2 * FreeSec: libcrypt for NetBSD
4 * Copyright (c) 1994 David Burren
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the author nor the names of other contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * $FreeBSD: src/secure/lib/libcipher/crypt.c,v 1.6 1999/08/28 01:30:21 peter Exp $
33 * This is an original implementation of the DES and the crypt(3) interfaces
34 * by David Burren <davidb@werj.com.au>.
36 * An excellent reference on the underlying algorithm (and related
39 * B. Schneier, Applied Cryptography: protocols, algorithms,
40 * and source code in C, John Wiley & Sons, 1994.
42 * Note that in that book's description of DES the lookups for the initial,
43 * pbox, and final permutations are inverted (this has been brought to the
44 * attention of the author). A list of errata for this book has been
45 * posted to the sci.crypt newsgroup by the author and is available for FTP.
47 * ARCHITECTURE ASSUMPTIONS:
48 * This code assumes that u_longs are 32 bits. It will probably not
49 * operate on 64-bit machines without modifications.
50 * It is assumed that the 8-byte arrays passed by reference can be
51 * addressed as arrays of u_longs (ie. the CPU is not picky about
54 #include <sys/types.h>
55 #include <sys/param.h>
63 static u_char IP
[64] = {
64 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
65 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
66 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
67 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
70 static u_char inv_key_perm
[64];
71 static u_char u_key_perm
[56];
72 static u_char key_perm
[56] = {
73 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
74 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
75 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
76 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
79 static u_char key_shifts
[16] = {
80 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
83 static u_char inv_comp_perm
[56];
84 static u_char comp_perm
[48] = {
85 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
86 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
87 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
88 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
92 * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
95 static u_char u_sbox
[8][64];
96 static u_char sbox
[8][64] = {
98 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
99 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
100 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
101 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
104 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
105 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
106 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
107 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
110 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
111 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
112 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
113 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
116 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
117 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
118 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
119 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
122 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
123 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
124 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
125 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
128 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
129 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
130 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
131 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
134 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
135 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
136 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
137 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
140 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
141 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
142 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
143 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
147 static u_char un_pbox
[32];
148 static u_char pbox
[32] = {
149 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
150 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
153 static u_long bits32
[32] =
155 0x80000000, 0x40000000, 0x20000000, 0x10000000,
156 0x08000000, 0x04000000, 0x02000000, 0x01000000,
157 0x00800000, 0x00400000, 0x00200000, 0x00100000,
158 0x00080000, 0x00040000, 0x00020000, 0x00010000,
159 0x00008000, 0x00004000, 0x00002000, 0x00001000,
160 0x00000800, 0x00000400, 0x00000200, 0x00000100,
161 0x00000080, 0x00000040, 0x00000020, 0x00000010,
162 0x00000008, 0x00000004, 0x00000002, 0x00000001
165 static u_char bits8
[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
167 static u_long saltbits
;
168 static long old_salt
;
169 static u_long
*bits28
, *bits24
;
170 static u_char init_perm
[64], final_perm
[64];
171 static u_long en_keysl
[16], en_keysr
[16];
172 static u_long de_keysl
[16], de_keysr
[16];
173 static int des_initialised
= 0;
174 static u_char m_sbox
[4][4096];
175 static u_long psbox
[4][256];
176 static u_long ip_maskl
[8][256], ip_maskr
[8][256];
177 static u_long fp_maskl
[8][256], fp_maskr
[8][256];
178 static u_long key_perm_maskl
[8][128], key_perm_maskr
[8][128];
179 static u_long comp_maskl
[8][128], comp_maskr
[8][128];
180 static u_long old_rawkey0
, old_rawkey1
;
183 ascii_to_bin(char ch
)
188 return(ch
- 'a' + 38);
192 return(ch
- 'A' + 12);
204 int i
, j
, b
, k
, inbit
, obit
;
205 u_long
*p
, *il
, *ir
, *fl
, *fr
;
207 old_rawkey0
= old_rawkey1
= 0L;
210 bits24
= (bits28
= bits32
+ 4) + 4;
213 * Invert the S-boxes, reordering the input bits.
