Remove an unused include file.
[dragonfly.git] / sys / netinet / tcp_subr.c
blobb199955af48d7dd84c8e6e4ca85c52fd0f972800
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
62 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
63 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_tcpdebug.h"
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/mpipe.h>
77 #include <sys/mbuf.h>
78 #ifdef INET6
79 #include <sys/domain.h>
80 #endif
81 #include <sys/proc.h>
82 #include <sys/priv.h>
83 #include <sys/socket.h>
84 #include <sys/socketops.h>
85 #include <sys/socketvar.h>
86 #include <sys/protosw.h>
87 #include <sys/random.h>
88 #include <sys/in_cksum.h>
89 #include <sys/ktr.h>
91 #include <net/route.h>
92 #include <net/if.h>
93 #include <net/netisr2.h>
95 #define _IP_VHL
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip6.h>
100 #include <netinet/in_pcb.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet/ip_icmp.h>
106 #ifdef INET6
107 #include <netinet/icmp6.h>
108 #endif
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_timer2.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 #include <netinet/tcpip.h>
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 #endif
120 #include <netinet6/ip6protosw.h>
122 #include <sys/md5.h>
123 #include <machine/smp.h>
125 #include <sys/msgport2.h>
126 #include <sys/mplock2.h>
127 #include <net/netmsg2.h>
129 #if !defined(KTR_TCP)
130 #define KTR_TCP KTR_ALL
131 #endif
133 KTR_INFO_MASTER(tcp);
134 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
135 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
136 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
137 #define logtcp(name) KTR_LOG(tcp_ ## name)
140 #define TCP_IW_MAXSEGS_DFLT 4
141 #define TCP_IW_CAPSEGS_DFLT 4
143 struct tcp_reass_pcpu {
144 int draining;
145 struct netmsg_base drain_nmsg;
146 } __cachealign;
148 struct inpcbinfo tcbinfo[MAXCPU];
149 struct tcpcbackq tcpcbackq[MAXCPU];
150 struct tcp_reass_pcpu tcp_reassq[MAXCPU];
152 int tcp_mssdflt = TCP_MSS;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
154 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
156 #ifdef INET6
157 int tcp_v6mssdflt = TCP6_MSS;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
159 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
160 #endif
163 * Minimum MSS we accept and use. This prevents DoS attacks where
164 * we are forced to a ridiculous low MSS like 20 and send hundreds
165 * of packets instead of one. The effect scales with the available
166 * bandwidth and quickly saturates the CPU and network interface
167 * with packet generation and sending. Set to zero to disable MINMSS
168 * checking. This setting prevents us from sending too small packets.
170 int tcp_minmss = TCP_MINMSS;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
172 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
174 #if 0
175 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
177 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
178 #endif
180 int tcp_do_rfc1323 = 1;
181 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
182 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
184 static int tcp_tcbhashsize = 0;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
186 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
188 static int do_tcpdrain = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
190 "Enable tcp_drain routine for extra help when low on mbufs");
192 static int icmp_may_rst = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
194 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
196 static int tcp_isn_reseed_interval = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
198 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
201 * TCP bandwidth limiting sysctls. The inflight limiter is now turned on
202 * by default, but with generous values which should allow maximal
203 * bandwidth. In particular, the slop defaults to 50 (5 packets).
205 * The reason for doing this is that the limiter is the only mechanism we
206 * have which seems to do a really good job preventing receiver RX rings
207 * on network interfaces from getting blown out. Even though GigE/10GigE
208 * is supposed to flow control it looks like either it doesn't actually
209 * do it or Open Source drivers do not properly enable it.
211 * People using the limiter to reduce bottlenecks on slower WAN connections
212 * should set the slop to 20 (2 packets).
214 static int tcp_inflight_enable = 1;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
216 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
218 static int tcp_inflight_debug = 0;
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
220 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
223 * NOTE: tcp_inflight_start is essentially the starting receive window
224 * for a connection. If set too low then fetches over tcp
225 * connections will take noticably longer to ramp-up over
226 * high-latency connections. 6144 is too low for a default,
227 * use something more reasonable.
229 static int tcp_inflight_start = 33792;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
231 &tcp_inflight_start, 0, "Start value for TCP inflight window");
233 static int tcp_inflight_min = 6144;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
235 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
237 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
239 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
241 static int tcp_inflight_stab = 50;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
243 &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
245 static int tcp_inflight_adjrtt = 2;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
247 &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
249 static int tcp_do_rfc3390 = 1;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
251 &tcp_do_rfc3390, 0,
252 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
254 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
255 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
256 &tcp_iw_maxsegs, 0, "TCP IW segments max");
258 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
259 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
260 &tcp_iw_capsegs, 0, "TCP IW segments");
262 int tcp_low_rtobase = 1;
263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
264 &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
266 static int tcp_do_ncr = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
268 &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
270 int tcp_ncr_linklocal = 0;
271 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_linklocal, CTLFLAG_RW,
272 &tcp_ncr_linklocal, 0,
273 "Enable Non-Congestion Robustness (RFC 4653) on link local network");
275 int tcp_ncr_rxtthresh_max = 16;
276 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
277 &tcp_ncr_rxtthresh_max, 0,
278 "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
280 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
281 static struct malloc_pipe tcptemp_mpipe;
283 static void tcp_willblock(void);
284 static void tcp_notify (struct inpcb *, int);
286 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
287 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
289 static void tcp_drain_dispatch(netmsg_t nmsg);
291 static int
292 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
294 int cpu, error = 0;
296 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
297 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
298 sizeof(struct tcp_stats))))
299 break;
300 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
301 sizeof(struct tcp_stats))))
302 break;
305 return (error);
307 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
308 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
311 * Target size of TCP PCB hash tables. Must be a power of two.
313 * Note that this can be overridden by the kernel environment
314 * variable net.inet.tcp.tcbhashsize
316 #ifndef TCBHASHSIZE
317 #define TCBHASHSIZE 512
318 #endif
319 CTASSERT((TCBHASHSIZE & (TCBHASHSIZE - 1)) == 0);
322 * This is the actual shape of what we allocate using the zone
323 * allocator. Doing it this way allows us to protect both structures
324 * using the same generation count, and also eliminates the overhead
325 * of allocating tcpcbs separately. By hiding the structure here,
326 * we avoid changing most of the rest of the code (although it needs
327 * to be changed, eventually, for greater efficiency).
329 #define ALIGNMENT 32
330 #define ALIGNM1 (ALIGNMENT - 1)
331 struct inp_tp {
332 union {
333 struct inpcb inp;
334 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
335 } inp_tp_u;
336 struct tcpcb tcb;
337 struct tcp_callout inp_tp_rexmt;
338 struct tcp_callout inp_tp_persist;
339 struct tcp_callout inp_tp_keep;
340 struct tcp_callout inp_tp_2msl;
341 struct tcp_callout inp_tp_delack;
342 struct netmsg_tcp_timer inp_tp_timermsg;
343 struct netmsg_base inp_tp_sndmore;
345 #undef ALIGNMENT
346 #undef ALIGNM1
349 * Tcp initialization
351 void
352 tcp_init(void)
354 struct inpcbportinfo *portinfo;
355 struct inpcbinfo *ticb;
356 int hashsize = TCBHASHSIZE, portinfo_hsize;
357 int cpu;
360 * note: tcptemp is used for keepalives, and it is ok for an
361 * allocation to fail so do not specify MPF_INT.
363 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
364 25, -1, 0, NULL, NULL, NULL);
366 tcp_delacktime = TCPTV_DELACK;
367 tcp_keepinit = TCPTV_KEEP_INIT;
368 tcp_keepidle = TCPTV_KEEP_IDLE;
369 tcp_keepintvl = TCPTV_KEEPINTVL;
370 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
371 tcp_msl = TCPTV_MSL;
372 tcp_rexmit_min = TCPTV_MIN;
373 if (tcp_rexmit_min < 1) /* if kern.hz is too low */
374 tcp_rexmit_min = 1;
375 tcp_rexmit_slop = TCPTV_CPU_VAR;
377 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
378 if (!powerof2(hashsize)) {
379 kprintf("WARNING: TCB hash size not a power of 2\n");
380 hashsize = TCBHASHSIZE; /* safe default */
382 tcp_tcbhashsize = hashsize;
384 portinfo_hsize = 65536 / netisr_ncpus;
385 if (portinfo_hsize > hashsize)
386 portinfo_hsize = hashsize;
388 portinfo = kmalloc_cachealign(sizeof(*portinfo) * netisr_ncpus, M_PCB,
389 M_WAITOK);
391 for (cpu = 0; cpu < netisr_ncpus; cpu++) {
392 ticb = &tcbinfo[cpu];
393 in_pcbinfo_init(ticb, cpu, FALSE);
394 ticb->hashbase = hashinit(hashsize, M_PCB,
395 &ticb->hashmask);
396 in_pcbportinfo_init(&portinfo[cpu], portinfo_hsize, cpu);
397 in_pcbportinfo_set(ticb, portinfo, netisr_ncpus);
398 ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
399 &ticb->wildcardhashmask);
400 ticb->localgrphashbase = hashinit(hashsize, M_PCB,
401 &ticb->localgrphashmask);
402 ticb->ipi_size = sizeof(struct inp_tp);
403 TAILQ_INIT(&tcpcbackq[cpu].head);
406 tcp_reass_maxseg = nmbclusters / 16;
407 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
409 #ifdef INET6
410 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
411 #else
412 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
413 #endif
414 if (max_protohdr < TCP_MINPROTOHDR)
415 max_protohdr = TCP_MINPROTOHDR;
416 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
417 panic("tcp_init");
418 #undef TCP_MINPROTOHDR
421 * Initialize TCP statistics counters for each CPU.
