pnpinfo(8): Oops, add missing semicolons.
[dragonfly.git] / sys / vfs / hammer / hammer_btree.c
blobf3fe3ad45c75f8fc82ce19d1dd4199caddf841b1
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
38 * HAMMER B-Tree index
40 * HAMMER implements a modified B+Tree. In documentation this will
41 * simply be refered to as the HAMMER B-Tree. Basically a HAMMER B-Tree
42 * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43 * of the tree), but adds two additional boundary elements which describe
44 * the left-most and right-most element a node is able to represent. In
45 * otherwords, we have boundary elements at the two ends of a B-Tree node
46 * instead of sub-tree pointers.
48 * A B-Tree internal node looks like this:
50 * B N N N N N N B <-- boundary and internal elements
51 * S S S S S S S <-- subtree pointers
53 * A B-Tree leaf node basically looks like this:
55 * L L L L L L L L <-- leaf elemenets
57 * The radix for an internal node is 1 less then a leaf but we get a
58 * number of significant benefits for our troubles.
60 * The big benefit to using a B-Tree containing boundary information
61 * is that it is possible to cache pointers into the middle of the tree
62 * and not have to start searches, insertions, OR deletions at the root
63 * node. In particular, searches are able to progress in a definitive
64 * direction from any point in the tree without revisting nodes. This
65 * greatly improves the efficiency of many operations, most especially
66 * record appends.
68 * B-Trees also make the stacking of trees fairly straightforward.
70 * INSERTIONS: A search performed with the intention of doing
71 * an insert will guarantee that the terminal leaf node is not full by
72 * splitting full nodes. Splits occur top-down during the dive down the
73 * B-Tree.
75 * DELETIONS: A deletion makes no attempt to proactively balance the
76 * tree and will recursively remove nodes that become empty. If a
77 * deadlock occurs a deletion may not be able to remove an empty leaf.
78 * Deletions never allow internal nodes to become empty (that would blow
79 * up the boundaries).
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
97 * Iterate records after a search. The cursor is iterated forwards past
98 * the current record until a record matching the key-range requirements
99 * is found. ENOENT is returned if the iteration goes past the ending
100 * key.
102 * The iteration is inclusive of key_beg and can be inclusive or exclusive
103 * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
105 * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106 * may be modified by B-Tree functions.
108 * cursor->key_beg may or may not be modified by this function during
109 * the iteration. XXX future - in case of an inverted lock we may have
110 * to reinitiate the lookup and set key_beg to properly pick up where we
111 * left off.
113 * NOTE! EDEADLK *CANNOT* be returned by this procedure.
116 hammer_btree_iterate(hammer_cursor_t cursor)
118 hammer_node_ondisk_t node;
119 hammer_btree_elm_t elm;
120 int error = 0;
121 int r;
122 int s;
125 * Skip past the current record
127 node = cursor->node->ondisk;
128 if (node == NULL)
129 return(ENOENT);
130 if (cursor->index < node->count &&
131 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
132 ++cursor->index;
136 * Loop until an element is found or we are done.
138 for (;;) {
140 * We iterate up the tree and then index over one element
141 * while we are at the last element in the current node.
143 * If we are at the root of the filesystem, cursor_up
144 * returns ENOENT.
146 * XXX this could be optimized by storing the information in
147 * the parent reference.
149 * XXX we can lose the node lock temporarily, this could mess
150 * up our scan.
152 ++hammer_stats_btree_iterations;
153 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
155 if (cursor->index == node->count) {
156 if (hammer_debug_btree) {
157 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
158 cursor->node->node_offset,
159 cursor->index,
160 (cursor->parent ? cursor->parent->node_offset : -1),
161 cursor->parent_index,
162 curthread);
164 KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
165 error = hammer_cursor_up(cursor);
166 if (error)
167 break;
168 /* reload stale pointer */
169 node = cursor->node->ondisk;
170 KKASSERT(cursor->index != node->count);
173 * If we are reblocking we want to return internal
174 * nodes. Note that the internal node will be
175 * returned multiple times, on each upward recursion
176 * from its children. The caller selects which
177 * revisit it cares about (usually first or last only).
179 if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
180 cursor->flags |= HAMMER_CURSOR_ATEDISK;
181 return(0);
183 ++cursor->index;
184 continue;
188 * Check internal or leaf element. Determine if the record
189 * at the cursor has gone beyond the end of our range.
191 * We recurse down through internal nodes.
193 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
194 elm = &node->elms[cursor->index];
196 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
197 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
198 if (hammer_debug_btree) {
199 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
200 cursor->node->node_offset,
201 cursor->index,
202 elm[0].internal.base.obj_id,
203 elm[0].internal.base.rec_type,
204 elm[0].internal.base.key,
205 elm[0].internal.base.localization,
207 curthread
209 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
210 cursor->node->node_offset,
211 cursor->index + 1,
212 elm[1].internal.base.obj_id,
213 elm[1].internal.base.rec_type,
214 elm[1].internal.base.key,
215 elm[1].internal.base.localization,
220 if (r < 0) {
221 error = ENOENT;
222 break;
224 if (r == 0 && (cursor->flags &
225 HAMMER_CURSOR_END_INCLUSIVE) == 0) {
226 error = ENOENT;
227 break;
229 KKASSERT(s <= 0);
232 * Better not be zero
234 KKASSERT(elm->internal.subtree_offset != 0);
237 * If running the mirror filter see if we can skip
238 * one or more entire sub-trees. If we can we
239 * return the internal mode and the caller processes
240 * the skipped range (see mirror_read)
242 if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
243 if (elm->internal.mirror_tid <
244 cursor->cmirror->mirror_tid) {
245 hammer_cursor_mirror_filter(cursor);
246 return(0);
250 error = hammer_cursor_down(cursor);
251 if (error)
252 break;
253 KKASSERT(cursor->index == 0);
254 /* reload stale pointer */
255 node = cursor->node->ondisk;
256 continue;
257 } else {
258 elm = &node->elms[cursor->index];
259 r = hammer_btree_cmp(&cursor->key_end, &elm->base);
260 if (hammer_debug_btree) {
261 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
262 cursor->node->node_offset,
263 cursor->index,
264 (elm[0].leaf.base.btype ?
265 elm[0].leaf.base.btype : '?'),
266 elm[0].leaf.base.obj_id,
267 elm[0].leaf.base.rec_type,
268 elm[0].leaf.base.key,
269 elm[0].leaf.base.localization,
273 if (r < 0) {
274 error = ENOENT;
275 break;
279 * We support both end-inclusive and
280 * end-exclusive searches.
282 if (r == 0 &&
283 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
284 error = ENOENT;
285 break;
288 switch(elm->leaf.base.btype) {
289 case HAMMER_BTREE_TYPE_RECORD:
290 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
291 hammer_btree_chkts(cursor->asof, &elm->base)) {
292 ++cursor->index;
293 continue;
295 error = 0;
296 break;
297 default:
298 error = EINVAL;
299 break;
301 if (error)
302 break;
305 * node pointer invalid after loop
309 * Return entry
311 if (hammer_debug_btree) {
312 int i = cursor->index;
313 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
314 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
315 cursor->node, i,
316 elm->internal.base.obj_id,
317 elm->internal.base.rec_type,
318 elm->internal.base.key,
319 elm->internal.base.localization
322 return(0);
324 return(error);
328 * We hit an internal element that we could skip as part of a mirroring
329 * scan. Calculate the entire range being skipped.
331 * It is important to include any gaps between the parent's left_bound
332 * and the node's left_bound, and same goes for the right side.
334 static void
335 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
337 struct hammer_cmirror *cmirror;
338 hammer_node_ondisk_t ondisk;
339 hammer_btree_elm_t elm;
341 ondisk = cursor->node->ondisk;
342 cmirror = cursor->cmirror;
345 * Calculate the skipped range
347 elm = &ondisk->elms[cursor->index];
348 if (cursor->index == 0)
349 cmirror->skip_beg = *cursor->left_bound;
350 else
351 cmirror->skip_beg = elm->internal.base;
352 while (cursor->index < ondisk->count) {
353 if (elm->internal.mirror_tid >= cmirror->mirror_tid)
354 break;
355 ++cursor->index;
356 ++elm;
358 if (cursor->index == ondisk->count)
359 cmirror->skip_end = *cursor->right_bound;
360 else
361 cmirror->skip_end = elm->internal.base;
364 * clip the returned result.
366 if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
367 cmirror->skip_beg = cursor->key_beg;
368 if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
369 cmirror->skip_end = cursor->key_end;
373 * Iterate in the reverse direction. This is used by the pruning code to
374 * avoid overlapping records.
377 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
379 hammer_node_ondisk_t node;
380 hammer_btree_elm_t elm;
381 int error = 0;
382 int r;
383 int s;
385 /* mirror filtering not supported for reverse iteration */
386 KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
389 * Skip past the current record. For various reasons the cursor
390 * may end up set to -1 or set to point at the end of the current
391 * node. These cases must be addressed.
393 node = cursor->node->ondisk;
394 if (node == NULL)
395 return(ENOENT);
396 if (cursor->index != -1 &&
397 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
398 --cursor->index;
400 if (cursor->index == cursor->node->ondisk->count)
401 --cursor->index;
404 * Loop until an element is found or we are done.
406 for (;;) {
407 ++hammer_stats_btree_iterations;
408 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
411 * We iterate up the tree and then index over one element
412 * while we are at the last element in the current node.
414 if (cursor->index == -1) {
415 error = hammer_cursor_up(cursor);
416 if (error) {
417 cursor->index = 0; /* sanity */
418 break;
420 /* reload stale pointer */
421 node = cursor->node->ondisk;
422 KKASSERT(cursor->index != node->count);
423 --cursor->index;
424 continue;
428 * Check internal or leaf element. Determine if the record
429 * at the cursor has gone beyond the end of our range.
431 * We recurse down through internal nodes.