215 for (i
= 0; i
< 8; i
++)
216 for (j
= 0; j
< 64; j
++) {
217 b
= (j
& 0x20) | ((j
& 1) << 4) | ((j
>> 1) & 0xf);
218 u_sbox
[i
][j
] = sbox
[i
][b
];
222 * Convert the inverted S-boxes into 4 arrays of 8 bits.
223 * Each will handle 12 bits of the S-box input.
225 for (b
= 0; b
< 4; b
++)
226 for (i
= 0; i
< 64; i
++)
227 for (j
= 0; j
< 64; j
++)
228 m_sbox
[b
][(i
<< 6) | j
] =
229 (u_sbox
[(b
<< 1)][i
] << 4) |
230 u_sbox
[(b
<< 1) + 1][j
];
233 * Set up the initial & final permutations into a useful form, and
234 * initialise the inverted key permutation.
236 for (i
= 0; i
< 64; i
++) {
237 init_perm
[final_perm
[i
] = IP
[i
] - 1] = i
;
238 inv_key_perm
[i
] = 255;
242 * Invert the key permutation and initialise the inverted key
243 * compression permutation.
245 for (i
= 0; i
< 56; i
++) {
246 u_key_perm
[i
] = key_perm
[i
] - 1;
247 inv_key_perm
[key_perm
[i
] - 1] = i
;
248 inv_comp_perm
[i
] = 255;
252 * Invert the key compression permutation.
254 for (i
= 0; i
< 48; i
++) {
255 inv_comp_perm
[comp_perm
[i
] - 1] = i
;
259 * Set up the OR-mask arrays for the initial and final permutations,
260 * and for the key initial and compression permutations.
262 for (k
= 0; k
< 8; k
++) {
263 for (i
= 0; i
< 256; i
++) {
264 *(il
= &ip_maskl
[k
][i
]) = 0L;
265 *(ir
= &ip_maskr
[k
][i
]) = 0L;
266 *(fl
= &fp_maskl
[k
][i
]) = 0L;
267 *(fr
= &fp_maskr
[k
][i
]) = 0L;
268 for (j
= 0; j
< 8; j
++) {
271 if ((obit
= init_perm
[inbit
]) < 32)
274 *ir
|= bits32
[obit
-32];
275 if ((obit
= final_perm
[inbit
]) < 32)
278 *fr
|= bits32
[obit
- 32];
282 for (i
= 0; i
< 128; i
++) {
283 *(il
= &key_perm_maskl
[k
][i
]) = 0L;
284 *(ir
= &key_perm_maskr
[k
][i
]) = 0L;
285 for (j
= 0; j
< 7; j
++) {
287 if (i
& bits8
[j
+ 1]) {
288 if ((obit
= inv_key_perm
[inbit
]) == 255)
293 *ir
|= bits28
[obit
- 28];
296 *(il
= &comp_maskl
[k
][i
]) = 0L;
297 *(ir
= &comp_maskr
[k
][i
]) = 0L;
298 for (j
= 0; j
< 7; j
++) {
300 if (i
& bits8
[j
+ 1]) {
301 if ((obit
=inv_comp_perm
[inbit
]) == 255)
306 *ir
|= bits24
[obit
- 24];
313 * Invert the P-box permutation, and convert into OR-masks for
314 * handling the output of the S-box arrays setup above.
316 for (i
= 0; i
< 32; i
++)
317 un_pbox
[pbox
[i
] - 1] = i
;
319 for (b
= 0; b
< 4; b
++)
320 for (i
= 0; i
< 256; i
++) {
321 *(p
= &psbox
[b
][i
]) = 0L;
322 for (j
= 0; j
< 8; j
++) {
324 *p
|= bits32
[un_pbox
[8 * b
+ j
]];
333 setup_salt(long salt
)
335 u_long obit
, saltbit
;
338 if (salt
== old_salt
)
345 for (i
= 0; i
< 24; i
++) {
355 des_setkey(const char *key
)
357 u_long k0
, k1
, rawkey0
, rawkey1
;
360 if (!des_initialised
)
363 rawkey0
= ntohl(*(u_long
*) key
);
364 rawkey1
= ntohl(*(u_long
*) (key
+ 4));
366 if ((rawkey0
| rawkey1
)
367 && rawkey0
== old_rawkey0
368 && rawkey1
== old_rawkey1
) {
370 * Already setup for this key.