423 for (cpu = 0; cpu < netisr_ncpus; ++cpu)
424 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
427 * Initialize netmsgs for TCP drain
429 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
430 netmsg_init(&tcp_reassq[cpu].drain_nmsg, NULL,
431 &netisr_adone_rport, MSGF_PRIORITY, tcp_drain_dispatch);
434 syncache_init();
435 netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
438 static void
439 tcp_willblock(void)
441 struct tcpcb *tp;
442 int cpu = mycpuid;
444 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu].head)) != NULL) {
445 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
446 tp->t_flags &= ~TF_ONOUTPUTQ;
447 TAILQ_REMOVE(&tcpcbackq[cpu].head, tp, t_outputq);
448 tcp_output(tp);
453 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
454 * tcp_template used to store this data in mbufs, but we now recopy it out
455 * of the tcpcb each time to conserve mbufs.
457 void
458 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
460 struct inpcb *inp = tp->t_inpcb;
461 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
463 #ifdef INET6
464 if (INP_ISIPV6(inp)) {
465 struct ip6_hdr *ip6;
467 ip6 = (struct ip6_hdr *)ip_ptr;
468 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
469 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
470 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
471 (IPV6_VERSION & IPV6_VERSION_MASK);
472 ip6->ip6_nxt = IPPROTO_TCP;
473 ip6->ip6_plen = sizeof(struct tcphdr);
474 ip6->ip6_src = inp->in6p_laddr;
475 ip6->ip6_dst = inp->in6p_faddr;
476 tcp_hdr->th_sum = 0;
477 } else
478 #endif
480 struct ip *ip = (struct ip *) ip_ptr;
481 u_int plen;
483 ip->ip_vhl = IP_VHL_BORING;
484 ip->ip_tos = 0;
485 ip->ip_len = 0;
486 ip->ip_id = 0;
487 ip->ip_off = 0;
488 ip->ip_ttl = 0;
489 ip->ip_sum = 0;
490 ip->ip_p = IPPROTO_TCP;
491 ip->ip_src = inp->inp_laddr;
492 ip->ip_dst = inp->inp_faddr;
494 if (tso)
495 plen = htons(IPPROTO_TCP);
496 else
497 plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
498 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
499 ip->ip_dst.s_addr, plen);
502 tcp_hdr->th_sport = inp->inp_lport;
503 tcp_hdr->th_dport = inp->inp_fport;
504 tcp_hdr->th_seq = 0;
505 tcp_hdr->th_ack = 0;
506 tcp_hdr->th_x2 = 0;
507 tcp_hdr->th_off = 5;
508 tcp_hdr->th_flags = 0;
509 tcp_hdr->th_win = 0;
510 tcp_hdr->th_urp = 0;
514 * Create template to be used to send tcp packets on a connection.
515 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
516 * use for this function is in keepalives, which use tcp_respond.
518 struct tcptemp *
519 tcp_maketemplate(struct tcpcb *tp)
521 struct tcptemp *tmp;
523 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
524 return (NULL);
525 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
526 return (tmp);
529 void
530 tcp_freetemplate(struct tcptemp *tmp)
532 mpipe_free(&tcptemp_mpipe, tmp);
536 * Send a single message to the TCP at address specified by
537 * the given TCP/IP header. If m == NULL, then we make a copy
538 * of the tcpiphdr at ti and send directly to the addressed host.
539 * This is used to force keep alive messages out using the TCP
540 * template for a connection. If flags are given then we send
541 * a message back to the TCP which originated the * segment ti,
542 * and discard the mbuf containing it and any other attached mbufs.
544 * In any case the ack and sequence number of the transmitted
545 * segment are as specified by the parameters.
547 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
549 void
550 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
551 tcp_seq ack, tcp_seq seq, int flags)
553 int tlen;
554 long win = 0;
555 struct route *ro = NULL;
556 struct route sro;
557 struct ip *ip = ipgen;
558 struct tcphdr *nth;
559 int ipflags = 0;
560 struct route_in6 *ro6 = NULL;
561 struct route_in6 sro6;
562 struct ip6_hdr *ip6 = ipgen;
563 struct inpcb *inp = NULL;
564 boolean_t use_tmpro = TRUE;
565 #ifdef INET6
566 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
567 #else
568 const boolean_t isipv6 = FALSE;
569 #endif
571 if (tp != NULL) {
572 inp = tp->t_inpcb;
573 if (!(flags & TH_RST)) {
574 win = ssb_space(&inp->inp_socket->so_rcv);
575 if (win < 0)
576 win = 0;
577 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
578 win = (long)TCP_MAXWIN << tp->rcv_scale;
581 * Don't use the route cache of a listen socket,
582 * it is not MPSAFE; use temporary route cache.
584 if (tp->t_state != TCPS_LISTEN) {
585 if (isipv6)
586 ro6 = &inp->in6p_route;
587 else
588 ro = &inp->inp_route;
589 use_tmpro = FALSE;
592 if (use_tmpro) {
593 if (isipv6) {
594 ro6 = &sro6;
595 bzero(ro6, sizeof *ro6);
596 } else {
597 ro = &sro;
598 bzero(ro, sizeof *ro);
601 if (m == NULL) {
602 m = m_gethdr(M_NOWAIT, MT_HEADER);
603 if (m == NULL)
604 return;
605 tlen = 0;
606 m->m_data += max_linkhdr;
607 if (isipv6) {
608 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
609 ip6 = mtod(m, struct ip6_hdr *);
610 nth = (struct tcphdr *)(ip6 + 1);
611 } else {
612 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
613 ip = mtod(m, struct ip *);
614 nth = (struct tcphdr *)(ip + 1);
616 bcopy(th, nth, sizeof(struct tcphdr));
617 flags = TH_ACK;
618 } else {
619 m_freem(m->m_next);
620 m->m_next = NULL;
621 m->m_data = (caddr_t)ipgen;
622 /* m_len is set later */
623 tlen = 0;
624 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
625 if (isipv6) {
626 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
627 nth = (struct tcphdr *)(ip6 + 1);
628 } else {
629 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
630 nth = (struct tcphdr *)(ip + 1);
632 if (th != nth) {
634 * this is usually a case when an extension header
635 * exists between the IPv6 header and the
636 * TCP header.
638 nth->th_sport = th->th_sport;
639 nth->th_dport = th->th_dport;
641 xchg(nth->th_dport, nth->th_sport, n_short);
642 #undef xchg
644 if (isipv6) {
645 ip6->ip6_flow = 0;
646 ip6->ip6_vfc = IPV6_VERSION;
647 ip6->ip6_nxt = IPPROTO_TCP;
648 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
649 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
650 } else {
651 tlen += sizeof(struct tcpiphdr);
652 ip->ip_len = tlen;
653 ip->ip_ttl = ip_defttl;
655 m->m_len = tlen;
656 m->m_pkthdr.len = tlen;
657 m->m_pkthdr.rcvif = NULL;
658 nth->th_seq = htonl(seq);
659 nth->th_ack = htonl(ack);
660 nth->th_x2 = 0;
661 nth->th_off = sizeof(struct tcphdr) >> 2;
662 nth->th_flags = flags;
663 if (tp != NULL)
664 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
665 else
666 nth->th_win = htons((u_short)win);
667 nth->th_urp = 0;
668 if (isipv6) {
669 nth->th_sum = 0;
670 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
671 sizeof(struct ip6_hdr),
672 tlen - sizeof(struct ip6_hdr));
673 ip6->ip6_hlim = in6_selecthlim(inp,
674 (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
675 } else {
676 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
677 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
678 m->m_pkthdr.csum_flags = CSUM_TCP;
679 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
680 m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
682 #ifdef TCPDEBUG
683 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
684 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
685 #endif
686 if (isipv6) {
687 ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
688 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
689 RTFREE(ro6->ro_rt);
690 ro6->ro_rt = NULL;
692 } else {
693 if (inp != NULL && (inp->inp_flags & INP_HASH))
694 m_sethash(m, inp->inp_hashval);
695 ipflags |= IP_DEBUGROUTE;
696 ip_output(m, NULL, ro, ipflags, NULL, inp);
697 if ((ro == &sro) && (ro->ro_rt != NULL)) {
698 RTFREE(ro->ro_rt);
699 ro->ro_rt = NULL;
705 * Create a new TCP control block, making an
706 * empty reassembly queue and hooking it to the argument
707 * protocol control block. The `inp' parameter must have
708 * come from the zone allocator set up in tcp_init().