433 KKASSERT(cursor->index != node->count);
434 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
435 elm = &node->elms[cursor->index];
436 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
437 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
438 if (hammer_debug_btree) {
439 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
440 cursor->node->node_offset,
441 cursor->index,
442 elm[0].internal.base.obj_id,
443 elm[0].internal.base.rec_type,
444 elm[0].internal.base.key,
445 elm[0].internal.base.localization,
448 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
449 cursor->node->node_offset,
450 cursor->index + 1,
451 elm[1].internal.base.obj_id,
452 elm[1].internal.base.rec_type,
453 elm[1].internal.base.key,
454 elm[1].internal.base.localization,
459 if (s >= 0) {
460 error = ENOENT;
461 break;
463 KKASSERT(r >= 0);
466 * Better not be zero
468 KKASSERT(elm->internal.subtree_offset != 0);
470 error = hammer_cursor_down(cursor);
471 if (error)
472 break;
473 KKASSERT(cursor->index == 0);
474 /* reload stale pointer */
475 node = cursor->node->ondisk;
477 /* this can assign -1 if the leaf was empty */
478 cursor->index = node->count - 1;
479 continue;
480 } else {
481 elm = &node->elms[cursor->index];
482 s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
483 if (hammer_debug_btree) {
484 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
485 cursor->node->node_offset,
486 cursor->index,
487 (elm[0].leaf.base.btype ?
488 elm[0].leaf.base.btype : '?'),
489 elm[0].leaf.base.obj_id,
490 elm[0].leaf.base.rec_type,
491 elm[0].leaf.base.key,
492 elm[0].leaf.base.localization,
496 if (s > 0) {
497 error = ENOENT;
498 break;
501 switch(elm->leaf.base.btype) {
502 case HAMMER_BTREE_TYPE_RECORD:
503 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
504 hammer_btree_chkts(cursor->asof, &elm->base)) {
505 --cursor->index;
506 continue;
508 error = 0;
509 break;
510 default:
511 error = EINVAL;
512 break;
514 if (error)
515 break;
518 * node pointer invalid after loop
522 * Return entry
524 if (hammer_debug_btree) {
525 int i = cursor->index;
526 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
527 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
528 cursor->node, i,
529 elm->internal.base.obj_id,
530 elm->internal.base.rec_type,
531 elm->internal.base.key,
532 elm->internal.base.localization
535 return(0);
537 return(error);
541 * Lookup cursor->key_beg. 0 is returned on success, ENOENT if the entry
542 * could not be found, EDEADLK if inserting and a retry is needed, and a
543 * fatal error otherwise. When retrying, the caller must terminate the
544 * cursor and reinitialize it. EDEADLK cannot be returned if not inserting.
546 * The cursor is suitably positioned for a deletion on success, and suitably
547 * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
548 * specified.
550 * The cursor may begin anywhere, the search will traverse the tree in
551 * either direction to locate the requested element.
553 * Most of the logic implementing historical searches is handled here. We
554 * do an initial lookup with create_tid set to the asof TID. Due to the
555 * way records are laid out, a backwards iteration may be required if
556 * ENOENT is returned to locate the historical record. Here's the
557 * problem:
559 * create_tid: 10 15 20
560 * LEAF1 LEAF2
561 * records: (11) (18)
563 * Lets say we want to do a lookup AS-OF timestamp 17. We will traverse
564 * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
565 * not visible and thus causes ENOENT to be returned. We really need
566 * to check record 11 in LEAF1. If it also fails then the search fails
567 * (e.g. it might represent the range 11-16 and thus still not match our
568 * AS-OF timestamp of 17). Note that LEAF1 could be empty, requiring
569 * further iterations.
571 * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
572 * and the cursor->create_check TID if an iteration might be needed.
573 * In the above example create_check would be set to 14.
576 hammer_btree_lookup(hammer_cursor_t cursor)
578 int error;
580 KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
581 cursor->trans->sync_lock_refs > 0);
582 ++hammer_stats_btree_lookups;
583 if (cursor->flags & HAMMER_CURSOR_ASOF) {
584 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
585 cursor->key_beg.create_tid = cursor->asof;
586 for (;;) {
587 cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
588 error = btree_search(cursor, 0);
589 if (error != ENOENT ||
590 (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
592 * Stop if no error.
593 * Stop if error other then ENOENT.
594 * Stop if ENOENT and not special case.
596 break;
598 if (hammer_debug_btree) {
599 kprintf("CREATE_CHECK %016llx\n",
600 cursor->create_check);
602 cursor->key_beg.create_tid = cursor->create_check;
603 /* loop */
605 } else {
606 error = btree_search(cursor, 0);
608 if (error == 0)
609 error = hammer_btree_extract(cursor, cursor->flags);
610 return(error);
614 * Execute the logic required to start an iteration. The first record
615 * located within the specified range is returned and iteration control
616 * flags are adjusted for successive hammer_btree_iterate() calls.
618 * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
619 * in a loop without worrying about it. Higher-level merged searches will
620 * adjust the flag appropriately.
623 hammer_btree_first(hammer_cursor_t cursor)
625 int error;
627 error = hammer_btree_lookup(cursor);
628 if (error == ENOENT) {
629 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
630 error = hammer_btree_iterate(cursor);
632 cursor->flags |= HAMMER_CURSOR_ATEDISK;
633 return(error);
637 * Similarly but for an iteration in the reverse direction.
639 * Set ATEDISK when iterating backwards to skip the current entry,
640 * which after an ENOENT lookup will be pointing beyond our end point.
642 * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
643 * in a loop without worrying about it. Higher-level merged searches will
644 * adjust the flag appropriately.
647 hammer_btree_last(hammer_cursor_t cursor)
649 struct hammer_base_elm save;
650 int error;
652 save = cursor->key_beg;
653 cursor->key_beg = cursor->key_end;
654 error = hammer_btree_lookup(cursor);
655 cursor->key_beg = save;
656 if (error == ENOENT ||
657 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
658 cursor->flags |= HAMMER_CURSOR_ATEDISK;
659 error = hammer_btree_iterate_reverse(cursor);
661 cursor->flags |= HAMMER_CURSOR_ATEDISK;
662 return(error);
666 * Extract the record and/or data associated with the cursor's current
667 * position. Any prior record or data stored in the cursor is replaced.
668 * The cursor must be positioned at a leaf node.
670 * NOTE: All extractions occur at the leaf of the B-Tree.
673 hammer_btree_extract(hammer_cursor_t cursor, int flags)
675 hammer_node_ondisk_t node;
676 hammer_btree_elm_t elm;
677 hammer_off_t data_off;
678 hammer_mount_t hmp;
679 int32_t data_len;
680 int error;
683 * The case where the data reference resolves to the same buffer
684 * as the record reference must be handled.
686 node = cursor->node->ondisk;
687 elm = &node->elms[cursor->index];
688 cursor->data = NULL;
689 hmp = cursor->node->hmp;
692 * There is nothing to extract for an internal element.
694 if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
695 return(EINVAL);
698 * Only record types have data.
700 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
701 cursor->leaf = &elm->leaf;
703 if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
704 return(0);
705 if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
706 return(0);
707 data_off = elm->leaf.data_offset;
708 data_len = elm->leaf.data_len;
709 if (data_off == 0)
710 return(0);
713 * Load the data
715 KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
716 cursor->data = hammer_bread_ext(hmp, data_off, data_len,
717 &error, &cursor->data_buffer);
718 if (hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
719 kprintf("CRC DATA @ %016llx/%d FAILED\n",
720 elm->leaf.data_offset, elm->leaf.data_len);
721 if (hammer_debug_debug & 0x0001)
722 Debugger("CRC FAILED: DATA");
723 if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
724 error = EDOM; /* less critical (mirroring) */
725 else
726 error = EIO; /* critical */
728 return(error);
733 * Insert a leaf element into the B-Tree at the current cursor position.
734 * The cursor is positioned such that the element at and beyond the cursor
735 * are shifted to make room for the new record.
737 * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
738 * flag set and that call must return ENOENT before this function can be
739 * called.
741 * The caller may depend on the cursor's exclusive lock after return to
742 * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
744 * ENOSPC is returned if there is no room to insert a new record.
747 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
748 int *doprop)
750 hammer_node_ondisk_t node;
751 int i;
752 int error;
754 *doprop = 0;
755 if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
756 return(error);
757 ++hammer_stats_btree_inserts;
760 * Insert the element at the leaf node and update the count in the
761 * parent. It is possible for parent to be NULL, indicating that
762 * the filesystem's ROOT B-Tree node is a leaf itself, which is
763 * possible. The root inode can never be deleted so the leaf should
764 * never be empty.
766 * Remember that the right-hand boundary is not included in the
767 * count.
769 hammer_modify_node_all(cursor->trans, cursor->node);
770 node = cursor->node->ondisk;
771 i = cursor->index;
772 KKASSERT(elm->base.btype != 0);
773 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
774 KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
775 if (i != node->count) {
776 bcopy(&node->elms[i], &node->elms[i+1],
777 (node->count - i) * sizeof(*elm));
779 node->elms[i].leaf = *elm;
780 ++node->count;
781 hammer_cursor_inserted_element(cursor->node, i);
784 * Update the leaf node's aggregate mirror_tid for mirroring
785 * support.
787 if (node->mirror_tid < elm->base.delete_tid) {
788 node->mirror_tid = elm->base.delete_tid;
789 *doprop = 1;
791 if (node->mirror_tid < elm->base.create_tid) {
792 node->mirror_tid = elm->base.create_tid;
793 *doprop = 1;
795 hammer_modify_node_done(cursor->node);
798 * Debugging sanity checks.
800 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
801 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
802 if (i) {
803 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
805 if (i != node->count - 1)
806 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
808 return(0);
812 * Delete a record from the B-Tree at the current cursor position.
813 * The cursor is positioned such that the current element is the one
814 * to be deleted.
816 * On return the cursor will be positioned after the deleted element and
817 * MAY point to an internal node. It will be suitable for the continuation
818 * of an iteration but not for an insertion or deletion.
820 * Deletions will attempt to partially rebalance the B-Tree in an upward
821 * direction, but will terminate rather then deadlock. Empty internal nodes
822 * are never allowed by a deletion which deadlocks may end up giving us an
823 * empty leaf. The pruner will clean up and rebalance the tree.
