifaddr *ifa;
862 ifa = ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
863 if (ifa == NULL)
864 return (NULL);
867 * Create a new route. RTF_LLINFO is necessary
868 * to create a Neighbor Cache entry for the
869 * destination in nd6_rtrequest which will be
870 * called in rtrequest via ifa->ifa_rtrequest.
872 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
873 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
874 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
875 ~RTF_CLONING, &rt)) != 0) {
876 log(LOG_ERR,
877 "nd6_lookup: failed to add route for a "
878 "neighbor(%s), errno=%d\n",
879 ip6_sprintf(addr6), e);
881 if (rt == NULL)
882 return (NULL);
883 if (rt->rt_llinfo) {
884 struct llinfo_nd6 *ln =
885 (struct llinfo_nd6 *)rt->rt_llinfo;
887 ln->ln_state = ND6_LLINFO_NOSTATE;
889 } else
890 return (NULL);
892 rt->rt_refcnt--;
894 if (!ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)) {
895 if (create) {
896 log(LOG_DEBUG,
897 "nd6_lookup: failed to lookup %s (if = %s)\n",
898 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
899 /* xxx more logs... kazu */
901 return (NULL);
903 return (rt);
906 static struct rtentry *
907 nd6_neighbor_lookup(struct in6_addr *addr6, struct ifnet *ifp)
909 struct rtentry *rt;
910 struct sockaddr_in6 sin6;
912 bzero(&sin6, sizeof(sin6));
913 sin6.sin6_len = sizeof(struct sockaddr_in6);
914 sin6.sin6_family = AF_INET6;
915 sin6.sin6_addr = *addr6;
917 rt = rtpurelookup((struct sockaddr *)&sin6);
918 if (rt == NULL)
919 return (NULL);
920 rt->rt_refcnt--;
922 if (!ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)) {
923 if (nd6_onlink_ns_rfc4861 &&
924 (ND6_RTENTRY_IS_LLCLONING(rt) || /* not cloned yet */
925 (rt->rt_parent != NULL && /* cloning */
926 ND6_RTENTRY_IS_LLCLONING(rt->rt_parent)))) {
928 * If cloning ever happened or is happening,
929 * rtentry for addr6 would or will become a
930 * neighbor cache.
932 } else {
933 rt = NULL;
936 return (rt);
940 * Detect if a given IPv6 address identifies a neighbor on a given link.
941 * XXX: should take care of the destination of a p2p link?
944 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
946 struct ifaddr_container *ifac;
947 int i;
949 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
950 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
953 * A link-local address is always a neighbor.
954 * XXX: we should use the sin6_scope_id field rather than the embedded
955 * interface index.
957 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
958 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
959 return (1);
962 * If the address matches one of our addresses,
963 * it should be a neighbor.
965 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
966 struct ifaddr *ifa = ifac->ifa;
968 if (ifa->ifa_addr->sa_family != AF_INET6)
969 next: continue;
971 for (i = 0; i < 4; i++) {
972 if ((IFADDR6(ifa).s6_addr32[i] ^
973 addr->sin6_addr.s6_addr32[i]) &
974 IFMASK6(ifa).s6_addr32[i])
975 goto next;
977 return (1);
981 * Even if the address matches none of our addresses, it might be
982 * in the neighbor cache.
984 if (nd6_neighbor_lookup(&addr->sin6_addr, ifp) != NULL)
985 return (1);
987 return (0);
988 #undef IFADDR6
989 #undef IFMASK6
993 * Free an nd6 llinfo entry.
995 struct llinfo_nd6 *
996 nd6_free(struct rtentry *rt)
998 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
999 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1000 struct nd_defrouter *dr;
1003 * we used to have kpfctlinput(PRC_HOSTDEAD) here.
1004 * even though it is not harmful, it was not really necessary.
1007 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
1008 mtx_lock(&nd6_mtx);
1009 dr = defrouter_lookup(
1010 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1011 rt->rt_ifp);
1013 if (ln->ln_router || dr) {
1015 * rt6_flush must be called whether or not the neighbor
1016 * is in the Default Router List.
1017 * See a corresponding comment in nd6_na_input().
1019 rt6_flush(&in6, rt->rt_ifp);
1022 if (dr) {
1024 * Unreachablity of a router might affect the default
1025 * router selection and on-link detection of advertised
1026 * prefixes.
1030 * Temporarily fake the state to choose a new default
1031 * router and to perform on-link determination of
1032 * prefixes correctly.
1033 * Below the state will be set correctly,
1034 * or the entry itself will be deleted.
1036 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1039 * Since defrouter_select() does not affect the
1040 * on-link determination and MIP6 needs the check
1041 * before the default router selection, we perform
1042 * the check now.
1044 pfxlist_onlink_check();
1046 if (dr == TAILQ_FIRST(&nd_defrouter)) {
1048 * It is used as the current default router,
1049 * so we have to move it to the end of the
1050 * list and choose a new one.
1051 * XXX: it is not very efficient if this is
1052 * the only router.
1054 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
1055 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
1057 defrouter_select();
1060 mtx_unlock(&nd6_mtx);
1064 * Before deleting the entry, remember the next entry as the
1065 * return value. We need this because pfxlist_onlink_check() above
1066 * might have freed other entries (particularly the old next entry) as
1067 * a side effect (XXX).