710 void
711 tcp_newtcpcb(struct inpcb *inp)
713 struct inp_tp *it;
714 struct tcpcb *tp;
715 #ifdef INET6
716 boolean_t isipv6 = INP_ISIPV6(inp);
717 #else
718 const boolean_t isipv6 = FALSE;
719 #endif
721 it = (struct inp_tp *)inp;
722 tp = &it->tcb;
723 bzero(tp, sizeof(struct tcpcb));
724 TAILQ_INIT(&tp->t_segq);
725 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
726 tp->t_rxtthresh = tcprexmtthresh;
728 /* Set up our timeouts. */
729 tp->tt_rexmt = &it->inp_tp_rexmt;
730 tp->tt_persist = &it->inp_tp_persist;
731 tp->tt_keep = &it->inp_tp_keep;
732 tp->tt_2msl = &it->inp_tp_2msl;
733 tp->tt_delack = &it->inp_tp_delack;
734 tcp_inittimers(tp);
737 * Zero out timer message. We don't create it here,
738 * since the current CPU may not be the owner of this
739 * inpcb.
741 tp->tt_msg = &it->inp_tp_timermsg;
742 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
744 tp->t_keepinit = tcp_keepinit;
745 tp->t_keepidle = tcp_keepidle;
746 tp->t_keepintvl = tcp_keepintvl;
747 tp->t_keepcnt = tcp_keepcnt;
748 tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
750 if (tcp_do_ncr)
751 tp->t_flags |= TF_NCR;
752 if (tcp_do_rfc1323)
753 tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
755 tp->t_inpcb = inp; /* XXX */
756 TCP_STATE_INIT(tp);
758 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
759 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
760 * reasonable initial retransmit time.
762 tp->t_srtt = TCPTV_SRTTBASE;
763 tp->t_rttvar =
764 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
765 tp->t_rttmin = tcp_rexmit_min;
766 tp->t_rxtcur = TCPTV_RTOBASE;
767 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
768 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
769 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
770 tp->snd_last = ticks;
771 tp->t_rcvtime = ticks;
773 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
774 * because the socket may be bound to an IPv6 wildcard address,
775 * which may match an IPv4-mapped IPv6 address.
777 inp->inp_ip_ttl = ip_defttl;
778 inp->inp_ppcb = tp;
779 tcp_sack_tcpcb_init(tp);
781 tp->tt_sndmore = &it->inp_tp_sndmore;
782 tcp_output_init(tp);
786 * Drop a TCP connection, reporting the specified error.
787 * If connection is synchronized, then send a RST to peer.
789 struct tcpcb *
790 tcp_drop(struct tcpcb *tp, int error)
792 struct socket *so = tp->t_inpcb->inp_socket;
794 if (TCPS_HAVERCVDSYN(tp->t_state)) {
795 TCP_STATE_CHANGE(tp, TCPS_CLOSED);
796 tcp_output(tp);
797 tcpstat.tcps_drops++;
798 } else
799 tcpstat.tcps_conndrops++;
800 if (error == ETIMEDOUT && tp->t_softerror)
801 error = tp->t_softerror;
802 so->so_error = error;
803 return (tcp_close(tp));
806 struct netmsg_listen_detach {
807 struct netmsg_base base;
808 struct tcpcb *nm_tp;
809 struct tcpcb *nm_tp_inh;
812 static void
813 tcp_listen_detach_handler(netmsg_t msg)
815 struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
816 struct tcpcb *tp = nmsg->nm_tp;
817 int cpu = mycpuid, nextcpu;
819 if (tp->t_flags & TF_LISTEN) {
820 syncache_destroy(tp, nmsg->nm_tp_inh);
821 tcp_pcbport_merge_oncpu(tp);
824 in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
826 nextcpu = cpu + 1;
827 if (nextcpu < netisr_ncpus)
828 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
829 else
830 lwkt_replymsg(&nmsg->base.lmsg, 0);
834 * Close a TCP control block:
835 * discard all space held by the tcp
836 * discard internet protocol block
837 * wake up any sleepers
839 struct tcpcb *
840 tcp_close(struct tcpcb *tp)
842 struct tseg_qent *q;
843 struct inpcb *inp = tp->t_inpcb;
844 struct inpcb *inp_inh = NULL;
845 struct tcpcb *tp_inh = NULL;
846 struct socket *so = inp->inp_socket;
847 struct rtentry *rt;
848 boolean_t dosavessthresh;
849 #ifdef INET6
850 boolean_t isipv6 = INP_ISIPV6(inp);
851 #else
852 const boolean_t isipv6 = FALSE;
853 #endif
855 if (tp->t_flags & TF_LISTEN) {
857 * Pending socket/syncache inheritance
859 * If this is a listen(2) socket, find another listen(2)
860 * socket in the same local group, which could inherit
861 * the syncache and sockets pending on the completion
862 * and incompletion queues.
864 * NOTE:
865 * Currently the inheritance could only happen on the
866 * listen(2) sockets w/ SO_REUSEPORT set.
868 ASSERT_NETISR0;
869 inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
870 if (inp_inh != NULL)
871 tp_inh = intotcpcb(inp_inh);
875 * INP_WILDCARD indicates that listen(2) has been called on
876 * this socket. This implies:
877 * - A wildcard inp's hash is replicated for each protocol thread.
878 * - Syncache for this inp grows independently in each protocol
879 * thread.
880 * - There is more than one cpu
882 * We have to chain a message to the rest of the protocol threads
883 * to cleanup the wildcard hash and the syncache. The cleanup
884 * in the current protocol thread is defered till the end of this
885 * function (syncache_destroy and in_pcbdetach).
887 * NOTE:
888 * After cleanup the inp's hash and syncache entries, this inp will
889 * no longer be available to the rest of the protocol threads, so we
890 * are safe to whack the inp in the following code.
892 if ((inp->inp_flags & INP_WILDCARD) && netisr_ncpus > 1) {
893 struct netmsg_listen_detach nmsg;
895 KKASSERT(so->so_port == netisr_cpuport(0));
896 ASSERT_NETISR0;
897 KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
899 netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
900 MSGF_PRIORITY, tcp_listen_detach_handler);
901 nmsg.nm_tp = tp;
902 nmsg.nm_tp_inh = tp_inh;
903 lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
906 TCP_STATE_TERM(tp);
909 * Make sure that all of our timers are stopped before we
910 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
911 * timers are never used. If timer message is never created
912 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
914 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
915 tcp_callout_stop(tp, tp->tt_rexmt);
916 tcp_callout_stop(tp, tp->tt_persist);
917 tcp_callout_stop(tp, tp->tt_keep);
918 tcp_callout_stop(tp, tp->tt_2msl);
919 tcp_callout_stop(tp, tp->tt_delack);
922 if (tp->t_flags & TF_ONOUTPUTQ) {
923 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
924 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu].head, tp, t_outputq);
925 tp->t_flags &= ~TF_ONOUTPUTQ;
929 * If we got enough samples through the srtt filter,
930 * save the rtt and rttvar in the routing entry.
931 * 'Enough' is arbitrarily defined as the 16 samples.
932 * 16 samples is enough for the srtt filter to converge
933 * to within 5% of the correct value; fewer samples and
934 * we could save a very bogus rtt.
936 * Don't update the default route's characteristics and don't
937 * update anything that the user "locked".
939 if (tp->t_rttupdated >= 16) {
940 u_long i = 0;
942 if (isipv6) {
943 struct sockaddr_in6 *sin6;
945 if ((rt = inp->in6p_route.ro_rt) == NULL)
946 goto no_valid_rt;
947 sin6 = (struct sockaddr_in6 *)rt_key(rt);
948 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
949 goto no_valid_rt;
950 } else
951 if ((rt = inp->inp_route.ro_rt) == NULL ||
952 ((struct sockaddr_in *)rt_key(rt))->
953 sin_addr.s_addr == INADDR_ANY)
954 goto no_valid_rt;
956 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
957 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
958 if (rt->rt_rmx.rmx_rtt && i)
960 * filter this update to half the old & half
961 * the new values, converting scale.
962 * See route.h and tcp_var.h for a
963 * description of the scaling constants.
965 rt->rt_rmx.rmx_rtt =
966 (rt->rt_rmx.rmx_rtt + i) / 2;
967 else
968 rt->rt_rmx.rmx_rtt = i;
969 tcpstat.tcps_cachedrtt++;
971 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
972 i = tp->t_rttvar *
973 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
974 if (rt->rt_rmx.rmx_rttvar && i)
975 rt->rt_rmx.rmx_rttvar =
976 (rt->rt_rmx.rmx_rttvar + i) / 2;
977 else
978 rt->rt_rmx.rmx_rttvar = i;
979 tcpstat.tcps_cachedrttvar++;
982 * The old comment here said:
983 * update the pipelimit (ssthresh) if it has been updated
984 * already or if a pipesize was specified & the threshhold
985 * got below half the pipesize. I.e., wait for bad news
986 * before we start updating, then update on both good
987 * and bad news.