825 * This function can return EDEADLK, requiring the caller to retry the
826 * operation after clearing the deadlock.
829 hammer_btree_delete(hammer_cursor_t cursor)
831 hammer_node_ondisk_t ondisk;
832 hammer_node_t node;
833 hammer_node_t parent;
834 int error;
835 int i;
837 KKASSERT (cursor->trans->sync_lock_refs > 0);
838 if ((error = hammer_cursor_upgrade(cursor)) != 0)
839 return(error);
840 ++hammer_stats_btree_deletes;
843 * Delete the element from the leaf node.
845 * Remember that leaf nodes do not have boundaries.
847 node = cursor->node;
848 ondisk = node->ondisk;
849 i = cursor->index;
851 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
852 KKASSERT(i >= 0 && i < ondisk->count);
853 hammer_modify_node_all(cursor->trans, node);
854 if (i + 1 != ondisk->count) {
855 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
856 (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
858 --ondisk->count;
859 hammer_modify_node_done(node);
860 hammer_cursor_deleted_element(node, i);
863 * Validate local parent
865 if (ondisk->parent) {
866 parent = cursor->parent;
868 KKASSERT(parent != NULL);
869 KKASSERT(parent->node_offset == ondisk->parent);
873 * If the leaf becomes empty it must be detached from the parent,
874 * potentially recursing through to the filesystem root.
876 * This may reposition the cursor at one of the parent's of the
877 * current node.
879 * Ignore deadlock errors, that simply means that btree_remove
880 * was unable to recurse and had to leave us with an empty leaf.
882 KKASSERT(cursor->index <= ondisk->count);
883 if (ondisk->count == 0) {
884 error = btree_remove(cursor);
885 if (error == EDEADLK)
886 error = 0;
887 } else {
888 error = 0;
890 KKASSERT(cursor->parent == NULL ||
891 cursor->parent_index < cursor->parent->ondisk->count);
892 return(error);
896 * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
898 * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
900 * The search can begin ANYWHERE in the B-Tree. As a first step the search
901 * iterates up the tree as necessary to properly position itself prior to
902 * actually doing the sarch.
904 * INSERTIONS: The search will split full nodes and leaves on its way down
905 * and guarentee that the leaf it ends up on is not full. If we run out
906 * of space the search continues to the leaf (to position the cursor for
907 * the spike), but ENOSPC is returned.
909 * The search is only guarenteed to end up on a leaf if an error code of 0
910 * is returned, or if inserting and an error code of ENOENT is returned.
911 * Otherwise it can stop at an internal node. On success a search returns
912 * a leaf node.
914 * COMPLEXITY WARNING! This is the core B-Tree search code for the entire
915 * filesystem, and it is not simple code. Please note the following facts:
917 * - Internal node recursions have a boundary on the left AND right. The
918 * right boundary is non-inclusive. The create_tid is a generic part
919 * of the key for internal nodes.
921 * - Leaf nodes contain terminal elements only now.
923 * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
924 * historical search. ASOF and INSERT are mutually exclusive. When
925 * doing an as-of lookup btree_search() checks for a right-edge boundary
926 * case. If while recursing down the left-edge differs from the key
927 * by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
928 * with cursor->create_check. This is used by btree_lookup() to iterate.
929 * The iteration backwards because as-of searches can wind up going
930 * down the wrong branch of the B-Tree.
932 static
934 btree_search(hammer_cursor_t cursor, int flags)
936 hammer_node_ondisk_t node;
937 hammer_btree_elm_t elm;
938 int error;
939 int enospc = 0;
940 int i;
941 int r;
942 int s;
944 flags |= cursor->flags;
945 ++hammer_stats_btree_searches;
947 if (hammer_debug_btree) {
948 kprintf("SEARCH %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
949 cursor->node->node_offset,
950 cursor->index,
951 cursor->key_beg.obj_id,
952 cursor->key_beg.rec_type,
953 cursor->key_beg.key,
954 cursor->key_beg.create_tid,
955 cursor->key_beg.localization,
956 curthread
958 if (cursor->parent)
959 kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
960 cursor->parent->node_offset, cursor->parent_index,
961 cursor->left_bound->obj_id,
962 cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
963 cursor->right_bound->obj_id,
964 cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
965 cursor->left_bound,
966 &cursor->parent->ondisk->elms[cursor->parent_index],
967 cursor->right_bound,
968 &cursor->parent->ondisk->elms[cursor->parent_index+1]
973 * Move our cursor up the tree until we find a node whos range covers
974 * the key we are trying to locate.
976 * The left bound is inclusive, the right bound is non-inclusive.
977 * It is ok to cursor up too far.
979 for (;;) {
980 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
981 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
982 if (r >= 0 && s < 0)
983 break;
984 KKASSERT(cursor->parent);
985 ++hammer_stats_btree_iterations;
986 error = hammer_cursor_up(cursor);
987 if (error)
988 goto done;
992 * The delete-checks below are based on node, not parent. Set the
993 * initial delete-check based on the parent.
995 if (r == 1) {
996 KKASSERT(cursor->left_bound->create_tid != 1);
997 cursor->create_check = cursor->left_bound->create_tid - 1;
998 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1002 * We better have ended up with a node somewhere.
1004 KKASSERT(cursor->node != NULL);
1007 * If we are inserting we can't start at a full node if the parent
1008 * is also full (because there is no way to split the node),
1009 * continue running up the tree until the requirement is satisfied
1010 * or we hit the root of the filesystem.
1012 * (If inserting we aren't doing an as-of search so we don't have
1013 * to worry about create_check).
1015 while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1016 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1017 if (btree_node_is_full(cursor->node->ondisk) == 0)
1018 break;
1019 } else {
1020 if (btree_node_is_full(cursor->node->ondisk) ==0)
1021 break;
1023 if (cursor->node->ondisk->parent == 0 ||
1024 cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1025 break;
1027 ++hammer_stats_btree_iterations;
1028 error = hammer_cursor_up(cursor);
1029 /* node may have become stale */
1030 if (error)
1031 goto done;
1035 * Push down through internal nodes to locate the requested key.
1037 node = cursor->node->ondisk;
1038 while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1040 * Scan the node to find the subtree index to push down into.
1041 * We go one-past, then back-up.
1043 * We must proactively remove deleted elements which may
1044 * have been left over from a deadlocked btree_remove().
1046 * The left and right boundaries are included in the loop
1047 * in order to detect edge cases.
1049 * If the separator only differs by create_tid (r == 1)
1050 * and we are doing an as-of search, we may end up going
1051 * down a branch to the left of the one containing the
1052 * desired key. This requires numerous special cases.
1054 ++hammer_stats_btree_iterations;
1055 if (hammer_debug_btree) {
1056 kprintf("SEARCH-I %016llx count=%d\n",
1057 cursor->node->node_offset,
1058 node->count);
1062 * Try to shortcut the search before dropping into the
1063 * linear loop. Locate the first node where r <= 1.
1065 i = hammer_btree_search_node(&cursor->key_beg, node);
1066 while (i <= node->count) {
1067 ++hammer_stats_btree_elements;
1068 elm = &node->elms[i];
1069 r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1070 if (hammer_debug_btree > 2) {
1071 kprintf(" IELM %p %d r=%d\n",
1072 &node->elms[i], i, r);
1074 if (r < 0)
1075 break;
1076 if (r == 1) {
1077 KKASSERT(elm->base.create_tid != 1);
1078 cursor->create_check = elm->base.create_tid - 1;
1079 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1081 ++i;
1083 if (hammer_debug_btree) {
1084 kprintf("SEARCH-I preI=%d/%d r=%d\n",
1085 i, node->count, r);
1089 * These cases occur when the parent's idea of the boundary
1090 * is wider then the child's idea of the boundary, and
1091 * require special handling. If not inserting we can
1092 * terminate the search early for these cases but the
1093 * child's boundaries cannot be unconditionally modified.
1095 if (i == 0) {
1097 * If i == 0 the search terminated to the LEFT of the
1098 * left_boundary but to the RIGHT of the parent's left
1099 * boundary.
1101 u_int8_t save;
1103 elm = &node->elms[0];
1106 * If we aren't inserting we can stop here.
1108 if ((flags & (HAMMER_CURSOR_INSERT |
1109 HAMMER_CURSOR_PRUNING)) == 0) {
1110 cursor->index = 0;
1111 return(ENOENT);
1115 * Correct a left-hand boundary mismatch.
1117 * We can only do this if we can upgrade the lock,
1118 * and synchronized as a background cursor (i.e.
1119 * inserting or pruning).
1121 * WARNING: We can only do this if inserting, i.e.
1122 * we are running on the backend.
1124 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1125 return(error);
1126 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1127 hammer_modify_node_field(cursor->trans, cursor->node,
1128 elms[0]);
1129 save = node->elms[0].base.btype;
1130 node->elms[0].base = *cursor->left_bound;
1131 node->elms[0].base.btype = save;
1132 hammer_modify_node_done(cursor->node);
1133 } else if (i == node->count + 1) {
1135 * If i == node->count + 1 the search terminated to
1136 * the RIGHT of the right boundary but to the LEFT
1137 * of the parent's right boundary. If we aren't
1138 * inserting we can stop here.
1140 * Note that the last element in this case is
1141 * elms[i-2] prior to adjustments to 'i'.
1143 --i;
1144 if ((flags & (HAMMER_CURSOR_INSERT |
1145 HAMMER_CURSOR_PRUNING)) == 0) {
1146 cursor->index = i;
1147 return (ENOENT);
1151 * Correct a right-hand boundary mismatch.
1152 * (actual push-down record is i-2 prior to
1153 * adjustments to i).
1155 * We can only do this if we can upgrade the lock,
1156 * and synchronized as a background cursor (i.e.
1157 * inserting or pruning).
1159 * WARNING: We can only do this if inserting, i.e.
1160 * we are running on the backend.
1162 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1163 return(error);
1164 elm = &node->elms[i];
1165 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1166 hammer_modify_node(cursor->trans, cursor->node,
1167 &elm->base, sizeof(elm->base));
1168 elm->base = *cursor->right_bound;
1169 hammer_modify_node_done(cursor->node);
1170 --i;
1171 } else {
1173 * The push-down index is now i - 1. If we had
1174 * terminated on the right boundary this will point
1175 * us at the last element.
