2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
40 * HAMMER implements a modified B+Tree. In documentation this will
41 * simply be refered to as the HAMMER B-Tree. Basically a HAMMER B-Tree
42 * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43 * of the tree), but adds two additional boundary elements which describe
44 * the left-most and right-most element a node is able to represent. In
45 * otherwords, we have boundary elements at the two ends of a B-Tree node
46 * instead of sub-tree pointers.
48 * A B-Tree internal node looks like this:
50 * B N N N N N N B <-- boundary and internal elements
51 * S S S S S S S <-- subtree pointers
53 * A B-Tree leaf node basically looks like this:
55 * L L L L L L L L <-- leaf elemenets
57 * The radix for an internal node is 1 less then a leaf but we get a
58 * number of significant benefits for our troubles.
60 * The big benefit to using a B-Tree containing boundary information
61 * is that it is possible to cache pointers into the middle of the tree
62 * and not have to start searches, insertions, OR deletions at the root
63 * node. In particular, searches are able to progress in a definitive
64 * direction from any point in the tree without revisting nodes. This
65 * greatly improves the efficiency of many operations, most especially
68 * B-Trees also make the stacking of trees fairly straightforward.
70 * INSERTIONS: A search performed with the intention of doing
71 * an insert will guarantee that the terminal leaf node is not full by
72 * splitting full nodes. Splits occur top-down during the dive down the
75 * DELETIONS: A deletion makes no attempt to proactively balance the
76 * tree and will recursively remove nodes that become empty. If a
77 * deadlock occurs a deletion may not be able to remove an empty leaf.
78 * Deletions never allow internal nodes to become empty (that would blow
85 static int btree_search(hammer_cursor_t cursor
, int flags
);
86 static int btree_split_internal(hammer_cursor_t cursor
);
87 static int btree_split_leaf(hammer_cursor_t cursor
);
88 static int btree_remove(hammer_cursor_t cursor
);
89 static int btree_node_is_full(hammer_node_ondisk_t node
);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor
,
91 hammer_tid_t mirror_tid
);
92 static void hammer_make_separator(hammer_base_elm_t key1
,
93 hammer_base_elm_t key2
, hammer_base_elm_t dest
);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor
);
97 * Iterate records after a search. The cursor is iterated forwards past
98 * the current record until a record matching the key-range requirements
99 * is found. ENOENT is returned if the iteration goes past the ending
102 * The iteration is inclusive of key_beg and can be inclusive or exclusive
103 * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
105 * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106 * may be modified by B-Tree functions.
108 * cursor->key_beg may or may not be modified by this function during
109 * the iteration. XXX future - in case of an inverted lock we may have
110 * to reinitiate the lookup and set key_beg to properly pick up where we
113 * NOTE! EDEADLK *CANNOT* be returned by this procedure.
116 hammer_btree_iterate(hammer_cursor_t cursor
)
118 hammer_node_ondisk_t node
;
119 hammer_btree_elm_t elm
;
125 * Skip past the current record
127 node
= cursor
->node
->ondisk
;
130 if (cursor
->index
< node
->count
&&
131 (cursor
->flags
& HAMMER_CURSOR_ATEDISK
)) {
136 * Loop until an element is found or we are done.
140 * We iterate up the tree and then index over one element
141 * while we are at the last element in the current node.
143 * If we are at the root of the filesystem, cursor_up
146 * XXX this could be optimized by storing the information in
147 * the parent reference.
149 * XXX we can lose the node lock temporarily, this could mess
152 ++hammer_stats_btree_iterations
;
153 hammer_flusher_clean_loose_ios(cursor
->trans
->hmp
);
155 if (cursor
->index
== node
->count
) {
156 if (hammer_debug_btree
) {
157 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
158 cursor
->node
->node_offset
,
160 (cursor
->parent
? cursor
->parent
->node_offset
: -1),
161 cursor
->parent_index
,
164 KKASSERT(cursor
->parent
== NULL
|| cursor
->parent
->ondisk
->elms
[cursor
->parent_index
].internal
.subtree_offset
== cursor
->node
->node_offset
);
165 error
= hammer_cursor_up(cursor
);
168 /* reload stale pointer */
169 node
= cursor
->node
->ondisk
;
170 KKASSERT(cursor
->index
!= node
->count
);
173 * If we are reblocking we want to return internal
174 * nodes. Note that the internal node will be
175 * returned multiple times, on each upward recursion
176 * from its children. The caller selects which
177 * revisit it cares about (usually first or last only).
179 if (cursor
->flags
& HAMMER_CURSOR_REBLOCKING
) {
180 cursor
->flags
|= HAMMER_CURSOR_ATEDISK
;
188 * Check internal or leaf element. Determine if the record
189 * at the cursor has gone beyond the end of our range.
191 * We recurse down through internal nodes.
193 if (node
->type
== HAMMER_BTREE_TYPE_INTERNAL
) {
194 elm
= &node
->elms
[cursor
->index
];
196 r
= hammer_btree_cmp(&cursor
->key_end
, &elm
[0].base
);
197 s
= hammer_btree_cmp(&cursor
->key_beg
, &elm
[1].base
);
198 if (hammer_debug_btree
) {
199 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
200 cursor
->node
->node_offset
,
202 elm
[0].internal
.base
.obj_id
,
203 elm
[0].internal
.base
.rec_type
,
204 elm
[0].internal
.base
.key
,
205 elm
[0].internal
.base
.localization
,
209 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
210 cursor
->node
->node_offset
,
212 elm
[1].internal
.base
.obj_id
,
213 elm
[1].internal
.base
.rec_type
,
214 elm
[1].internal
.base
.key
,
215 elm
[1].internal
.base
.localization
,
224 if (r
== 0 && (cursor
->flags
&
225 HAMMER_CURSOR_END_INCLUSIVE
) == 0) {
234 KKASSERT(elm
->internal
.subtree_offset
!= 0);
237 * If running the mirror filter see if we can skip
238 * one or more entire sub-trees. If we can we
239 * return the internal mode and the caller processes
240 * the skipped range (see mirror_read)
242 if (cursor
->flags
& HAMMER_CURSOR_MIRROR_FILTERED
) {
243 if (elm
->internal
.mirror_tid
<
244 cursor
->cmirror
->mirror_tid
) {
245 hammer_cursor_mirror_filter(cursor
);
250 error
= hammer_cursor_down(cursor
);
253 KKASSERT(cursor
->index
== 0);
254 /* reload stale pointer */
255 node
= cursor
->node
->ondisk
;
258 elm
= &node
->elms
[cursor
->index
];
259 r
= hammer_btree_cmp(&cursor
->key_end
, &elm
->base
);
260 if (hammer_debug_btree
) {
261 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
262 cursor
->node
->node_offset
,
264 (elm
[0].leaf
.base
.btype
?
265 elm
[0].leaf
.base
.btype
: '?'),
266 elm
[0].leaf
.base
.obj_id
,
267 elm
[0].leaf
.base
.rec_type
,
268 elm
[0].leaf
.base
.key
,
269 elm
[0].leaf
.base
.localization
,
279 * We support both end-inclusive and
280 * end-exclusive searches.
283 (cursor
->flags
& HAMMER_CURSOR_END_INCLUSIVE
) == 0) {
288 switch(elm
->leaf
.base
.btype
) {
289 case HAMMER_BTREE_TYPE_RECORD
:
290 if ((cursor
->flags
& HAMMER_CURSOR_ASOF
) &&
291 hammer_btree_chkts(cursor
->asof
, &elm
->base
)) {
305 * node pointer invalid after loop
311 if (hammer_debug_btree
) {
312 int i
= cursor
->index
;
313 hammer_btree_elm_t elm
= &cursor
->node
->ondisk
->elms
[i
];
314 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
316 elm
->internal
.base
.obj_id
,
317 elm
->internal
.base
.rec_type
,
318 elm
->internal
.base
.key
,
319 elm
->internal
.base
.localization
328 * We hit an internal element that we could skip as part of a mirroring
329 * scan. Calculate the entire range being skipped.
331 * It is important to include any gaps between the parent's left_bound
332 * and the node's left_bound, and same goes for the right side.
335 hammer_cursor_mirror_filter(hammer_cursor_t cursor
)
337 struct hammer_cmirror
*cmirror
;
338 hammer_node_ondisk_t ondisk
;
339 hammer_btree_elm_t elm
;
341 ondisk
= cursor
->node
->ondisk
;
342 cmirror
= cursor
->cmirror
;
345 * Calculate the skipped range
347 elm
= &ondisk
->elms
[cursor
->index
];
348 if (cursor
->index
== 0)
349 cmirror
->skip_beg
= *cursor
->left_bound
;
351 cmirror
->skip_beg
= elm
->internal
.base
;
352 while (cursor
->index
< ondisk
->count
) {
353 if (elm
->internal
.mirror_tid
>= cmirror
->mirror_tid
)
358 if (cursor
->index
== ondisk
->count
)
359 cmirror
->skip_end
= *cursor
->right_bound
;
361 cmirror
->skip_end
= elm
->internal
.base
;
364 * clip the returned result.
366 if (hammer_btree_cmp(&cmirror
->skip_beg
, &cursor
->key_beg
) < 0)
367 cmirror
->skip_beg
= cursor
->key_beg
;
368 if (hammer_btree_cmp(&cmirror
->skip_end
, &cursor
->key_end
) > 0)
369 cmirror
->skip_end
= cursor
->key_end
;
373 * Iterate in the reverse direction. This is used by the pruning code to
374 * avoid overlapping records.
377 hammer_btree_iterate_reverse(hammer_cursor_t cursor
)
379 hammer_node_ondisk_t node
;
380 hammer_btree_elm_t elm
;
385 /* mirror filtering not supported for reverse iteration */
386 KKASSERT ((cursor
->flags
& HAMMER_CURSOR_MIRROR_FILTERED
) == 0);
389 * Skip past the current record. For various reasons the cursor
390 * may end up set to -1 or set to point at the end of the current
391 * node. These cases must be addressed.
393 node
= cursor
->node
->ondisk
;
396 if (cursor
->index
!= -1 &&
397 (cursor
->flags
& HAMMER_CURSOR_ATEDISK
)) {
400 if (cursor
->index
== cursor
->node
->ondisk
->count
)
404 * Loop until an element is found or we are done.
407 ++hammer_stats_btree_iterations
;
408 hammer_flusher_clean_loose_ios(cursor
->trans
->hmp
);
411 * We iterate up the tree and then index over one element
412 * while we are at the last element in the current node.
414 if (cursor
->index
== -1) {
415 error
= hammer_cursor_up(cursor
);
417 cursor
->index
= 0; /* sanity */
420 /* reload stale pointer */
421 node
= cursor
->node
->ondisk
;
422 KKASSERT(cursor
->index
!= node
->count
);
428 * Check internal or leaf element. Determine if the record
429 * at the cursor has gone beyond the end of our range.
431 * We recurse down through internal nodes.