371 * This optimisation fails on a zero key (which is weak and
372 * has bad parity anyway) in order to simplify the starting
377 old_rawkey0
= rawkey0
;
378 old_rawkey1
= rawkey1
;
381 * Do key permutation and split into two 28-bit subkeys.
383 k0
= key_perm_maskl
[0][rawkey0
>> 25]
384 | key_perm_maskl
[1][(rawkey0
>> 17) & 0x7f]
385 | key_perm_maskl
[2][(rawkey0
>> 9) & 0x7f]
386 | key_perm_maskl
[3][(rawkey0
>> 1) & 0x7f]
387 | key_perm_maskl
[4][rawkey1
>> 25]
388 | key_perm_maskl
[5][(rawkey1
>> 17) & 0x7f]
389 | key_perm_maskl
[6][(rawkey1
>> 9) & 0x7f]
390 | key_perm_maskl
[7][(rawkey1
>> 1) & 0x7f];
391 k1
= key_perm_maskr
[0][rawkey0
>> 25]
392 | key_perm_maskr
[1][(rawkey0
>> 17) & 0x7f]
393 | key_perm_maskr
[2][(rawkey0
>> 9) & 0x7f]
394 | key_perm_maskr
[3][(rawkey0
>> 1) & 0x7f]
395 | key_perm_maskr
[4][rawkey1
>> 25]
396 | key_perm_maskr
[5][(rawkey1
>> 17) & 0x7f]
397 | key_perm_maskr
[6][(rawkey1
>> 9) & 0x7f]
398 | key_perm_maskr
[7][(rawkey1
>> 1) & 0x7f];
400 * Rotate subkeys and do compression permutation.
403 for (round
= 0; round
< 16; round
++) {
406 shifts
+= key_shifts
[round
];
408 t0
= (k0
<< shifts
) | (k0
>> (28 - shifts
));
409 t1
= (k1
<< shifts
) | (k1
>> (28 - shifts
));
411 de_keysl
[15 - round
] =
412 en_keysl
[round
] = comp_maskl
[0][(t0
>> 21) & 0x7f]
413 | comp_maskl
[1][(t0
>> 14) & 0x7f]
414 | comp_maskl
[2][(t0
>> 7) & 0x7f]
415 | comp_maskl
[3][t0
& 0x7f]
416 | comp_maskl
[4][(t1
>> 21) & 0x7f]
417 | comp_maskl
[5][(t1
>> 14) & 0x7f]
418 | comp_maskl
[6][(t1
>> 7) & 0x7f]
419 | comp_maskl
[7][t1
& 0x7f];
421 de_keysr
[15 - round
] =
422 en_keysr
[round
] = comp_maskr
[0][(t0
>> 21) & 0x7f]
423 | comp_maskr
[1][(t0
>> 14) & 0x7f]
424 | comp_maskr
[2][(t0
>> 7) & 0x7f]
425 | comp_maskr
[3][t0
& 0x7f]
426 | comp_maskr
[4][(t1
>> 21) & 0x7f]
427 | comp_maskr
[5][(t1
>> 14) & 0x7f]
428 | comp_maskr
[6][(t1
>> 7) & 0x7f]
429 | comp_maskr
[7][t1
& 0x7f];
436 do_des( u_long l_in
, u_long r_in
, u_long
*l_out
, u_long
*r_out
, int count
)
439 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
441 u_long l
, r
, *kl
, *kr
, *kl1
, *kr1
;
442 u_long f
, r48l
, r48r
;
447 } else if (count
> 0) {
463 * Do initial permutation (IP).