989 * But we want to save the ssthresh even if no pipesize is
990 * specified explicitly in the route, because such
991 * connections still have an implicit pipesize specified
992 * by the global tcp_sendspace. In the absence of a reliable
993 * way to calculate the pipesize, it will have to do.
995 i = tp->snd_ssthresh;
996 if (rt->rt_rmx.rmx_sendpipe != 0)
997 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
998 else
999 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1000 if (dosavessthresh ||
1001 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1002 (rt->rt_rmx.rmx_ssthresh != 0))) {
1004 * convert the limit from user data bytes to
1005 * packets then to packet data bytes.
1007 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1008 if (i < 2)
1009 i = 2;
1010 i *= tp->t_maxseg +
1011 (isipv6 ?
1012 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1013 sizeof(struct tcpiphdr));
1014 if (rt->rt_rmx.rmx_ssthresh)
1015 rt->rt_rmx.rmx_ssthresh =
1016 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1017 else
1018 rt->rt_rmx.rmx_ssthresh = i;
1019 tcpstat.tcps_cachedssthresh++;
1023 no_valid_rt:
1024 /* free the reassembly queue, if any */
1025 while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1026 TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1027 m_freem(q->tqe_m);
1028 kfree(q, M_TSEGQ);
1029 atomic_add_int(&tcp_reass_qsize, -1);
1031 /* throw away SACK blocks in scoreboard*/
1032 if (TCP_DO_SACK(tp))
1033 tcp_sack_destroy(&tp->scb);
1035 inp->inp_ppcb = NULL;
1036 soisdisconnected(so);
1037 /* note: pcb detached later on */
1039 tcp_destroy_timermsg(tp);
1040 tcp_output_cancel(tp);
1042 if (tp->t_flags & TF_LISTEN) {
1043 syncache_destroy(tp, tp_inh);
1044 tcp_pcbport_merge_oncpu(tp);
1045 tcp_pcbport_destroy(tp);
1046 if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1048 * Pending sockets inheritance only needs
1049 * to be done once in the current thread,
1050 * i.e. netisr0.
1052 soinherit(so, inp_inh->inp_socket);
1055 KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1057 so_async_rcvd_drop(so);
1058 /* Drop the reference for the asynchronized pru_rcvd */
1059 sofree(so);
1062 * NOTE:
1063 * - Remove self from listen tcpcb per-cpu port cache _before_
1064 * pcbdetach.
1065 * - pcbdetach removes any wildcard hash entry on the current CPU.
1067 tcp_pcbport_remove(inp);
1068 #ifdef INET6
1069 if (isipv6)
1070 in6_pcbdetach(inp);
1071 else
1072 #endif
1073 in_pcbdetach(inp);
1075 tcpstat.tcps_closed++;
1076 return (NULL);
1080 * Walk the tcpbs, if existing, and flush the reassembly queue,
1081 * if there is one...
1083 static void
1084 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1086 struct inpcbhead *head = &pcbinfo->pcblisthead;
1087 struct inpcb *inpb;
1090 * Since we run in netisr, it is MP safe, even if
1091 * we block during the inpcb list iteration, i.e.
1092 * we don't need to use inpcb marker here.
1094 ASSERT_NETISR_NCPUS(pcbinfo->cpu);
1096 LIST_FOREACH(inpb, head, inp_list) {
1097 struct tcpcb *tcpb;
1098 struct tseg_qent *te;
1100 if (inpb->inp_flags & INP_PLACEMARKER)
1101 continue;
1103 tcpb = intotcpcb(inpb);
1104 KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1106 if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1107 TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1108 if (te->tqe_th->th_flags & TH_FIN)
1109 tcpb->t_flags &= ~TF_QUEDFIN;
1110 m_freem(te->tqe_m);
1111 kfree(te, M_TSEGQ);
1112 atomic_add_int(&tcp_reass_qsize, -1);
1113 /* retry */
1118 static void
1119 tcp_drain_dispatch(netmsg_t nmsg)
1121 crit_enter();
1122 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1123 crit_exit();
1125 tcp_drain_oncpu(&tcbinfo[mycpuid]);
1126 tcp_reassq[mycpuid].draining = 0;
1129 static void
1130 tcp_drain_ipi(void *arg __unused)
1132 int cpu = mycpuid;
1133 struct lwkt_msg *msg = &tcp_reassq[cpu].drain_nmsg.lmsg;
1135 crit_enter();
1136 if (msg->ms_flags & MSGF_DONE)
1137 lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1138 crit_exit();
1141 void
1142 tcp_drain(void)
1144 cpumask_t mask;
1145 int cpu;
1147 if (!do_tcpdrain)
1148 return;
1150 if (tcp_reass_qsize == 0)
1151 return;
1153 CPUMASK_ASSBMASK(mask, netisr_ncpus);
1154 CPUMASK_ANDMASK(mask, smp_active_mask);
1156 cpu = mycpuid;
1157 if (IN_NETISR_NCPUS(cpu)) {
1158 tcp_drain_oncpu(&tcbinfo[cpu]);
1159 CPUMASK_NANDBIT(mask, cpu);
1162 if (tcp_reass_qsize < netisr_ncpus) {
1163 /* Does not worth the trouble. */
1164 return;
1167 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1168 if (!CPUMASK_TESTBIT(mask, cpu))
1169 continue;
1171 if (tcp_reassq[cpu].draining) {
1172 /* Draining; skip this cpu. */
1173 CPUMASK_NANDBIT(mask, cpu);
1174 continue;
1176 tcp_reassq[cpu].draining = 1;
1179 if (CPUMASK_TESTNZERO(mask))
1180 lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1184 * Notify a tcp user of an asynchronous error;
1185 * store error as soft error, but wake up user
1186 * (for now, won't do anything until can select for soft error).
1188 * Do not wake up user since there currently is no mechanism for
1189 * reporting soft errors (yet - a kqueue filter may be added).
1191 static void
1192 tcp_notify(struct inpcb *inp, int error)
1194 struct tcpcb *tp = intotcpcb(inp);
1197 * Ignore some errors if we are hooked up.
1198 * If connection hasn't completed, has retransmitted several times,
1199 * and receives a second error, give up now. This is better
1200 * than waiting a long time to establish a connection that
1201 * can never complete.
1203 if (tp->t_state == TCPS_ESTABLISHED &&
1204 (error == EHOSTUNREACH || error == ENETUNREACH ||
1205 error == EHOSTDOWN)) {
1206 return;
1207 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1208 tp->t_softerror)
1209 tcp_drop(tp, error);
1210 else
1211 tp->t_softerror = error;
1212 #if 0
1213 wakeup(&so->so_timeo);
1214 sorwakeup(so);
1215 sowwakeup(so);
1216 #endif
1219 static int
1220 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1222 int error, i, n;
1223 struct inpcb *marker;
1224 struct inpcb *inp;
1225 int origcpu, ccpu;
1227 error = 0;
1228 n = 0;
1231 * The process of preparing the TCB list is too time-consuming and
1232 * resource-intensive to repeat twice on every request.
1234 if (req->oldptr == NULL) {
1235 for (ccpu = 0; ccpu < netisr_ncpus; ++ccpu)
1236 n += tcbinfo[ccpu].ipi_count;
1237 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1238 return (0);
1241 if (req->newptr != NULL)
1242 return (EPERM);
1244 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1245 marker->inp_flags |= INP_PLACEMARKER;
1248 * OK, now we're committed to doing something. Run the inpcb list
1249 * for each cpu in the system and construct the output. Use a
1250 * list placemarker to deal with list changes occuring during
1251 * copyout blockages (but otherwise depend on being on the correct
1252 * cpu to avoid races).
1254 origcpu = mycpu->gd_cpuid;
1255 for (ccpu = 0; ccpu < netisr_ncpus && error == 0; ++ccpu) {
1256 caddr_t inp_ppcb;
1257 struct xtcpcb xt;
1259 lwkt_migratecpu(ccpu);
1261 n = tcbinfo[ccpu].ipi_count;
1263 LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1264 i = 0;
1265 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1267 * process a snapshot of pcbs, ignoring placemarkers
1268 * and using our own to allow SYSCTL_OUT to block.
1270 LIST_REMOVE(marker, inp_list);
1271 LIST_INSERT_AFTER(inp, marker, inp_list);
1273 if (inp->inp_flags & INP_PLACEMARKER)
1274 continue;
1275 if (prison_xinpcb(req->td, inp))
1276 continue;
1278 xt.xt_len = sizeof xt;
1279 bcopy(inp, &xt.xt_inp, sizeof *inp);
1280 inp_ppcb = inp->inp_ppcb;
1281 if (inp_ppcb != NULL)
1282 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1283 else
1284 bzero(&xt.xt_tp, sizeof xt.xt_tp);
1285 if (inp->inp_socket)
1286 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1287 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1288 break;
1289 ++i;
1291 LIST_REMOVE(marker, inp_list);
1292 if (error == 0 && i < n) {
1293 bzero(&xt, sizeof xt);
1294 xt.xt_len = sizeof xt;
1295 while (i < n) {
1296 error = SYSCTL_OUT(req, &xt, sizeof xt);
1297 if (error)
1298 break;
1299 ++i;
1305 * Make sure we are on the same cpu we were on originally, since
1306 * higher level callers expect this. Also don't pollute caches with
1307 * migrated userland data by (eventually) returning to userland
1308 * on a different cpu.