1069 next = ln->ln_next;
1072 * Detach the route from the routing tree and the list of neighbor
1073 * caches, and disable the route entry not to be used in already
1074 * cached routes.
1076 rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL);
1078 return (next);
1082 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1084 * XXX cost-effective metods?
1086 void
1087 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1089 struct llinfo_nd6 *ln;
1092 * If the caller specified "rt", use that. Otherwise, resolve the
1093 * routing table by supplied "dst6".
1095 if (!rt) {
1096 if (!dst6)
1097 return;
1098 if (!(rt = nd6_lookup(dst6, 0, NULL)))
1099 return;
1102 if ((rt->rt_flags & RTF_GATEWAY) ||
1103 !(rt->rt_flags & RTF_LLINFO) ||
1104 rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1105 rt->rt_gateway->sa_family != AF_LINK) {
1106 /* This is not a host route. */
1107 return;
1110 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1111 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1112 return;
1115 * if we get upper-layer reachability confirmation many times,
1116 * it is possible we have false information.
1118 if (!force) {
1119 ln->ln_byhint++;
1120 if (ln->ln_byhint > nd6_maxnudhint)
1121 return;
1124 ln->ln_state = ND6_LLINFO_REACHABLE;
1125 if (ln->ln_expire)
1126 ln->ln_expire = time_uptime +
1127 ND_IFINFO(rt->rt_ifp)->reachable;
1130 void
1131 nd6_rtrequest(int req, struct rtentry *rt)
1133 struct sockaddr *gate = rt->rt_gateway;
1134 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1135 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1136 struct ifnet *ifp = rt->rt_ifp;
1137 struct ifaddr *ifa;
1139 if ((rt->rt_flags & RTF_GATEWAY))
1140 return;
1142 if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) {
1144 * This is probably an interface direct route for a link
1145 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1146 * We do not need special treatment below for such a route.
1147 * Moreover, the RTF_LLINFO flag which would be set below
1148 * would annoy the ndp(8) command.
1150 return;
1153 if (req == RTM_RESOLVE &&
1154 (nd6_need_cache(ifp) == 0 || /* stf case */
1155 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1157 * FreeBSD and BSD/OS often make a cloned host route based
1158 * on a less-specific route (e.g. the default route).
1159 * If the less specific route does not have a "gateway"
1160 * (this is the case when the route just goes to a p2p or an
1161 * stf interface), we'll mistakenly make a neighbor cache for
1162 * the host route, and will see strange neighbor solicitation
1163 * for the corresponding destination. In order to avoid the
1164 * confusion, we check if the destination of the route is
1165 * a neighbor in terms of neighbor discovery, and stop the
1166 * process if not. Additionally, we remove the LLINFO flag
1167 * so that ndp(8) will not try to get the neighbor information
1168 * of the destination.
1170 rt->rt_flags &= ~RTF_LLINFO;
1171 return;
1174 switch (req) {
1175 case RTM_ADD:
1177 * There is no backward compatibility :)
1179 * if (!(rt->rt_flags & RTF_HOST) &&
1180 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1181 * rt->rt_flags |= RTF_CLONING;
1183 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1185 * Case 1: This route should come from
1186 * a route to interface. RTF_LLINFO flag is set
1187 * for a host route whose destination should be
1188 * treated as on-link.
1190 rt_setgate(rt, rt_key(rt),
1191 (struct sockaddr *)&null_sdl,
1192 RTL_DONTREPORT);
1193 gate = rt->rt_gateway;
1194 SDL(gate)->sdl_type = ifp->if_type;
1195 SDL(gate)->sdl_index = ifp->if_index;
1196 if (ln)
1197 ln->ln_expire = time_uptime;
1198 if (ln && ln->ln_expire == 0) {
1199 /* kludge for desktops */
1200 ln->ln_expire = 1;
1202 if ((rt->rt_flags & RTF_CLONING))
1203 break;
1206 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1207 * We don't do that here since llinfo is not ready yet.
1209 * There are also couple of other things to be discussed:
1210 * - unsolicited NA code needs improvement beforehand
1211 * - RFC2461 says we MAY send multicast unsolicited NA
1212 * (7.2.6 paragraph 4), however, it also says that we
1213 * SHOULD provide a mechanism to prevent multicast NA storm.
1214 * we don't have anything like it right now.
1215 * note that the mechanism needs a mutual agreement
1216 * between proxies, which means that we need to implement
1217 * a new protocol, or a new kludge.
1218 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1219 * we need to check ip6forwarding before sending it.
1220 * (or should we allow proxy ND configuration only for
1221 * routers? there's no mention about proxy ND from hosts)
1223 #if 0
1224 /* XXX it does not work */
1225 if ((rt->rt_flags & RTF_ANNOUNCE) && mycpuid == 0) {
1226 nd6_na_output(ifp,
1227 &SIN6(rt_key(rt))->sin6_addr,
1228 &SIN6(rt_key(rt))->sin6_addr,
1229 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1230 1, NULL);
1232 #endif
1233 /* FALLTHROUGH */
1234 case RTM_RESOLVE:
1235 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1237 * Address resolution isn't necessary for a point to
1238 * point link, so we can skip this test for a p2p link.