1177 --i;
1179 cursor->index = i;
1180 elm = &node->elms[i];
1182 if (hammer_debug_btree) {
1183 kprintf("RESULT-I %016llx[%d] %016llx %02x "
1184 "key=%016llx cre=%016llx lo=%02x\n",
1185 cursor->node->node_offset,
1187 elm->internal.base.obj_id,
1188 elm->internal.base.rec_type,
1189 elm->internal.base.key,
1190 elm->internal.base.create_tid,
1191 elm->internal.base.localization
1196 * We better have a valid subtree offset.
1198 KKASSERT(elm->internal.subtree_offset != 0);
1201 * Handle insertion and deletion requirements.
1203 * If inserting split full nodes. The split code will
1204 * adjust cursor->node and cursor->index if the current
1205 * index winds up in the new node.
1207 * If inserting and a left or right edge case was detected,
1208 * we cannot correct the left or right boundary and must
1209 * prepend and append an empty leaf node in order to make
1210 * the boundary correction.
1212 * If we run out of space we set enospc and continue on
1213 * to a leaf to provide the spike code with a good point
1214 * of entry.
1216 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1217 if (btree_node_is_full(node)) {
1218 error = btree_split_internal(cursor);
1219 if (error) {
1220 if (error != ENOSPC)
1221 goto done;
1222 enospc = 1;
1225 * reload stale pointers
1227 i = cursor->index;
1228 node = cursor->node->ondisk;
1233 * Push down (push into new node, existing node becomes
1234 * the parent) and continue the search.
1236 error = hammer_cursor_down(cursor);
1237 /* node may have become stale */
1238 if (error)
1239 goto done;
1240 node = cursor->node->ondisk;
1244 * We are at a leaf, do a linear search of the key array.
1246 * On success the index is set to the matching element and 0
1247 * is returned.
1249 * On failure the index is set to the insertion point and ENOENT
1250 * is returned.
1252 * Boundaries are not stored in leaf nodes, so the index can wind
1253 * up to the left of element 0 (index == 0) or past the end of
1254 * the array (index == node->count). It is also possible that the
1255 * leaf might be empty.
1257 ++hammer_stats_btree_iterations;
1258 KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1259 KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1260 if (hammer_debug_btree) {
1261 kprintf("SEARCH-L %016llx count=%d\n",
1262 cursor->node->node_offset,
1263 node->count);
1267 * Try to shortcut the search before dropping into the
1268 * linear loop. Locate the first node where r <= 1.
1270 i = hammer_btree_search_node(&cursor->key_beg, node);
1271 while (i < node->count) {
1272 ++hammer_stats_btree_elements;
1273 elm = &node->elms[i];
1275 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1277 if (hammer_debug_btree > 1)
1278 kprintf(" ELM %p %d r=%d\n", &node->elms[i], i, r);
1281 * We are at a record element. Stop if we've flipped past
1282 * key_beg, not counting the create_tid test. Allow the
1283 * r == 1 case (key_beg > element but differs only by its
1284 * create_tid) to fall through to the AS-OF check.
1286 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1288 if (r < 0)
1289 goto failed;
1290 if (r > 1) {
1291 ++i;
1292 continue;
1296 * Check our as-of timestamp against the element.
1298 if (flags & HAMMER_CURSOR_ASOF) {
1299 if (hammer_btree_chkts(cursor->asof,
1300 &node->elms[i].base) != 0) {
1301 ++i;
1302 continue;
1304 /* success */
1305 } else {
1306 if (r > 0) { /* can only be +1 */
1307 ++i;
1308 continue;
1310 /* success */
1312 cursor->index = i;
1313 error = 0;
1314 if (hammer_debug_btree) {
1315 kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1316 cursor->node->node_offset, i);
1318 goto done;
1322 * The search of the leaf node failed. i is the insertion point.
1324 failed:
1325 if (hammer_debug_btree) {
1326 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1327 cursor->node->node_offset, i);
1331 * No exact match was found, i is now at the insertion point.
1333 * If inserting split a full leaf before returning. This
1334 * may have the side effect of adjusting cursor->node and
1335 * cursor->index.
1337 cursor->index = i;
1338 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1339 btree_node_is_full(node)) {
1340 error = btree_split_leaf(cursor);
1341 if (error) {
1342 if (error != ENOSPC)
1343 goto done;
1344 enospc = 1;
1347 * reload stale pointers
1349 /* NOT USED
1350 i = cursor->index;
1351 node = &cursor->node->internal;
1356 * We reached a leaf but did not find the key we were looking for.
1357 * If this is an insert we will be properly positioned for an insert
1358 * (ENOENT) or spike (ENOSPC) operation.
1360 error = enospc ? ENOSPC : ENOENT;
1361 done:
1362 return(error);
1366 * Heuristical search for the first element whos comparison is <= 1. May
1367 * return an index whos compare result is > 1 but may only return an index
1368 * whos compare result is <= 1 if it is the first element with that result.
1371 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1373 int b;
1374 int s;
1375 int i;
1376 int r;
1379 * Don't bother if the node does not have very many elements
1381 b = 0;
1382 s = node->count;
1383 while (s - b > 4) {
1384 i = b + (s - b) / 2;
1385 ++hammer_stats_btree_elements;
1386 r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1387 if (r <= 1) {
1388 s = i;
1389 } else {
1390 b = i;
1393 return(b);
1397 /************************************************************************
1398 * SPLITTING AND MERGING *
1399 ************************************************************************
1401 * These routines do all the dirty work required to split and merge nodes.
1405 * Split an internal node into two nodes and move the separator at the split
1406 * point to the parent.
1408 * (cursor->node, cursor->index) indicates the element the caller intends
1409 * to push into. We will adjust node and index if that element winds
1410 * up in the split node.
1412 * If we are at the root of the filesystem a new root must be created with
1413 * two elements, one pointing to the original root and one pointing to the
1414 * newly allocated split node.
1416 static
1418 btree_split_internal(hammer_cursor_t cursor)
1420 hammer_node_ondisk_t ondisk;
1421 hammer_node_t node;
1422 hammer_node_t parent;
1423 hammer_node_t new_node;
1424 hammer_btree_elm_t elm;
1425 hammer_btree_elm_t parent_elm;
1426 struct hammer_node_lock lockroot;
1427 hammer_mount_t hmp = cursor->trans->hmp;
1428 hammer_off_t hint;
1429 int parent_index;
1430 int made_root;
1431 int split;
1432 int error;
1433 int i;
1434 const int esize = sizeof(*elm);
1436 hammer_node_lock_init(&lockroot, cursor->node);
1437 error = hammer_btree_lock_children(cursor, 1, &lockroot);
1438 if (error)
1439 goto done;
1440 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1441 goto done;
1442 ++hammer_stats_btree_splits;
1445 * We are splitting but elms[split] will be promoted to the parent,
1446 * leaving the right hand node with one less element. If the
1447 * insertion point will be on the left-hand side adjust the split
1448 * point to give the right hand side one additional node.
1450 node = cursor->node;
1451 ondisk = node->ondisk;
1452 split = (ondisk->count + 1) / 2;
1453 if (cursor->index <= split)
1454 --split;
1457 * If we are at the root of the filesystem, create a new root node
1458 * with 1 element and split normally. Avoid making major
1459 * modifications until we know the whole operation will work.
1461 if (ondisk->parent == 0) {
1462 parent = hammer_alloc_btree(cursor->trans, node->node_offset,
1463 &error);
1464 if (parent == NULL)
1465 goto done;
1466 hammer_lock_ex(&parent->lock);
1467 hammer_modify_node_noundo(cursor->trans, parent);
1468 ondisk = parent->ondisk;
1469 ondisk->count = 1;
1470 ondisk->parent = 0;
1471 ondisk->mirror_tid = node->ondisk->mirror_tid;
1472 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1473 ondisk->elms[0].base = hmp->root_btree_beg;
1474 ondisk->elms[0].base.btype = node->ondisk->type;
1475 ondisk->elms[0].internal.subtree_offset = node->node_offset;
1476 ondisk->elms[1].base = hmp->root_btree_end;
1477 hammer_modify_node_done(parent);
1478 /* ondisk->elms[1].base.btype - not used */
1479 made_root = 1;
1480 parent_index = 0; /* index of current node in parent */
1481 } else {
1482 made_root = 0;
1483 parent = cursor->parent;
1484 parent_index = cursor->parent_index;
1488 * Calculate a hint for the allocation of the new B-Tree node.
1489 * The most likely expansion is coming from the insertion point
1490 * at cursor->index, so try to localize the allocation of our
1491 * new node to accomodate that sub-tree.
1493 * Use the right-most sub-tree when expandinging on the right edge.
1494 * This is a very common case when copying a directory tree.
1496 if (cursor->index == ondisk->count)
1497 hint = ondisk->elms[cursor->index - 1].internal.subtree_offset;
1498 else
1499 hint = ondisk->elms[cursor->index].internal.subtree_offset;
1502 * Split node into new_node at the split point.
1504 * B O O O P N N B <-- P = node->elms[split] (index 4)
1505 * 0 1 2 3 4 5 6 <-- subtree indices
1507 * x x P x x
1508 * s S S s
1509 * / \
1510 * B O O O B B N N B <--- inner boundary points are 'P'
1511 * 0 1 2 3 4 5 6
1513 new_node = hammer_alloc_btree(cursor->trans, hint, &error);
1514 if (new_node == NULL) {
1515 if (made_root) {
1516 hammer_unlock(&parent->lock);
1517 hammer_delete_node(cursor->trans, parent);
1518 hammer_rel_node(parent);
1520 goto done;
1522 hammer_lock_ex(&new_node->lock);
1525 * Create the new node. P becomes the left-hand boundary in the
1526 * new node. Copy the right-hand boundary as well.
1528 * elm is the new separator.