433 KKASSERT(cursor
->index
!= node
->count
);
434 if (node
->type
== HAMMER_BTREE_TYPE_INTERNAL
) {
435 elm
= &node
->elms
[cursor
->index
];
436 r
= hammer_btree_cmp(&cursor
->key_end
, &elm
[0].base
);
437 s
= hammer_btree_cmp(&cursor
->key_beg
, &elm
[1].base
);
438 if (hammer_debug_btree
) {
439 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
440 cursor
->node
->node_offset
,
442 elm
[0].internal
.base
.obj_id
,
443 elm
[0].internal
.base
.rec_type
,
444 elm
[0].internal
.base
.key
,
445 elm
[0].internal
.base
.localization
,
448 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
449 cursor
->node
->node_offset
,
451 elm
[1].internal
.base
.obj_id
,
452 elm
[1].internal
.base
.rec_type
,
453 elm
[1].internal
.base
.key
,
454 elm
[1].internal
.base
.localization
,
468 KKASSERT(elm
->internal
.subtree_offset
!= 0);
470 error
= hammer_cursor_down(cursor
);
473 KKASSERT(cursor
->index
== 0);
474 /* reload stale pointer */
475 node
= cursor
->node
->ondisk
;
477 /* this can assign -1 if the leaf was empty */
478 cursor
->index
= node
->count
- 1;
481 elm
= &node
->elms
[cursor
->index
];
482 s
= hammer_btree_cmp(&cursor
->key_beg
, &elm
->base
);
483 if (hammer_debug_btree
) {
484 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
485 cursor
->node
->node_offset
,
487 (elm
[0].leaf
.base
.btype
?
488 elm
[0].leaf
.base
.btype
: '?'),
489 elm
[0].leaf
.base
.obj_id
,
490 elm
[0].leaf
.base
.rec_type
,
491 elm
[0].leaf
.base
.key
,
492 elm
[0].leaf
.base
.localization
,
501 switch(elm
->leaf
.base
.btype
) {
502 case HAMMER_BTREE_TYPE_RECORD
:
503 if ((cursor
->flags
& HAMMER_CURSOR_ASOF
) &&
504 hammer_btree_chkts(cursor
->asof
, &elm
->base
)) {
518 * node pointer invalid after loop
524 if (hammer_debug_btree
) {
525 int i
= cursor
->index
;
526 hammer_btree_elm_t elm
= &cursor
->node
->ondisk
->elms
[i
];
527 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
529 elm
->internal
.base
.obj_id
,
530 elm
->internal
.base
.rec_type
,
531 elm
->internal
.base
.key
,
532 elm
->internal
.base
.localization
541 * Lookup cursor->key_beg. 0 is returned on success, ENOENT if the entry
542 * could not be found, EDEADLK if inserting and a retry is needed, and a
543 * fatal error otherwise. When retrying, the caller must terminate the
544 * cursor and reinitialize it. EDEADLK cannot be returned if not inserting.
546 * The cursor is suitably positioned for a deletion on success, and suitably
547 * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
550 * The cursor may begin anywhere, the search will traverse the tree in
551 * either direction to locate the requested element.
553 * Most of the logic implementing historical searches is handled here. We
554 * do an initial lookup with create_tid set to the asof TID. Due to the
555 * way records are laid out, a backwards iteration may be required if
556 * ENOENT is returned to locate the historical record. Here's the
559 * create_tid: 10 15 20
563 * Lets say we want to do a lookup AS-OF timestamp 17. We will traverse
564 * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
565 * not visible and thus causes ENOENT to be returned. We really need
566 * to check record 11 in LEAF1. If it also fails then the search fails
567 * (e.g. it might represent the range 11-16 and thus still not match our
568 * AS-OF timestamp of 17). Note that LEAF1 could be empty, requiring
569 * further iterations.
571 * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
572 * and the cursor->create_check TID if an iteration might be needed.
573 * In the above example create_check would be set to 14.
576 hammer_btree_lookup(hammer_cursor_t cursor
)
580 KKASSERT ((cursor
->flags
& HAMMER_CURSOR_INSERT
) == 0 ||
581 cursor
->trans
->sync_lock_refs
> 0);
582 ++hammer_stats_btree_lookups
;
583 if (cursor
->flags
& HAMMER_CURSOR_ASOF
) {
584 KKASSERT((cursor
->flags
& HAMMER_CURSOR_INSERT
) == 0);
585 cursor
->key_beg
.create_tid
= cursor
->asof
;
587 cursor
->flags
&= ~HAMMER_CURSOR_CREATE_CHECK
;
588 error
= btree_search(cursor
, 0);
589 if (error
!= ENOENT
||
590 (cursor
->flags
& HAMMER_CURSOR_CREATE_CHECK
) == 0) {
593 * Stop if error other then ENOENT.
594 * Stop if ENOENT and not special case.
598 if (hammer_debug_btree
) {
599 kprintf("CREATE_CHECK %016llx\n",
600 cursor
->create_check
);
602 cursor
->key_beg
.create_tid
= cursor
->create_check
;
606 error
= btree_search(cursor
, 0);
609 error
= hammer_btree_extract(cursor
, cursor
->flags
);
614 * Execute the logic required to start an iteration. The first record
615 * located within the specified range is returned and iteration control
616 * flags are adjusted for successive hammer_btree_iterate() calls.
618 * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
619 * in a loop without worrying about it. Higher-level merged searches will
620 * adjust the flag appropriately.
623 hammer_btree_first(hammer_cursor_t cursor
)
627 error
= hammer_btree_lookup(cursor
);
628 if (error
== ENOENT
) {
629 cursor
->flags
&= ~HAMMER_CURSOR_ATEDISK
;
630 error
= hammer_btree_iterate(cursor
);
632 cursor
->flags
|= HAMMER_CURSOR_ATEDISK
;
637 * Similarly but for an iteration in the reverse direction.
639 * Set ATEDISK when iterating backwards to skip the current entry,
640 * which after an ENOENT lookup will be pointing beyond our end point.
642 * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
643 * in a loop without worrying about it. Higher-level merged searches will
644 * adjust the flag appropriately.
647 hammer_btree_last(hammer_cursor_t cursor
)
649 struct hammer_base_elm save
;
652 save
= cursor
->key_beg
;
653 cursor
->key_beg
= cursor
->key_end
;
654 error
= hammer_btree_lookup(cursor
);
655 cursor
->key_beg
= save
;
656 if (error
== ENOENT
||
657 (cursor
->flags
& HAMMER_CURSOR_END_INCLUSIVE
) == 0) {
658 cursor
->flags
|= HAMMER_CURSOR_ATEDISK
;
659 error
= hammer_btree_iterate_reverse(cursor
);
661 cursor
->flags
|= HAMMER_CURSOR_ATEDISK
;
666 * Extract the record and/or data associated with the cursor's current
667 * position. Any prior record or data stored in the cursor is replaced.
668 * The cursor must be positioned at a leaf node.
670 * NOTE: All extractions occur at the leaf of the B-Tree.
673 hammer_btree_extract(hammer_cursor_t cursor
, int flags
)
675 hammer_node_ondisk_t node
;
676 hammer_btree_elm_t elm
;
677 hammer_off_t data_off
;
683 * The case where the data reference resolves to the same buffer
684 * as the record reference must be handled.
686 node
= cursor
->node
->ondisk
;
687 elm
= &node
->elms
[cursor
->index
];
689 hmp
= cursor
->node
->hmp
;
692 * There is nothing to extract for an internal element.
694 if (node
->type
== HAMMER_BTREE_TYPE_INTERNAL
)
698 * Only record types have data.
700 KKASSERT(node
->type
== HAMMER_BTREE_TYPE_LEAF
);
701 cursor
->leaf
= &elm
->leaf
;
703 if ((flags
& HAMMER_CURSOR_GET_DATA
) == 0)
705 if (elm
->leaf
.base
.btype
!= HAMMER_BTREE_TYPE_RECORD
)
707 data_off
= elm
->leaf
.data_offset
;
708 data_len
= elm
->leaf
.data_len
;
715 KKASSERT(data_len
>= 0 && data_len
<= HAMMER_XBUFSIZE
);
716 cursor
->data
= hammer_bread_ext(hmp
, data_off
, data_len
,
717 &error
, &cursor
->data_buffer
);
718 if (hammer_crc_test_leaf(cursor
->data
, &elm
->leaf
) == 0) {
719 kprintf("CRC DATA @ %016llx/%d FAILED\n",
720 elm
->leaf
.data_offset
, elm
->leaf
.data_len
);
721 if (hammer_debug_debug
& 0x0001)
722 Debugger("CRC FAILED: DATA");
723 if (cursor
->trans
->flags
& HAMMER_TRANSF_CRCDOM
)
724 error
= EDOM
; /* less critical (mirroring) */
726 error
= EIO
; /* critical */
733 * Insert a leaf element into the B-Tree at the current cursor position.
734 * The cursor is positioned such that the element at and beyond the cursor
735 * are shifted to make room for the new record.
737 * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
738 * flag set and that call must return ENOENT before this function can be
741 * The caller may depend on the cursor's exclusive lock after return to
742 * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
744 * ENOSPC is returned if there is no room to insert a new record.
747 hammer_btree_insert(hammer_cursor_t cursor
, hammer_btree_leaf_elm_t elm
,
750 hammer_node_ondisk_t node
;
755 if ((error
= hammer_cursor_upgrade_node(cursor
)) != 0)
757 ++hammer_stats_btree_inserts
;
760 * Insert the element at the leaf node and update the count in the
761 * parent. It is possible for parent to be NULL, indicating that
762 * the filesystem's ROOT B-Tree node is a leaf itself, which is
763 * possible. The root inode can never be deleted so the leaf should
766 * Remember that the right-hand boundary is not included in the
769 hammer_modify_node_all(cursor
->trans
, cursor
->node
);
770 node
= cursor
->node
->ondisk
;
772 KKASSERT(elm
->base
.btype
!= 0);
773 KKASSERT(node
->type
== HAMMER_BTREE_TYPE_LEAF
);
774 KKASSERT(node
->count
< HAMMER_BTREE_LEAF_ELMS
);
775 if (i
!= node
->count
) {
776 bcopy(&node
->elms
[i
], &node
->elms
[i
+1],
777 (node
->count
- i
) * sizeof(*elm
));
779 node
->elms
[i
].leaf
= *elm
;
781 hammer_cursor_inserted_element(cursor
->node
, i
);
784 * Update the leaf node's aggregate mirror_tid for mirroring
787 if (node
->mirror_tid
< elm
->base
.delete_tid
) {
788 node
->mirror_tid
= elm
->base
.delete_tid
;
791 if (node
->mirror_tid
< elm
->base
.create_tid
) {
792 node
->mirror_tid
= elm
->base
.create_tid
;
795 hammer_modify_node_done(cursor
->node
);
798 * Debugging sanity checks.
800 KKASSERT(hammer_btree_cmp(cursor
->left_bound
, &elm
->base
) <= 0);
801 KKASSERT(hammer_btree_cmp(cursor
->right_bound
, &elm
->base
) > 0);
803 KKASSERT(hammer_btree_cmp(&node
->elms
[i
-1].leaf
.base
, &elm
->base
) < 0);
805 if (i
!= node
->count
- 1)
806 KKASSERT(hammer_btree_cmp(&node
->elms
[i
+1].leaf
.base
, &elm
->base
) > 0);
812 * Delete a record from the B-Tree at the current cursor position.