1240 if (gate->sa_family != AF_LINK ||
1241 gate->sa_len < sizeof(null_sdl)) {
1242 log(LOG_DEBUG,
1243 "nd6_rtrequest: bad gateway value: %s\n",
1244 if_name(ifp));
1245 break;
1247 SDL(gate)->sdl_type = ifp->if_type;
1248 SDL(gate)->sdl_index = ifp->if_index;
1250 if (ln != NULL)
1251 break; /* This happens on a route change */
1253 * Case 2: This route may come from cloning, or a manual route
1254 * add with a LL address.
1256 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1257 rt->rt_llinfo = (caddr_t)ln;
1258 if (!ln) {
1259 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1260 break;
1262 nd6_inuse++;
1263 nd6_allocated++;
1264 bzero(ln, sizeof(*ln));
1265 ln->ln_rt = rt;
1266 /* this is required for "ndp" command. - shin */
1267 if (req == RTM_ADD) {
1269 * gate should have some valid AF_LINK entry,
1270 * and ln->ln_expire should have some lifetime
1271 * which is specified by ndp command.
1273 ln->ln_state = ND6_LLINFO_REACHABLE;
1274 ln->ln_byhint = 0;
1275 } else {
1277 * When req == RTM_RESOLVE, rt is created and
1278 * initialized in rtrequest(), so rt_expire is 0.
1280 ln->ln_state = ND6_LLINFO_NOSTATE;
1281 ln->ln_expire = time_uptime;
1283 rt->rt_flags |= RTF_LLINFO;
1284 ln->ln_next = llinfo_nd6.ln_next;
1285 llinfo_nd6.ln_next = ln;
1286 ln->ln_prev = &llinfo_nd6;
1287 ln->ln_next->ln_prev = ln;
1290 * check if rt_key(rt) is one of my address assigned
1291 * to the interface.
1293 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1294 &SIN6(rt_key(rt))->sin6_addr);
1295 if (ifa) {
1296 caddr_t macp = nd6_ifptomac(ifp);
1297 ln->ln_expire = 0;
1298 ln->ln_state = ND6_LLINFO_REACHABLE;
1299 ln->ln_byhint = 0;
1300 if (macp) {
1301 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1302 SDL(gate)->sdl_alen = ifp->if_addrlen;
1304 if (nd6_useloopback) {
1305 rt->rt_ifp = loif; /* XXX */
1307 * Make sure rt_ifa be equal to the ifaddr
1308 * corresponding to the address.
1309 * We need this because when we refer
1310 * rt_ifa->ia6_flags in ip6_input, we assume
1311 * that the rt_ifa points to the address instead
1312 * of the loopback address.
1314 if (ifa != rt->rt_ifa) {
1315 IFAFREE(rt->rt_ifa);
1316 IFAREF(ifa);
1317 rt->rt_ifa = ifa;
1320 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1321 ln->ln_expire = 0;
1322 ln->ln_state = ND6_LLINFO_REACHABLE;
1323 ln->ln_byhint = 0;
1326 * Join solicited node multicast for proxy ND, and only
1327 * join it once on cpu0.
1329 if ((ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) {
1330 struct in6_addr llsol;
1331 int error;
1333 llsol = SIN6(rt_key(rt))->sin6_addr;
1334 llsol.s6_addr16[0] = htons(0xff02);
1335 llsol.s6_addr16[1] = htons(ifp->if_index);
1336 llsol.s6_addr32[1] = 0;
1337 llsol.s6_addr32[2] = htonl(1);
1338 llsol.s6_addr8[12] = 0xff;
1340 if (!in6_addmulti(&llsol, ifp, &error)) {
1341 nd6log((LOG_ERR, "%s: failed to join "
1342 "%s (errno=%d)\n", if_name(ifp),
1343 ip6_sprintf(&llsol), error));
1347 break;
1349 case RTM_DELETE:
1350 if (!ln)
1351 break;
1353 * Leave from solicited node multicast for proxy ND, and only
1354 * leave it once on cpu0 (since we joined it once on cpu0).
1356 if ((rt->rt_flags & RTF_ANNOUNCE) &&
1357 (ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) {
1358 struct in6_addr llsol;
1359 struct in6_multi *in6m;
1361 llsol = SIN6(rt_key(rt))->sin6_addr;
1362 llsol.s6_addr16[0] = htons(0xff02);
1363 llsol.s6_addr16[1] = htons(ifp->if_index);
1364 llsol.s6_addr32[1] = 0;
1365 llsol.s6_addr32[2] = htonl(1);
1366 llsol.s6_addr8[12] = 0xff;
1368 in6m = IN6_LOOKUP_MULTI(&llsol, ifp);
1369 if (in6m)
1370 in6_delmulti(in6m);
1372 nd6_inuse--;
1373 ln->ln_next->ln_prev = ln->ln_prev;
1374 ln->ln_prev->ln_next = ln->ln_next;
1375 ln->ln_prev = NULL;
1376 rt->rt_llinfo = 0;
1377 rt->rt_flags &= ~RTF_LLINFO;
1378 if (ln->ln_hold)
1379 m_freem(ln->ln_hold);
1380 Free((caddr_t)ln);
1385 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1387 struct in6_drlist *drl = (struct in6_drlist *)data;
1388 struct in6_prlist *prl = (struct in6_prlist *)data;
1389 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1390 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1391 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1392 struct nd_defrouter *dr, any;
1393 struct nd_prefix *pr;
1394 struct rtentry *rt;
1395 int i = 0, error = 0;
1397 switch (cmd) {
1398 case SIOCGDRLST_IN6:
1400 * obsolete API, use sysctl under net.inet6.icmp6
1402 bzero(drl, sizeof(*drl));
1403 mtx_lock(&nd6_mtx);
1404 dr = TAILQ_FIRST(&nd_defrouter);
1405 while (dr && i < DRLSTSIZ) {
1406 drl->defrouter[i].rtaddr = dr->rtaddr;
1407 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1408 /* XXX: need to this hack for KAME stack */
1409 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1410 } else
1411 log(LOG_ERR,
1412 "default router list contains a "
1413 "non-linklocal address(%s)\n",
1414 ip6_sprintf(&drl->defrouter[i].rtaddr));
1416 drl->defrouter[i].flags = dr->flags;
1417 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1418 drl->defrouter[i].expire = dr->expire;
1419 drl->defrouter[i].if_index = dr->ifp->if_index;
1420 i++;
1421 dr = TAILQ_NEXT(dr, dr_entry);
1423 mtx_unlock(&nd6_mtx);
1424 break;
1425 case SIOCGPRLST_IN6:
1427 * obsolete API, use sysctl under net.inet6.icmp6
1430 * XXX meaning of fields, especialy "raflags", is very
1431 * differnet between RA prefix list and RR/static prefix list.