1310 lwkt_migratecpu(origcpu);
1311 kfree(marker, M_TEMP);
1312 return (error);
1315 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1316 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1318 static int
1319 tcp_getcred(SYSCTL_HANDLER_ARGS)
1321 struct sockaddr_in addrs[2];
1322 struct ucred cred0, *cred = NULL;
1323 struct inpcb *inp;
1324 int cpu, origcpu, error;
1326 error = priv_check(req->td, PRIV_ROOT);
1327 if (error != 0)
1328 return (error);
1329 error = SYSCTL_IN(req, addrs, sizeof addrs);
1330 if (error != 0)
1331 return (error);
1333 origcpu = mycpuid;
1334 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1335 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1337 lwkt_migratecpu(cpu);
1339 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1340 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1341 if (inp == NULL || inp->inp_socket == NULL) {
1342 error = ENOENT;
1343 } else if (inp->inp_socket->so_cred != NULL) {
1344 cred0 = *(inp->inp_socket->so_cred);
1345 cred = &cred0;
1348 lwkt_migratecpu(origcpu);
1350 if (error)
1351 return (error);
1353 return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1356 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1357 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1359 #ifdef INET6
1360 static int
1361 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1363 struct sockaddr_in6 addrs[2];
1364 struct inpcb *inp;
1365 int error;
1367 error = priv_check(req->td, PRIV_ROOT);
1368 if (error != 0)
1369 return (error);
1370 error = SYSCTL_IN(req, addrs, sizeof addrs);
1371 if (error != 0)
1372 return (error);
1373 crit_enter();
1374 inp = in6_pcblookup_hash(&tcbinfo[0],
1375 &addrs[1].sin6_addr, addrs[1].sin6_port,
1376 &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1377 if (inp == NULL || inp->inp_socket == NULL) {
1378 error = ENOENT;
1379 goto out;
1381 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1382 out:
1383 crit_exit();
1384 return (error);
1387 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1388 0, 0,
1389 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1390 #endif
1392 struct netmsg_tcp_notify {
1393 struct netmsg_base base;
1394 inp_notify_t nm_notify;
1395 struct in_addr nm_faddr;
1396 int nm_arg;
1399 static void
1400 tcp_notifyall_oncpu(netmsg_t msg)
1402 struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1403 int nextcpu;
1405 ASSERT_NETISR_NCPUS(mycpuid);
1407 in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1408 nm->nm_arg, nm->nm_notify);
1410 nextcpu = mycpuid + 1;
1411 if (nextcpu < netisr_ncpus)
1412 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1413 else
1414 lwkt_replymsg(&nm->base.lmsg, 0);
1417 inp_notify_t
1418 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1419 int *arg, struct ip **ip0, int *cpuid)
1421 struct ip *ip = *ip0;
1422 struct in_addr faddr;
1423 inp_notify_t notify = tcp_notify;
1425 faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1426 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1427 return NULL;
1429 *arg = inetctlerrmap[cmd];
1430 if (cmd == PRC_QUENCH) {
1431 notify = tcp_quench;
1432 } else if (icmp_may_rst &&
1433 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1434 cmd == PRC_UNREACH_PORT ||
1435 cmd == PRC_TIMXCEED_INTRANS) &&
1436 ip != NULL) {
1437 notify = tcp_drop_syn_sent;
1438 } else if (cmd == PRC_MSGSIZE) {
1439 const struct icmp *icmp = (const struct icmp *)
1440 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1442 *arg = ntohs(icmp->icmp_nextmtu);
1443 notify = tcp_mtudisc;
1444 } else if (PRC_IS_REDIRECT(cmd)) {
1445 ip = NULL;
1446 notify = in_rtchange;
1447 } else if (cmd == PRC_HOSTDEAD) {
1448 ip = NULL;
1449 } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1450 return NULL;
1453 if (cpuid != NULL) {
1454 if (ip == NULL) {
1455 /* Go through all effective netisr CPUs. */
1456 *cpuid = netisr_ncpus;
1457 } else {
1458 const struct tcphdr *th;
1460 th = (const struct tcphdr *)
1461 ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1462 *cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1463 ip->ip_src.s_addr, th->th_sport);
1467 *ip0 = ip;
1468 return notify;
1471 void
1472 tcp_ctlinput(netmsg_t msg)
1474 int cmd = msg->ctlinput.nm_cmd;
1475 struct sockaddr *sa = msg->ctlinput.nm_arg;
1476 struct ip *ip = msg->ctlinput.nm_extra;
1477 struct in_addr faddr;
1478 inp_notify_t notify;
1479 int arg, cpuid;
1481 ASSERT_NETISR_NCPUS(mycpuid);
1483 notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1484 if (notify == NULL)
1485 goto done;
1487 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1488 if (ip != NULL) {
1489 const struct tcphdr *th;
1490 struct inpcb *inp;
1492 if (cpuid != mycpuid)
1493 goto done;
1495 th = (const struct tcphdr *)
1496 ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1497 inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1498 ip->ip_src, th->th_sport, 0, NULL);
1499 if (inp != NULL && inp->inp_socket != NULL) {
1500 tcp_seq icmpseq = htonl(th->th_seq);
1501 struct tcpcb *tp = intotcpcb(inp);
1503 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1504 SEQ_LT(icmpseq, tp->snd_max))
1505 notify(inp, arg);
1506 } else {
1507 struct in_conninfo inc;
1509 inc.inc_fport = th->th_dport;
1510 inc.inc_lport = th->th_sport;
1511 inc.inc_faddr = faddr;
1512 inc.inc_laddr = ip->ip_src;
1513 #ifdef INET6
1514 inc.inc_isipv6 = 0;
1515 #endif
1516 syncache_unreach(&inc, th);
1518 } else if (msg->ctlinput.nm_direct) {
1519 if (cpuid != netisr_ncpus && cpuid != mycpuid)
1520 goto done;
1522 in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1523 } else {
1524 struct netmsg_tcp_notify *nm;
1526 ASSERT_NETISR0;
1527 nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1528 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1529 0, tcp_notifyall_oncpu);
1530 nm->nm_faddr = faddr;
1531 nm->nm_arg = arg;
1532 nm->nm_notify = notify;
1534 lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1536 done:
1537 lwkt_replymsg(&msg->lmsg, 0);
1540 #ifdef INET6
1542 void
1543 tcp6_ctlinput(netmsg_t msg)
1545 int cmd = msg->ctlinput.nm_cmd;
1546 struct sockaddr *sa = msg->ctlinput.nm_arg;
1547 void *d = msg->ctlinput.nm_extra;
1548 struct tcphdr th;
1549 inp_notify_t notify = tcp_notify;
1550 struct ip6_hdr *ip6;
1551 struct mbuf *m;
1552 struct ip6ctlparam *ip6cp = NULL;
1553 const struct sockaddr_in6 *sa6_src = NULL;
1554 int off;
1555 struct tcp_portonly {
1556 u_int16_t th_sport;
1557 u_int16_t th_dport;
1558 } *thp;
1559 int arg;
1561 if (sa->sa_family != AF_INET6 ||
1562 sa->sa_len != sizeof(struct sockaddr_in6)) {
1563 goto out;
1566 arg = 0;
1567 if (cmd == PRC_QUENCH)
1568 notify = tcp_quench;
1569 else if (cmd == PRC_MSGSIZE) {
1570 struct ip6ctlparam *ip6cp = d;
1571 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1573 arg = ntohl(icmp6->icmp6_mtu);
1574 notify = tcp_mtudisc;
1575 } else if (!PRC_IS_REDIRECT(cmd) &&
1576 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1577 goto out;
1580 /* if the parameter is from icmp6, decode it. */
1581 if (d != NULL) {
1582 ip6cp = (struct ip6ctlparam *)d;
1583 m = ip6cp->ip6c_m;
1584 ip6 = ip6cp->ip6c_ip6;
1585 off = ip6cp->ip6c_off;
1586 sa6_src = ip6cp->ip6c_src;
1587 } else {
1588 m = NULL;
1589 ip6 = NULL;
1590 off = 0; /* fool gcc */
1591 sa6_src = &sa6_any;
1594 if (ip6 != NULL) {
1595 struct in_conninfo inc;
1597 * XXX: We assume that when IPV6 is non NULL,
1598 * M and OFF are valid.
1601 /* check if we can safely examine src and dst ports */
1602 if (m->m_pkthdr.len < off + sizeof *thp)
1603 goto out;
1605 bzero(&th, sizeof th);
1606 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1608 in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1609 (struct sockaddr *)ip6cp->ip6c_src,
1610 th.th_sport, cmd, arg, notify);
1612 inc.inc_fport = th.th_dport;
1613 inc.inc_lport = th.th_sport;
1614 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1615 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1616 inc.inc_isipv6 = 1;
1617 syncache_unreach(&inc, &th);
1618 } else {
1619 in6_pcbnotify(&tcbinfo[0], sa, 0,
1620 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1622 out:
1623 lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1626 #endif
1629 * Following is where TCP initial sequence number generation occurs.