813 * The cursor is positioned such that the current element is the one
816 * On return the cursor will be positioned after the deleted element and
817 * MAY point to an internal node. It will be suitable for the continuation
818 * of an iteration but not for an insertion or deletion.
820 * Deletions will attempt to partially rebalance the B-Tree in an upward
821 * direction, but will terminate rather then deadlock. Empty internal nodes
822 * are never allowed by a deletion which deadlocks may end up giving us an
823 * empty leaf. The pruner will clean up and rebalance the tree.
825 * This function can return EDEADLK, requiring the caller to retry the
826 * operation after clearing the deadlock.
829 hammer_btree_delete(hammer_cursor_t cursor
)
831 hammer_node_ondisk_t ondisk
;
833 hammer_node_t parent
;
837 KKASSERT (cursor
->trans
->sync_lock_refs
> 0);
838 if ((error
= hammer_cursor_upgrade(cursor
)) != 0)
840 ++hammer_stats_btree_deletes
;
843 * Delete the element from the leaf node.
845 * Remember that leaf nodes do not have boundaries.
848 ondisk
= node
->ondisk
;
851 KKASSERT(ondisk
->type
== HAMMER_BTREE_TYPE_LEAF
);
852 KKASSERT(i
>= 0 && i
< ondisk
->count
);
853 hammer_modify_node_all(cursor
->trans
, node
);
854 if (i
+ 1 != ondisk
->count
) {
855 bcopy(&ondisk
->elms
[i
+1], &ondisk
->elms
[i
],
856 (ondisk
->count
- i
- 1) * sizeof(ondisk
->elms
[0]));
859 hammer_modify_node_done(node
);
860 hammer_cursor_deleted_element(node
, i
);
863 * Validate local parent
865 if (ondisk
->parent
) {
866 parent
= cursor
->parent
;
868 KKASSERT(parent
!= NULL
);
869 KKASSERT(parent
->node_offset
== ondisk
->parent
);
873 * If the leaf becomes empty it must be detached from the parent,
874 * potentially recursing through to the filesystem root.
876 * This may reposition the cursor at one of the parent's of the
879 * Ignore deadlock errors, that simply means that btree_remove
880 * was unable to recurse and had to leave us with an empty leaf.
882 KKASSERT(cursor
->index
<= ondisk
->count
);
883 if (ondisk
->count
== 0) {
884 error
= btree_remove(cursor
);
885 if (error
== EDEADLK
)
890 KKASSERT(cursor
->parent
== NULL
||
891 cursor
->parent_index
< cursor
->parent
->ondisk
->count
);
896 * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
898 * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
900 * The search can begin ANYWHERE in the B-Tree. As a first step the search
901 * iterates up the tree as necessary to properly position itself prior to
902 * actually doing the sarch.
904 * INSERTIONS: The search will split full nodes and leaves on its way down
905 * and guarentee that the leaf it ends up on is not full. If we run out
906 * of space the search continues to the leaf (to position the cursor for
907 * the spike), but ENOSPC is returned.
909 * The search is only guarenteed to end up on a leaf if an error code of 0
910 * is returned, or if inserting and an error code of ENOENT is returned.
911 * Otherwise it can stop at an internal node. On success a search returns
914 * COMPLEXITY WARNING! This is the core B-Tree search code for the entire
915 * filesystem, and it is not simple code. Please note the following facts:
917 * - Internal node recursions have a boundary on the left AND right. The
918 * right boundary is non-inclusive. The create_tid is a generic part
919 * of the key for internal nodes.
921 * - Leaf nodes contain terminal elements only now.
923 * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
924 * historical search. ASOF and INSERT are mutually exclusive. When
925 * doing an as-of lookup btree_search() checks for a right-edge boundary
926 * case. If while recursing down the left-edge differs from the key
927 * by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
928 * with cursor->create_check. This is used by btree_lookup() to iterate.
929 * The iteration backwards because as-of searches can wind up going
930 * down the wrong branch of the B-Tree.
934 btree_search(hammer_cursor_t cursor
, int flags
)
936 hammer_node_ondisk_t node
;
937 hammer_btree_elm_t elm
;
944 flags
|= cursor
->flags
;
945 ++hammer_stats_btree_searches
;
947 if (hammer_debug_btree
) {
948 kprintf("SEARCH %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
949 cursor
->node
->node_offset
,
951 cursor
->key_beg
.obj_id
,
952 cursor
->key_beg
.rec_type
,
954 cursor
->key_beg
.create_tid
,
955 cursor
->key_beg
.localization
,
959 kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
960 cursor
->parent
->node_offset
, cursor
->parent_index
,
961 cursor
->left_bound
->obj_id
,
962 cursor
->parent
->ondisk
->elms
[cursor
->parent_index
].internal
.base
.obj_id
,
963 cursor
->right_bound
->obj_id
,
964 cursor
->parent
->ondisk
->elms
[cursor
->parent_index
+1].internal
.base
.obj_id
,
966 &cursor
->parent
->ondisk
->elms
[cursor
->parent_index
],
968 &cursor
->parent
->ondisk
->elms
[cursor
->parent_index
+1]
973 * Move our cursor up the tree until we find a node whos range covers
974 * the key we are trying to locate.
976 * The left bound is inclusive, the right bound is non-inclusive.
977 * It is ok to cursor up too far.
980 r
= hammer_btree_cmp(&cursor
->key_beg
, cursor
->left_bound
);
981 s
= hammer_btree_cmp(&cursor
->key_beg
, cursor
->right_bound
);
984 KKASSERT(cursor
->parent
);
985 ++hammer_stats_btree_iterations
;
986 error
= hammer_cursor_up(cursor
);
992 * The delete-checks below are based on node, not parent. Set the
993 * initial delete-check based on the parent.
996 KKASSERT(cursor
->left_bound
->create_tid
!= 1);
997 cursor
->create_check
= cursor
->left_bound
->create_tid
- 1;
998 cursor
->flags
|= HAMMER_CURSOR_CREATE_CHECK
;
1002 * We better have ended up with a node somewhere.
1004 KKASSERT(cursor
->node
!= NULL
);
1007 * If we are inserting we can't start at a full node if the parent
1008 * is also full (because there is no way to split the node),
1009 * continue running up the tree until the requirement is satisfied
1010 * or we hit the root of the filesystem.
1012 * (If inserting we aren't doing an as-of search so we don't have
1013 * to worry about create_check).
1015 while ((flags
& HAMMER_CURSOR_INSERT
) && enospc
== 0) {
1016 if (cursor
->node
->ondisk
->type
== HAMMER_BTREE_TYPE_INTERNAL
) {
1017 if (btree_node_is_full(cursor
->node
->ondisk
) == 0)
1020 if (btree_node_is_full(cursor
->node
->ondisk
) ==0)
1023 if (cursor
->node
->ondisk
->parent
== 0 ||
1024 cursor
->parent
->ondisk
->count
!= HAMMER_BTREE_INT_ELMS
) {
1027 ++hammer_stats_btree_iterations
;
1028 error
= hammer_cursor_up(cursor
);
1029 /* node may have become stale */
1035 * Push down through internal nodes to locate the requested key.
1037 node
= cursor
->node
->ondisk
;
1038 while (node
->type
== HAMMER_BTREE_TYPE_INTERNAL
) {
1040 * Scan the node to find the subtree index to push down into.
1041 * We go one-past, then back-up.
1043 * We must proactively remove deleted elements which may
1044 * have been left over from a deadlocked btree_remove().
1046 * The left and right boundaries are included in the loop
1047 * in order to detect edge cases.
1049 * If the separator only differs by create_tid (r == 1)
1050 * and we are doing an as-of search, we may end up going
1051 * down a branch to the left of the one containing the
1052 * desired key. This requires numerous special cases.
1054 ++hammer_stats_btree_iterations
;
1055 if (hammer_debug_btree
) {
1056 kprintf("SEARCH-I %016llx count=%d\n",
1057 cursor
->node
->node_offset
,
1062 * Try to shortcut the search before dropping into the
1063 * linear loop. Locate the first node where r <= 1.
1065 i
= hammer_btree_search_node(&cursor
->key_beg
, node
);
1066 while (i
<= node
->count
) {
1067 ++hammer_stats_btree_elements
;
1068 elm
= &node
->elms
[i
];
1069 r
= hammer_btree_cmp(&cursor
->key_beg
, &elm
->base
);
1070 if (hammer_debug_btree
> 2) {
1071 kprintf(" IELM %p %d r=%d\n",
1072 &node
->elms
[i
], i
, r
);
1077 KKASSERT(elm
->base
.create_tid
!= 1);
1078 cursor
->create_check
= elm
->base
.create_tid
- 1;
1079 cursor
->flags
|= HAMMER_CURSOR_CREATE_CHECK
;
1083 if (hammer_debug_btree
) {
1084 kprintf("SEARCH-I preI=%d/%d r=%d\n",
1089 * These cases occur when the parent's idea of the boundary
1090 * is wider then the child's idea of the boundary, and
1091 * require special handling. If not inserting we can
1092 * terminate the search early for these cases but the
1093 * child's boundaries cannot be unconditionally modified.
1097 * If i == 0 the search terminated to the LEFT of the
1098 * left_boundary but to the RIGHT of the parent's left
1103 elm
= &node
->elms
[0];
1106 * If we aren't inserting we can stop here.
1108 if ((flags
& (HAMMER_CURSOR_INSERT
|
1109 HAMMER_CURSOR_PRUNING
)) == 0) {
1115 * Correct a left-hand boundary mismatch.
1117 * We can only do this if we can upgrade the lock,
1118 * and synchronized as a background cursor (i.e.
1119 * inserting or pruning).
1121 * WARNING: We can only do this if inserting, i.e.
1122 * we are running on the backend.
1124 if ((error
= hammer_cursor_upgrade(cursor
)) != 0)
1126 KKASSERT(cursor
->flags
& HAMMER_CURSOR_BACKEND
);
1127 hammer_modify_node_field(cursor
->trans
, cursor
->node
,
1129 save
= node
->elms
[0].base
.btype
;
1130 node
->elms
[0].base
= *cursor
->left_bound
;
1131 node
->elms
[0].base
.btype
= save
;
1132 hammer_modify_node_done(cursor
->node
);
1133 } else if (i
== node
->count
+ 1) {
1135 * If i == node->count + 1 the search terminated to
1136 * the RIGHT of the right boundary but to the LEFT
1137 * of the parent's right boundary. If we aren't
1138 * inserting we can stop here.
1140 * Note that the last element in this case is
1141 * elms[i-2] prior to adjustments to 'i'.
1144 if ((flags
& (HAMMER_CURSOR_INSERT
|
1145 HAMMER_CURSOR_PRUNING
)) == 0) {
1151 * Correct a right-hand boundary mismatch.
1152 * (actual push-down record is i-2 prior to
1153 * adjustments to i).
1155 * We can only do this if we can upgrade the lock,
1156 * and synchronized as a background cursor (i.e.
1157 * inserting or pruning).
1159 * WARNING: We can only do this if inserting, i.e.
1160 * we are running on the backend.