1432 * how about separating ioctls into two?
1434 bzero(prl, sizeof(*prl));
1435 mtx_lock(&nd6_mtx);
1436 pr = nd_prefix.lh_first;
1437 while (pr && i < PRLSTSIZ) {
1438 struct nd_pfxrouter *pfr;
1439 int j;
1441 in6_embedscope(&prl->prefix[i].prefix,
1442 &pr->ndpr_prefix, NULL, NULL);
1443 prl->prefix[i].raflags = pr->ndpr_raf;
1444 prl->prefix[i].prefixlen = pr->ndpr_plen;
1445 prl->prefix[i].vltime = pr->ndpr_vltime;
1446 prl->prefix[i].pltime = pr->ndpr_pltime;
1447 prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1448 prl->prefix[i].expire = pr->ndpr_expire;
1450 pfr = pr->ndpr_advrtrs.lh_first;
1451 j = 0;
1452 while (pfr) {
1453 if (j < DRLSTSIZ) {
1454 #define RTRADDR prl->prefix[i].advrtr[j]
1455 RTRADDR = pfr->router->rtaddr;
1456 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1457 /* XXX: hack for KAME */
1458 RTRADDR.s6_addr16[1] = 0;
1459 } else
1460 log(LOG_ERR,
1461 "a router(%s) advertises "
1462 "a prefix with "
1463 "non-link local address\n",
1464 ip6_sprintf(&RTRADDR));
1465 #undef RTRADDR
1467 j++;
1468 pfr = pfr->pfr_next;
1470 prl->prefix[i].advrtrs = j;
1471 prl->prefix[i].origin = PR_ORIG_RA;
1473 i++;
1474 pr = pr->ndpr_next;
1476 mtx_unlock(&nd6_mtx);
1478 break;
1479 case OSIOCGIFINFO_IN6:
1480 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1481 bzero(&ndi->ndi, sizeof(ndi->ndi));
1482 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1483 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1484 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1485 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1486 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1487 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1488 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1489 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1490 break;
1491 case SIOCGIFINFO_IN6:
1492 ndi->ndi = *ND_IFINFO(ifp);
1493 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1494 break;
1495 case SIOCSIFINFO_FLAGS:
1496 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1497 break;
1498 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1499 /* flush default router list */
1501 * xxx sumikawa: should not delete route if default
1502 * route equals to the top of default router list
1504 bzero(&any, sizeof(any));
1505 defrouter_delreq(&any, 0);
1506 defrouter_select();
1507 /* xxx sumikawa: flush prefix list */
1508 break;
1509 case SIOCSPFXFLUSH_IN6:
1511 /* flush all the prefix advertised by routers */
1512 struct nd_prefix *pr, *next;
1514 mtx_lock(&nd6_mtx);
1515 for (pr = nd_prefix.lh_first; pr; pr = next) {
1516 struct in6_ifaddr *ia, *ia_next;
1518 next = pr->ndpr_next;
1520 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1521 continue; /* XXX */
1523 /* do we really have to remove addresses as well? */
1524 for (ia = in6_ifaddr; ia; ia = ia_next) {
1525 /* ia might be removed. keep the next ptr. */
1526 ia_next = ia->ia_next;
1528 if (!(ia->ia6_flags & IN6_IFF_AUTOCONF))
1529 continue;
1531 if (ia->ia6_ndpr == pr)
1532 in6_purgeaddr(&ia->ia_ifa);
1534 prelist_remove(pr);
1536 mtx_unlock(&nd6_mtx);
1537 break;
1539 case SIOCSRTRFLUSH_IN6:
1541 /* flush all the default routers */
1542 struct nd_defrouter *dr, *next;
1544 mtx_lock(&nd6_mtx);
1545 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1547 * The first entry of the list may be stored in
1548 * the routing table, so we'll delete it later.
1550 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1551 next = TAILQ_NEXT(dr, dr_entry);
1552 defrtrlist_del(dr);
1554 defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1556 mtx_unlock(&nd6_mtx);
1557 break;
1559 case SIOCGNBRINFO_IN6:
1561 struct llinfo_nd6 *ln;
1562 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1565 * XXX: KAME specific hack for scoped addresses
1566 * XXXX: for other scopes than link-local?