465 l
= ip_maskl
[0][l_in
>> 24]
466 | ip_maskl
[1][(l_in
>> 16) & 0xff]
467 | ip_maskl
[2][(l_in
>> 8) & 0xff]
468 | ip_maskl
[3][l_in
& 0xff]
469 | ip_maskl
[4][r_in
>> 24]
470 | ip_maskl
[5][(r_in
>> 16) & 0xff]
471 | ip_maskl
[6][(r_in
>> 8) & 0xff]
472 | ip_maskl
[7][r_in
& 0xff];
473 r
= ip_maskr
[0][l_in
>> 24]
474 | ip_maskr
[1][(l_in
>> 16) & 0xff]
475 | ip_maskr
[2][(l_in
>> 8) & 0xff]
476 | ip_maskr
[3][l_in
& 0xff]
477 | ip_maskr
[4][r_in
>> 24]
478 | ip_maskr
[5][(r_in
>> 16) & 0xff]
479 | ip_maskr
[6][(r_in
>> 8) & 0xff]
480 | ip_maskr
[7][r_in
& 0xff];
491 * Expand R to 48 bits (simulate the E-box).
493 r48l
= ((r
& 0x00000001) << 23)
494 | ((r
& 0xf8000000) >> 9)
495 | ((r
& 0x1f800000) >> 11)
496 | ((r
& 0x01f80000) >> 13)
497 | ((r
& 0x001f8000) >> 15);
499 r48r
= ((r
& 0x0001f800) << 7)
500 | ((r
& 0x00001f80) << 5)
501 | ((r
& 0x000001f8) << 3)
502 | ((r
& 0x0000001f) << 1)
503 | ((r
& 0x80000000) >> 31);
505 * Do salting for crypt() and friends, and
506 * XOR with the permuted key.
508 f
= (r48l
^ r48r
) & saltbits
;
512 * Do sbox lookups (which shrink it back to 32 bits)
513 * and do the pbox permutation at the same time.
515 f
= psbox
[0][m_sbox
[0][r48l
>> 12]]
516 | psbox
[1][m_sbox
[1][r48l
& 0xfff]]
517 | psbox
[2][m_sbox
[2][r48r
>> 12]]
518 | psbox
[3][m_sbox
[3][r48r
& 0xfff]];
520 * Now that we've permuted things, complete f().
530 * Do final permutation (inverse of IP).
532 *l_out
= fp_maskl
[0][l
>> 24]
533 | fp_maskl
[1][(l
>> 16) & 0xff]
534 | fp_maskl
[2][(l
>> 8) & 0xff]
535 | fp_maskl
[3][l
& 0xff]
536 | fp_maskl
[4][r
>> 24]
537 | fp_maskl
[5][(r
>> 16) & 0xff]
538 | fp_maskl
[6][(r
>> 8) & 0xff]
539 | fp_maskl
[7][r
& 0xff];
540 *r_out
= fp_maskr
[0][l
>> 24]
541 | fp_maskr
[1][(l
>> 16) & 0xff]
542 | fp_maskr
[2][(l
>> 8) & 0xff]
543 | fp_maskr
[3][l
& 0xff]
544 | fp_maskr
[4][r
>> 24]
545 | fp_maskr
[5][(r
>> 16) & 0xff]
546 | fp_maskr
[6][(r
>> 8) & 0xff]
547 | fp_maskr
[7][r
& 0xff];
553 des_cipher(const char *in
, char *out
, long salt
, int count
)
555 u_long l_out
, r_out
, rawl
, rawr
;
558 if (!des_initialised
)
563 rawl
= ntohl(*((u_long
*) in
));
564 rawr
= ntohl(*(((u_long
*) in
) + 1));
566 retval
= do_des(rawl
, rawr
, &l_out
, &r_out
, count
);
568 *((u_long
*) out
) = htonl(l_out
);
569 *(((u_long
*) out
) + 1) = htonl(r_out
);
578 u_long packed_keys
[2];
581 p
= (u_char
*) packed_keys
;
583 for (i
= 0; i
< 8; i
++) {
585 for (j
= 0; j
< 8; j
++)
589 return(des_setkey(p
));
594 encrypt(char *block
, int flag
)
600 if (!des_initialised
)
605 for (i
= 0; i
< 2; i
++) {
607 for (j
= 0; j
< 32; j
++)
611 retval
= do_des(io
[0], io
[1], io
, io
+ 1, flag
? -1 : 1);
612 for (i
= 0; i
< 2; i
++)
613 for (j
= 0; j
< 32; j
++)
614 block
[(i
<< 5) | j
] = (io
[i
] & bits32
[j
]) ? 1 : 0;