1631 * There are two places where we must use initial sequence numbers:
1632 * 1. In SYN-ACK packets.
1633 * 2. In SYN packets.
1635 * All ISNs for SYN-ACK packets are generated by the syncache. See
1636 * tcp_syncache.c for details.
1638 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1639 * depends on this property. In addition, these ISNs should be
1640 * unguessable so as to prevent connection hijacking. To satisfy
1641 * the requirements of this situation, the algorithm outlined in
1642 * RFC 1948 is used to generate sequence numbers.
1644 * Implementation details:
1646 * Time is based off the system timer, and is corrected so that it
1647 * increases by one megabyte per second. This allows for proper
1648 * recycling on high speed LANs while still leaving over an hour
1649 * before rollover.
1651 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1652 * between seeding of isn_secret. This is normally set to zero,
1653 * as reseeding should not be necessary.
1657 #define ISN_BYTES_PER_SECOND 1048576
1659 u_char isn_secret[32];
1660 int isn_last_reseed;
1661 MD5_CTX isn_ctx;
1663 tcp_seq
1664 tcp_new_isn(struct tcpcb *tp)
1666 u_int32_t md5_buffer[4];
1667 tcp_seq new_isn;
1669 /* Seed if this is the first use, reseed if requested. */
1670 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1671 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1672 < (u_int)ticks))) {
1673 read_random_unlimited(&isn_secret, sizeof isn_secret);
1674 isn_last_reseed = ticks;
1677 /* Compute the md5 hash and return the ISN. */
1678 MD5Init(&isn_ctx);
1679 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1680 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1681 #ifdef INET6
1682 if (INP_ISIPV6(tp->t_inpcb)) {
1683 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1684 sizeof(struct in6_addr));
1685 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1686 sizeof(struct in6_addr));
1687 } else
1688 #endif
1690 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1691 sizeof(struct in_addr));
1692 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1693 sizeof(struct in_addr));
1695 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1696 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1697 new_isn = (tcp_seq) md5_buffer[0];
1698 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1699 return (new_isn);
1703 * When a source quench is received, close congestion window
1704 * to one segment. We will gradually open it again as we proceed.
1706 void
1707 tcp_quench(struct inpcb *inp, int error)
1709 struct tcpcb *tp = intotcpcb(inp);
1711 KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1712 tp->snd_cwnd = tp->t_maxseg;
1713 tp->snd_wacked = 0;
1717 * When a specific ICMP unreachable message is received and the
1718 * connection state is SYN-SENT, drop the connection. This behavior
1719 * is controlled by the icmp_may_rst sysctl.
1721 void
1722 tcp_drop_syn_sent(struct inpcb *inp, int error)
1724 struct tcpcb *tp = intotcpcb(inp);
1726 KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1727 if (tp->t_state == TCPS_SYN_SENT)
1728 tcp_drop(tp, error);
1732 * When a `need fragmentation' ICMP is received, update our idea of the MSS
1733 * based on the new value in the route. Also nudge TCP to send something,
1734 * since we know the packet we just sent was dropped.
1735 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1737 void
1738 tcp_mtudisc(struct inpcb *inp, int mtu)
1740 struct tcpcb *tp = intotcpcb(inp);
1741 struct rtentry *rt;
1742 struct socket *so = inp->inp_socket;
1743 int maxopd, mss;
1744 #ifdef INET6
1745 boolean_t isipv6 = INP_ISIPV6(inp);
1746 #else
1747 const boolean_t isipv6 = FALSE;
1748 #endif
1750 KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1753 * If no MTU is provided in the ICMP message, use the
1754 * next lower likely value, as specified in RFC 1191.
1756 if (mtu == 0) {
1757 int oldmtu;
1759 oldmtu = tp->t_maxopd +
1760 (isipv6 ?
1761 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1762 sizeof(struct tcpiphdr));
1763 mtu = ip_next_mtu(oldmtu, 0);
1766 if (isipv6)
1767 rt = tcp_rtlookup6(&inp->inp_inc);
1768 else
1769 rt = tcp_rtlookup(&inp->inp_inc);
1770 if (rt != NULL) {
1771 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1772 mtu = rt->rt_rmx.rmx_mtu;
1774 maxopd = mtu -
1775 (isipv6 ?
1776 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1777 sizeof(struct tcpiphdr));
1780 * XXX - The following conditional probably violates the TCP
1781 * spec. The problem is that, since we don't know the
1782 * other end's MSS, we are supposed to use a conservative
1783 * default. But, if we do that, then MTU discovery will
1784 * never actually take place, because the conservative
1785 * default is much less than the MTUs typically seen
1786 * on the Internet today. For the moment, we'll sweep
1787 * this under the carpet.
1789 * The conservative default might not actually be a problem
1790 * if the only case this occurs is when sending an initial
1791 * SYN with options and data to a host we've never talked
1792 * to before. Then, they will reply with an MSS value which
1793 * will get recorded and the new parameters should get
1794 * recomputed. For Further Study.
1796 if (rt->rt_rmx.rmx_mssopt && rt->rt_rmx.rmx_mssopt < maxopd)
1797 maxopd = rt->rt_rmx.rmx_mssopt;
1798 } else
1799 maxopd = mtu -
1800 (isipv6 ?
1801 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1802 sizeof(struct tcpiphdr));
1804 if (tp->t_maxopd <= maxopd)
1805 return;
1806 tp->t_maxopd = maxopd;
1808 mss = maxopd;
1809 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1810 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1811 mss -= TCPOLEN_TSTAMP_APPA;
1813 /* round down to multiple of MCLBYTES */
1814 #if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1815 if (mss > MCLBYTES)
1816 mss &= ~(MCLBYTES - 1);
1817 #else
1818 if (mss > MCLBYTES)
1819 mss = (mss / MCLBYTES) * MCLBYTES;
1820 #endif
1822 if (so->so_snd.ssb_hiwat < mss)
1823 mss = so->so_snd.ssb_hiwat;
1825 tp->t_maxseg = mss;
1826 tp->t_rtttime = 0;
1827 tp->snd_nxt = tp->snd_una;
1828 tcp_output(tp);
1829 tcpstat.tcps_mturesent++;
1833 * Look-up the routing entry to the peer of this inpcb. If no route
1834 * is found and it cannot be allocated the return NULL. This routine
1835 * is called by TCP routines that access the rmx structure and by tcp_mss
1836 * to get the interface MTU.
1838 struct rtentry *
1839 tcp_rtlookup(struct in_conninfo *inc)
1841 struct route *ro = &inc->inc_route;
1843 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1844 /* No route yet, so try to acquire one */
1845 if (inc->inc_faddr.s_addr != INADDR_ANY) {
1847 * unused portions of the structure MUST be zero'd
1848 * out because rtalloc() treats it as opaque data
1850 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1851 ro->ro_dst.sa_family = AF_INET;
1852 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1853 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1854 inc->inc_faddr;
1855 rtalloc(ro);
1858 return (ro->ro_rt);
1861 #ifdef INET6
1862 struct rtentry *
1863 tcp_rtlookup6(struct in_conninfo *inc)
1865 struct route_in6 *ro6 = &inc->inc6_route;
1867 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1868 /* No route yet, so try to acquire one */
1869 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1871 * unused portions of the structure MUST be zero'd
1872 * out because rtalloc() treats it as opaque data
1874 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1875 ro6->ro_dst.sin6_family = AF_INET6;
1876 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1877 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1878 rtalloc((struct route *)ro6);
1881 return (ro6->ro_rt);
1883 #endif
1886 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1888 * This code attempts to calculate the bandwidth-delay product as a
1889 * means of determining the optimal window size to maximize bandwidth,
1890 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1891 * routers. This code also does a fairly good job keeping RTTs in check
1892 * across slow links like modems. We implement an algorithm which is very
1893 * similar (but not meant to be) TCP/Vegas. The code operates on the
1894 * transmitter side of a TCP connection and so only effects the transmit
1895 * side of the connection.
1897 * BACKGROUND: TCP makes no provision for the management of buffer space
1898 * at the end points or at the intermediate routers and switches. A TCP
1899 * stream, whether using NewReno or not, will eventually buffer as
1900 * many packets as it is able and the only reason this typically works is
1901 * due to the fairly small default buffers made available for a connection
1902 * (typicaly 16K or 32K). As machines use larger windows and/or window
1903 * scaling it is now fairly easy for even a single TCP connection to blow-out
1904 * all available buffer space not only on the local interface, but on
1905 * intermediate routers and switches as well. NewReno makes a misguided
1906 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1907 * then backing off, then steadily increasing the window again until another
1908 * failure occurs, ad-infinitum. This results in terrible oscillation that
1909 * is only made worse as network loads increase and the idea of intentionally
1910 * blowing out network buffers is, frankly, a terrible way to manage network
1911 * resources.