1568 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1569 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1570 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1572 if (*idp == 0)
1573 *idp = htons(ifp->if_index);
1576 mtx_lock(&nd6_mtx);
1577 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1578 error = EINVAL;
1579 mtx_unlock(&nd6_mtx);
1580 break;
1582 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1583 nbi->state = ln->ln_state;
1584 nbi->asked = ln->ln_asked;
1585 nbi->isrouter = ln->ln_router;
1586 nbi->expire = ln->ln_expire;
1587 mtx_unlock(&nd6_mtx);
1589 break;
1591 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1592 ndif->ifindex = nd6_defifindex;
1593 break;
1594 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1595 return (nd6_setdefaultiface(ndif->ifindex));
1597 return (error);
1601 * Create neighbor cache entry and cache link-layer address,
1602 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1604 struct rtentry *
1605 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1606 int lladdrlen,
1607 int type, /* ICMP6 type */
1608 int code /* type dependent information */)
1610 struct rtentry *rt = NULL;
1611 struct llinfo_nd6 *ln = NULL;
1612 int is_newentry;
1613 struct sockaddr_dl *sdl = NULL;
1614 int do_update;
1615 int olladdr;
1616 int llchange;
1617 int newstate = 0;
1619 if (!ifp)
1620 panic("ifp == NULL in nd6_cache_lladdr");
1621 if (!from)
1622 panic("from == NULL in nd6_cache_lladdr");
1624 /* nothing must be updated for unspecified address */
1625 if (IN6_IS_ADDR_UNSPECIFIED(from))
1626 return NULL;
1629 * Validation about ifp->if_addrlen and lladdrlen must be done in
1630 * the caller.
1632 * XXX If the link does not have link-layer adderss, what should
1633 * we do? (ifp->if_addrlen == 0)
1634 * Spec says nothing in sections for RA, RS and NA. There's small
1635 * description on it in NS section (RFC 2461 7.2.3).
1638 rt = nd6_lookup(from, 0, ifp);
1639 if (!rt) {
1640 #if 0
1641 /* nothing must be done if there's no lladdr */
1642 if (!lladdr || !lladdrlen)
1643 return NULL;
1644 #endif
1646 rt = nd6_lookup(from, 1, ifp);
1647 is_newentry = 1;
1648 } else {
1649 /* do nothing if static ndp is set */
1650 if (rt->rt_flags & RTF_STATIC)
1651 return NULL;
1652 is_newentry = 0;
1655 if (!rt)
1656 return NULL;
1657 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1658 fail:
1659 nd6_free(rt);
1660 return NULL;
1662 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1663 if (!ln)
1664 goto fail;
1665 if (!rt->rt_gateway)
1666 goto fail;
1667 if (rt->rt_gateway->sa_family != AF_LINK)
1668 goto fail;
1669 sdl = SDL(rt->rt_gateway);
1671 olladdr = (sdl->sdl_alen) ? 1 : 0;
1672 if (olladdr && lladdr) {
1673 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1674 llchange = 1;
1675 else
1676 llchange = 0;
1677 } else
1678 llchange = 0;
1681 * newentry olladdr lladdr llchange (*=record)
1682 * 0 n n -- (1)
1683 * 0 y n -- (2)
1684 * 0 n y -- (3) * STALE
1685 * 0 y y n (4) *
1686 * 0 y y y (5) * STALE
1687 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1688 * 1 -- y -- (7) * STALE
1691 if (lladdr) { /* (3-5) and (7) */
1693 * Record source link-layer address
1694 * XXX is it dependent to ifp->if_type?
1696 sdl->sdl_alen = ifp->if_addrlen;
1697 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1700 if (!is_newentry) {
1701 if ((!olladdr && lladdr) || /* (3) */
1702 (olladdr && lladdr && llchange)) { /* (5) */
1703 do_update = 1;
1704 newstate = ND6_LLINFO_STALE;
1705 } else { /* (1-2,4) */
1706 do_update = 0;
1708 } else {
1709 do_update = 1;
1710 if (!lladdr) /* (6) */
1711 newstate = ND6_LLINFO_NOSTATE;
1712 else /* (7) */
1713 newstate = ND6_LLINFO_STALE;
1716 if (do_update) {
1718 * Update the state of the neighbor cache.
1720 ln->ln_state = newstate;
1722 if (ln->ln_state == ND6_LLINFO_STALE) {
1724 * XXX: since nd6_output() below will cause
1725 * state tansition to DELAY and reset the timer,
1726 * we must set the timer now, although it is actually
1727 * meaningless.
1729 ln->ln_expire = time_uptime + nd6_gctimer;
1731 if (ln->ln_hold) {
1733 * we assume ifp is not a p2p here, so just
1734 * set the 2nd argument as the 1st one.
1736 nd6_output(ifp, ifp, ln->ln_hold,
1737 (struct sockaddr_in6 *)rt_key(rt), rt);
1738 ln->ln_hold = NULL;
1740 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1741 /* probe right away */
1742 ln->ln_expire = time_uptime;
1747 * ICMP6 type dependent behavior.
1749 * NS: clear IsRouter if new entry
1750 * RS: clear IsRouter
1751 * RA: set IsRouter if there's lladdr
1752 * redir: clear IsRouter if new entry
1754 * RA case, (1):
1755 * The spec says that we must set IsRouter in the following cases:
1756 * - If lladdr exist, set IsRouter. This means (1-5).