1162 if ((error
= hammer_cursor_upgrade(cursor
)) != 0)
1164 elm
= &node
->elms
[i
];
1165 KKASSERT(cursor
->flags
& HAMMER_CURSOR_BACKEND
);
1166 hammer_modify_node(cursor
->trans
, cursor
->node
,
1167 &elm
->base
, sizeof(elm
->base
));
1168 elm
->base
= *cursor
->right_bound
;
1169 hammer_modify_node_done(cursor
->node
);
1173 * The push-down index is now i - 1. If we had
1174 * terminated on the right boundary this will point
1175 * us at the last element.
1180 elm
= &node
->elms
[i
];
1182 if (hammer_debug_btree
) {
1183 kprintf("RESULT-I %016llx[%d] %016llx %02x "
1184 "key=%016llx cre=%016llx lo=%02x\n",
1185 cursor
->node
->node_offset
,
1187 elm
->internal
.base
.obj_id
,
1188 elm
->internal
.base
.rec_type
,
1189 elm
->internal
.base
.key
,
1190 elm
->internal
.base
.create_tid
,
1191 elm
->internal
.base
.localization
1196 * We better have a valid subtree offset.
1198 KKASSERT(elm
->internal
.subtree_offset
!= 0);
1201 * Handle insertion and deletion requirements.
1203 * If inserting split full nodes. The split code will
1204 * adjust cursor->node and cursor->index if the current
1205 * index winds up in the new node.
1207 * If inserting and a left or right edge case was detected,
1208 * we cannot correct the left or right boundary and must
1209 * prepend and append an empty leaf node in order to make
1210 * the boundary correction.
1212 * If we run out of space we set enospc and continue on
1213 * to a leaf to provide the spike code with a good point
1216 if ((flags
& HAMMER_CURSOR_INSERT
) && enospc
== 0) {
1217 if (btree_node_is_full(node
)) {
1218 error
= btree_split_internal(cursor
);
1220 if (error
!= ENOSPC
)
1225 * reload stale pointers
1228 node
= cursor
->node
->ondisk
;
1233 * Push down (push into new node, existing node becomes
1234 * the parent) and continue the search.
1236 error
= hammer_cursor_down(cursor
);
1237 /* node may have become stale */
1240 node
= cursor
->node
->ondisk
;
1244 * We are at a leaf, do a linear search of the key array.
1246 * On success the index is set to the matching element and 0
1249 * On failure the index is set to the insertion point and ENOENT
1252 * Boundaries are not stored in leaf nodes, so the index can wind
1253 * up to the left of element 0 (index == 0) or past the end of
1254 * the array (index == node->count). It is also possible that the
1255 * leaf might be empty.
1257 ++hammer_stats_btree_iterations
;
1258 KKASSERT (node
->type
== HAMMER_BTREE_TYPE_LEAF
);
1259 KKASSERT(node
->count
<= HAMMER_BTREE_LEAF_ELMS
);
1260 if (hammer_debug_btree
) {
1261 kprintf("SEARCH-L %016llx count=%d\n",
1262 cursor
->node
->node_offset
,
1267 * Try to shortcut the search before dropping into the
1268 * linear loop. Locate the first node where r <= 1.
1270 i
= hammer_btree_search_node(&cursor
->key_beg
, node
);
1271 while (i
< node
->count
) {
1272 ++hammer_stats_btree_elements
;
1273 elm
= &node
->elms
[i
];
1275 r
= hammer_btree_cmp(&cursor
->key_beg
, &elm
->leaf
.base
);
1277 if (hammer_debug_btree
> 1)
1278 kprintf(" ELM %p %d r=%d\n", &node
->elms
[i
], i
, r
);
1281 * We are at a record element. Stop if we've flipped past
1282 * key_beg, not counting the create_tid test. Allow the
1283 * r == 1 case (key_beg > element but differs only by its
1284 * create_tid) to fall through to the AS-OF check.
1286 KKASSERT (elm
->leaf
.base
.btype
== HAMMER_BTREE_TYPE_RECORD
);
1296 * Check our as-of timestamp against the element.
1298 if (flags
& HAMMER_CURSOR_ASOF
) {
1299 if (hammer_btree_chkts(cursor
->asof
,
1300 &node
->elms
[i
].base
) != 0) {
1306 if (r
> 0) { /* can only be +1 */
1314 if (hammer_debug_btree
) {
1315 kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1316 cursor
->node
->node_offset
, i
);
1322 * The search of the leaf node failed. i is the insertion point.
1325 if (hammer_debug_btree
) {
1326 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1327 cursor
->node
->node_offset
, i
);
1331 * No exact match was found, i is now at the insertion point.
1333 * If inserting split a full leaf before returning. This
1334 * may have the side effect of adjusting cursor->node and
1338 if ((flags
& HAMMER_CURSOR_INSERT
) && enospc
== 0 &&
1339 btree_node_is_full(node
)) {
1340 error
= btree_split_leaf(cursor
);
1342 if (error
!= ENOSPC
)
1347 * reload stale pointers
1351 node = &cursor->node->internal;
1356 * We reached a leaf but did not find the key we were looking for.
1357 * If this is an insert we will be properly positioned for an insert
1358 * (ENOENT) or spike (ENOSPC) operation.
1360 error
= enospc
? ENOSPC
: ENOENT
;
1366 * Heuristical search for the first element whos comparison is <= 1. May
1367 * return an index whos compare result is > 1 but may only return an index
1368 * whos compare result is <= 1 if it is the first element with that result.
1371 hammer_btree_search_node(hammer_base_elm_t elm
, hammer_node_ondisk_t node
)
1379 * Don't bother if the node does not have very many elements
1384 i
= b
+ (s
- b
) / 2;
1385 ++hammer_stats_btree_elements
;
1386 r
= hammer_btree_cmp(elm
, &node
->elms
[i
].leaf
.base
);
1397 /************************************************************************
1398 * SPLITTING AND MERGING *
1399 ************************************************************************
1401 * These routines do all the dirty work required to split and merge nodes.
1405 * Split an internal node into two nodes and move the separator at the split
1406 * point to the parent.
1408 * (cursor->node, cursor->index) indicates the element the caller intends
1409 * to push into. We will adjust node and index if that element winds
1410 * up in the split node.
1412 * If we are at the root of the filesystem a new root must be created with
1413 * two elements, one pointing to the original root and one pointing to the
1414 * newly allocated split node.
1418 btree_split_internal(hammer_cursor_t cursor
)
1420 hammer_node_ondisk_t ondisk
;
1422 hammer_node_t parent
;
1423 hammer_node_t new_node
;
1424 hammer_btree_elm_t elm
;
1425 hammer_btree_elm_t parent_elm
;
1426 struct hammer_node_lock lockroot
;
1427 hammer_mount_t hmp
= cursor
->trans
->hmp
;
1434 const int esize
= sizeof(*elm
);
1436 hammer_node_lock_init(&lockroot
, cursor
->node
);
1437 error
= hammer_btree_lock_children(cursor
, 1, &lockroot
);
1440 if ((error
= hammer_cursor_upgrade(cursor
)) != 0)
1442 ++hammer_stats_btree_splits
;
1445 * We are splitting but elms[split] will be promoted to the parent,
1446 * leaving the right hand node with one less element. If the
1447 * insertion point will be on the left-hand side adjust the split
1448 * point to give the right hand side one additional node.
1450 node
= cursor
->node
;
1451 ondisk
= node
->ondisk
;
1452 split
= (ondisk
->count
+ 1) / 2;
1453 if (cursor
->index
<= split
)
1457 * If we are at the root of the filesystem, create a new root node
1458 * with 1 element and split normally. Avoid making major
1459 * modifications until we know the whole operation will work.
1461 if (ondisk
->parent
== 0) {
1462 parent
= hammer_alloc_btree(cursor
->trans
, node
->node_offset
,
1466 hammer_lock_ex(&parent
->lock
);
1467 hammer_modify_node_noundo(cursor
->trans
, parent
);
1468 ondisk
= parent
->ondisk
;
1471 ondisk
->mirror_tid
= node
->ondisk
->mirror_tid
;
1472 ondisk
->type
= HAMMER_BTREE_TYPE_INTERNAL
;
1473 ondisk
->elms
[0].base
= hmp
->root_btree_beg
;
1474 ondisk
->elms
[0].base
.btype
= node
->ondisk
->type
;
1475 ondisk
->elms
[0].internal
.subtree_offset
= node
->node_offset
;
1476 ondisk
->elms
[1].base
= hmp
->root_btree_end
;
1477 hammer_modify_node_done(parent
);
1478 /* ondisk->elms[1].base.btype - not used */
1480 parent_index
= 0; /* index of current node in parent */
1483 parent
= cursor
->parent
;
1484 parent_index
= cursor
->parent_index
;
1488 * Calculate a hint for the allocation of the new B-Tree node.
1489 * The most likely expansion is coming from the insertion point
1490 * at cursor->index, so try to localize the allocation of our
1491 * new node to accomodate that sub-tree.
1493 * Use the right-most sub-tree when expandinging on the right edge.
1494 * This is a very common case when copying a directory tree.
1496 if (cursor
->index
== ondisk
->count
)
1497 hint
= ondisk
->elms
[cursor
->index
- 1].internal
.subtree_offset
;
1499 hint
= ondisk
->elms
[cursor
->index
].internal
.subtree_offset
;
1502 * Split node into new_node at the split point.
1504 * B O O O P N N B <-- P = node->elms[split] (index 4)
1505 * 0 1 2 3 4 5 6 <-- subtree indices
1510 * B O O O B B N N B <--- inner boundary points are 'P'
1513 new_node
= hammer_alloc_btree(cursor
->trans
, hint
, &error
);
1514 if (new_node
== NULL
) {
1516 hammer_unlock(&parent
->lock
);
1517 hammer_delete_node(cursor
->trans
, parent
);
1518 hammer_rel_node(parent
);
1522 hammer_lock_ex(&new_node
->lock
);
1525 * Create the new node. P becomes the left-hand boundary in the
1526 * new node. Copy the right-hand boundary as well.
1528 * elm is the new separator.
1530 hammer_modify_node_noundo(cursor
->trans
, new_node
);
1531 hammer_modify_node_all(cursor
->trans
, node
);
1532 ondisk
= node
->ondisk
;
1533 elm
= &ondisk
->elms
[split
];
1534 bcopy(elm
, &new_node
->ondisk
->elms
[0],
1535 (ondisk
->count
- split
+ 1) * esize
);
1536 new_node
->ondisk
->count
= ondisk
->count
- split
;
1537 new_node
->ondisk
->parent
= parent
->node_offset
;
1538 new_node
->ondisk
->type
= HAMMER_BTREE_TYPE_INTERNAL
;
1539 new_node
->ondisk
->mirror_tid
= ondisk
->mirror_tid
;
1540 KKASSERT(ondisk
->type
== new_node
->ondisk
->type
);
1541 hammer_cursor_split_node(node
, new_node
, split
);
1544 * Cleanup the original node. Elm (P) becomes the new boundary,
1545 * its subtree_offset was moved to the new node. If we had created
1546 * a new root its parent pointer may have changed.
1548 elm
->internal
.subtree_offset
= 0;
1549 ondisk
->count
= split
;
1552 * Insert the separator into the parent, fixup the parent's
1553 * reference to the original node, and reference the new node.