1530 hammer_modify_node_noundo(cursor->trans, new_node);
1531 hammer_modify_node_all(cursor->trans, node);
1532 ondisk = node->ondisk;
1533 elm = &ondisk->elms[split];
1534 bcopy(elm, &new_node->ondisk->elms[0],
1535 (ondisk->count - split + 1) * esize);
1536 new_node->ondisk->count = ondisk->count - split;
1537 new_node->ondisk->parent = parent->node_offset;
1538 new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1539 new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1540 KKASSERT(ondisk->type == new_node->ondisk->type);
1541 hammer_cursor_split_node(node, new_node, split);
1544 * Cleanup the original node. Elm (P) becomes the new boundary,
1545 * its subtree_offset was moved to the new node. If we had created
1546 * a new root its parent pointer may have changed.
1548 elm->internal.subtree_offset = 0;
1549 ondisk->count = split;
1552 * Insert the separator into the parent, fixup the parent's
1553 * reference to the original node, and reference the new node.
1554 * The separator is P.
1556 * Remember that base.count does not include the right-hand boundary.
1558 hammer_modify_node_all(cursor->trans, parent);
1559 ondisk = parent->ondisk;
1560 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1561 parent_elm = &ondisk->elms[parent_index+1];
1562 bcopy(parent_elm, parent_elm + 1,
1563 (ondisk->count - parent_index) * esize);
1564 parent_elm->internal.base = elm->base; /* separator P */
1565 parent_elm->internal.base.btype = new_node->ondisk->type;
1566 parent_elm->internal.subtree_offset = new_node->node_offset;
1567 parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1568 ++ondisk->count;
1569 hammer_modify_node_done(parent);
1570 hammer_cursor_inserted_element(parent, parent_index + 1);
1573 * The children of new_node need their parent pointer set to new_node.
1574 * The children have already been locked by
1575 * hammer_btree_lock_children().
1577 for (i = 0; i < new_node->ondisk->count; ++i) {
1578 elm = &new_node->ondisk->elms[i];
1579 error = btree_set_parent(cursor->trans, new_node, elm);
1580 if (error) {
1581 panic("btree_split_internal: btree-fixup problem");
1584 hammer_modify_node_done(new_node);
1587 * The filesystem's root B-Tree pointer may have to be updated.
1589 if (made_root) {
1590 hammer_volume_t volume;
1592 volume = hammer_get_root_volume(hmp, &error);
1593 KKASSERT(error == 0);
1595 hammer_modify_volume_field(cursor->trans, volume,
1596 vol0_btree_root);
1597 volume->ondisk->vol0_btree_root = parent->node_offset;
1598 hammer_modify_volume_done(volume);
1599 node->ondisk->parent = parent->node_offset;
1600 if (cursor->parent) {
1601 hammer_unlock(&cursor->parent->lock);
1602 hammer_rel_node(cursor->parent);
1604 cursor->parent = parent; /* lock'd and ref'd */
1605 hammer_rel_volume(volume, 0);
1607 hammer_modify_node_done(node);
1610 * Ok, now adjust the cursor depending on which element the original
1611 * index was pointing at. If we are >= the split point the push node
1612 * is now in the new node.
1614 * NOTE: If we are at the split point itself we cannot stay with the
1615 * original node because the push index will point at the right-hand
1616 * boundary, which is illegal.
1618 * NOTE: The cursor's parent or parent_index must be adjusted for
1619 * the case where a new parent (new root) was created, and the case
1620 * where the cursor is now pointing at the split node.
1622 if (cursor->index >= split) {
1623 cursor->parent_index = parent_index + 1;
1624 cursor->index -= split;
1625 hammer_unlock(&cursor->node->lock);
1626 hammer_rel_node(cursor->node);
1627 cursor->node = new_node; /* locked and ref'd */
1628 } else {
1629 cursor->parent_index = parent_index;
1630 hammer_unlock(&new_node->lock);
1631 hammer_rel_node(new_node);
1635 * Fixup left and right bounds
1637 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1638 cursor->left_bound = &parent_elm[0].internal.base;
1639 cursor->right_bound = &parent_elm[1].internal.base;
1640 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1641 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1642 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1643 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1645 done:
1646 hammer_btree_unlock_children(cursor, &lockroot);
1647 hammer_cursor_downgrade(cursor);
1648 return (error);
1652 * Same as the above, but splits a full leaf node.
1654 * This function
1656 static
1658 btree_split_leaf(hammer_cursor_t cursor)
1660 hammer_node_ondisk_t ondisk;
1661 hammer_node_t parent;
1662 hammer_node_t leaf;
1663 hammer_mount_t hmp;
1664 hammer_node_t new_leaf;
1665 hammer_btree_elm_t elm;
1666 hammer_btree_elm_t parent_elm;
1667 hammer_base_elm_t mid_boundary;
1668 hammer_off_t hint;
1669 int parent_index;
1670 int made_root;
1671 int split;
1672 int error;
1673 const size_t esize = sizeof(*elm);
1675 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1676 return(error);
1677 ++hammer_stats_btree_splits;
1679 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1680 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1681 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1682 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1685 * Calculate the split point. If the insertion point will be on
1686 * the left-hand side adjust the split point to give the right
1687 * hand side one additional node.
1689 * Spikes are made up of two leaf elements which cannot be
1690 * safely split.
1692 leaf = cursor->node;
1693 ondisk = leaf->ondisk;
1694 split = (ondisk->count + 1) / 2;
1695 if (cursor->index <= split)
1696 --split;
1697 error = 0;
1698 hmp = leaf->hmp;
1700 elm = &ondisk->elms[split];
1702 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1703 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1704 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1705 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1708 * If we are at the root of the tree, create a new root node with
1709 * 1 element and split normally. Avoid making major modifications
1710 * until we know the whole operation will work.
1712 if (ondisk->parent == 0) {
1713 parent = hammer_alloc_btree(cursor->trans, leaf->node_offset,
1714 &error);
1715 if (parent == NULL)
1716 goto done;
1717 hammer_lock_ex(&parent->lock);
1718 hammer_modify_node_noundo(cursor->trans, parent);
1719 ondisk = parent->ondisk;
1720 ondisk->count = 1;
1721 ondisk->parent = 0;
1722 ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1723 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1724 ondisk->elms[0].base = hmp->root_btree_beg;
1725 ondisk->elms[0].base.btype = leaf->ondisk->type;
1726 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1727 ondisk->elms[1].base = hmp->root_btree_end;
1728 /* ondisk->elms[1].base.btype = not used */
1729 hammer_modify_node_done(parent);
1730 made_root = 1;
1731 parent_index = 0; /* insertion point in parent */
1732 } else {
1733 made_root = 0;
1734 parent = cursor->parent;
1735 parent_index = cursor->parent_index;
1739 * Calculate a hint for the allocation of the new B-Tree leaf node.
1740 * For now just try to localize it within the same bigblock as
1741 * the current leaf.
1743 * If the insertion point is at the end of the leaf we recognize a
1744 * likely append sequence of some sort (data, meta-data, inodes,
1745 * whatever). Set the hint to zero to allocate out of linear space
1746 * instead of trying to completely fill previously hinted space.
1748 * This also sets the stage for recursive splits to localize using
1749 * the new space.
1751 ondisk = leaf->ondisk;
1752 if (cursor->index == ondisk->count)
1753 hint = 0;
1754 else
1755 hint = leaf->node_offset;
1758 * Split leaf into new_leaf at the split point. Select a separator
1759 * value in-between the two leafs but with a bent towards the right
1760 * leaf since comparisons use an 'elm >= separator' inequality.
1762 * L L L L L L L L
1764 * x x P x x
1765 * s S S s
1766 * / \
1767 * L L L L L L L L
1769 new_leaf = hammer_alloc_btree(cursor->trans, hint, &error);
1770 if (new_leaf == NULL) {
1771 if (made_root) {
1772 hammer_unlock(&parent->lock);
1773 hammer_delete_node(cursor->trans, parent);
1774 hammer_rel_node(parent);
1776 goto done;
1778 hammer_lock_ex(&new_leaf->lock);
1781 * Create the new node and copy the leaf elements from the split
1782 * point on to the new node.
1784 hammer_modify_node_all(cursor->trans, leaf);
1785 hammer_modify_node_noundo(cursor->trans, new_leaf);
1786 ondisk = leaf->ondisk;
1787 elm = &ondisk->elms[split];
1788 bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1789 new_leaf->ondisk->count = ondisk->count - split;
1790 new_leaf->ondisk->parent = parent->node_offset;
1791 new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1792 new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1793 KKASSERT(ondisk->type == new_leaf->ondisk->type);
1794 hammer_modify_node_done(new_leaf);
1795 hammer_cursor_split_node(leaf, new_leaf, split);
1798 * Cleanup the original node. Because this is a leaf node and
1799 * leaf nodes do not have a right-hand boundary, there
1800 * aren't any special edge cases to clean up. We just fixup the
1801 * count.
1803 ondisk->count = split;
1806 * Insert the separator into the parent, fixup the parent's
1807 * reference to the original node, and reference the new node.
1808 * The separator is P.
1810 * Remember that base.count does not include the right-hand boundary.
1811 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1813 hammer_modify_node_all(cursor->trans, parent);
1814 ondisk = parent->ondisk;
1815 KKASSERT(split != 0);
1816 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1817 parent_elm = &ondisk->elms[parent_index+1];
1818 bcopy(parent_elm, parent_elm + 1,
1819 (ondisk->count - parent_index) * esize);
1821 hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1822 parent_elm->internal.base.btype = new_leaf->ondisk->type;
1823 parent_elm->internal.subtree_offset = new_leaf->node_offset;
1824 parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1825 mid_boundary = &parent_elm->base;
1826 ++ondisk->count;
1827 hammer_modify_node_done(parent);
1828 hammer_cursor_inserted_element(parent, parent_index + 1);
1831 * The filesystem's root B-Tree pointer may have to be updated.