1757 * - If it is old entry (!newentry), set IsRouter. This means (7).
1758 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1759 * A quetion arises for (1) case. (1) case has no lladdr in the
1760 * neighbor cache, this is similar to (6).
1761 * This case is rare but we figured that we MUST NOT set IsRouter.
1763 * newentry olladdr lladdr llchange NS RS RA redir
1764 * D R
1765 * 0 n n -- (1) c ? s
1766 * 0 y n -- (2) c s s
1767 * 0 n y -- (3) c s s
1768 * 0 y y n (4) c s s
1769 * 0 y y y (5) c s s
1770 * 1 -- n -- (6) c c c s
1771 * 1 -- y -- (7) c c s c s
1773 * (c=clear s=set)
1775 switch (type & 0xff) {
1776 case ND_NEIGHBOR_SOLICIT:
1778 * New entry must have is_router flag cleared.
1780 if (is_newentry) /* (6-7) */
1781 ln->ln_router = 0;
1782 break;
1783 case ND_REDIRECT:
1785 * If the icmp is a redirect to a better router, always set the
1786 * is_router flag. Otherwise, if the entry is newly created,
1787 * clear the flag. [RFC 2461, sec 8.3]
1789 if (code == ND_REDIRECT_ROUTER)
1790 ln->ln_router = 1;
1791 else if (is_newentry) /* (6-7) */
1792 ln->ln_router = 0;
1793 break;
1794 case ND_ROUTER_SOLICIT:
1796 * is_router flag must always be cleared.
1798 ln->ln_router = 0;
1799 break;
1800 case ND_ROUTER_ADVERT:
1802 * Mark an entry with lladdr as a router.
1804 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1805 (is_newentry && lladdr)) { /* (7) */
1806 ln->ln_router = 1;
1808 break;
1812 * When the link-layer address of a router changes, select the
1813 * best router again. In particular, when the neighbor entry is newly
1814 * created, it might affect the selection policy.
1815 * Question: can we restrict the first condition to the "is_newentry"
1816 * case?
1817 * XXX: when we hear an RA from a new router with the link-layer
1818 * address option, defrouter_select() is called twice, since
1819 * defrtrlist_update called the function as well. However, I believe
1820 * we can compromise the overhead, since it only happens the first
1821 * time.
1822 * XXX: although defrouter_select() should not have a bad effect
1823 * for those are not autoconfigured hosts, we explicitly avoid such
1824 * cases for safety.
1826 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1827 defrouter_select();
1829 return rt;
1832 static void
1833 nd6_slowtimo(void *arg __unused)
1835 struct lwkt_msg *lmsg = &nd6_slowtimo_netmsg.lmsg;
1837 KASSERT(mycpuid == 0, ("not on cpu0"));
1838 crit_enter();
1839 if (lmsg->ms_flags & MSGF_DONE)
1840 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1841 crit_exit();
1844 static void
1845 nd6_slowtimo_dispatch(netmsg_t nmsg)
1847 const struct ifnet_array *arr;
1848 struct nd_ifinfo *nd6if;
1849 int i;
1851 ASSERT_NETISR0;
1853 crit_enter();
1854 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1855 crit_exit();
1857 arr = ifnet_array_get();
1859 mtx_lock(&nd6_mtx);
1860 for (i = 0; i < arr->ifnet_count; ++i) {
1861 struct ifnet *ifp = arr->ifnet_arr[i];
1863 if (ifp->if_afdata[AF_INET6] == NULL)
1864 continue;
1865 nd6if = ND_IFINFO(ifp);
1866 if (nd6if->basereachable && /* already initialized */
1867 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1869 * Since reachable time rarely changes by router
1870 * advertisements, we SHOULD insure that a new random
1871 * value gets recomputed at least once every few hours.
1872 * (RFC 2461, 6.3.4)
1874 nd6if->recalctm = nd6_recalc_reachtm_interval;
1875 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1878 mtx_unlock(&nd6_mtx);
1880 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1881 nd6_slowtimo, NULL);
1884 #define gotoerr(e) { error = (e); goto bad;}
1887 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1888 struct sockaddr_in6 *dst, struct rtentry *rt)
1890 struct llinfo_nd6 *ln = NULL;
1891 int error = 0;
1893 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1894 goto sendpkt;
1896 if (nd6_need_cache(ifp) == 0)
1897 goto sendpkt;
1900 * Next hop determination. This routine is derived from rt_llroute.
1902 if (rt != NULL) {
1903 if (!(rt->rt_flags & RTF_UP)) {
1904 rt = rtlookup((struct sockaddr *)dst);
1905 if (rt == NULL)
1906 gotoerr(EHOSTUNREACH);
1907 rt->rt_refcnt--;
1908 if (rt->rt_ifp != ifp) {
1909 /* XXX: loop care? */
1910 return nd6_output(ifp, origifp, m, dst, rt);
1913 if (rt->rt_flags & RTF_GATEWAY) {
1914 struct sockaddr_in6 *gw6;
1917 * We skip link-layer address resolution and NUD
1918 * if the gateway is not a neighbor from ND point
1919 * of view, regardless of the value of nd_ifinfo.flags.
1920 * The second condition is a bit tricky; we skip
1921 * if the gateway is our own address, which is
1922 * sometimes used to install a route to a p2p link.