1554 * The separator is P.
1556 * Remember that base.count does not include the right-hand boundary.
1558 hammer_modify_node_all(cursor
->trans
, parent
);
1559 ondisk
= parent
->ondisk
;
1560 KKASSERT(ondisk
->count
!= HAMMER_BTREE_INT_ELMS
);
1561 parent_elm
= &ondisk
->elms
[parent_index
+1];
1562 bcopy(parent_elm
, parent_elm
+ 1,
1563 (ondisk
->count
- parent_index
) * esize
);
1564 parent_elm
->internal
.base
= elm
->base
; /* separator P */
1565 parent_elm
->internal
.base
.btype
= new_node
->ondisk
->type
;
1566 parent_elm
->internal
.subtree_offset
= new_node
->node_offset
;
1567 parent_elm
->internal
.mirror_tid
= new_node
->ondisk
->mirror_tid
;
1569 hammer_modify_node_done(parent
);
1570 hammer_cursor_inserted_element(parent
, parent_index
+ 1);
1573 * The children of new_node need their parent pointer set to new_node.
1574 * The children have already been locked by
1575 * hammer_btree_lock_children().
1577 for (i
= 0; i
< new_node
->ondisk
->count
; ++i
) {
1578 elm
= &new_node
->ondisk
->elms
[i
];
1579 error
= btree_set_parent(cursor
->trans
, new_node
, elm
);
1581 panic("btree_split_internal: btree-fixup problem");
1584 hammer_modify_node_done(new_node
);
1587 * The filesystem's root B-Tree pointer may have to be updated.
1590 hammer_volume_t volume
;
1592 volume
= hammer_get_root_volume(hmp
, &error
);
1593 KKASSERT(error
== 0);
1595 hammer_modify_volume_field(cursor
->trans
, volume
,
1597 volume
->ondisk
->vol0_btree_root
= parent
->node_offset
;
1598 hammer_modify_volume_done(volume
);
1599 node
->ondisk
->parent
= parent
->node_offset
;
1600 if (cursor
->parent
) {
1601 hammer_unlock(&cursor
->parent
->lock
);
1602 hammer_rel_node(cursor
->parent
);
1604 cursor
->parent
= parent
; /* lock'd and ref'd */
1605 hammer_rel_volume(volume
, 0);
1607 hammer_modify_node_done(node
);
1610 * Ok, now adjust the cursor depending on which element the original
1611 * index was pointing at. If we are >= the split point the push node
1612 * is now in the new node.
1614 * NOTE: If we are at the split point itself we cannot stay with the
1615 * original node because the push index will point at the right-hand
1616 * boundary, which is illegal.
1618 * NOTE: The cursor's parent or parent_index must be adjusted for
1619 * the case where a new parent (new root) was created, and the case
1620 * where the cursor is now pointing at the split node.
1622 if (cursor
->index
>= split
) {
1623 cursor
->parent_index
= parent_index
+ 1;
1624 cursor
->index
-= split
;
1625 hammer_unlock(&cursor
->node
->lock
);
1626 hammer_rel_node(cursor
->node
);
1627 cursor
->node
= new_node
; /* locked and ref'd */
1629 cursor
->parent_index
= parent_index
;
1630 hammer_unlock(&new_node
->lock
);
1631 hammer_rel_node(new_node
);
1635 * Fixup left and right bounds
1637 parent_elm
= &parent
->ondisk
->elms
[cursor
->parent_index
];
1638 cursor
->left_bound
= &parent_elm
[0].internal
.base
;
1639 cursor
->right_bound
= &parent_elm
[1].internal
.base
;
1640 KKASSERT(hammer_btree_cmp(cursor
->left_bound
,
1641 &cursor
->node
->ondisk
->elms
[0].internal
.base
) <= 0);
1642 KKASSERT(hammer_btree_cmp(cursor
->right_bound
,
1643 &cursor
->node
->ondisk
->elms
[cursor
->node
->ondisk
->count
].internal
.base
) >= 0);
1646 hammer_btree_unlock_children(cursor
, &lockroot
);
1647 hammer_cursor_downgrade(cursor
);
1652 * Same as the above, but splits a full leaf node.
1658 btree_split_leaf(hammer_cursor_t cursor
)
1660 hammer_node_ondisk_t ondisk
;
1661 hammer_node_t parent
;
1664 hammer_node_t new_leaf
;
1665 hammer_btree_elm_t elm
;
1666 hammer_btree_elm_t parent_elm
;
1667 hammer_base_elm_t mid_boundary
;
1673 const size_t esize
= sizeof(*elm
);
1675 if ((error
= hammer_cursor_upgrade(cursor
)) != 0)
1677 ++hammer_stats_btree_splits
;
1679 KKASSERT(hammer_btree_cmp(cursor
->left_bound
,
1680 &cursor
->node
->ondisk
->elms
[0].leaf
.base
) <= 0);
1681 KKASSERT(hammer_btree_cmp(cursor
->right_bound
,
1682 &cursor
->node
->ondisk
->elms
[cursor
->node
->ondisk
->count
-1].leaf
.base
) > 0);
1685 * Calculate the split point. If the insertion point will be on
1686 * the left-hand side adjust the split point to give the right
1687 * hand side one additional node.
1689 * Spikes are made up of two leaf elements which cannot be
1692 leaf
= cursor
->node
;
1693 ondisk
= leaf
->ondisk
;
1694 split
= (ondisk
->count
+ 1) / 2;
1695 if (cursor
->index
<= split
)
1700 elm
= &ondisk
->elms
[split
];
1702 KKASSERT(hammer_btree_cmp(cursor
->left_bound
, &elm
[-1].leaf
.base
) <= 0);
1703 KKASSERT(hammer_btree_cmp(cursor
->left_bound
, &elm
->leaf
.base
) <= 0);
1704 KKASSERT(hammer_btree_cmp(cursor
->right_bound
, &elm
->leaf
.base
) > 0);
1705 KKASSERT(hammer_btree_cmp(cursor
->right_bound
, &elm
[1].leaf
.base
) > 0);
1708 * If we are at the root of the tree, create a new root node with
1709 * 1 element and split normally. Avoid making major modifications
1710 * until we know the whole operation will work.
1712 if (ondisk
->parent
== 0) {
1713 parent
= hammer_alloc_btree(cursor
->trans
, leaf
->node_offset
,
1717 hammer_lock_ex(&parent
->lock
);
1718 hammer_modify_node_noundo(cursor
->trans
, parent
);
1719 ondisk
= parent
->ondisk
;
1722 ondisk
->mirror_tid
= leaf
->ondisk
->mirror_tid
;
1723 ondisk
->type
= HAMMER_BTREE_TYPE_INTERNAL
;
1724 ondisk
->elms
[0].base
= hmp
->root_btree_beg
;
1725 ondisk
->elms
[0].base
.btype
= leaf
->ondisk
->type
;
1726 ondisk
->elms
[0].internal
.subtree_offset
= leaf
->node_offset
;
1727 ondisk
->elms
[1].base
= hmp
->root_btree_end
;
1728 /* ondisk->elms[1].base.btype = not used */
1729 hammer_modify_node_done(parent
);
1731 parent_index
= 0; /* insertion point in parent */
1734 parent
= cursor
->parent
;
1735 parent_index
= cursor
->parent_index
;
1739 * Calculate a hint for the allocation of the new B-Tree leaf node.
1740 * For now just try to localize it within the same bigblock as
1743 * If the insertion point is at the end of the leaf we recognize a
1744 * likely append sequence of some sort (data, meta-data, inodes,
1745 * whatever). Set the hint to zero to allocate out of linear space
1746 * instead of trying to completely fill previously hinted space.
1748 * This also sets the stage for recursive splits to localize using
1751 ondisk
= leaf
->ondisk
;
1752 if (cursor
->index
== ondisk
->count
)
1755 hint
= leaf
->node_offset
;
1758 * Split leaf into new_leaf at the split point. Select a separator
1759 * value in-between the two leafs but with a bent towards the right
1760 * leaf since comparisons use an 'elm >= separator' inequality.
1769 new_leaf
= hammer_alloc_btree(cursor
->trans
, hint
, &error
);
1770 if (new_leaf
== NULL
) {
1772 hammer_unlock(&parent
->lock
);
1773 hammer_delete_node(cursor
->trans
, parent
);
1774 hammer_rel_node(parent
);
1778 hammer_lock_ex(&new_leaf
->lock
);
1781 * Create the new node and copy the leaf elements from the split
1782 * point on to the new node.
1784 hammer_modify_node_all(cursor
->trans
, leaf
);
1785 hammer_modify_node_noundo(cursor
->trans
, new_leaf
);
1786 ondisk
= leaf
->ondisk
;
1787 elm
= &ondisk
->elms
[split
];
1788 bcopy(elm
, &new_leaf
->ondisk
->elms
[0], (ondisk
->count
- split
) * esize
);
1789 new_leaf
->ondisk
->count
= ondisk
->count
- split
;
1790 new_leaf
->ondisk
->parent
= parent
->node_offset
;
1791 new_leaf
->ondisk
->type
= HAMMER_BTREE_TYPE_LEAF
;
1792 new_leaf
->ondisk
->mirror_tid
= ondisk
->mirror_tid
;
1793 KKASSERT(ondisk
->type
== new_leaf
->ondisk
->type
);
1794 hammer_modify_node_done(new_leaf
);
1795 hammer_cursor_split_node(leaf
, new_leaf
, split
);
1798 * Cleanup the original node. Because this is a leaf node and
1799 * leaf nodes do not have a right-hand boundary, there
1800 * aren't any special edge cases to clean up. We just fixup the
1803 ondisk
->count
= split
;
1806 * Insert the separator into the parent, fixup the parent's
1807 * reference to the original node, and reference the new node.
1808 * The separator is P.
1810 * Remember that base.count does not include the right-hand boundary.
1811 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1813 hammer_modify_node_all(cursor
->trans
, parent
);
1814 ondisk
= parent
->ondisk
;
1815 KKASSERT(split
!= 0);
1816 KKASSERT(ondisk
->count
!= HAMMER_BTREE_INT_ELMS
);
1817 parent_elm
= &ondisk
->elms
[parent_index
+1];
1818 bcopy(parent_elm
, parent_elm
+ 1,
1819 (ondisk
->count
- parent_index
) * esize
);
1821 hammer_make_separator(&elm
[-1].base
, &elm
[0].base
, &parent_elm
->base
);
1822 parent_elm
->internal
.base
.btype
= new_leaf
->ondisk
->type
;
1823 parent_elm
->internal
.subtree_offset
= new_leaf
->node_offset
;
1824 parent_elm
->internal
.mirror_tid
= new_leaf
->ondisk
->mirror_tid
;
1825 mid_boundary
= &parent_elm
->base
;
1827 hammer_modify_node_done(parent
);
1828 hammer_cursor_inserted_element(parent
, parent_index
+ 1);
1831 * The filesystem's root B-Tree pointer may have to be updated.