1913 * It is far better to limit the transmit window prior to the failure
1914 * condition being achieved. There are two general ways to do this: First
1915 * you can 'scan' through different transmit window sizes and locate the
1916 * point where the RTT stops increasing, indicating that you have filled the
1917 * pipe, then scan backwards until you note that RTT stops decreasing, then
1918 * repeat ad-infinitum. This method works in principle but has severe
1919 * implementation issues due to RTT variances, timer granularity, and
1920 * instability in the algorithm which can lead to many false positives and
1921 * create oscillations as well as interact badly with other TCP streams
1922 * implementing the same algorithm.
1924 * The second method is to limit the window to the bandwidth delay product
1925 * of the link. This is the method we implement. RTT variances and our
1926 * own manipulation of the congestion window, bwnd, can potentially
1927 * destabilize the algorithm. For this reason we have to stabilize the
1928 * elements used to calculate the window. We do this by using the minimum
1929 * observed RTT, the long term average of the observed bandwidth, and
1930 * by adding two segments worth of slop. It isn't perfect but it is able
1931 * to react to changing conditions and gives us a very stable basis on
1932 * which to extend the algorithm.
1934 void
1935 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1937 u_long bw;
1938 u_long ibw;
1939 u_long bwnd;
1940 int save_ticks;
1941 int delta_ticks;
1944 * If inflight_enable is disabled in the middle of a tcp connection,
1945 * make sure snd_bwnd is effectively disabled.
1947 if (!tcp_inflight_enable) {
1948 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1949 tp->snd_bandwidth = 0;
1950 return;
1954 * Validate the delta time. If a connection is new or has been idle
1955 * a long time we have to reset the bandwidth calculator.
1957 save_ticks = ticks;
1958 cpu_ccfence();
1959 delta_ticks = save_ticks - tp->t_bw_rtttime;
1960 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1961 tp->t_bw_rtttime = save_ticks;
1962 tp->t_bw_rtseq = ack_seq;
1963 if (tp->snd_bandwidth == 0)
1964 tp->snd_bandwidth = tcp_inflight_start;
1965 return;
1969 * A delta of at least 1 tick is required. Waiting 2 ticks will
1970 * result in better (bw) accuracy. More than that and the ramp-up
1971 * will be too slow.
1973 if (delta_ticks == 0 || delta_ticks == 1)
1974 return;
1977 * Sanity check, plus ignore pure window update acks.
1979 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1980 return;
1983 * Figure out the bandwidth. Due to the tick granularity this
1984 * is a very rough number and it MUST be averaged over a fairly
1985 * long period of time. XXX we need to take into account a link
1986 * that is not using all available bandwidth, but for now our
1987 * slop will ramp us up if this case occurs and the bandwidth later
1988 * increases.
1990 ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1991 tp->t_bw_rtttime = save_ticks;
1992 tp->t_bw_rtseq = ack_seq;
1993 bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
1995 tp->snd_bandwidth = bw;
1998 * Calculate the semi-static bandwidth delay product, plus two maximal
1999 * segments. The additional slop puts us squarely in the sweet
2000 * spot and also handles the bandwidth run-up case. Without the
2001 * slop we could be locking ourselves into a lower bandwidth.
2003 * At very high speeds the bw calculation can become overly sensitive
2004 * and error prone when delta_ticks is low (e.g. usually 1). To deal
2005 * with the problem the stab must be scaled to the bw. A stab of 50
2006 * (the default) increases the bw for the purposes of the bwnd
2007 * calculation by 5%.
2009 * Situations Handled:
2010 * (1) Prevents over-queueing of packets on LANs, especially on
2011 * high speed LANs, allowing larger TCP buffers to be
2012 * specified, and also does a good job preventing
2013 * over-queueing of packets over choke points like modems
2014 * (at least for the transmit side).
2016 * (2) Is able to handle changing network loads (bandwidth
2017 * drops so bwnd drops, bandwidth increases so bwnd
2018 * increases).
2020 * (3) Theoretically should stabilize in the face of multiple
2021 * connections implementing the same algorithm (this may need
2022 * a little work).
2024 * (4) Stability value (defaults to 20 = 2 maximal packets) can
2025 * be adjusted with a sysctl but typically only needs to be on
2026 * very slow connections. A value no smaller then 5 should
2027 * be used, but only reduce this default if you have no other
2028 * choice.
2031 #define USERTT ((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2032 bw += bw * tcp_inflight_stab / 1000;
2033 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2034 (int)tp->t_maxseg * 2;
2035 #undef USERTT
2037 if (tcp_inflight_debug > 0) {
2038 static int ltime;
2039 if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2040 ltime = save_ticks;
2041 kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2042 "bwnd %ld delta %d snd_win %ld\n",
2043 tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2044 bwnd, delta_ticks, tp->snd_wnd);
2047 if ((long)bwnd < tcp_inflight_min)
2048 bwnd = tcp_inflight_min;
2049 if (bwnd > tcp_inflight_max)
2050 bwnd = tcp_inflight_max;
2051 if ((long)bwnd < tp->t_maxseg * 2)
2052 bwnd = tp->t_maxseg * 2;
2053 tp->snd_bwnd = bwnd;
2056 static void
2057 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2059 struct rtentry *rt;
2060 struct inpcb *inp = tp->t_inpcb;
2061 #ifdef INET6
2062 boolean_t isipv6 = INP_ISIPV6(inp);
2063 #else
2064 const boolean_t isipv6 = FALSE;
2065 #endif
2067 /* XXX */
2068 if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2069 tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2070 if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2071 tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2073 if (isipv6)
2074 rt = tcp_rtlookup6(&inp->inp_inc);
2075 else
2076 rt = tcp_rtlookup(&inp->inp_inc);
2077 if (rt == NULL ||
2078 rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2079 rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2080 *maxsegs = tcp_iw_maxsegs;
2081 *capsegs = tcp_iw_capsegs;
2082 return;
2084 *maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2085 *capsegs = rt->rt_rmx.rmx_iwcapsegs;
2088 u_long
2089 tcp_initial_window(struct tcpcb *tp)
2091 if (tcp_do_rfc3390) {
2093 * RFC3390:
2094 * "If the SYN or SYN/ACK is lost, the initial window
2095 * used by a sender after a correctly transmitted SYN
2096 * MUST be one segment consisting of MSS bytes."
2098 * However, we do something a little bit more aggressive
2099 * then RFC3390 here:
2100 * - Only if time spent in the SYN or SYN|ACK retransmition
2101 * >= 3 seconds, the IW is reduced. We do this mainly
2102 * because when RFC3390 is published, the initial RTO is
2103 * still 3 seconds (the threshold we test here), while
2104 * after RFC6298, the initial RTO is 1 second. This
2105 * behaviour probably still falls within the spirit of
2106 * RFC3390.
2107 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2108 * Mainly to avoid sender and receiver deadlock until
2109 * delayed ACK timer expires. And even RFC2581 does not
2110 * try to reduce IW upon SYN or SYN|ACK retransmition
2111 * timeout.
2113 * See also:
2114 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2116 if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2117 return (2 * tp->t_maxseg);
2118 } else {
2119 u_long maxsegs, capsegs;
2121 tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2122 return min(maxsegs * tp->t_maxseg,
2123 max(2 * tp->t_maxseg, capsegs * 1460));
2125 } else {
2127 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2129 * Mainly to avoid sender and receiver deadlock
2130 * until delayed ACK timer expires.
2132 return (2 * tp->t_maxseg);
2136 #ifdef TCP_SIGNATURE
2138 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2140 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2141 * When called from tcp_input(), we can be sure that th_sum has been
2142 * zeroed out and verified already.
2144 * Return 0 if successful, otherwise return -1.
2146 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2147 * search with the destination IP address, and a 'magic SPI' to be
2148 * determined by the application. This is hardcoded elsewhere to 1179
2149 * right now. Another branch of this code exists which uses the SPD to
2150 * specify per-application flows but it is unstable.
2153 tcpsignature_compute(
2154 struct mbuf *m, /* mbuf chain */
2155 int len, /* length of TCP data */
2156 int optlen, /* length of TCP options */
2157 u_char *buf, /* storage for MD5 digest */
2158 u_int direction) /* direction of flow */
2160 struct ippseudo ippseudo;
2161 MD5_CTX ctx;
2162 int doff;
2163 struct ip *ip;
2164 struct ipovly *ipovly;
2165 struct secasvar *sav;
2166 struct tcphdr *th;
2167 #ifdef INET6
2168 struct ip6_hdr *ip6;
2169 struct in6_addr in6;
2170 uint32_t plen;
2171 uint16_t nhdr;
2172 #endif /* INET6 */
2173 u_short savecsum;
2175 KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2176 KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2178 * Extract the destination from the IP header in the mbuf.
2180 ip = mtod(m, struct ip *);
2181 #ifdef INET6
2182 ip6 = NULL; /* Make the compiler happy. */
2183 #endif /* INET6 */
2185 * Look up an SADB entry which matches the address found in
2186 * the segment.