1924 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1925 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1926 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1928 * We allow this kind of tricky route only
1929 * when the outgoing interface is p2p.
1930 * XXX: we may need a more generic rule here.
1932 if (!(ifp->if_flags & IFF_POINTOPOINT))
1933 gotoerr(EHOSTUNREACH);
1935 goto sendpkt;
1938 if (rt->rt_gwroute == NULL) {
1939 rt->rt_gwroute = rtlookup(rt->rt_gateway);
1940 if (rt->rt_gwroute == NULL)
1941 gotoerr(EHOSTUNREACH);
1942 } else if (!(rt->rt_gwroute->rt_flags & RTF_UP)) {
1943 rtfree(rt->rt_gwroute);
1944 rt->rt_gwroute = rtlookup(rt->rt_gateway);
1945 if (rt->rt_gwroute == NULL)
1946 gotoerr(EHOSTUNREACH);
1948 rt = rt->rt_gwroute;
1953 * Address resolution or Neighbor Unreachability Detection
1954 * for the next hop.
1955 * At this point, the destination of the packet must be a unicast
1956 * or an anycast address(i.e. not a multicast).
1959 /* Look up the neighbor cache for the nexthop */
1960 if (rt && (rt->rt_flags & RTF_LLINFO))
1961 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1962 else {
1964 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1965 * the condition below is not very efficient. But we believe
1966 * it is tolerable, because this should be a rare case.
1968 if (nd6_is_addr_neighbor(dst, ifp) &&
1969 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1970 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1972 if (!ln || !rt) {
1973 if (!(ifp->if_flags & IFF_POINTOPOINT) &&
1974 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1975 log(LOG_DEBUG,
1976 "nd6_output: can't allocate llinfo for %s "
1977 "(ln=%p, rt=%p)\n",
1978 ip6_sprintf(&dst->sin6_addr), ln, rt);
1979 gotoerr(EIO); /* XXX: good error? */
1982 goto sendpkt; /* send anyway */
1985 /* We don't have to do link-layer address resolution on a p2p link. */
1986 if ((ifp->if_flags & IFF_POINTOPOINT) &&
1987 ln->ln_state < ND6_LLINFO_REACHABLE) {
1988 ln->ln_state = ND6_LLINFO_STALE;
1989 ln->ln_expire = time_uptime + nd6_gctimer;
1993 * The first time we send a packet to a neighbor whose entry is
1994 * STALE, we have to change the state to DELAY and a sets a timer to
1995 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1996 * neighbor unreachability detection on expiration.
1997 * (RFC 2461 7.3.3)
1999 if (ln->ln_state == ND6_LLINFO_STALE) {
2000 ln->ln_asked = 0;
2001 ln->ln_state = ND6_LLINFO_DELAY;
2002 ln->ln_expire = time_uptime + nd6_delay;
2006 * If the neighbor cache entry has a state other than INCOMPLETE
2007 * (i.e. its link-layer address is already resolved), just
2008 * send the packet.
2010 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2011 goto sendpkt;
2014 * There is a neighbor cache entry, but no ethernet address
2015 * response yet. Replace the held mbuf (if any) with this
2016 * latest one.
2018 * This code conforms to the rate-limiting rule described in Section
2019 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
2020 * an NS below.
2022 if (ln->ln_state == ND6_LLINFO_NOSTATE) {
2024 * This neighbor cache entry was just created; change its
2025 * state to INCOMPLETE and start its life cycle.
2027 * We force an NS output below by setting ln_expire to 1
2028 * (nd6_rtrequest() could set it to the current time_uptime)
2029 * and zeroing out ln_asked (XXX this may not be necessary).
2031 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2032 ln->ln_expire = 1;
2033 ln->ln_asked = 0;
2035 if (ln->ln_hold)
2036 m_freem(ln->ln_hold);
2037 ln->ln_hold = m;
2038 if (ln->ln_expire) {
2039 if (ln->ln_asked < nd6_mmaxtries &&
2040 ln->ln_expire < time_uptime) {
2041 ln->ln_asked++;
2042 ln->ln_expire = time_uptime +
2043 ND_IFINFO(ifp)->retrans / 1000;
2044 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2047 return (0);
2049 sendpkt:
2050 if (ifp->if_flags & IFF_LOOPBACK)
2051 error = ifp->if_output(origifp, m, (struct sockaddr *)dst, rt);
2052 else
2053 error = ifp->if_output(ifp, m, (struct sockaddr *)dst, rt);
2054 return (error);
2056 bad:
2057 m_freem(m);
2058 return (error);
2060 #undef gotoerr
2063 nd6_need_cache(struct ifnet *ifp)
2066 * XXX: we currently do not make neighbor cache on any interface
2067 * other than Ethernet and GIF.