1834 hammer_volume_t volume
;
1836 volume
= hammer_get_root_volume(hmp
, &error
);
1837 KKASSERT(error
== 0);
1839 hammer_modify_volume_field(cursor
->trans
, volume
,
1841 volume
->ondisk
->vol0_btree_root
= parent
->node_offset
;
1842 hammer_modify_volume_done(volume
);
1843 leaf
->ondisk
->parent
= parent
->node_offset
;
1844 if (cursor
->parent
) {
1845 hammer_unlock(&cursor
->parent
->lock
);
1846 hammer_rel_node(cursor
->parent
);
1848 cursor
->parent
= parent
; /* lock'd and ref'd */
1849 hammer_rel_volume(volume
, 0);
1851 hammer_modify_node_done(leaf
);
1854 * Ok, now adjust the cursor depending on which element the original
1855 * index was pointing at. If we are >= the split point the push node
1856 * is now in the new node.
1858 * NOTE: If we are at the split point itself we need to select the
1859 * old or new node based on where key_beg's insertion point will be.
1860 * If we pick the wrong side the inserted element will wind up in
1861 * the wrong leaf node and outside that node's bounds.
1863 if (cursor
->index
> split
||
1864 (cursor
->index
== split
&&
1865 hammer_btree_cmp(&cursor
->key_beg
, mid_boundary
) >= 0)) {
1866 cursor
->parent_index
= parent_index
+ 1;
1867 cursor
->index
-= split
;
1868 hammer_unlock(&cursor
->node
->lock
);
1869 hammer_rel_node(cursor
->node
);
1870 cursor
->node
= new_leaf
;
1872 cursor
->parent_index
= parent_index
;
1873 hammer_unlock(&new_leaf
->lock
);
1874 hammer_rel_node(new_leaf
);
1878 * Fixup left and right bounds
1880 parent_elm
= &parent
->ondisk
->elms
[cursor
->parent_index
];
1881 cursor
->left_bound
= &parent_elm
[0].internal
.base
;
1882 cursor
->right_bound
= &parent_elm
[1].internal
.base
;
1885 * Assert that the bounds are correct.
1887 KKASSERT(hammer_btree_cmp(cursor
->left_bound
,
1888 &cursor
->node
->ondisk
->elms
[0].leaf
.base
) <= 0);
1889 KKASSERT(hammer_btree_cmp(cursor
->right_bound
,
1890 &cursor
->node
->ondisk
->elms
[cursor
->node
->ondisk
->count
-1].leaf
.base
) > 0);
1891 KKASSERT(hammer_btree_cmp(cursor
->left_bound
, &cursor
->key_beg
) <= 0);
1892 KKASSERT(hammer_btree_cmp(cursor
->right_bound
, &cursor
->key_beg
) > 0);
1895 hammer_cursor_downgrade(cursor
);
1902 * Recursively correct the right-hand boundary's create_tid to (tid) as
1903 * long as the rest of the key matches. We have to recurse upward in
1904 * the tree as well as down the left side of each parent's right node.
1906 * Return EDEADLK if we were only partially successful, forcing the caller
1907 * to try again. The original cursor is not modified. This routine can
1908 * also fail with EDEADLK if it is forced to throw away a portion of its
1911 * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1914 TAILQ_ENTRY(hammer_rhb
) entry
;
1919 TAILQ_HEAD(hammer_rhb_list
, hammer_rhb
);
1922 hammer_btree_correct_rhb(hammer_cursor_t cursor
, hammer_tid_t tid
)
1924 struct hammer_mount
*hmp
;
1925 struct hammer_rhb_list rhb_list
;
1926 hammer_base_elm_t elm
;
1927 hammer_node_t orig_node
;
1928 struct hammer_rhb
*rhb
;
1932 TAILQ_INIT(&rhb_list
);
1933 hmp
= cursor
->trans
->hmp
;
1936 * Save our position so we can restore it on return. This also
1937 * gives us a stable 'elm'.
1939 orig_node
= cursor
->node
;
1940 hammer_ref_node(orig_node
);
1941 hammer_lock_sh(&orig_node
->lock
);
1942 orig_index
= cursor
->index
;
1943 elm
= &orig_node
->ondisk
->elms
[orig_index
].base
;
1946 * Now build a list of parents going up, allocating a rhb
1947 * structure for each one.
1949 while (cursor
->parent
) {
1951 * Stop if we no longer have any right-bounds to fix up
1953 if (elm
->obj_id
!= cursor
->right_bound
->obj_id
||
1954 elm
->rec_type
!= cursor
->right_bound
->rec_type
||
1955 elm
->key
!= cursor
->right_bound
->key
) {
1960 * Stop if the right-hand bound's create_tid does not
1961 * need to be corrected.
1963 if (cursor
->right_bound
->create_tid
>= tid
)
1966 rhb
= kmalloc(sizeof(*rhb
), hmp
->m_misc
, M_WAITOK
|M_ZERO
);
1967 rhb
->node
= cursor
->parent
;
1968 rhb
->index
= cursor
->parent_index
;
1969 hammer_ref_node(rhb
->node
);
1970 hammer_lock_sh(&rhb
->node
->lock
);
1971 TAILQ_INSERT_HEAD(&rhb_list
, rhb
, entry
);
1973 hammer_cursor_up(cursor
);
1977 * now safely adjust the right hand bound for each rhb. This may
1978 * also require taking the right side of the tree and iterating down
1982 while (error
== 0 && (rhb
= TAILQ_FIRST(&rhb_list
)) != NULL
) {
1983 error
= hammer_cursor_seek(cursor
, rhb
->node
, rhb
->index
);
1986 TAILQ_REMOVE(&rhb_list
, rhb
, entry
);
1987 hammer_unlock(&rhb
->node
->lock
);
1988 hammer_rel_node(rhb
->node
);
1989 kfree(rhb
, hmp
->m_misc
);
1991 switch (cursor
->node
->ondisk
->type
) {
1992 case HAMMER_BTREE_TYPE_INTERNAL
:
1994 * Right-boundary for parent at internal node
1995 * is one element to the right of the element whos
1996 * right boundary needs adjusting. We must then
1997 * traverse down the left side correcting any left
1998 * bounds (which may now be too far to the left).
2001 error
= hammer_btree_correct_lhb(cursor
, tid
);
2004 panic("hammer_btree_correct_rhb(): Bad node type");
2013 while ((rhb
= TAILQ_FIRST(&rhb_list
)) != NULL
) {
2014 TAILQ_REMOVE(&rhb_list
, rhb
, entry
);
2015 hammer_unlock(&rhb
->node
->lock
);
2016 hammer_rel_node(rhb
->node
);
2017 kfree(rhb
, hmp
->m_misc
);
2019 error
= hammer_cursor_seek(cursor
, orig_node
, orig_index
);
2020 hammer_unlock(&orig_node
->lock
);
2021 hammer_rel_node(orig_node
);
2026 * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2027 * bound going downward starting at the current cursor position.
2029 * This function does not restore the cursor after use.
2032 hammer_btree_correct_lhb(hammer_cursor_t cursor
, hammer_tid_t tid
)
2034 struct hammer_rhb_list rhb_list
;
2035 hammer_base_elm_t elm
;
2036 hammer_base_elm_t cmp
;
2037 struct hammer_rhb
*rhb
;
2038 struct hammer_mount
*hmp
;
2041 TAILQ_INIT(&rhb_list
);
2042 hmp
= cursor
->trans
->hmp
;
2044 cmp
= &cursor
->node
->ondisk
->elms
[cursor
->index
].base
;
2047 * Record the node and traverse down the left-hand side for all
2048 * matching records needing a boundary correction.
2052 rhb
= kmalloc(sizeof(*rhb
), hmp
->m_misc
, M_WAITOK
|M_ZERO
);
2053 rhb
->node
= cursor
->node
;
2054 rhb
->index
= cursor
->index
;
2055 hammer_ref_node(rhb
->node
);
2056 hammer_lock_sh(&rhb
->node
->lock
);
2057 TAILQ_INSERT_HEAD(&rhb_list
, rhb
, entry
);
2059 if (cursor
->node
->ondisk
->type
== HAMMER_BTREE_TYPE_INTERNAL
) {
2061 * Nothing to traverse down if we are at the right
2062 * boundary of an internal node.
2064 if (cursor
->index
== cursor
->node
->ondisk
->count
)
2067 elm
= &cursor
->node
->ondisk
->elms
[cursor
->index
].base
;
2068 if (elm
->btype
== HAMMER_BTREE_TYPE_RECORD
)
2070 panic("Illegal leaf record type %02x", elm
->btype
);
2072 error
= hammer_cursor_down(cursor
);
2076 elm
= &cursor
->node
->ondisk
->elms
[cursor
->index
].base
;
2077 if (elm
->obj_id
!= cmp
->obj_id
||
2078 elm
->rec_type
!= cmp
->rec_type
||
2079 elm
->key
!= cmp
->key
) {
2082 if (elm
->create_tid
>= tid
)
2088 * Now we can safely adjust the left-hand boundary from the bottom-up.
2089 * The last element we remove from the list is the caller's right hand
2090 * boundary, which must also be adjusted.
2092 while (error
== 0 && (rhb
= TAILQ_FIRST(&rhb_list
)) != NULL
) {
2093 error
= hammer_cursor_seek(cursor
, rhb
->node
, rhb
->index
);
2096 TAILQ_REMOVE(&rhb_list
, rhb
, entry
);
2097 hammer_unlock(&rhb
->node
->lock
);
2098 hammer_rel_node(rhb
->node
);
2099 kfree(rhb
, hmp
->m_misc
);
2101 elm
= &cursor
->node
->ondisk
->elms
[cursor
->index
].base
;
2102 if (cursor
->node
->ondisk
->type
== HAMMER_BTREE_TYPE_INTERNAL
) {
2103 hammer_modify_node(cursor
->trans
, cursor
->node
,
2105 sizeof(elm
->create_tid
));
2106 elm
->create_tid
= tid
;
2107 hammer_modify_node_done(cursor
->node
);
2109 panic("hammer_btree_correct_lhb(): Bad element type");
2116 while ((rhb
= TAILQ_FIRST(&rhb_list
)) != NULL
) {
2117 TAILQ_REMOVE(&rhb_list
, rhb
, entry
);
2118 hammer_unlock(&rhb
->node
->lock
);
2119 hammer_rel_node(rhb
->node
);
2120 kfree(rhb
, hmp
->m_misc
);
2128 * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2129 * (cursor->node). Returns 0 on success, EDEADLK if we could not complete
2130 * the operation due to a deadlock, or some other error.
2132 * This routine is initially called with an empty leaf and may be
2133 * recursively called with single-element internal nodes.
2135 * It should also be noted that when removing empty leaves we must be sure
2136 * to test and update mirror_tid because another thread may have deadlocked
2137 * against us (or someone) trying to propagate it up and cannot retry once
2138 * the node has been deleted.
2140 * On return the cursor may end up pointing to an internal node, suitable
2141 * for further iteration but not for an immediate insertion or deletion.
2144 btree_remove(hammer_cursor_t cursor
)
2146 hammer_node_ondisk_t ondisk
;
2147 hammer_btree_elm_t elm
;
2149 hammer_node_t parent
;
2150 const int esize
= sizeof(*elm
);
2153 node
= cursor
->node
;
2156 * When deleting the root of the filesystem convert it to
2157 * an empty leaf node. Internal nodes cannot be empty.