1833 if (made_root) {
1834 hammer_volume_t volume;
1836 volume = hammer_get_root_volume(hmp, &error);
1837 KKASSERT(error == 0);
1839 hammer_modify_volume_field(cursor->trans, volume,
1840 vol0_btree_root);
1841 volume->ondisk->vol0_btree_root = parent->node_offset;
1842 hammer_modify_volume_done(volume);
1843 leaf->ondisk->parent = parent->node_offset;
1844 if (cursor->parent) {
1845 hammer_unlock(&cursor->parent->lock);
1846 hammer_rel_node(cursor->parent);
1848 cursor->parent = parent; /* lock'd and ref'd */
1849 hammer_rel_volume(volume, 0);
1851 hammer_modify_node_done(leaf);
1854 * Ok, now adjust the cursor depending on which element the original
1855 * index was pointing at. If we are >= the split point the push node
1856 * is now in the new node.
1858 * NOTE: If we are at the split point itself we need to select the
1859 * old or new node based on where key_beg's insertion point will be.
1860 * If we pick the wrong side the inserted element will wind up in
1861 * the wrong leaf node and outside that node's bounds.
1863 if (cursor->index > split ||
1864 (cursor->index == split &&
1865 hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1866 cursor->parent_index = parent_index + 1;
1867 cursor->index -= split;
1868 hammer_unlock(&cursor->node->lock);
1869 hammer_rel_node(cursor->node);
1870 cursor->node = new_leaf;
1871 } else {
1872 cursor->parent_index = parent_index;
1873 hammer_unlock(&new_leaf->lock);
1874 hammer_rel_node(new_leaf);
1878 * Fixup left and right bounds
1880 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1881 cursor->left_bound = &parent_elm[0].internal.base;
1882 cursor->right_bound = &parent_elm[1].internal.base;
1885 * Assert that the bounds are correct.
1887 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1888 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1889 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1890 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1891 KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1892 KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1894 done:
1895 hammer_cursor_downgrade(cursor);
1896 return (error);
1899 #if 0
1902 * Recursively correct the right-hand boundary's create_tid to (tid) as
1903 * long as the rest of the key matches. We have to recurse upward in
1904 * the tree as well as down the left side of each parent's right node.
1906 * Return EDEADLK if we were only partially successful, forcing the caller
1907 * to try again. The original cursor is not modified. This routine can
1908 * also fail with EDEADLK if it is forced to throw away a portion of its
1909 * record history.
1911 * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1913 struct hammer_rhb {
1914 TAILQ_ENTRY(hammer_rhb) entry;
1915 hammer_node_t node;
1916 int index;
1919 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1922 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1924 struct hammer_mount *hmp;
1925 struct hammer_rhb_list rhb_list;
1926 hammer_base_elm_t elm;
1927 hammer_node_t orig_node;
1928 struct hammer_rhb *rhb;
1929 int orig_index;
1930 int error;
1932 TAILQ_INIT(&rhb_list);
1933 hmp = cursor->trans->hmp;
1936 * Save our position so we can restore it on return. This also
1937 * gives us a stable 'elm'.
1939 orig_node = cursor->node;
1940 hammer_ref_node(orig_node);
1941 hammer_lock_sh(&orig_node->lock);
1942 orig_index = cursor->index;
1943 elm = &orig_node->ondisk->elms[orig_index].base;
1946 * Now build a list of parents going up, allocating a rhb
1947 * structure for each one.
1949 while (cursor->parent) {
1951 * Stop if we no longer have any right-bounds to fix up
1953 if (elm->obj_id != cursor->right_bound->obj_id ||
1954 elm->rec_type != cursor->right_bound->rec_type ||
1955 elm->key != cursor->right_bound->key) {
1956 break;
1960 * Stop if the right-hand bound's create_tid does not
1961 * need to be corrected.
1963 if (cursor->right_bound->create_tid >= tid)
1964 break;
1966 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
1967 rhb->node = cursor->parent;
1968 rhb->index = cursor->parent_index;
1969 hammer_ref_node(rhb->node);
1970 hammer_lock_sh(&rhb->node->lock);
1971 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1973 hammer_cursor_up(cursor);
1977 * now safely adjust the right hand bound for each rhb. This may
1978 * also require taking the right side of the tree and iterating down
1979 * ITS left side.
1981 error = 0;
1982 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1983 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1984 if (error)
1985 break;
1986 TAILQ_REMOVE(&rhb_list, rhb, entry);
1987 hammer_unlock(&rhb->node->lock);
1988 hammer_rel_node(rhb->node);
1989 kfree(rhb, hmp->m_misc);
1991 switch (cursor->node->ondisk->type) {
1992 case HAMMER_BTREE_TYPE_INTERNAL:
1994 * Right-boundary for parent at internal node
1995 * is one element to the right of the element whos
1996 * right boundary needs adjusting. We must then
1997 * traverse down the left side correcting any left
1998 * bounds (which may now be too far to the left).
2000 ++cursor->index;
2001 error = hammer_btree_correct_lhb(cursor, tid);
2002 break;
2003 default:
2004 panic("hammer_btree_correct_rhb(): Bad node type");
2005 error = EINVAL;
2006 break;
2011 * Cleanup
2013 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2014 TAILQ_REMOVE(&rhb_list, rhb, entry);
2015 hammer_unlock(&rhb->node->lock);
2016 hammer_rel_node(rhb->node);
2017 kfree(rhb, hmp->m_misc);
2019 error = hammer_cursor_seek(cursor, orig_node, orig_index);
2020 hammer_unlock(&orig_node->lock);
2021 hammer_rel_node(orig_node);
2022 return (error);
2026 * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2027 * bound going downward starting at the current cursor position.
2029 * This function does not restore the cursor after use.
2032 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2034 struct hammer_rhb_list rhb_list;
2035 hammer_base_elm_t elm;
2036 hammer_base_elm_t cmp;
2037 struct hammer_rhb *rhb;
2038 struct hammer_mount *hmp;
2039 int error;
2041 TAILQ_INIT(&rhb_list);
2042 hmp = cursor->trans->hmp;
2044 cmp = &cursor->node->ondisk->elms[cursor->index].base;
2047 * Record the node and traverse down the left-hand side for all
2048 * matching records needing a boundary correction.
2050 error = 0;
2051 for (;;) {
2052 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2053 rhb->node = cursor->node;
2054 rhb->index = cursor->index;
2055 hammer_ref_node(rhb->node);
2056 hammer_lock_sh(&rhb->node->lock);
2057 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2059 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2061 * Nothing to traverse down if we are at the right
2062 * boundary of an internal node.
2064 if (cursor->index == cursor->node->ondisk->count)
2065 break;
2066 } else {
2067 elm = &cursor->node->ondisk->elms[cursor->index].base;
2068 if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2069 break;
2070 panic("Illegal leaf record type %02x", elm->btype);
2072 error = hammer_cursor_down(cursor);
2073 if (error)
2074 break;
2076 elm = &cursor->node->ondisk->elms[cursor->index].base;
2077 if (elm->obj_id != cmp->obj_id ||
2078 elm->rec_type != cmp->rec_type ||
2079 elm->key != cmp->key) {
2080 break;
2082 if (elm->create_tid >= tid)
2083 break;
2088 * Now we can safely adjust the left-hand boundary from the bottom-up.
2089 * The last element we remove from the list is the caller's right hand
2090 * boundary, which must also be adjusted.
2092 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2093 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2094 if (error)
2095 break;
2096 TAILQ_REMOVE(&rhb_list, rhb, entry);
2097 hammer_unlock(&rhb->node->lock);
2098 hammer_rel_node(rhb->node);
2099 kfree(rhb, hmp->m_misc);
2101 elm = &cursor->node->ondisk->elms[cursor->index].base;
2102 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2103 hammer_modify_node(cursor->trans, cursor->node,
2104 &elm->create_tid,
2105 sizeof(elm->create_tid));
2106 elm->create_tid = tid;
2107 hammer_modify_node_done(cursor->node);
2108 } else {
2109 panic("hammer_btree_correct_lhb(): Bad element type");
2114 * Cleanup
2116 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2117 TAILQ_REMOVE(&rhb_list, rhb, entry);
2118 hammer_unlock(&rhb->node->lock);
2119 hammer_rel_node(rhb->node);
2120 kfree(rhb, hmp->m_misc);
2122 return (error);
2125 #endif
2128 * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2129 * (cursor->node). Returns 0 on success, EDEADLK if we could not complete
2130 * the operation due to a deadlock, or some other error.
2132 * This routine is initially called with an empty leaf and may be
2133 * recursively called with single-element internal nodes.
2135 * It should also be noted that when removing empty leaves we must be sure
2136 * to test and update mirror_tid because another thread may have deadlocked
2137 * against us (or someone) trying to propagate it up and cannot retry once
2138 * the node has been deleted.
2140 * On return the cursor may end up pointing to an internal node, suitable
2141 * for further iteration but not for an immediate insertion or deletion.
2143 static int
2144 btree_remove(hammer_cursor_t cursor)
2146 hammer_node_ondisk_t ondisk;
2147 hammer_btree_elm_t elm;
2148 hammer_node_t node;
2149 hammer_node_t parent;
2150 const int esize = sizeof(*elm);
2151 int error;
2153 node = cursor->node;
2156 * When deleting the root of the filesystem convert it to
2157 * an empty leaf node. Internal nodes cannot be empty.
2159 ondisk = node->ondisk;
2160 if (ondisk->parent == 0) {
2161 KKASSERT(cursor->parent == NULL);
2162 hammer_modify_node_all(cursor->trans, node);
2163 KKASSERT(ondisk == node->ondisk);
2164 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2165 ondisk->count = 0;
2166 hammer_modify_node_done(node);
2167 cursor->index = 0;
2168 return(0);
2171 parent = cursor->parent;
2172 hammer_cursor_removed_node(node, parent, cursor->parent_index);
2175 * Attempt to remove the parent's reference to the child. If the
2176 * parent would become empty we have to recurse. If we fail we
2177 * leave the parent pointing to an empty leaf node.
2179 * We have to recurse successfully before we can delete the internal
2180 * node as it is illegal to have empty internal nodes. Even though
2181 * the operation may be aborted we must still fixup any unlocked
2182 * cursors as if we had deleted the element prior to recursing
2183 * (by calling hammer_cursor_deleted_element()) so those cursors
2184 * are properly forced up the chain by the recursion.