2069 * RFC2893 says:
2070 * - unidirectional tunnels needs no ND
2072 switch (ifp->if_type) {
2073 case IFT_ETHER:
2074 case IFT_IEEE1394:
2075 #ifdef IFT_L2VLAN
2076 case IFT_L2VLAN:
2077 #endif
2078 #ifdef IFT_IEEE80211
2079 case IFT_IEEE80211:
2080 #endif
2081 #ifdef IFT_CARP
2082 case IFT_CARP:
2083 #endif
2084 case IFT_GIF: /* XXX need more cases? */
2085 return (1);
2086 default:
2087 return (0);
2092 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2093 struct sockaddr *dst, u_char *desten)
2095 struct sockaddr_dl *sdl;
2096 struct rtentry *rt;
2099 if (m->m_flags & M_MCAST) {
2100 switch (ifp->if_type) {
2101 case IFT_ETHER:
2102 #ifdef IFT_L2VLAN
2103 case IFT_L2VLAN:
2104 #endif
2105 #ifdef IFT_IEEE80211
2106 case IFT_IEEE80211:
2107 #endif
2108 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2109 desten);
2110 return (1);
2111 case IFT_IEEE1394:
2112 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
2113 return (1);
2114 default:
2115 m_freem(m);
2116 return (0);
2119 if (rt0 == NULL) {
2120 /* this could happen, if we could not allocate memory */
2121 m_freem(m);
2122 return (0);
2124 if (rt_llroute(dst, rt0, &rt) != 0) {
2125 m_freem(m);
2126 return (0);
2128 if (rt->rt_gateway->sa_family != AF_LINK) {
2129 kprintf("nd6_storelladdr: something odd happens\n");
2130 m_freem(m);
2131 return (0);
2133 sdl = SDL(rt->rt_gateway);
2134 if (sdl->sdl_alen == 0) {
2135 /* this should be impossible, but we bark here for debugging */
2136 kprintf("nd6_storelladdr: sdl_alen == 0\n");
2137 m_freem(m);
2138 return (0);
2141 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2142 return (1);
2145 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2146 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2147 #ifdef SYSCTL_DECL
2148 SYSCTL_DECL(_net_inet6_icmp6);
2149 #endif
2150 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2151 CTLFLAG_RD, nd6_sysctl_drlist, "List default routers");
2152 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2153 CTLFLAG_RD, nd6_sysctl_prlist, "List prefixes");
2155 static int
2156 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2158 int error;
2159 char buf[1024];
2160 struct in6_defrouter *d, *de;
2161 struct nd_defrouter *dr;
2163 if (req->newptr)
2164 return EPERM;
2165 error = 0;
2167 for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2168 dr = TAILQ_NEXT(dr, dr_entry)) {
2169 d = (struct in6_defrouter *)buf;
2170 de = (struct in6_defrouter *)(buf + sizeof(buf));
2172 if (d + 1 <= de) {
2173 bzero(d, sizeof(*d));
2174 d->rtaddr.sin6_family = AF_INET6;
2175 d->rtaddr.sin6_len = sizeof(d->rtaddr);
2176 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2177 dr->ifp) != 0)
2178 log(LOG_ERR,
2179 "scope error in "
2180 "default router list (%s)\n",
2181 ip6_sprintf(&dr->rtaddr));
2182 d->flags = dr->flags;
2183 d->rtlifetime = dr->rtlifetime;
2184 d->expire = dr->expire;
2185 d->if_index = dr->ifp->if_index;
2186 } else
2187 panic("buffer too short");
2189 error = SYSCTL_OUT(req, buf, sizeof(*d));
2190 if (error)
2191 break;
2193 return error;
2196 static int
2197 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2199 int error;
2200 char buf[1024];
2201 struct in6_prefix *p, *pe;
2202 struct nd_prefix *pr;
2204 if (req->newptr)
2205 return EPERM;
2206 error = 0;
2208 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2209 u_short advrtrs;
2210 size_t advance;
2211 struct sockaddr_in6 *sin6, *s6;
2212 struct nd_pfxrouter *pfr;
2214 p = (struct in6_prefix *)buf;
2215 pe = (struct in6_prefix *)(buf + sizeof(buf));
2217 if (p + 1 <= pe) {
2218 bzero(p, sizeof(*p));
2219 sin6 = (struct sockaddr_in6 *)(p + 1);
2221 p->prefix = pr->ndpr_prefix;
2222 if (in6_recoverscope(&p->prefix,
2223 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2224 log(LOG_ERR,
2225 "scope error in prefix list (%s)\n",
2226 ip6_sprintf(&p->prefix.sin6_addr));
2227 p->raflags = pr->ndpr_raf;
2228 p->prefixlen = pr->ndpr_plen;
2229 p->vltime = pr->ndpr_vltime;
2230 p->pltime = pr->ndpr_pltime;
2231 p->if_index = pr->ndpr_ifp->if_index;
2232 p->expire = pr->ndpr_expire;
2233 p->refcnt = pr->ndpr_refcnt;
2234 p->flags = pr->ndpr_stateflags;
2235 p->origin = PR_ORIG_RA;
2236 advrtrs = 0;
2237 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2238 pfr = pfr->pfr_next) {
2239 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2240 advrtrs++;
2241 continue;
2243 s6 = &sin6[advrtrs];
2244 bzero(s6, sizeof(*s6));
2245 s6->sin6_family = AF_INET6;
2246 s6->sin6_len = sizeof(*sin6);
2247 if (in6_recoverscope(s6, &pfr->router->rtaddr,
2248 pfr->router->ifp) != 0)
2249 log(LOG_ERR,
2250 "scope error in "
2251 "prefix list (%s)\n",
2252 ip6_sprintf(&pfr->router->rtaddr));
2253 advrtrs++;
2255 p->advrtrs = advrtrs;
2256 } else {
2257 panic("buffer too short");
2260 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2261 error = SYSCTL_OUT(req, buf, advance);
2262 if (error)
2263 break;
2265 return error;