2159 ondisk
= node
->ondisk
;
2160 if (ondisk
->parent
== 0) {
2161 KKASSERT(cursor
->parent
== NULL
);
2162 hammer_modify_node_all(cursor
->trans
, node
);
2163 KKASSERT(ondisk
== node
->ondisk
);
2164 ondisk
->type
= HAMMER_BTREE_TYPE_LEAF
;
2166 hammer_modify_node_done(node
);
2171 parent
= cursor
->parent
;
2172 hammer_cursor_removed_node(node
, parent
, cursor
->parent_index
);
2175 * Attempt to remove the parent's reference to the child. If the
2176 * parent would become empty we have to recurse. If we fail we
2177 * leave the parent pointing to an empty leaf node.
2179 * We have to recurse successfully before we can delete the internal
2180 * node as it is illegal to have empty internal nodes. Even though
2181 * the operation may be aborted we must still fixup any unlocked
2182 * cursors as if we had deleted the element prior to recursing
2183 * (by calling hammer_cursor_deleted_element()) so those cursors
2184 * are properly forced up the chain by the recursion.
2186 if (parent
->ondisk
->count
== 1) {
2188 * This special cursor_up_locked() call leaves the original
2189 * node exclusively locked and referenced, leaves the
2190 * original parent locked (as the new node), and locks the
2191 * new parent. It can return EDEADLK.
2193 error
= hammer_cursor_up_locked(cursor
);
2195 hammer_cursor_deleted_element(cursor
->node
, 0);
2196 error
= btree_remove(cursor
);
2198 hammer_modify_node_all(cursor
->trans
, node
);
2199 ondisk
= node
->ondisk
;
2200 ondisk
->type
= HAMMER_BTREE_TYPE_DELETED
;
2202 hammer_modify_node_done(node
);
2203 hammer_flush_node(node
);
2204 hammer_delete_node(cursor
->trans
, node
);
2207 * Defer parent removal because we could not
2208 * get the lock, just let the leaf remain
2213 hammer_unlock(&node
->lock
);
2214 hammer_rel_node(node
);
2217 * Defer parent removal because we could not
2218 * get the lock, just let the leaf remain
2224 KKASSERT(parent
->ondisk
->count
> 1);
2226 hammer_modify_node_all(cursor
->trans
, parent
);
2227 ondisk
= parent
->ondisk
;
2228 KKASSERT(ondisk
->type
== HAMMER_BTREE_TYPE_INTERNAL
);
2230 elm
= &ondisk
->elms
[cursor
->parent_index
];
2231 KKASSERT(elm
->internal
.subtree_offset
== node
->node_offset
);
2232 KKASSERT(ondisk
->count
> 0);
2235 * We must retain the highest mirror_tid. The deleted
2236 * range is now encompassed by the element to the left.
2237 * If we are already at the left edge the new left edge
2238 * inherits mirror_tid.
2240 * Note that bounds of the parent to our parent may create
2241 * a gap to the left of our left-most node or to the right
2242 * of our right-most node. The gap is silently included
2243 * in the mirror_tid's area of effect from the point of view
2246 if (cursor
->parent_index
) {
2247 if (elm
[-1].internal
.mirror_tid
<
2248 elm
[0].internal
.mirror_tid
) {
2249 elm
[-1].internal
.mirror_tid
=
2250 elm
[0].internal
.mirror_tid
;
2253 if (elm
[1].internal
.mirror_tid
<
2254 elm
[0].internal
.mirror_tid
) {
2255 elm
[1].internal
.mirror_tid
=
2256 elm
[0].internal
.mirror_tid
;
2261 * Delete the subtree reference in the parent
2263 bcopy(&elm
[1], &elm
[0],
2264 (ondisk
->count
- cursor
->parent_index
) * esize
);
2266 hammer_modify_node_done(parent
);
2267 hammer_cursor_deleted_element(parent
, cursor
->parent_index
);
2268 hammer_flush_node(node
);
2269 hammer_delete_node(cursor
->trans
, node
);
2272 * cursor->node is invalid, cursor up to make the cursor
2275 error
= hammer_cursor_up(cursor
);
2281 * Propagate cursor->trans->tid up the B-Tree starting at the current
2282 * cursor position using pseudofs info gleaned from the passed inode.
2284 * The passed inode has no relationship to the cursor position other
2285 * then being in the same pseudofs as the insertion or deletion we
2286 * are propagating the mirror_tid for.
2289 hammer_btree_do_propagation(hammer_cursor_t cursor
,
2290 hammer_pseudofs_inmem_t pfsm
,
2291 hammer_btree_leaf_elm_t leaf
)
2293 hammer_cursor_t ncursor
;
2294 hammer_tid_t mirror_tid
;
2298 * We do not propagate a mirror_tid if the filesystem was mounted
2299 * in no-mirror mode.
2301 if (cursor
->trans
->hmp
->master_id
< 0)
2305 * This is a bit of a hack because we cannot deadlock or return
2306 * EDEADLK here. The related operation has already completed and
2307 * we must propagate the mirror_tid now regardless.
2309 * Generate a new cursor which inherits the original's locks and
2310 * unlock the original. Use the new cursor to propagate the
2311 * mirror_tid. Then clean up the new cursor and reacquire locks
2314 * hammer_dup_cursor() cannot dup locks. The dup inherits the
2315 * original's locks and the original is tracked and must be
2318 mirror_tid
= cursor
->node
->ondisk
->mirror_tid
;
2319 KKASSERT(mirror_tid
!= 0);
2320 ncursor
= hammer_push_cursor(cursor
);
2321 error
= hammer_btree_mirror_propagate(ncursor
, mirror_tid
);
2322 KKASSERT(error
== 0);
2323 hammer_pop_cursor(cursor
, ncursor
);
2328 * Propagate a mirror TID update upwards through the B-Tree to the root.
2330 * A locked internal node must be passed in. The node will remain locked
2333 * This function syncs mirror_tid at the specified internal node's element,
2334 * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2337 hammer_btree_mirror_propagate(hammer_cursor_t cursor
, hammer_tid_t mirror_tid
)
2339 hammer_btree_internal_elm_t elm
;
2344 error
= hammer_cursor_up(cursor
);
2346 error
= hammer_cursor_upgrade(cursor
);
2347 while (error
== EDEADLK
) {
2348 hammer_recover_cursor(cursor
);
2349 error
= hammer_cursor_upgrade(cursor
);
2353 node
= cursor
->node
;
2354 KKASSERT (node
->ondisk
->type
== HAMMER_BTREE_TYPE_INTERNAL
);
2357 * Adjust the node's element
2359 elm
= &node
->ondisk
->elms
[cursor
->index
].internal
;
2360 if (elm
->mirror_tid
>= mirror_tid
)
2362 hammer_modify_node(cursor
->trans
, node
, &elm
->mirror_tid
,
2363 sizeof(elm
->mirror_tid
));
2364 elm
->mirror_tid
= mirror_tid
;
2365 hammer_modify_node_done(node
);
2366 if (hammer_debug_general
& 0x0002) {
2367 kprintf("mirror_propagate: propagate "
2368 "%016llx @%016llx:%d\n",
2369 mirror_tid
, node
->node_offset
, cursor
->index
);
2374 * Adjust the node's mirror_tid aggregator
2376 if (node
->ondisk
->mirror_tid
>= mirror_tid
)
2378 hammer_modify_node_field(cursor
->trans
, node
, mirror_tid
);
2379 node
->ondisk
->mirror_tid
= mirror_tid
;
2380 hammer_modify_node_done(node
);
2381 if (hammer_debug_general
& 0x0002) {
2382 kprintf("mirror_propagate: propagate "
2383 "%016llx @%016llx\n",
2384 mirror_tid
, node
->node_offset
);
2387 if (error
== ENOENT
)
2393 hammer_btree_get_parent(hammer_transaction_t trans
, hammer_node_t node
,
2394 int *parent_indexp
, int *errorp
, int try_exclusive
)
2396 hammer_node_t parent
;
2397 hammer_btree_elm_t elm
;
2403 parent
= hammer_get_node(trans
, node
->ondisk
->parent
, 0, errorp
);
2405 KKASSERT(parent
== NULL
);
2408 KKASSERT ((parent
->flags
& HAMMER_NODE_DELETED
) == 0);
2413 if (try_exclusive
) {
2414 if (hammer_lock_ex_try(&parent
->lock
)) {
2415 hammer_rel_node(parent
);
2420 hammer_lock_sh(&parent
->lock
);
2424 * Figure out which element in the parent is pointing to the
2427 if (node
->ondisk
->count
) {
2428 i
= hammer_btree_search_node(&node
->ondisk
->elms
[0].base
,
2433 while (i
< parent
->ondisk
->count
) {
2434 elm
= &parent
->ondisk
->elms
[i
];
2435 if (elm
->internal
.subtree_offset
== node
->node_offset
)
2439 if (i
== parent
->ondisk
->count
) {
2440 hammer_unlock(&parent
->lock
);
2441 panic("Bad B-Tree link: parent %p node %p\n", parent
, node
);
2444 KKASSERT(*errorp
== 0);
2449 * The element (elm) has been moved to a new internal node (node).
2451 * If the element represents a pointer to an internal node that node's
2452 * parent must be adjusted to the element's new location.
2454 * XXX deadlock potential here with our exclusive locks
2457 btree_set_parent(hammer_transaction_t trans
, hammer_node_t node
,
2458 hammer_btree_elm_t elm
)
2460 hammer_node_t child
;
2465 switch(elm
->base
.btype
) {
2466 case HAMMER_BTREE_TYPE_INTERNAL
:
2467 case HAMMER_BTREE_TYPE_LEAF
:
2468 child
= hammer_get_node(trans
, elm
->internal
.subtree_offset
,
2471 hammer_modify_node_field(trans
, child
, parent
);
2472 child
->ondisk
->parent
= node
->node_offset
;
2473 hammer_modify_node_done(child
);
2474 hammer_rel_node(child
);
2484 * Initialize the root of a recursive B-Tree node lock list structure.
2487 hammer_node_lock_init(hammer_node_lock_t parent
, hammer_node_t node
)
2489 TAILQ_INIT(&parent
->list
);
2490 parent
->parent
= NULL
;
2491 parent
->node
= node
;
2493 parent
->count
= node
->ondisk
->count
;
2494 parent
->copy
= NULL
;
2499 * Exclusively lock all the children of node. This is used by the split
2500 * code to prevent anyone from accessing the children of a cursor node
2501 * while we fix-up its parent offset.
2503 * If we don't lock the children we can really mess up cursors which block
2504 * trying to cursor-up into our node.
2506 * On failure EDEADLK (or some other error) is returned. If a deadlock
2507 * error is returned the cursor is adjusted to block on termination.
2509 * The caller is responsible for managing parent->node, the root's node
2510 * is usually aliased from a cursor.
2513 hammer_btree_lock_children(hammer_cursor_t cursor
, int depth
,
2514 hammer_node_lock_t parent
)
2517 hammer_node_lock_t item
;
2518 hammer_node_ondisk_t ondisk
;
2519 hammer_btree_elm_t elm
;
2520 hammer_node_t child
;
2521 struct hammer_mount
*hmp
;
2525 node
= parent
->node
;
2526 ondisk
= node
->ondisk
;
2528 hmp
= cursor
->trans
->hmp
;
2531 * We really do not want to block on I/O with exclusive locks held,
2532 * pre-get the children before trying to lock the mess. This is
2533 * only done one-level deep for now.