2186 if (parent->ondisk->count == 1) {
2188 * This special cursor_up_locked() call leaves the original
2189 * node exclusively locked and referenced, leaves the
2190 * original parent locked (as the new node), and locks the
2191 * new parent. It can return EDEADLK.
2193 error = hammer_cursor_up_locked(cursor);
2194 if (error == 0) {
2195 hammer_cursor_deleted_element(cursor->node, 0);
2196 error = btree_remove(cursor);
2197 if (error == 0) {
2198 hammer_modify_node_all(cursor->trans, node);
2199 ondisk = node->ondisk;
2200 ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2201 ondisk->count = 0;
2202 hammer_modify_node_done(node);
2203 hammer_flush_node(node);
2204 hammer_delete_node(cursor->trans, node);
2205 } else {
2207 * Defer parent removal because we could not
2208 * get the lock, just let the leaf remain
2209 * empty.
2211 /**/
2213 hammer_unlock(&node->lock);
2214 hammer_rel_node(node);
2215 } else {
2217 * Defer parent removal because we could not
2218 * get the lock, just let the leaf remain
2219 * empty.
2221 /**/
2223 } else {
2224 KKASSERT(parent->ondisk->count > 1);
2226 hammer_modify_node_all(cursor->trans, parent);
2227 ondisk = parent->ondisk;
2228 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2230 elm = &ondisk->elms[cursor->parent_index];
2231 KKASSERT(elm->internal.subtree_offset == node->node_offset);
2232 KKASSERT(ondisk->count > 0);
2235 * We must retain the highest mirror_tid. The deleted
2236 * range is now encompassed by the element to the left.
2237 * If we are already at the left edge the new left edge
2238 * inherits mirror_tid.
2240 * Note that bounds of the parent to our parent may create
2241 * a gap to the left of our left-most node or to the right
2242 * of our right-most node. The gap is silently included
2243 * in the mirror_tid's area of effect from the point of view
2244 * of the scan.
2246 if (cursor->parent_index) {
2247 if (elm[-1].internal.mirror_tid <
2248 elm[0].internal.mirror_tid) {
2249 elm[-1].internal.mirror_tid =
2250 elm[0].internal.mirror_tid;
2252 } else {
2253 if (elm[1].internal.mirror_tid <
2254 elm[0].internal.mirror_tid) {
2255 elm[1].internal.mirror_tid =
2256 elm[0].internal.mirror_tid;
2261 * Delete the subtree reference in the parent
2263 bcopy(&elm[1], &elm[0],
2264 (ondisk->count - cursor->parent_index) * esize);
2265 --ondisk->count;
2266 hammer_modify_node_done(parent);
2267 hammer_cursor_deleted_element(parent, cursor->parent_index);
2268 hammer_flush_node(node);
2269 hammer_delete_node(cursor->trans, node);
2272 * cursor->node is invalid, cursor up to make the cursor
2273 * valid again.
2275 error = hammer_cursor_up(cursor);
2277 return (error);
2281 * Propagate cursor->trans->tid up the B-Tree starting at the current
2282 * cursor position using pseudofs info gleaned from the passed inode.
2284 * The passed inode has no relationship to the cursor position other
2285 * then being in the same pseudofs as the insertion or deletion we
2286 * are propagating the mirror_tid for.
2288 void
2289 hammer_btree_do_propagation(hammer_cursor_t cursor,
2290 hammer_pseudofs_inmem_t pfsm,
2291 hammer_btree_leaf_elm_t leaf)
2293 hammer_cursor_t ncursor;
2294 hammer_tid_t mirror_tid;
2295 int error;
2298 * We do not propagate a mirror_tid if the filesystem was mounted
2299 * in no-mirror mode.
2301 if (cursor->trans->hmp->master_id < 0)
2302 return;
2305 * This is a bit of a hack because we cannot deadlock or return
2306 * EDEADLK here. The related operation has already completed and
2307 * we must propagate the mirror_tid now regardless.
2309 * Generate a new cursor which inherits the original's locks and
2310 * unlock the original. Use the new cursor to propagate the
2311 * mirror_tid. Then clean up the new cursor and reacquire locks
2312 * on the original.
2314 * hammer_dup_cursor() cannot dup locks. The dup inherits the
2315 * original's locks and the original is tracked and must be
2316 * re-locked.
2318 mirror_tid = cursor->node->ondisk->mirror_tid;
2319 KKASSERT(mirror_tid != 0);
2320 ncursor = hammer_push_cursor(cursor);
2321 error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2322 KKASSERT(error == 0);
2323 hammer_pop_cursor(cursor, ncursor);
2328 * Propagate a mirror TID update upwards through the B-Tree to the root.
2330 * A locked internal node must be passed in. The node will remain locked
2331 * on return.
2333 * This function syncs mirror_tid at the specified internal node's element,
2334 * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2336 static int
2337 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2339 hammer_btree_internal_elm_t elm;
2340 hammer_node_t node;
2341 int error;
2343 for (;;) {
2344 error = hammer_cursor_up(cursor);
2345 if (error == 0)
2346 error = hammer_cursor_upgrade(cursor);
2347 while (error == EDEADLK) {
2348 hammer_recover_cursor(cursor);
2349 error = hammer_cursor_upgrade(cursor);
2351 if (error)
2352 break;
2353 node = cursor->node;
2354 KKASSERT (node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2357 * Adjust the node's element
2359 elm = &node->ondisk->elms[cursor->index].internal;
2360 if (elm->mirror_tid >= mirror_tid)
2361 break;
2362 hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2363 sizeof(elm->mirror_tid));
2364 elm->mirror_tid = mirror_tid;
2365 hammer_modify_node_done(node);
2366 if (hammer_debug_general & 0x0002) {
2367 kprintf("mirror_propagate: propagate "
2368 "%016llx @%016llx:%d\n",
2369 mirror_tid, node->node_offset, cursor->index);
2374 * Adjust the node's mirror_tid aggregator
2376 if (node->ondisk->mirror_tid >= mirror_tid)
2377 return(0);
2378 hammer_modify_node_field(cursor->trans, node, mirror_tid);
2379 node->ondisk->mirror_tid = mirror_tid;
2380 hammer_modify_node_done(node);
2381 if (hammer_debug_general & 0x0002) {
2382 kprintf("mirror_propagate: propagate "
2383 "%016llx @%016llx\n",
2384 mirror_tid, node->node_offset);
2387 if (error == ENOENT)
2388 error = 0;
2389 return(error);
2392 hammer_node_t
2393 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2394 int *parent_indexp, int *errorp, int try_exclusive)
2396 hammer_node_t parent;
2397 hammer_btree_elm_t elm;
2398 int i;
2401 * Get the node
2403 parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2404 if (*errorp) {
2405 KKASSERT(parent == NULL);
2406 return(NULL);
2408 KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2411 * Lock the node
2413 if (try_exclusive) {
2414 if (hammer_lock_ex_try(&parent->lock)) {
2415 hammer_rel_node(parent);
2416 *errorp = EDEADLK;
2417 return(NULL);
2419 } else {
2420 hammer_lock_sh(&parent->lock);
2424 * Figure out which element in the parent is pointing to the
2425 * child.
2427 if (node->ondisk->count) {
2428 i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2429 parent->ondisk);
2430 } else {
2431 i = 0;
2433 while (i < parent->ondisk->count) {
2434 elm = &parent->ondisk->elms[i];
2435 if (elm->internal.subtree_offset == node->node_offset)
2436 break;
2437 ++i;
2439 if (i == parent->ondisk->count) {
2440 hammer_unlock(&parent->lock);
2441 panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2443 *parent_indexp = i;
2444 KKASSERT(*errorp == 0);
2445 return(parent);
2449 * The element (elm) has been moved to a new internal node (node).
2451 * If the element represents a pointer to an internal node that node's
2452 * parent must be adjusted to the element's new location.
2454 * XXX deadlock potential here with our exclusive locks
2457 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2458 hammer_btree_elm_t elm)
2460 hammer_node_t child;
2461 int error;
2463 error = 0;
2465 switch(elm->base.btype) {
2466 case HAMMER_BTREE_TYPE_INTERNAL:
2467 case HAMMER_BTREE_TYPE_LEAF:
2468 child = hammer_get_node(trans, elm->internal.subtree_offset,
2469 0, &error);
2470 if (error == 0) {
2471 hammer_modify_node_field(trans, child, parent);
2472 child->ondisk->parent = node->node_offset;
2473 hammer_modify_node_done(child);
2474 hammer_rel_node(child);
2476 break;
2477 default:
2478 break;
2480 return(error);
2484 * Initialize the root of a recursive B-Tree node lock list structure.
2486 void
2487 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2489 TAILQ_INIT(&parent->list);
2490 parent->parent = NULL;
2491 parent->node = node;
2492 parent->index = -1;
2493 parent->count = node->ondisk->count;
2494 parent->copy = NULL;
2495 parent->flags = 0;
2499 * Exclusively lock all the children of node. This is used by the split
2500 * code to prevent anyone from accessing the children of a cursor node
2501 * while we fix-up its parent offset.
2503 * If we don't lock the children we can really mess up cursors which block
2504 * trying to cursor-up into our node.
2506 * On failure EDEADLK (or some other error) is returned. If a deadlock
2507 * error is returned the cursor is adjusted to block on termination.
2509 * The caller is responsible for managing parent->node, the root's node
2510 * is usually aliased from a cursor.
2513 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2514 hammer_node_lock_t parent)
2516 hammer_node_t node;
2517 hammer_node_lock_t item;
2518 hammer_node_ondisk_t ondisk;
2519 hammer_btree_elm_t elm;
2520 hammer_node_t child;
2521 struct hammer_mount *hmp;
2522 int error;
2523 int i;
2525 node = parent->node;
2526 ondisk = node->ondisk;
2527 error = 0;
2528 hmp = cursor->trans->hmp;
2531 * We really do not want to block on I/O with exclusive locks held,
2532 * pre-get the children before trying to lock the mess. This is
2533 * only done one-level deep for now.