2188 switch (IP_VHL_V(ip->ip_vhl)) {
2189 case IPVERSION:
2190 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2191 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2192 break;
2193 #ifdef INET6
2194 case (IPV6_VERSION >> 4):
2195 ip6 = mtod(m, struct ip6_hdr *);
2196 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2197 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2198 break;
2199 #endif /* INET6 */
2200 default:
2201 return (EINVAL);
2202 /* NOTREACHED */
2203 break;
2205 if (sav == NULL) {
2206 kprintf("%s: SADB lookup failed\n", __func__);
2207 return (EINVAL);
2209 MD5Init(&ctx);
2212 * Step 1: Update MD5 hash with IP pseudo-header.
2214 * XXX The ippseudo header MUST be digested in network byte order,
2215 * or else we'll fail the regression test. Assume all fields we've
2216 * been doing arithmetic on have been in host byte order.
2217 * XXX One cannot depend on ipovly->ih_len here. When called from
2218 * tcp_output(), the underlying ip_len member has not yet been set.
2220 switch (IP_VHL_V(ip->ip_vhl)) {
2221 case IPVERSION:
2222 ipovly = (struct ipovly *)ip;
2223 ippseudo.ippseudo_src = ipovly->ih_src;
2224 ippseudo.ippseudo_dst = ipovly->ih_dst;
2225 ippseudo.ippseudo_pad = 0;
2226 ippseudo.ippseudo_p = IPPROTO_TCP;
2227 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2228 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2229 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2230 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2231 break;
2232 #ifdef INET6
2234 * RFC 2385, 2.0 Proposal
2235 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2236 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2237 * extended next header value (to form 32 bits), and 32-bit segment
2238 * length.
2239 * Note: Upper-Layer Packet Length comes before Next Header.
2241 case (IPV6_VERSION >> 4):
2242 in6 = ip6->ip6_src;
2243 in6_clearscope(&in6);
2244 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2245 in6 = ip6->ip6_dst;
2246 in6_clearscope(&in6);
2247 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2248 plen = htonl(len + sizeof(struct tcphdr) + optlen);
2249 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2250 nhdr = 0;
2251 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2252 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2253 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2254 nhdr = IPPROTO_TCP;
2255 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2256 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2257 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2258 break;
2259 #endif /* INET6 */
2260 default:
2261 return (EINVAL);
2262 /* NOTREACHED */
2263 break;
2266 * Step 2: Update MD5 hash with TCP header, excluding options.
2267 * The TCP checksum must be set to zero.
2269 savecsum = th->th_sum;
2270 th->th_sum = 0;
2271 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2272 th->th_sum = savecsum;
2274 * Step 3: Update MD5 hash with TCP segment data.
2275 * Use m_apply() to avoid an early m_pullup().
2277 if (len > 0)
2278 m_apply(m, doff, len, tcpsignature_apply, &ctx);
2280 * Step 4: Update MD5 hash with shared secret.
2282 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2283 MD5Final(buf, &ctx);
2284 key_sa_recordxfer(sav, m);
2285 key_freesav(sav);
2286 return (0);
2290 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2293 MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2294 return (0);
2296 #endif /* TCP_SIGNATURE */
2298 static void
2299 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2301 struct lwkt_msg *lmsg = &nmsg->lmsg;
2302 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
2303 struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2304 int error;
2305 struct sockaddr_in *fin, *lin;
2306 #ifdef INET6
2307 struct sockaddr_in6 *fin6, *lin6;
2308 struct in6_addr f6, l6;
2309 #endif
2310 struct inpcb *inp;
2312 switch (addrs[0].ss_family) {
2313 #ifdef INET6
2314 case AF_INET6:
2315 fin6 = (struct sockaddr_in6 *)&addrs[0];
2316 lin6 = (struct sockaddr_in6 *)&addrs[1];
2317 error = in6_embedscope(&f6, fin6, NULL, NULL);
2318 if (error)
2319 goto done;
2320 error = in6_embedscope(&l6, lin6, NULL, NULL);
2321 if (error)
2322 goto done;
2323 inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2324 fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2325 break;
2326 #endif
2327 #ifdef INET
2328 case AF_INET:
2329 fin = (struct sockaddr_in *)&addrs[0];
2330 lin = (struct sockaddr_in *)&addrs[1];
2331 inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2332 fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2333 break;
2334 #endif
2335 default:
2337 * Must not reach here, since the address family was
2338 * checked in sysctl handler.
2340 panic("unknown address family %d", addrs[0].ss_family);
2342 if (inp != NULL) {
2343 struct tcpcb *tp = intotcpcb(inp);
2345 KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2346 ("in wildcard hash"));
2347 KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2348 KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2349 tcp_drop(tp, ECONNABORTED);
2350 error = 0;
2351 } else {
2352 error = ESRCH;
2354 #ifdef INET6
2355 done:
2356 #endif
2357 lwkt_replymsg(lmsg, error);
2360 static int
2361 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2363 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
2364 struct sockaddr_storage addrs[2];
2365 struct sockaddr_in *fin, *lin;
2366 #ifdef INET6
2367 struct sockaddr_in6 *fin6, *lin6;
2368 #endif
2369 struct netmsg_base nmsg;
2370 struct lwkt_msg *lmsg = &nmsg.lmsg;
2371 struct lwkt_port *port = NULL;
2372 int error;
2374 fin = lin = NULL;
2375 #ifdef INET6
2376 fin6 = lin6 = NULL;
2377 #endif
2378 error = 0;
2380 if (req->oldptr != NULL || req->oldlen != 0)
2381 return (EINVAL);
2382 if (req->newptr == NULL)
2383 return (EPERM);
2384 if (req->newlen < sizeof(addrs))
2385 return (ENOMEM);
2386 error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2387 if (error)
2388 return (error);
2390 switch (addrs[0].ss_family) {
2391 #ifdef INET6
2392 case AF_INET6:
2393 fin6 = (struct sockaddr_in6 *)&addrs[0];
2394 lin6 = (struct sockaddr_in6 *)&addrs[1];
2395 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2396 lin6->sin6_len != sizeof(struct sockaddr_in6))
2397 return (EINVAL);
2398 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2399 IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2400 return (EADDRNOTAVAIL);
2401 #if 0
2402 error = sa6_embedscope(fin6, V_ip6_use_defzone);
2403 if (error)
2404 return (error);
2405 error = sa6_embedscope(lin6, V_ip6_use_defzone);
2406 if (error)
2407 return (error);
2408 #endif
2409 port = tcp6_addrport();
2410 break;
2411 #endif
2412 #ifdef INET
2413 case AF_INET:
2414 fin = (struct sockaddr_in *)&addrs[0];
2415 lin = (struct sockaddr_in *)&addrs[1];
2416 if (fin->sin_len != sizeof(struct sockaddr_in) ||
2417 lin->sin_len != sizeof(struct sockaddr_in))
2418 return (EINVAL);
2419 port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2420 lin->sin_addr.s_addr, lin->sin_port);
2421 break;
2422 #endif
2423 default:
2424 return (EINVAL);
2427 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2428 tcp_drop_sysctl_dispatch);
2429 lmsg->u.ms_resultp = addrs;
2430 return lwkt_domsg(port, lmsg, 0);
2433 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2434 CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2435 0, sysctl_tcp_drop, "", "Drop TCP connection");
2437 static int
2438 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2440 u_long state_count[TCP_NSTATES];
2441 int cpu;
2443 memset(state_count, 0, sizeof(state_count));
2444 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2445 int i;
2447 for (i = 0; i < TCP_NSTATES; ++i)
2448 state_count[i] += tcpstate_count[cpu].tcps_count[i];
2451 return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2453 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2454 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2455 sysctl_tcps_count, "LU", "TCP connection counts by state");
2457 void
2458 tcp_pcbport_create(struct tcpcb *tp)
2460 int cpu;
2462 KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2463 ("not a listen tcpcb"));
2465 KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2466 tp->t_pcbport = kmalloc_cachealign(
2467 sizeof(struct tcp_pcbport) * netisr_ncpus, M_PCB, M_WAITOK);
2469 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2470 struct inpcbport *phd;
2472 phd = &tp->t_pcbport[cpu].t_phd;
2473 LIST_INIT(&phd->phd_pcblist);
2474 /* Though, not used ... */
2475 phd->phd_port = tp->t_inpcb->inp_lport;
2479 void
2480 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2482 struct inpcbport *phd;
2483 struct inpcb *inp;
2484 int cpu = mycpuid;
2486 KASSERT(cpu < netisr_ncpus, ("invalid cpu%d", cpu));
2487 phd = &tp->t_pcbport[cpu].t_phd;
2489 while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2490 KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2491 ("not on tcpcb port cache"));
2492 LIST_REMOVE(inp, inp_portlist);
2493 in_pcbinsporthash_lport(inp);
2494 KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2495 inp->inp_porthash == tp->t_inpcb->inp_porthash,
2496 ("tcpcb port cache merge failed"));
2500 void
2501 tcp_pcbport_destroy(struct tcpcb *tp)
2503 #ifdef INVARIANTS
2504 int cpu;
2506 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2507 KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2508 ("tcpcb port cache is not empty"));
2510 #endif
2511 kfree(tp->t_pcbport, M_PCB);
2512 tp->t_pcbport = NULL;