2535 for (i
= 0; i
< ondisk
->count
; ++i
) {
2536 ++hammer_stats_btree_elements
;
2537 elm
= &ondisk
->elms
[i
];
2538 if (elm
->base
.btype
!= HAMMER_BTREE_TYPE_LEAF
&&
2539 elm
->base
.btype
!= HAMMER_BTREE_TYPE_INTERNAL
) {
2542 child
= hammer_get_node(cursor
->trans
,
2543 elm
->internal
.subtree_offset
,
2546 hammer_rel_node(child
);
2552 for (i
= 0; error
== 0 && i
< ondisk
->count
; ++i
) {
2553 ++hammer_stats_btree_elements
;
2554 elm
= &ondisk
->elms
[i
];
2556 switch(elm
->base
.btype
) {
2557 case HAMMER_BTREE_TYPE_INTERNAL
:
2558 case HAMMER_BTREE_TYPE_LEAF
:
2559 KKASSERT(elm
->internal
.subtree_offset
!= 0);
2560 child
= hammer_get_node(cursor
->trans
,
2561 elm
->internal
.subtree_offset
,
2569 if (hammer_lock_ex_try(&child
->lock
) != 0) {
2570 if (cursor
->deadlk_node
== NULL
) {
2571 cursor
->deadlk_node
= child
;
2572 hammer_ref_node(cursor
->deadlk_node
);
2575 hammer_rel_node(child
);
2577 item
= kmalloc(sizeof(*item
), hmp
->m_misc
,
2579 TAILQ_INSERT_TAIL(&parent
->list
, item
, entry
);
2580 TAILQ_INIT(&item
->list
);
2581 item
->parent
= parent
;
2584 item
->count
= child
->ondisk
->count
;
2587 * Recurse (used by the rebalancing code)
2589 if (depth
> 1 && elm
->base
.btype
== HAMMER_BTREE_TYPE_INTERNAL
) {
2590 error
= hammer_btree_lock_children(
2599 hammer_btree_unlock_children(cursor
, parent
);
2604 * Create an in-memory copy of all B-Tree nodes listed, recursively,
2605 * including the parent.
2608 hammer_btree_lock_copy(hammer_cursor_t cursor
, hammer_node_lock_t parent
)
2610 hammer_mount_t hmp
= cursor
->trans
->hmp
;
2611 hammer_node_lock_t item
;
2613 if (parent
->copy
== NULL
) {
2614 parent
->copy
= kmalloc(sizeof(*parent
->copy
), hmp
->m_misc
,
2616 *parent
->copy
= *parent
->node
->ondisk
;
2618 TAILQ_FOREACH(item
, &parent
->list
, entry
) {
2619 hammer_btree_lock_copy(cursor
, item
);
2624 * Recursively sync modified copies to the media.
2627 hammer_btree_sync_copy(hammer_cursor_t cursor
, hammer_node_lock_t parent
)
2629 hammer_node_lock_t item
;
2632 if (parent
->flags
& HAMMER_NODE_LOCK_UPDATED
) {
2634 hammer_modify_node_all(cursor
->trans
, parent
->node
);
2635 *parent
->node
->ondisk
= *parent
->copy
;
2636 hammer_modify_node_done(parent
->node
);
2637 if (parent
->copy
->type
== HAMMER_BTREE_TYPE_DELETED
) {
2638 hammer_flush_node(parent
->node
);
2639 hammer_delete_node(cursor
->trans
, parent
->node
);
2642 TAILQ_FOREACH(item
, &parent
->list
, entry
) {
2643 count
+= hammer_btree_sync_copy(cursor
, item
);
2649 * Release previously obtained node locks. The caller is responsible for
2650 * cleaning up parent->node itself (its usually just aliased from a cursor),
2651 * but this function will take care of the copies.
2654 hammer_btree_unlock_children(hammer_cursor_t cursor
, hammer_node_lock_t parent
)
2656 hammer_node_lock_t item
;
2659 kfree(parent
->copy
, cursor
->trans
->hmp
->m_misc
);
2660 parent
->copy
= NULL
; /* safety */
2662 while ((item
= TAILQ_FIRST(&parent
->list
)) != NULL
) {
2663 TAILQ_REMOVE(&parent
->list
, item
, entry
);
2664 hammer_btree_unlock_children(cursor
, item
);
2665 hammer_unlock(&item
->node
->lock
);
2666 hammer_rel_node(item
->node
);
2667 kfree(item
, cursor
->trans
->hmp
->m_misc
);
2671 /************************************************************************
2672 * MISCELLANIOUS SUPPORT *
2673 ************************************************************************/
2676 * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2678 * Note that for this particular function a return value of -1, 0, or +1
2679 * can denote a match if create_tid is otherwise discounted. A create_tid
2680 * of zero is considered to be 'infinity' in comparisons.
2682 * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2685 hammer_btree_cmp(hammer_base_elm_t key1
, hammer_base_elm_t key2
)
2687 if (key1
->localization
< key2
->localization
)
2689 if (key1
->localization
> key2
->localization
)
2692 if (key1
->obj_id
< key2
->obj_id
)
2694 if (key1
->obj_id
> key2
->obj_id
)
2697 if (key1
->rec_type
< key2
->rec_type
)
2699 if (key1
->rec_type
> key2
->rec_type
)
2702 if (key1
->key
< key2
->key
)
2704 if (key1
->key
> key2
->key
)
2708 * A create_tid of zero indicates a record which is undeletable
2709 * and must be considered to have a value of positive infinity.
2711 if (key1
->create_tid
== 0) {
2712 if (key2
->create_tid
== 0)
2716 if (key2
->create_tid
== 0)
2718 if (key1
->create_tid
< key2
->create_tid
)
2720 if (key1
->create_tid
> key2
->create_tid
)
2726 * Test a timestamp against an element to determine whether the
2727 * element is visible. A timestamp of 0 means 'infinity'.
2730 hammer_btree_chkts(hammer_tid_t asof
, hammer_base_elm_t base
)
2733 if (base
->delete_tid
)
2737 if (asof
< base
->create_tid
)
2739 if (base
->delete_tid
&& asof
>= base
->delete_tid
)
2745 * Create a separator half way inbetween key1 and key2. For fields just
2746 * one unit apart, the separator will match key2. key1 is on the left-hand
2747 * side and key2 is on the right-hand side.
2749 * key2 must be >= the separator. It is ok for the separator to match key2.
2751 * NOTE: Even if key1 does not match key2, the separator may wind up matching
2754 * NOTE: It might be beneficial to just scrap this whole mess and just
2755 * set the separator to key2.
2757 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2758 dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2761 hammer_make_separator(hammer_base_elm_t key1
, hammer_base_elm_t key2
,
2762 hammer_base_elm_t dest
)
2764 bzero(dest
, sizeof(*dest
));
2766 dest
->rec_type
= key2
->rec_type
;
2767 dest
->key
= key2
->key
;
2768 dest
->obj_id
= key2
->obj_id
;
2769 dest
->create_tid
= key2
->create_tid
;
2771 MAKE_SEPARATOR(key1
, key2
, dest
, localization
);
2772 if (key1
->localization
== key2
->localization
) {
2773 MAKE_SEPARATOR(key1
, key2
, dest
, obj_id
);
2774 if (key1
->obj_id
== key2
->obj_id
) {
2775 MAKE_SEPARATOR(key1
, key2
, dest
, rec_type
);
2776 if (key1
->rec_type
== key2
->rec_type
) {
2777 MAKE_SEPARATOR(key1
, key2
, dest
, key
);
2779 * Don't bother creating a separator for
2780 * create_tid, which also conveniently avoids
2781 * having to handle the create_tid == 0
2782 * (infinity) case. Just leave create_tid
2785 * Worst case, dest matches key2 exactly,
2786 * which is acceptable.
2793 #undef MAKE_SEPARATOR
2796 * Return whether a generic internal or leaf node is full
2799 btree_node_is_full(hammer_node_ondisk_t node
)
2801 switch(node
->type
) {
2802 case HAMMER_BTREE_TYPE_INTERNAL
:
2803 if (node
->count
== HAMMER_BTREE_INT_ELMS
)
2806 case HAMMER_BTREE_TYPE_LEAF
:
2807 if (node
->count
== HAMMER_BTREE_LEAF_ELMS
)
2811 panic("illegal btree subtype");
2818 btree_max_elements(u_int8_t type
)
2820 if (type
== HAMMER_BTREE_TYPE_LEAF
)
2821 return(HAMMER_BTREE_LEAF_ELMS
);
2822 if (type
== HAMMER_BTREE_TYPE_INTERNAL
)
2823 return(HAMMER_BTREE_INT_ELMS
);
2824 panic("btree_max_elements: bad type %d\n", type
);
2829 hammer_print_btree_node(hammer_node_ondisk_t ondisk
)
2831 hammer_btree_elm_t elm
;
2834 kprintf("node %p count=%d parent=%016llx type=%c\n",
2835 ondisk
, ondisk
->count
, ondisk
->parent
, ondisk
->type
);
2838 * Dump both boundary elements if an internal node
2840 if (ondisk
->type
== HAMMER_BTREE_TYPE_INTERNAL
) {
2841 for (i
= 0; i
<= ondisk
->count
; ++i
) {
2842 elm
= &ondisk
->elms
[i
];
2843 hammer_print_btree_elm(elm
, ondisk
->type
, i
);
2846 for (i
= 0; i
< ondisk
->count
; ++i
) {
2847 elm
= &ondisk
->elms
[i
];
2848 hammer_print_btree_elm(elm
, ondisk
->type
, i
);
2854 hammer_print_btree_elm(hammer_btree_elm_t elm
, u_int8_t type
, int i
)
2857 kprintf("\tobj_id = %016llx\n", elm
->base
.obj_id
);
2858 kprintf("\tkey = %016llx\n", elm
->base
.key
);
2859 kprintf("\tcreate_tid = %016llx\n", elm
->base
.create_tid
);
2860 kprintf("\tdelete_tid = %016llx\n", elm
->base
.delete_tid
);
2861 kprintf("\trec_type = %04x\n", elm
->base
.rec_type
);
2862 kprintf("\tobj_type = %02x\n", elm
->base
.obj_type
);
2863 kprintf("\tbtype = %02x (%c)\n",
2865 (elm
->base
.btype
? elm
->base
.btype
: '?'));
2866 kprintf("\tlocalization = %02x\n", elm
->base
.localization
);
2869 case HAMMER_BTREE_TYPE_INTERNAL
:
2870 kprintf("\tsubtree_off = %016llx\n",
2871 elm
->internal
.subtree_offset
);
2873 case HAMMER_BTREE_TYPE_RECORD
:
2874 kprintf("\tdata_offset = %016llx\n", elm
->leaf
.data_offset
);
2875 kprintf("\tdata_len = %08x\n", elm
->leaf
.data_len
);
2876 kprintf("\tdata_crc = %08x\n", elm
->leaf
.data_crc
);