2535 for (i = 0; i < ondisk->count; ++i) {
2536 ++hammer_stats_btree_elements;
2537 elm = &ondisk->elms[i];
2538 if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2539 elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2540 continue;
2542 child = hammer_get_node(cursor->trans,
2543 elm->internal.subtree_offset,
2544 0, &error);
2545 if (child)
2546 hammer_rel_node(child);
2550 * Do it for real
2552 for (i = 0; error == 0 && i < ondisk->count; ++i) {
2553 ++hammer_stats_btree_elements;
2554 elm = &ondisk->elms[i];
2556 switch(elm->base.btype) {
2557 case HAMMER_BTREE_TYPE_INTERNAL:
2558 case HAMMER_BTREE_TYPE_LEAF:
2559 KKASSERT(elm->internal.subtree_offset != 0);
2560 child = hammer_get_node(cursor->trans,
2561 elm->internal.subtree_offset,
2562 0, &error);
2563 break;
2564 default:
2565 child = NULL;
2566 break;
2568 if (child) {
2569 if (hammer_lock_ex_try(&child->lock) != 0) {
2570 if (cursor->deadlk_node == NULL) {
2571 cursor->deadlk_node = child;
2572 hammer_ref_node(cursor->deadlk_node);
2574 error = EDEADLK;
2575 hammer_rel_node(child);
2576 } else {
2577 item = kmalloc(sizeof(*item), hmp->m_misc,
2578 M_WAITOK|M_ZERO);
2579 TAILQ_INSERT_TAIL(&parent->list, item, entry);
2580 TAILQ_INIT(&item->list);
2581 item->parent = parent;
2582 item->node = child;
2583 item->index = i;
2584 item->count = child->ondisk->count;
2587 * Recurse (used by the rebalancing code)
2589 if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2590 error = hammer_btree_lock_children(
2591 cursor,
2592 depth - 1,
2593 item);
2598 if (error)
2599 hammer_btree_unlock_children(cursor, parent);
2600 return(error);
2604 * Create an in-memory copy of all B-Tree nodes listed, recursively,
2605 * including the parent.
2607 void
2608 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2610 hammer_mount_t hmp = cursor->trans->hmp;
2611 hammer_node_lock_t item;
2613 if (parent->copy == NULL) {
2614 parent->copy = kmalloc(sizeof(*parent->copy), hmp->m_misc,
2615 M_WAITOK);
2616 *parent->copy = *parent->node->ondisk;
2618 TAILQ_FOREACH(item, &parent->list, entry) {
2619 hammer_btree_lock_copy(cursor, item);
2624 * Recursively sync modified copies to the media.
2627 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2629 hammer_node_lock_t item;
2630 int count = 0;
2632 if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2633 ++count;
2634 hammer_modify_node_all(cursor->trans, parent->node);
2635 *parent->node->ondisk = *parent->copy;
2636 hammer_modify_node_done(parent->node);
2637 if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2638 hammer_flush_node(parent->node);
2639 hammer_delete_node(cursor->trans, parent->node);
2642 TAILQ_FOREACH(item, &parent->list, entry) {
2643 count += hammer_btree_sync_copy(cursor, item);
2645 return(count);
2649 * Release previously obtained node locks. The caller is responsible for
2650 * cleaning up parent->node itself (its usually just aliased from a cursor),
2651 * but this function will take care of the copies.
2653 void
2654 hammer_btree_unlock_children(hammer_cursor_t cursor, hammer_node_lock_t parent)
2656 hammer_node_lock_t item;
2658 if (parent->copy) {
2659 kfree(parent->copy, cursor->trans->hmp->m_misc);
2660 parent->copy = NULL; /* safety */
2662 while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2663 TAILQ_REMOVE(&parent->list, item, entry);
2664 hammer_btree_unlock_children(cursor, item);
2665 hammer_unlock(&item->node->lock);
2666 hammer_rel_node(item->node);
2667 kfree(item, cursor->trans->hmp->m_misc);
2671 /************************************************************************
2672 * MISCELLANIOUS SUPPORT *
2673 ************************************************************************/
2676 * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2678 * Note that for this particular function a return value of -1, 0, or +1
2679 * can denote a match if create_tid is otherwise discounted. A create_tid
2680 * of zero is considered to be 'infinity' in comparisons.
2682 * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2685 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2687 if (key1->localization < key2->localization)
2688 return(-5);
2689 if (key1->localization > key2->localization)
2690 return(5);
2692 if (key1->obj_id < key2->obj_id)
2693 return(-4);
2694 if (key1->obj_id > key2->obj_id)
2695 return(4);
2697 if (key1->rec_type < key2->rec_type)
2698 return(-3);
2699 if (key1->rec_type > key2->rec_type)
2700 return(3);
2702 if (key1->key < key2->key)
2703 return(-2);
2704 if (key1->key > key2->key)
2705 return(2);
2708 * A create_tid of zero indicates a record which is undeletable
2709 * and must be considered to have a value of positive infinity.
2711 if (key1->create_tid == 0) {
2712 if (key2->create_tid == 0)
2713 return(0);
2714 return(1);
2716 if (key2->create_tid == 0)
2717 return(-1);
2718 if (key1->create_tid < key2->create_tid)
2719 return(-1);
2720 if (key1->create_tid > key2->create_tid)
2721 return(1);
2722 return(0);
2726 * Test a timestamp against an element to determine whether the
2727 * element is visible. A timestamp of 0 means 'infinity'.
2730 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2732 if (asof == 0) {
2733 if (base->delete_tid)
2734 return(1);
2735 return(0);
2737 if (asof < base->create_tid)
2738 return(-1);
2739 if (base->delete_tid && asof >= base->delete_tid)
2740 return(1);
2741 return(0);
2745 * Create a separator half way inbetween key1 and key2. For fields just
2746 * one unit apart, the separator will match key2. key1 is on the left-hand
2747 * side and key2 is on the right-hand side.
2749 * key2 must be >= the separator. It is ok for the separator to match key2.
2751 * NOTE: Even if key1 does not match key2, the separator may wind up matching
2752 * key2.
2754 * NOTE: It might be beneficial to just scrap this whole mess and just
2755 * set the separator to key2.
2757 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2758 dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2760 static void
2761 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2762 hammer_base_elm_t dest)
2764 bzero(dest, sizeof(*dest));
2766 dest->rec_type = key2->rec_type;
2767 dest->key = key2->key;
2768 dest->obj_id = key2->obj_id;
2769 dest->create_tid = key2->create_tid;
2771 MAKE_SEPARATOR(key1, key2, dest, localization);
2772 if (key1->localization == key2->localization) {
2773 MAKE_SEPARATOR(key1, key2, dest, obj_id);
2774 if (key1->obj_id == key2->obj_id) {
2775 MAKE_SEPARATOR(key1, key2, dest, rec_type);
2776 if (key1->rec_type == key2->rec_type) {
2777 MAKE_SEPARATOR(key1, key2, dest, key);
2779 * Don't bother creating a separator for
2780 * create_tid, which also conveniently avoids
2781 * having to handle the create_tid == 0
2782 * (infinity) case. Just leave create_tid
2783 * set to key2.
2785 * Worst case, dest matches key2 exactly,
2786 * which is acceptable.
2793 #undef MAKE_SEPARATOR
2796 * Return whether a generic internal or leaf node is full
2798 static int
2799 btree_node_is_full(hammer_node_ondisk_t node)
2801 switch(node->type) {
2802 case HAMMER_BTREE_TYPE_INTERNAL:
2803 if (node->count == HAMMER_BTREE_INT_ELMS)
2804 return(1);
2805 break;
2806 case HAMMER_BTREE_TYPE_LEAF:
2807 if (node->count == HAMMER_BTREE_LEAF_ELMS)
2808 return(1);
2809 break;
2810 default:
2811 panic("illegal btree subtype");
2813 return(0);
2816 #if 0
2817 static int
2818 btree_max_elements(u_int8_t type)
2820 if (type == HAMMER_BTREE_TYPE_LEAF)
2821 return(HAMMER_BTREE_LEAF_ELMS);
2822 if (type == HAMMER_BTREE_TYPE_INTERNAL)
2823 return(HAMMER_BTREE_INT_ELMS);
2824 panic("btree_max_elements: bad type %d\n", type);
2826 #endif
2828 void
2829 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2831 hammer_btree_elm_t elm;
2832 int i;
2834 kprintf("node %p count=%d parent=%016llx type=%c\n",
2835 ondisk, ondisk->count, ondisk->parent, ondisk->type);
2838 * Dump both boundary elements if an internal node
2840 if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2841 for (i = 0; i <= ondisk->count; ++i) {
2842 elm = &ondisk->elms[i];
2843 hammer_print_btree_elm(elm, ondisk->type, i);
2845 } else {
2846 for (i = 0; i < ondisk->count; ++i) {
2847 elm = &ondisk->elms[i];
2848 hammer_print_btree_elm(elm, ondisk->type, i);
2853 void
2854 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2856 kprintf(" %2d", i);
2857 kprintf("\tobj_id = %016llx\n", elm->base.obj_id);
2858 kprintf("\tkey = %016llx\n", elm->base.key);
2859 kprintf("\tcreate_tid = %016llx\n", elm->base.create_tid);
2860 kprintf("\tdelete_tid = %016llx\n", elm->base.delete_tid);
2861 kprintf("\trec_type = %04x\n", elm->base.rec_type);
2862 kprintf("\tobj_type = %02x\n", elm->base.obj_type);
2863 kprintf("\tbtype = %02x (%c)\n",
2864 elm->base.btype,
2865 (elm->base.btype ? elm->base.btype : '?'));
2866 kprintf("\tlocalization = %02x\n", elm->base.localization);
2868 switch(type) {
2869 case HAMMER_BTREE_TYPE_INTERNAL:
2870 kprintf("\tsubtree_off = %016llx\n",
2871 elm->internal.subtree_offset);
2872 break;
2873 case HAMMER_BTREE_TYPE_RECORD:
2874 kprintf("\tdata_offset = %016llx\n", elm->leaf.data_offset);
2875 kprintf("\tdata_len = %08x\n", elm->leaf.data_len);
2876 kprintf("\tdata_crc = %08x\n", elm->leaf.data_crc);
2877 break;